FREE DISCONTINUITIES IN OPTIMAL TRANSPORT

JUN KITAGAWA AND ROBERT MCCANN

ABSTRACT. We prove a nonsmooth implicit function theorem applicable to
the zero set of the difference of convex functions. This theorem is explicit
and global: it gives a formula representing this zero set as a difference of
convex functions which holds throughout the entire domain of the original
functions. As applications, we prove results on the stability of singularities of
envelopes of semi-convex functions, and solutions to optimal transport prob-
lems under appropriate perturbations, along with global structure theorems
on certain discontinuities arising in optimal transport maps for the bilinear
cost ¢(x,Z) := —(z,Z) for £,z € R™. For targets whose components satisfy
additional convexity, separation, multiplicity, and affine independence assump-
tions we show these discontinuities occur on submanifolds of the appropriate
codimension which are parameterized locally as differences of convex functions
(DC, hence C? rectifiable), and — depending on the precise assumptions —
CL2 smooth. Under these hypotheses, any n + 1 affinely independent compo-
nents of the target measure select at most one point from the source measure
where the transport divides between all n + 1 specified target components.
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1. INTRODUCTION

The question of regularity for maps solving the optimal transportation problem of
Monge and Kantorovich is a celebrated problem [23] [26]. Under strong hypotheses
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relating the target’s convexity to curvature properties of the transportation cost,
optimal maps are known to be smooth, following work of Caffarelli on bilinear
costs [5] and Ma, Trudinger, and Wang more generally [19]. In the absence of such
convexity and curvature properties, much less is true. Partial regularity results
— which quantify the size of the singular set — are available in several flavors.
The set of discontinuities of an optimal map is known to be contained in the non-
differentiabilities of a (semi-)convex function, hence to have Hausdorff dimension
at most n — 1 in R™. In fact, Zajicek [30] has shown such discontinuities lie in a
countable union of submanifolds parameterized as graphs of differences of convex
functions — referred to as DC submanifolds hereafter. The closure of this set of
discontinuities was shown to have zero volume by Figalli with Kim (for the bilinear
cost [13]) or with DePhilippis (for non-degenerate costs [11]), and is conjectured to
have dimension at most n — 1. Even for n = 2 with the bilinear cost this conjec-
ture remains open, in spite of the additional structure established by earlier work
of Figalli in this case [12]. See related work of Chodosh et al [8] and Goldman
and Otto [15]. The present manuscript is largely devoted to providing evidence
for this conjecture by providing concrete geometries in which it can be confirmed.
Typically these consist of transportation to a collection of disjoint target compo-
nents, which we allow to be convex or non-convex. This forces discontinuities along
which the optimal map tears the source measure into separate components, one
corresponding to each component of the target. We study the regularity of such
tears. We show that when the target components can be separated by a hyperplane,
the corresponding tear is a DC hypersurface. For the bilinear cost, when several
tears meet, their intersection is a DC submanifold of the appropriate codimension
provided the corresponding target components are affinely independent. When the
corresponding target components are strictly convex, we show the tears are C'1:®
smooth, and that the optimal maps are smooth on their complement. We show
stability of such tears when the data are subject to perturbations which are small
in a sense made precise below.

A core result of this paper is a nonsmooth version of the classical implicit function
theorem for convex functions. More specifically, we wish to write the set where
two convex functions coincide as the graph of a DC function, where DC stands
for difference of convex, alternately denoted ¢ — ¢ [14] or A-convex [25] in some
references. The idea of inverse and implicit function theorems have been explored
in various nonsmooth settings, e.g. by Clarke [9], and Vesely and Zajicek [25,
Proposition 5.9]; see also [29] [20, Appendix] [27, Theorem 10.50]. Two major
aspects set apart the version we present here from previous theorems. The first is
the explicit nature of the theorem: we are able to explicitly write down the function
whose graph gives the coincidence set in terms of partial Legendre transforms of
the original convex functions, thus we term this an “explicit function theorem”
in contrast to the traditional implicit version. Second, our result is of a global,
rather than a local nature: existing implicit function theorems generally state the
existence of a neighborhood on which a surface can be written as the graph of a
function, in our theorem we obtain that the domain of this function is actually the
projection of the entire original domain on some hyperplane. Our method of proof
relies on the construction of Alberti from [1, Lemma 2.7], foreshadowed in Zajicek’s
work [30].
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Our interest in this theorem is motivated by its application to the optimal trans-
port problem of Monge and Kantorovich mentioned above. Let Q and  be subsets
of complete metric spaces, and take a Borel measurable, real valued cost function
c:Q x Q — R. The optimal transport problem is: given any two probability mea-
sures 1 and v on 2 and  respectively, find a measurable mapping 7" : spt it — spt v
pushing p forward to v (denoted Ty p = v), such that

/ c(z, T(x))p(de) = inf c(x, S(z))u(dx). (0OT)
Q Syp=v.Jq

The applications we present here concern the global structure of discontinuities in
T, stability results for such tears, and the regularity of T" on their complement, in
the case when Q = Q = R" and c(x,Z) = —(x,Z). For the first application, we ask
if there is some structure for these discontinuities when the support of the target
measure is separated into two compact sets — by a hyperplane. One would expect
the source domain to be partitioned into two sets, which are then transported to
each of the pieces in the target. Under suitable hypotheses we show this is the case,
and the interface between these two pieces is actually a DC hypersurface (thus
C? rectifiable) which can be parameterized as a globally Lipschitz graph. In the
second application, we consider a target measure consisting of several connected
components. This should result in a transport map that must split mass amongst
the pieces, and we investigate the structure and stability of this splitting. It turns
out a stability result can be obtained when considering perturbations of the target
measure under the Kantorovich-Rubinstein-Wasserstein L> metric (Ws in Defi-
nition 7.1 below), along with an appropriate notion of affine independence for the
pieces (Definition 4.7 below). We also provide an example to illustrate this inde-
pendence condition plays the role of an implicit function hypothesis and is crucial
for stability.

At the suggestion of the referees, and for simplicity of exposition, we consider the
bilinear cost function ¢(z,Z) = —(x,Z) exclusively hereafter. However, a number
of the results presented can be extended to cost functions satisfying the so called
Ma-Trudinger-Wang condition — known as MTW costs, see e.g. [17,19,23,24]. It is
known that the MTW condition is necessary for regularity in the optimal transport
problem [18]. We explore this direction in more detail in a future work; see also
the first arXived version of the present manuscript.

The outline of the paper is as follows. In Section 2 we set up and prove the
“explicit function theorem” for convex differences. We then apply the explicit
function theorem in Section 3, to show stability for singular points of envelopes
of semi-convex functions under certain perturbations. In Section 4, we recall some
necessary background material concerning the optimal transport problem and begin
to explore consequences of known regularity results in our setting. Section 6 proves
DC rectifiability of the (codimension k) tears along which the source is split into
k + 1 components whose images have affinely independent convex hulls. For k = n,
Proposition 5.6 shows the corresponding tear consists of a single point. Section
6 shows these tears are C'%® provided the corresponding target components are
strictly convex; in the simplest case k = 1, a similar result was found by Chen [7]
simultaneously and independently of the present manuscript: the main thrust of his
work is to improve regularity of the tear to C%® when the pair of strictly convex
target components are sufficiently far apart. Smoothness of the map away from
such tears is shown in Corollary 4.6. Section 7 shows such tears are stable. Lastly,
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we include an appendix sketching an example which shows the affine independence
of target measures components is necessary for stability.

Throughout this paper, for 1 < i < n we will use the notation m; : R® — R’
to denote orthogonal projection onto the first ¢ coordinates, and e; for the ith unit
coordinate vector. We also reserve the notation A°, A" and A? for the closure,
interior, and boundary of a set A respectively. Also, given any point z € R", we
will write z° for the ith coordinate of x. H® will refer to the i-dimensional Hausdorff
measure of a set in Euclidean space. Finally, conv(A) denotes the closed convex
hull of a set A while N.(A) = {z | dist(z, A) < e}.

2. AN “EXPLICIT FUNCTION THEOREM” FOR CONVEX DIFFERENCES

For the remainder of the paper, by convex function with no other qualifiers we
will tacitly mean a closed, proper, convex function on R i.e., a function defined
on R” taking values in R U {oco}, whose epigraph is a non-empty, closed, convex
set. The effective domain of u (which we often just call its domain) is defined to
be the set Dom(u) := {z € R™ | |u(z)| < co}. Also, we will use the notations
' :=mp_1(z) and A’ := m,_1(A) for any point x € R™ and set A C R".

Recall by the classical implicit function theorem, if f, g : R™ — R are smooth,
the set {f = g} is the graph of a smooth function of n — 1 variables, near any point
on the set where V f # Vg. We aim to prove an analogue of this theorem, but for
two convex functions without any assumptions of differentiability. In order to do
so, we need an appropriate replacement for the inequality of gradients, which will
be formulated in terms of the subdifferential: recall for a convex function u and xg
in its domain,

Ou (o) :={x € R" | (x — 0, Z) + u(xo) < u(x), Va}, (2.1)
while for a subset A of its domain,
ou(A) = U ou (x).
z€A

We also recall here the Legendre transform of a (proper) convex function w is the
(closed, proper, convex) function v* : R™ — R U {co} defined by
u™(Z):= sup [(z,Z) —u(x)]= sup [(z,T)—u(x)]. (2.2)
zeR" z€Dom(u)
Definition 2.1 (Separating hyperplane). If A, and A_ are any two sets in R"

and v is a fixed unit vector, recall that a hyperplane {x € R™ | (z,v) = a} is said
to strongly separate Ay and A_ (with spacing d) if there exists a d > 0 such that

(r_,v)y<a—-d<a+d<(zy,v)
forany x4y € AL and z_ € A_.
Let us also recall some terminology on DC (difference of convex) functions here.

Definition 2.2 (DC functions, mappings [2,21]). A function h : A — R on a
convex domain A C R"™ is said to be a DC function if it can be written as the
difference of the restrictions to A of two convex functions that are finite on A. A
mapping from A to a Euclidean space R™ is said to be a DC mapping if each of
its coordinate components is a DC function.
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The key hypothesis of our theorem is the strong separation of the subdifferentials
of two convex functions. One feature that differentiates our theorem from the usual
implicit function theorem is that we can actually write down the function whose
graph gives the equality set between the two convex functions we consider, and
explicitly state the domain of this function. Thus we term this an “explicit function
theorem.” We first state the following Theorem 2.3 in terms of the subdifferential
of the envelope of two convex functions, and formulate the actual explicit function
theorem as Corollary 2.5 below.

Theorem 2.3 (DC tears). Let uy and u_ be convex functions and write u =
max {uq,u_}. Also let A C Dom(u) C R™ a convez (but not necessarily bounded)
set, and Ay, A_ compact subsets of R™ with Ouy (A) C Ay and du_ (A) C A_.
We define

Si={zeA|0u(@)NAy#0 and Ou(z)NA_ #0},
Cy:={zeA|du(x)nA_ =0},
Co:={zeA|ou(x)nAy=0}.

Also, suppose that (after a rotation of coordinates) for some ag € R the hyperplane
II := {a" = ag} strongly separates A, and A_ with spacing dy > 0, and Ay C
{z™ > ap}.

Writing A' := m,_1(A), define the functions h* : R*~! — RU{oo}, h : (A)' —
R by

u;,((l Fdo)
W@ = ¥ e (2.3)
. 00, ¥ e R\ A, .
h(z'):=h"(2) —h~(z), 2 €N, (2.4)

where u, is the Legendre transform of the function ug (t) := u(z’,t) of one variable.

Then h* are both convex (but possibly not closed) on R"~1 and finite on A’ (so in
particular, h is a DC function), with

Y ={(',h(z") |2 € N} NA, (2.5)
Ci={(z',2") |2 € N, h(z") < 2"} NA,
C_={(,2") |z e N, h(z') > 2"} NA.
Moreover,
diam[m,_1 (AL UA_)]
2dy

1Al Lip (s (2)) < [tan©] <

where

. Ty —T_

cos®:= _inf  (——"— ¢,
sreRi,a €A [Ty — T_|

).

We will need the following classical result on subdifferentials of envelopes of
convex functions (which can be obtained for example, by [10, Proposition 2.3.12]
applied to convex functions).

Lemma 2.4. If u = max; u; for some finite collection of convex functions u;, then

Ou (zp) = conv (U Ou; (x0)>

iel
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where I := {i | u(xo) = u;(x0)}.
Using this result, we find the following reformulation of Theorem 2.3.

Corollary 2.5 (Explicit function theorem). Under the same notation and hypothe-
ses as Theorem 2.3,

{z € Alus(@) = u_(@)} = {(@,h(a)) |2 € N} NA,
{zeN|up(z) >u_(z)} ={(,2") |2 € N, h(z') <z"}NA,
{zeAN|up(z) <u_(z)}={(',2") |2 € N, h(z') > 2"} NA.

Proof. Lemma 2.4 immediately yields the corollary from Theorem 2.3. (]

Before embarking on the proof of Theorem 2.3, we need one more topological
result on the subdifferential of a convex function. It is well-known to experts, but
lacking a convenient reference we provide a proof. We will only use the result in
one dimension in the proof of Thereom 2.3, but this lemma will also be used in
later sections in its full generality.

Lemma 2.6 (Connected subdifferential images). If u is a convex function, C C
Dom(u) is connected, and Ou(C) is bounded, then Ou(C) is connected.

Proof. Assume 0u(C) # 0, else the lemma is trivial. Let us write Dom(du) :=
{r € R™ | Ou(z) # 0}. We first prove that C C Dom(du). If not, the sets
A :=CNDom(du) and B := C \ Dom(0du) are both nonempty, and their union is C.
Let x € A, then Ju(z) is a nonempty, bounded set. Hence by [22, Theorem 23.4],
there is an open ball around z contained in Dom(du), in particular A N B = ().
Next suppose there is some z € BN A, Then there is a sequence z; — z with
{zr}72, C A, hence there exist points Zj € Ou(zy) for each k. Since du(C) is
assumed bounded, we can extract a subsequence to assume Tj converges to some
Z. Finally by [22, Theorems 10.1 and 23.4], we have u(zy) — u(z) as k — oo.
Thus this would imply that Z € du(z), contradicting the definition of B, hence
BN A = ). However, this shows that A and B separate the connected set C, a
contradiction. Since A # () by our assumptions, the only possibility left is that
B = () and the claim is proved.

Now suppose the lemma is false, then there exist nonempty sets D; and Dy C R"
such that Ou(C) = D;U Dy, and D;NDS' = () = DN DS Define C; := du*(D;)NC
for i =1, 2. Since € du(z) if and only if z € du*(Z) we immediately have C; # )
for each i. Also by definition, C; U Cy C C. To see the opposite inclusion, let
x € C. Since du(x) # ) by our above claim, by the inclusion du(z) C Dy U Dy we
immediately have x € C7 U Cs.

Now, suppose there exists some z € Cy mcgl. Then we claim there exist z; € D,
and Zo € Dy such that both are contained in du(x). The existence of Z; is by
definition of C7 and the relation between du and Ou*. For T, note there is a
sequence of points {yx}72, C Cp with y, — x. This implies there is a sequence
{x 172, C Do with g € Ju(yy). Since 0u(C) is bounded, so is Ds, hence we may
pass to a subsequence and assume 3, — T as k — oo for some Zo € DS'. Since u
is assumed closed, it is lower semicontinuous, hence we have for any fixed y € R",

u(y) > 1ikfgi£f(u(yk) + Y — Yk, Ur))

> liminf u(yy) + lim (y — yi, Gx) > u(z) + (y — 2, T2).
k— o0 k— oo
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Since Dom(u) # () as it is proper, the above implies u(z) < oo and thus Zy € du(x).
However, as D1 N DS! = (), we actually obtain Zo € du(z) \ Dy = Ds.

Now, by convexity of the subdifferential, the line segment £ := {(1—\)Z1 + ATz |
A € [0,1]} is contained in Qu(x) = Dy U Dy. This is a contradiction as Dy N ¢
and Dy N ¢ would be separating sets for the convex, hence connected set ¢, thus
CyNCS' = . A symmetric argument shows that Co N CS! = ), thus we obtain a
contradiction with the connectedness of C. O

Proof of Theorem 2.3. Fix any such strongly separating hyperplane, by our as-
sumptions we have Ay C {2" >ag+do} and A C {2" <ag—dp}. Also, if
2’ € N, let us write A* := {t e R | (2/,t) € A}.

We first claim that given 2’ € A’, there is at most one z™ € A®" such that
(2',2™) € X, and it must be that 2™ = h(z’). Indeed, fix an 2’ € A’ and suppose
there exists such an ™. First by [1, Proposition 2.4], for any (2/,t) € A we have

Oy (t) = 7" (Fu (2, 1)) (2.7)

where 7 : R — R is projection onto the nth coordinate. Then since du (z’, ™) is
convex and intersects both A, and A_, we must have [ag — do, ag +do] C Ouy (z™),
which implies 2" € duZ, ([ao — do, a0 + do]) by [22, Theorem 23.5]. We also im-
mediately see that the values u¥,(ap £ dp) are both finite. By the definition of
subdifferential, we have the inequalities

uy (ag + do) > uy (ag — do) + 2" (ap + do — (ag — do)),
Uy (ao — do) > uys(ao + do) + 2™ (ag — do — (ao + do)),

which combined implies ™ = h(z’), and in particular there can only be at most
one such z" for each a’.

Now suppose 2’ € A’ is such that A% # () but there is no ¢t € A* where du (', t)
intersects both of the sets AL. In particular by Lemma 2.4 (recalling (2.7)), either

Oy (Aac/) C (ap+dg, 00) or Ougy (A”/) C (—00, a9 — dp), suppose it is the former;
thus we assume

Oty (A) C (ag + do, 00). (2.8)

We now claim there exist numbers t1 € R such that ag = dy € Ju, (t+) respec-
tively.

To this end, first note by combining [22, Theorem 25.6] with Lemma 2.6, we can
find that for any interval I C R (possibly unbounded), the set du, (I) is also an

interval. Since A is convex the fiber A* is an interval, thus we see that du, (Ax/)

is also an interval. Combining this fact with Lemma 2.4, (2.7), and (2.8), it is
sufficient to show that the subdifferential of u, contains a number less than or
equal to ag — dy somewhere.

Fix an arbitrary o € A®". Since uy (2',-) are closed, proper, and convex, if either
equals oo at any point in (—o0,tg), by Lemma 2.4, (2.7), and [22, Section 24 and
Theorem 25.6] we easily obtain a point ¢ where Qu,s (t) N (—o00,a9 — do) # 0. If
there is a point ¢ < ¢y where uy (2',t) < u_(2',t) < 0o, by monotonicity of the
subdifferential of u_(2',), (2.7), and our hypotheses, again using Lemma 2.4 gives
the desired conclusion.
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Suppose we are in the final remaining case: u_(z',-) < uq(2',-) = uyp(-) < 00
on (—o0,tg), and assume by contradiction that

Oug ((—00,t)) C (ag — do, 00).

Take any p— € 7" (Qu— (a',%9)), then we have p_ < ag — dp — € for some small
e > 0. For t <ty and p € Ou, (t), by the contradiction assumption, p > ag — do.
Thus we find, using [1, Proposition 2.4],

Ugr (to) = g () + plto — t) > u_(a',t) + p(to — t)
> u_(a',to) + (p —p-)(to — 1)
>u_(2',to) + (ap — do + & — ag — do)(to — 1),
rearranging gives
w(@' to) —u_(2',to) > e(to — t),
a contradiction taking t \, —oo, thus we have proved the claim.
Note this claim shows that u*,(ag 4 dp) are both finite, in particular h* are both
finite valued for such #’. Then by [22, Theorem 23.5] we have
uy (ag +do) =ty (ap + do) —u(a’,ty). (2.9)
Since by definition
—ug(ag — do) = tiélet(U(fE/at) —t(ag — do)) < u(a’,ty) — ti(ao — do),

we find that
W) < u(@',t4) —t4 (a0 — do) + t4(ag + do) —u(a’, ;)
2dy
the last inequality from (2.8) and monotonicity of the subdifferential.

=1, <infA", (2.10)

The case Ouy/ (Aw/> C (=00, a9 — dg] can be handled by a symmetric argument

yielding that h(z’) > sup A%, Thus we find h* are both finite valued on all of A’.

We will next show h* are both convex (essentially, this is just the fact that a
supremum of a family of jointly convex functions gives a concave function). To this
end, fix xp, i € A" and to, t1 € R, and define (2),t5) := (1 — N)z{ + Az, (1 —
A)to + At1). Then 2z, € A’, hence u:’;& (ag + dp) is finite. By the convexity of u, we
can calculate

uz: (a0 +do) > ta(ao +do) — u(x}, tx)
> (1 — )\)to(ao + do) — (1 - )\)U(.’Eg,to) + )\tl(ao + do) - Au(m’l,tl),
where the right hand sides of the second and third lines above may take the value

—oo. By taking a supremum on the right hand side, first over ¢y, then over 1, we
obtain

Uy (a0 + do) > (1= Aug, (ao + do) + Aug, (ao + do),

then since A’ is convex, the epigraph of h* will be a convex set. A similar argument
for u?, (ap — do) proves the epigraph of A~ is convex as well. Since we have shown
A

h¥* are both finite on A’ , we see they cannot attain the value —oo anywhere on R,
hence are proper. Then by definition, the functions h* are closed.

By the calculations at the beginning of the proof we immediately obtain the first
line in (2.5). Now fix # € C. If there is no t € A* where du (2’,t) intersects both
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AL, by (2.10) we see that h(z') < z™. Now suppose there exists a t € A* where
Ou (z',t) intersects both of the sets Ax; we must have t = h(z'). Take z € Ou (z)
and (7', a0) € Ou (2’, h(z")). By monotonicity of the subdifferential we find that

0 < {x— (', h(2")),Z — (¥, a0))
= (2" — h(z'))(z" — ao).

However, by Lemma 2.4 and since du () does not intersect A_, we have must have
" —ag > 0, thus 2™ > h(z'). Since Ou (2',h(2’)) intersects both sets A, the
above inequality must be strict, thus we obtain the second line of (2.5). The third
can be obtained from a symmetric argument.

Lastly we prove the Lipschitz bound (2.6). To do so, we will show that any
circular cone of slope [tan O] opening in the positive or negative e,, direction, with
vertex on the set ¥ N A remains on one side of X. Specifically, fix a point in ¥ N A
and after a translation, assume it is the origin. We claim that if 2™ > |2/||tan ©O|
with 2’ € A/, then

h(z') <z (2.11)
Let us assume h(z’) > 0, otherwise the above claim is immediate. First note that
324 € Ay st. (2, h(2))), 24 —2_) <0 = (2.11) holds. (2.12)

Indeed by the definition of O, this would imply that

71

= = =N
0> (2, 222y 4+ h(a') (“ = )

1Z4 —Z_| Z4 — 2|
T, -1

> (x’,ﬁ) + h(z") cos©
+7 —

, 1 , T, -1l
h') cos@<7x |Zy —Z_|
) |, —
T cosO T4 —T_|
< |z'|[tan O] < 2™,

giving (2.11). Now let Zo + € duy (0) and T4 € Juy (2/, h(z')); by Lemma 2.4 we
have that Zo + € Ou (0) and Ty € du (z/, h(2’)). In particular,

u(y) = u(0) + max {{y, To1), (Y, To,-)} ,

u(y) > u(@’, h(z')) + max{(y — (', h(2")), 24), (y — (', h(a")),2-)}

for any y. Taking y = (2/, h(2)) in the first and y = 0 in the second inequality,
plugging the second into the first and rearranging terms we obtain

(@', h(2")),2-) = min{((2', h(2")), 1), (2", h(2)), 2)}
> max {((2', h(2")), Zo,1), (&', h(2")), Zo, ) }
> (2", h(2)), Zo.+)-

Thus we have (2.12), hence (2.11).
A symmetric argument can be used to show 2™ < h(2’) whenever 2" < —|2'||tan 0|,
as a result we obtain the Lipschitz bound (2.6).
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3. STABILITY OF SINGULARITIES

In this section, we will use the explicit function theorem from the previous section
to show a stability result for singularities, and will extend our discussion from
convex functions to semi-convex functions. First a few definitions.

Definition 3.1 (Semi-convexity). Recall that a real valued function u defined on
some A C R" is said to be semi-conver if for any zy € A, there exists an r > 0
and some C > 0 for which the function x — u(z) + C|x — x¢|? is convex when set
to oo outside B, (ro)°'. We will say that a family {u;} of semi-convex functions
has uniformly bounded constant of semi-convezity near xzq if there is some r > 0
on which the same constant C' > 0 can be chosen to make all of the functions
u; + C|- — x0|? convex after setting all of them to co outside B, (x0)c.

Definition 3.2 (Subdifferential of a semi-convex function). The subdifferential of
a semi-convex function u is defined by

Ou (zo) :=={p € R" | u(x) > u(xo) + (x — x0, p) + o(Jx — zol), Y& — x0} .
If w is a convex function, this definition is equivalent to (2.1).

Definition 3.3 (Legendre transform). If u is a real-valued function defined on some
subdomain Dom(u) of R™, its Legendre transform is the convex function defined
by the equation (2.2) with the convention u := oo outside Dom(u).

It is well known that for a semi-convex function u, if Ju (x) is a singleton, then
z € Dom(u)™, and u is actually differentiable at x. We will be interested in the
behavior of u at points of nondifferentiability, namely we will be concerned with
the dimension of Ou (x) (whenever we refer to the dimension of a convex set, we
will always mean the dimension of its affine hull). In some sense, this dimension is
a measure of how severe the singularity of u is at z: for example the function |z|
on R™ has an n dimensional subdifferential at the origin which corresponds to a
conical singularity, while |z*| has a 1 dimensional subdifferential at the origin, and
the function remains differentiable in the {x! = 0} subspace.

In particular, we are interested in the stability of the dimension of the subdiffer-
ential of a sequence of semi-convex functions, as detailed in the following theorem,
whose proof is deferred to the end of this section.

Theorem 3.4 (Stability of singularities). Suppose that u is a real valued function,
finite on an open neighborhood Ny, of some point xg € R", of the form
= ; 3.1
u 1I§nia§)§( Ug, (3.1)
for some K < oo where all u; are semi-convex. Also fix somel <k < min{K — 1,n}
and assume that for any 1 <i <k +1:

Ujg S Cl(NxO),
u(zo) = wi(xo) > wir(z0), VE+2<i <K,

.y OO .
and dim Ou (xg) = k. Finally, let {uz} - be a sequence for which each ul is semi-
j=

convex with uniformly bounded constant of semi-convexity near xo, ul —— u;

Jj—o00

uniformly in compact subsets of Ny, for each 1 <i < K, and write v/ :== max u].

1<i<K °
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Then for any € > 0, there exists an index J. such that for any j > J., there exists
a set 2,  Be(wo) with H™* ($],_) > 0 on which

w(z) =ul(z) >ul(z), VzeX , 1<i<k+1, k+2<i<K. (3.2)
Moreover, Zi_k is the graph of a DC mapping over an open set in R"~* and
dim ou? (z) > k Vo € Zifk, (3.3)
with equality on a set of full H"* measure in Ezl_k.

In preparation, we shall need a result on stability of the subdifferentials of a
sequence of convergent convex functions. By a straightforward modification of the
proof of [22, Theorem 25.7], we obtain the following lemma.

Lemma 3.5. Suppose that u and {uj};il are convex functions, finite and with
u; — u pointwise on some open convexr domain A, and also assume that uw is
differentiable on A. Then for any compact A9 C A and ¢ > 0 there exists jo such
that

Ou; (z) C B.(Vu(z))
for all j > jo and x € Ag.

Proof. Suppose that the proposition fails, then for some compact Ag C A and e > 0,
there exists a sequence {:cj}jo.il C Ag and p; € du; (z;) for which |p; — Vu(z;)| >
€. By passing to subsequences, we may assume that x; — z¢o € Ap, and for
some fixed index 1 < i < n that (p; — Vu(z;),e;) > /= for all j (the case of
(pj — Vu(zj),e;) < f\/g is treated by a similar argument). Then, for any A > 0,
since p; € Ou; (;) we find that

uj(x; + Ae;;) — uj(z;) > (pj,e) > \/§+ (Vu(z;), eq).

Recalling that u; converges uniformly on compact subsets of A and Vu is continuous
on A ( [22, Theorem 10.8 and Theorem 25.5]), by first taking the limit j — oo (for
all small enough A > 0 so that x; + Ae; € A) and then A Y\, 0, we obtain the
contradiction (Vu(zo), e;) > v/e/n + (Vu(xg), e;), finishing the proof. O
Remark 3.6. We remark that if the limiting function u is not differentiable, then
Lemma 3.5 above fails, even upon replacing B.(Vu(z)) by N:(du (z)), as seen by

the following example. On A = R let u; := |z — 1/j| converging to u := |z|, and
take the compact subdomain Ag := [—1,1]. Then if ¢ = 1/2, for any jo € N we see
that

o ()= erh Y ra(n (1)

hence there is no choice of jg for which the proposition holds uniformly over [—1, 1].

Next we recall the generalized (Clarke) Jacobian of a mapping G (at a point xg,
in the last k variables).
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Definition 3.7 (Clarke Jacobian). If G : B.(zo) € R®™ — R* is a Lipschitz
function on a neighbourhood of z, we define J¢G (z9) to be the closed convex hull
of all k£ x n matrices which can be written as limits of the form

nlgréo DG(xy,)

where x,, — zo and G is differentiable at each x,,.

Moreover if 1 < k < n, using the notation x = (2/,2"”) € R" ¥ x R* we write
JG,G(x0) for the set of k x k matrices consisting of the last k columns of elements
in JCG(IE())

A combination of Clarke’s inverse function theorem [9, Theorem 1] and results of
Vesely and Zajicek [25] on DC mappings yields the following DC implicit function
theorem.

Theorem 3.8 (DC implicit mapping theorem [25, Proposition 5.9]). Suppose U C
R" % x R* is open, G : U — R* is a DC mapping, and G(z¢) = 0 for some
zo = (xh,xy) € U. Then if every element of JS,G(xo) is invertible, there exists
§ > 0 and a bi-Lipschitz, DC mapping ¢ from Bs(zf) C R"* into R* such that
for all (z',2") € Bs(x}) x Bs(xy) C R" % x Rk:

G(z',2") =0 if and only if z" = ¢(2).

Additionally, a careful inspection of the proof of [4, Theorem 3.1] combined
with [25, Theorem 5.1] yields the following DC constant rank theorem.

Theorem 3.9 (DC constant rank theorem). Suppose U C R™ is open, G : U — RF
is a DC mapping, and G(xg) = 0 for some xg € U. Then if every element of
JCG(z0) has rank k, after a possible re-ordering and rotation of coordinates, the
same conclusion as Theorem 3.8 above holds.

‘We shall also need:

Lemma 3.10 (Coincident roots). Suppose ¢f, e ¢f are real valued conver func-
tions on [—1,1]", such that ¢ > T on the set {x € [~1,1]" | 2* = +1}, and
¢ ([=1,1]") and 9¢; ([—1,1]") are compact sets separated by a hyperplane nor-
mal to e; for each 1 < i < k. Then, there exists a point in | — 1,1[™ where all 2k
functions (bfE =...= (bf agree.

Proof. For any x € R"™, let us write 2° := (2!,..., 2" 2 .. 2"). Fix 1 <
i < k, by Corollary 2.5, there is a DC function h; defined on all of I; := {2’ | x €
[—1,1]™} such that the graph of h; over this set is exactly

{ze[-L1]" [ 6] (2) = ¢; (2)};

by the intermediate value theorem we see for any & € I; there exists z € [—1,1]"
where ¢; () = ¢; (z) and ' = Z, and in particular the range of h; is contained in
[-1,1]. Now define the mapping F' : [—1,1]" — [—1,1]" by

F(z) = (ha(3Y), .., he(8¥), 2L, . a"),
this mapping is continuous, thus by Brouwer’s fixed point theorem it has a fixed
point in [~1,1]". However, we see that at this fixed point we must have ¢ =

e = qﬁf, by the assumptions on the gbli this point clearly must be in the interior
] — 1,1 O
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With these preparations, we are ready to prove the main stability result.

Proof of Theorem 3.4. By [1, Theorem 1], the set of points x where dim du (z) >
k + 1 has zero H"~* measure, hence the final claim will follow immediately from
(3.3).

Suppose we are given u, Tp, and a sequence {u]}
Theorem 3.4. Now by Lemma 2.4 we have

as in the hypotheses of

oo
j=1

Ou (zg) = conv U {Vu;(z0)} |, (3.4)

1<i<k+1

and since dim (Ou (xg)) = k, the collection {Vu;(xo) — Vuk+1(xo)}f:1 must be
linearly independent, subtraction of a fixed linear function followed by a linear
change of coordinates allows us to assume Vu;(zp) = e€,—g4; for 1 < ¢ < k and
Vug+1(zo) = 0. Next fix € > 0, without loss of generality assume that B.(zg) C
Nz,- By our assumptions, we may add a fixed quadratic function centered at g to
assume all uf and wu; are convex on Bc(zg), for 1 <i < k+ 1 (possibly shrinking
as well). By taking j large enough and possibly shrinking e further, by the uniform
convergence of each uZ we may assume

min  u/ > max ul (3.5)
1<i<k+1 k+2<i<K
on B (xg). _
Define the mapping F7 : B.(x9) — R* by
Fi(a) := (u](2) = uj 4y (@), uf (@) = uf g ()

then we see that if 2 € B.(7), the set JS, FJ(x) is contained in the collection of
k x k matrices for which the ¢th row is contained in the convex hull of vectors of
the form
n}i_rfloo Dy (uf - ui+1)($7n)

where z,, — x and ug, u?c 4y are differentiable at each z,,. Here D, indicates
the projection of the gradient of a function onto the last k variables. Since each
function wu; is C', after shrinking e if necessary and taking j large enough, by
applying Lemma 3.5 we can assume that for any z € B.(z¢) and p] € du! (z) we
have

J € Bi(e;), 1<i<k,
{pz 1(ei) <i< (3.6)

Pry1 € B1(0).

In particular, this implies that every matrix in JG, F7(z) will be invertible, thus we
can apply the DC implicit mapping theorem above to F7, provided there exists at
least one point x; € B.(zo) where FV vanishes.

To this end, we translate so 2o = 0, then we can apply the C! implicit function
theorem to u; — ugqq for each 1 <4 < k. For n > 0 small enough we then get
i —upy1 > 0on {z € [-n,n]" | ' = n} while u; —ugs1 < 0on {z € [-n,n|" | 2 =
—n} for all ¢ < k. For any j large enough uf — u{c 4, satisfies the same inequalities.
Thus recalling (3.6), a dilation by 1/n allows us to apply Lemma 3.10 above to
conclude the existence of a sequence z; € | —n,n["C Be(zo) such that F7(z;) = 0.
In particular, we may now apply the DC implicit mapping theorem to find a ball
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B/ C w1 (Be(w0)) and a DC mapping @/ : B? — B.(x¢) whose graph passes
through z; for which u(®7 (') = ... = uj (P (2)) for all 2’ € BI. Let

s = {2, ®(2") | 2’ € B’} N B(x0).

As a Lipschitz graph over B ¢ R"* we see Eifk has strictly positive H"*
measure. Thus by Lemma 2.4, this implies (3.3), while (3.5) yields (3.2) to finish
the proof. O

4. APPLICATIONS TO OPTIMAL TRANSPORT

In this sequel, we apply the explicit function theorem and stability theorems
from the previous two sections to the optimal transport problem. For all of the
remaining sections, 2 = Q = R", and we fix the cost function c(x,y) = —(z,y).
As before, the notation H’ refers to the i-dimensional Hausdorff measure of a set.

At this point we recall Brenier’s classical result about existence of solutions to

(OT).

Theorem 4.1 (Optimal transport maps [3] [20]). Given Borel probability measures
wand v on R™, with p absolutely continuous with respect to Lebesgue, there exists
a convez function u : R™ — R U {oc}, finite p-a.e., such that the p-a.e. defined
mapping T'(z) := Vu(x) solves (OT) uniquely and T(Dom Vu) C sptv. We call
such a w an optimal potential transporting p to v.

Remark 4.2. If spt v is bounded, we can see that the optimal potential u is finite
valued on all of R™ and is uniformly Lipschitz.

In this first lemma, we show that if the support of the target measure consists of
a (finite) union of disjoint, compact pieces, we can write the optimal potential as a
maximum (of a finite number) of corresponding convex functions. For any function
u, we will write Dom(Vu) for the set of points where w is differentiable, which in
the case of a convex function is a set of full Lebesgue measure in Dom(u).

Lemma 4.3 (Optimal maps to separated targets). Suppose u is absolutely con-
tinuous, while sptv is a disjoint union of an arbitrary (i.e. finite, countable, or
uncountable) collection {Q;}icr of compact subsets of the compact set Q, and u is
an optimal potential transporting u to v. Then the conver functions u; : R™ — R,
1 € I defined by

u;(x) == sup ((z,Z) — u* (7)) (4.1)
zel,;
satisfy
Vui(z) € Q;, Va€Dom(Vu), Viel, (4.2)
u(x) =supu;(z), VaeR"™
iel

Proof. First observe by wu; is finite valued on all of R™. Clearly u; is convex and
lower semicontinous, hence differentiable a.e.. Fix i and let x be such a point
of differentiability, by compactness of Q; there exists an z € €Q; achieving the
supremum in the definition of u;(z). The inclusion (4.2) then follows immediately
by differentiation of u; at x.
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Now as u is convex by we see that for z € R",
u(x) = sup [{z,Z) — u"(Z)]
TER
= sup [{z,Z)— u"(Z)]
zespt v
— supu(a), (4.4)
i€l
proving (4.3). The reason why we may change the supremum above from being
over R” to just over spt v is as follows. As mentioned previously, u is differentiable
almost everywhere on Dom(u) (which is R™by compactness of spt ), so there exists
a sequence x; — x where u is differentiable at z; and 3 Z; € Ju(z;) = {Vu(z;)}
for each j. By [27, Theorem 10.28] (the assumption (Hoo) of the reference is
automatically satisfied by our assumption that €2 is bounded) we must have Z; €
spt v, then by compactness, we may pass to a subsequence and assume Z; — o for
some T, € spt v, necessarily Zo € du(z). However, this implies

sup [(z,7) —u ()] = sup inf [{z—y,7) +u(y)]

ze zcRn yER™
< u(x) < (x =y, To) + u(y)
for any y € R", thus we may take the supremum merely over spt v. ([

Under additional assumptions on the source and target measures, we can improve
Lemma 4.3 to Proposition 4.5 below. The idea is based on one used by Caffarelli
and McCann [6, Theorem 6.3].

Remark 4.4 (Strict convexity). Recall that a set A is strictly convez if the mid-
point of any nontrivial segment in A lies in the interior of A. Also a convex function
w is strictly convez if for every zo € Dom(u) and Ty € du(zg), we have

{z e R" | (x — w0, Z0) +u(xo) = u(x)} = {xo} .

Proposition 4.5 (Continuous optimal maps onto closed convex target pieces). In
addition to the hypotheses of Lemma 4.3, assume that i and v are absolutely con-
tinuous with densities bounded away from zero and infinity a.e. on their supports,
and spt p 15 convex and bounded. Additionally suppose for some i € I the compact
set € is strictly convex, then the convexr function u; from Lemma 4.3 belongs to
CH(R™),

ou;(R™) C €, (4.5)
and for any x € spt pu the intersection Ou(x) N contains at most one point.

Proof. Since €); is convex, combining [5, Lemma 1 (b)] with (4.2) yields du;(R"™) C
Q, to establish (4.5).
Next we show that each u; is C' on R™. Indeed, note that u* is an optimal

potential transporting v to yu with cost function ¢(Z, ) = —(Z, ) defined on R" x
R"”, then by [5] we have that u* € C5%((sptv)™®) for some a € (0,1] and u*

is strictly convex when restricted to ﬁznt. By convexity of the subdifferential, if
there was a point x where u; fails to be differentiable, there must exist of some
nontrivial line segment ¢ C du; (z) C ;. However, by the strict convexity of €2;,

this would imply that £ N ﬁ;ﬂt contains more than one point. It can be seen that

this contradicts the strict convexity of u* on ﬁ;nt, thus u; must be differentiable on
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R™. The fact that the subdifferential of a convex, lower semicontinuous function
has a closed ( [22, Theorem 24.4]) implies u; € C*(R").

Now if 2 € spt  and du(z)NQ; contains more than one point, the same argument
as the previous paragraph combined with the representation (4.4) again yields a
contradiction. g

As a corollary to its proof we obtain the following interior homeomorphism result,
which can be upgraded to a diffeomorphism using results from the literature.

Corollary 4.6 (Optimal homeomorphisms onto open, convex target pieces). As-
sume the same hypotheses as Proposition 4.5. Then the map T;(x) := Vui( ) is a

homeomorphism from the interior of {x € spt u | u(z) = w;(x)} to Q ; its inverse
is Cf, for some & > 0 depending only on n and the bounds on the densztzes of u and
v. If the densities of p and v are (a) locally Dini continuous or (b) C’lkof for some
0 < k+ a &N on the interiors of these two sets, then T; defines a diffeomorphism

which in case (b) is C’;?;l " smooth.

Proof. The strict convexity and C’llf;f regularity of u* on ﬁ;nt from the preceding

proof shows the map S(Z) := Vu*(Z) restricted to ﬁiﬂt is a homeomorphism (and
Cf.). We assert this restriction has range R™ where R := {z € sptyu | u(z) =
u;(x)}, and its inverse is T;.

First note that u*(z) = (u;)*(Z) for € Q;. Indeed, u; < u implies (ui) u*
everywhere, while for Z € ; the opposite inequality is obtained by taking 7 = Z in
(ui)* (%) = sup[(z, ) + inf (=(z, ) +u"(y))].

zeQ §e
Then, recall
u(z) +u*(z) > (z,T) for all (z,z) € R" x R", (4.6)
and equality holds if and only if Z € Ou(z) (or equivalently » € du*(z)). For
zeQ.", we have Ou*(z) = {S(z)} thus

u(S(x)) = (5(2),7) —u'(z) = (5(2),7
= (5(2),7) + inf (=(y, ) + u;

yeN

) = (ui)™(z)
() < ui(S(2)).

Since the reverse inequality always holds, we have u(S(z)) = u;(S(7)). Then as S

is injective and continuous, the set S (ﬁlint) is open, hence it must be contained in
Rint.

We now claim that T} pushes the restriction of 1 to R™ forward to the restriction
of v to ;. Let us write T'(x) := Vu(z), defined for z € Dom(Vu) so Tup = v. By
Lemma 2.4 and (4.2), we see that € Dom(Vu) with T'(x) € Q; only if u(x) = u;(x)
and u(z) > u;(x) for all j # i, in particular, T7-1(Q;) C R"*. On the other hand, if
x € R, then u = u; on a neighborhood of x and in particular, u is differentiable
at z. Hence we must have du(z) = {T;(z)} = {T'(z)} for all z € R™. Thus if
E C Q; is measurable, we have

(RN T HE)) = w(R™NT~YE)) = w(T7(E)) = v(E)

and the claim is proven.
Thus again using the main result of [5] gives that T; is continuous and injective

on R™ hence T;(R™) C th
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We complete the proof of the claim by showing S o T; = idgim:. Since for each
x € R we have du(z) = {T;(z)} C ﬁzm, as argued above this yields Ou*(T;(x))) =
{S(T;(x)))}. The equality conditions in (4.6) then force x = S(T;(x)) as required.
The continuous [16] (or Holder and higher [5]) differentiability of T" asserted in cases
(a) and (b) then follows; see also [28]. O

Next we wish to make some finer observations on the structure of the boundaries
of the sets above, and in particular the sets where more than two of the functions
u; coincide. For this we need some notion of “independence” for subcollections of
{Q;}ier, which we call affine independence. Its role is to guarantee the natural
implicit function theorem hypothesis is satisfied in the applications which follow.

Definition 4.7 (Affine independence). A finite collection {Ki}le of k <mn+1
subsets of an n dimensional vector space is said to be affinely independent if no k—2
dimensional affine subspace intersects all of the sets in the collection. (Equivalently,
any collection of k points, each from a different set A;, is affinely independent in
the usual sense.)

We also define an alternate notion measuring the severity of a singular point
that we call the multiplicity. Essentially the multiplicity of a singular point counts
“how many pieces of the target domain does a singular point get transported to?”

Definition 4.8 (Multiplicity along tears). Let u, v be probability measures with
p absolutely continuous. Also suppose spt v is a disjoint union of some collection of
sets {Qi}iel for some index set I and w is an optimal potential of (OT) transporting

wto v, with zg € spt u. Then we define the multiplicity of u at xg relative to {ﬁi}iel
by

When the collection {ﬁl}z cr is clear, we will simply refer to the multiplicity of u
at xg.

Finally, in order to simplify the statements and proofs of our results, we define
notation for coincidence sets and multiplicity sets of the functions u; and u. For
the remainder of the paper, we will consider only the case when spt v consists of a
disjoint union of a finite number of sets.

Definition 4.9 (Tearing and coincidence sets). Suppose we have compactly sup-
ported probability measures p and v with p absolutely continuous, and sptv =
User€2; a finite disjoint union of compact sets €);. Then Lemma 4.3 asserts
u=supu; with Vu;(z)€ Q;, ¥z € Dom(Vu),
icl
where u is the optimal potential taking u to v.
For any subset I’ C I of indices, we then define the sets

p={z e R" | u(x) = uj(x), Vi, jel'}, (4.7)
vho={z e R" | u(x) = u;(z), VieI'}). (4.8)

Also for any k € Z>( we define
My, : = {x € R" | v has multiplicity exactly k at =}, (4.9)

Msy : = {z € R" | u has multiplicity at least k at x}, (4.10)



18 JUN KITAGAWA AND ROBERT MCCANN

where multiplicity here taken relative to the collection {€2;};c; in Definition 4.8.

Under a suitable assumption of affine independence, a quick application of the
usual implicit function theorem yields the following corollary from Proposition 4.5.

Corollary 4.10 (Affine independence of convex targets yields C! smooth tears of
each expected codimension). Assume that p and v are absolutely continuous with
densities bounded away from zero and infinity a.e. on their supports, and sptp
is convex and bounded. Let sptv = U;er€; be a finite disjoint union of compact
sets, and u = maxu; be from Lemma 4.5. Finally suppose {Q1,...,Qx} forms an
affinely independent collection of strictly convex sets. Then X1k := 31, k) 15 a
C' submanifold of M having codimension k — 1.

Proof. Note the set 31 . consists of the zero set of the system of k — 1 equations
ur(z) = ug(x) = -+ = uk(x); (4.11)

recall uy,...,u; are all contained in C'(R"™) by Proposition 4.5. The implicit
function theorem condition for the zero set of this system to be a C' submani-
fold of the appropriate dimension is that the vectors {Vu;(x) — Vuk(x)}f;ll be
linearly independent when (4.11) holds, which is equivalent to affine independence
of {Vu;(x)}¥_,. But since Vu;(z) € Q; by (4.2), this follows from the affine inde-

pendence of {{;}%_,. O

Next, we establish two elementary relationships between the sets T and M.
Specifically, we show that the closure M, ,‘sl of all points with multiplicity lie in a
union of tears; we later prove that when the disjoint components of spt v = U;c;€;
can be separated by hyperplanes pairwise (5.6), these tears lie in DC submanifolds.

Lemma 4.11 (Covering multiplicity sets with tears). Suppose 1 and v are prob-

ability measures with p absolutely continuous, and sptv = J;c; Qs is a disjoint
union of compact sets. Then multiplicity is upper semicontinuous:

M € Msy,. (4.12)

Additionally, fiz a positive integer k and suppose that for any collection of indices
I' C I with #(I') =k,

{ﬁi}iel’ is affinely independent. (4.13)
Then

Ms), C U sh. (4.14)
{1 CI|#(1")=k}

Proof. Suppose z¢g € M¢!, so there is a sequence {z,,}3°_; C M, converging to
xg. We may pass to a subsequence and assume, without loss of generality, that
each Ou(z,,) only intersects Q1,...,Q; out of the collection {ﬁz}le 1, and take
Tim € Ou(zy) NQ; for i € {1,...,k}. Since each Q; is compact, we may pass to
further subsequences to assume each Z; ,, converges as m — oo to some ; € (),
and by upper semicontinuity of the subdifferential we see that Z; € du(x¢), meaning
xo € Mzk.

Now assume (4.13) holds and take zo € R" \ Uy c 11212 1T #(I) < k,
then clearly ¢ ¢ M>y, thus assume #(I) > k. Since v is the maximum of the w;,
it is clear that u(zp) = u;(zo) for at least one index i, and this can only hold for at
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most k' < k — 1 distinct indices; suppose we have u(zg) = u;; (zo) for 1 < j <&
and strict inequality for all other indices. Then by Lemma 2.4 and (4.2)

Ou(zg) C conv U conv (€;;) | = conv U Q;

i
1<5<k’ 1<y <k’

Thus if the multiplicity of u at x¢ is k or greater, there exists an index ¢ ¢
{i1,...,ig} for which du(xo) N Qs # 0, by the above inclusion this implies there is
a point in §;; which can be written as the convex combination of &’ points, one from
each of the sets {Q;,,...,Q }. Since k' < k — 1 and #(I) > k, we can complete
{i1,...,1), ¢’} to a subset of I with cardinality k& to obtain a contradiction with
(4.13), hence xg & M>y.

[

5. GLOBAL STRUCTURE OF OPTIMAL MAP DISCONTINUITIES

Our first result is the following proposition which — apart from its final sentence
— follows rapidly from our explicit function theorem. As always, we consider the
bilinear cost ¢(x,z) = —(z, ) on R™.

Proposition 5.1 (Hyperplane separated components induce DC tears). Suppose
w and v are absolutely continuous probability measures with bounded supports, and
sptv = Q1 UQy is such that Q1 and Qa are strongly separated by some hyperplane
II.

Then an optimal potential u transporting p to v can be written u = max{uy, us},
where w1 and ug are convex functions, finite on R™ such that

Vu;(z) € Q;, ¥z € Dom(Vu). (5.1)
Moreover, the sets
Si={zeR"|0u(x)NQ; #0, i=1,2} = {z € R" | u(z) = uz(x)},
Cr:={zeR"|Ou(z)NQ =0} ={z € R" | us(2) > uz(x)},
Cy:={zeR"|Ou(z)ND =0} ={z € R" | us(z) < uz(x)}.
are connected and given by the graph, open epigraph, and open subgraph respectively
of a globally Lipschitz DC function h defined as in (2.3) on the hyperplane II.

If spt pu is convex and Q; is connected for either i = 1 or 2, then spt uN (C; UY)
is also connected.

Proof. Let us assume I1 = {z € R" | 2" = 0} = R""!. By Lemma 4.3 we find that
u = max{ui,us}, both u; are convex and finite on R™, and we have (5.1). Since
Qp and Q) are strongly separated by R"~!, so are their convex hulls, and (5.1)
implies Qu; (R™) C conv(€2;). As u; and uy are finite on all of R™ by compactness
of Q1 and € respectively, we can apply Corollary 2.3 with the choice A = R™ to
obtain the function h defined on R”~! along with all claimed properties above; the
connectedness from continuity of h.

Now assume spt 4 is convex and €23 is connected. Let d(x) := d(x, spt u)? which
is finite and convex on R"™, and define @ := u + d. An easy calculation gives

od (z) = {{0}7 T € spt p,

T—Tspt 10 (T)

d(x,spt M)m, T & spt p,
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where 7 () is the (unique) closest point projection of x onto spt . Thus we see
by [22, Theorem 23.8] that

0t (x) =0u(z), Yaxcsptp. (5.2)

Next we will show that 9a* (Z) C sptpu for every Z € O (this is a nontrivial
claim for 7 € ﬁ?) Applying [22, Theorem 16.4] gives

w(z) = f (u'(z-9)+d @), (5-3)

we will now proceed to calculate d*(g). Let us write h(¥) := sup,eqep (7, 9) for
the support function of spt u, since spt u is compact, for each § € R™ there exists
z(g) € spt p such that h(g) = (2(7), 7). Clearly d*(0) = 0, so assume § # 0. Then
by definition,

d*(g) = sup ((.T,g> —d(.’E,Spt/J,)Q) = sup (<$7:U> —d(.’E,Sptu)2>-
zeR" {zeR"[(z,7)>(2(9),7)}

Fix any x such that (z,7) > (2(7),7), and an arbitrary y € spt u, then for some
A € [0,1) we have z) := (1—\)y+ Az satisfies (zx, ) = (2(7), 7). Then we calculate

Yy Y
|z —yl = |z — 2| = (2 —ax, =) = (z — 2(9), ),
|9 19l
hence taking an infimum over y € spt u,
() N2
(@01 = daspt ) > h(5) + (o () 9) - S D

This last quantity can be seen to be maximized over (x,y) > (z(§),y) when
12
(x— 2(5).9) = -, yielding
N /| || o
d (g)=h ———-=—-=h =
¥) =h(m) + 75— - =hy +

By choosing § = 0 in (5.3), for any Z € R™ we clearly have

On the other hand, suppose Ty € ﬁilnt. By [26, Theorem 2.12] u* is an optimal
potential transporting v to u, then by [27, Theorem 10.28] and convexity of spt u,
we have that Ou™ (Zg) € spt u, let zg € Ou* (Zp). Then for any § € R",

=12

w0 =)+ h(3) + L5 2w (30) + (20— — Fo,0) + (5 70) = ' (20),

thus taking an infimum over § € R™ and recalling (5.3) gives 4* > «* on ﬁilnt.
Since the Legendre transform of a convex function is always closed, we then have
@* = u* on all of Q; = ﬁil. Now let Zo € Q; and suppose o € 0i (Zo). Then for
any Z, gy € R", again using (5.3),

|9l

uw (T —§) + h(7) + 2= > a*(z) > a*(To) + (T — Zo, x0)

= u"(Zo) + (T — To, o)
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We can let § vary over R™ \ {0} while setting & = § + Zo in the equation above,
then dividing through by |g| we find

Y ]
+ = > ({xo, 77),
T

‘@\

sup (z,
zrEspt 1 |

=

taking y — 0 radially gives

sup (z,w) > (xo,w), VYwe 8",
rEspt 1
hence we must have x € spt u as claimed.
We now claim that

ou* (Qy) =sptpn(CLUY), (5.4)

then the proof will be complete by applying Lemma 2.6. Suppose xo € sptu N
(C1 UX). Recall by (5.2), Ou(xg) = 0t (o). There are two possibilities, either
ui(xo) > uz(xo), or ui(xo) = uz(xo). In the first case, du (z9) = Juq (xo), while
in the second case, by Lemma 2.4 we have Ou (xg) = conv(duy (xg) U dug (x0)).
In either case, since duj (9) N2y # O by (5.1), there exists yo € € such that
Yo € Ot (x0). Hence xg € 00* (yo) C 0u* (Q1).

Now suppose g € 9u* (1) but ua () > u1(zo). As we have shown above, z €
spt . Then by (5.2) combined with Lemma 2.4, 94 (z) = Ou (z¢) = Ous (xg) C
conv(€y). However this is a contradiction, as this gives 0t (zg) N Qy = 0. This
concludes the proof of (5.4). O

We can also obtain some structure in the case where spt v consists of more than
two regions separated by hyperplanes. Before we state the results, some setup.

Again, 1 and v are absolutely continuous probability measures with bounded
supports. We will assume sptrv = U;e;€; is a decomposition into finitely many
compact disjoint sets; i.e. henceforth we assume that I is finite. Then if u is an
optimal potential transporting p to v, by Lemma 4.3 there exist convex functions
u;, © € I on R™ such that

u=supu; with Vu;(z)€ Q;, ¥z € Dom(Vu). (5.5)
icl

If some Q; is strictly convex, spt i is convex, and the densities of p and v are
bounded away from zero and infinity on their supports, by Proposition 4.5 we have
u; € C1(R™). We often require that each €; can be strongly separated from each
ﬁj by a hyperplane, so that their convex hulls are disjoint, hence

Ou; (R™) C conv(£);) are mutually disjoint. (5.6)

We begin with two corollaries of Theorem 2.3 (the sets 2y and %], below for a
collection of indices I’ are defined by (4.7) and (4.8) respectively):

Corollary 5.2 (DC rectifiability of ¥;;). If Q; and Q; can be strongly separated
by a hyperplane 11 for some i # j in Definition 4.9, then ¥;; := ¥y, ;v is a globally
Lipschitz DC graph over II.

Proof. The convex hull of Q; contains Ou;(R"™) and is strongly separated from

Ou;(R™) C conv(€;) by II. The claim therefore follows from Theorem 2.3. Again
we can take A = R™ in the explicit function theorem. O
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This result allows us to deduce a variant of Proposition 4.5 which requires neither
convexity of spt u nor strict convexity of 2;:

Corollary 5.3 (Continuous optimal maps to convex target pieces). Fiz absolutely
continuous probability measures p and v on R™ whose densities are bounded away
from zero and infinity on their (compact) supports. Let u = maxwu; be from Lemma
4.8. Assume Q is conver, and disjoint from conv(Q;) for each i > 1 such that EZT
intersects Q0 := (spt w) N X1, If, in addition (spt ) N'XT has zero volume, then

Vuy € C2 (M) and is injective on Q.

Proof. The boundary of €27 is contained in the union of those EL- intersecting

spt p and (spt )2 N EI. Corollary 5.2 shows the former are DC hypersurfaces,
hence contain zero volume, like the latter. Caffarelli’s results [5] now assert uy €
O and is strictly convex there. O

loc

In the above corollary, Vu; gives a homeomorphism between the interior of
Q; := (sptp) N X1 and some open subset V; := Vu (%) of full volume in ;;
however, the price we pay for the lack of convexity of spt u is that we can no longer
conclude differentiability of u; up to the boundary of 2; because we cannot preclude
the possibility that u* fails to be strictly convex along a segment in Q; \ V.

The next theorem shows that Zleu is a disjoint union of Ejllk N M}, and
UjEI\{il,...,ik} Ele,...,ik,j: the first being a DC submanifold of codimension k —1, the

second a finite union of closed sets with Hausdorff dimension at most n — k. For
implications of affine independence in a simpler setting, see the C! description of
higher codimension tears coming from strictly convex target components in Corol-
lary 4.10. Since DC functions are C? recitifiable, the following theorem relaxes
our earlier convexity hypotheses and — outside of a negligible set — improves our
conclusion from C! to C2.

Theorem 5.4 (DC rectifiability of higher multiplicity tears). Fiz probability mea-
sures pu and v on R™ with p absolutely continuous and sptv = U;cr€; a finite
disjoint union of compact sets, and let u be an optimal potential taking p to v. If
{conv(€y), ..., conv(Q)} is an affinely independent collection, for any xo € ¥1,.
there exists ro > 0 such that By, (xo) N X1, i is contained in the image of an open
subset of R"=F under a bi-Lipschitz DC mapping.

Suppose in addition that the existence of a point x such that Ou (x) N Q; # () for
each of i =1,...,k, and j implies

{conv(Qy),...,conv(Qy), conv(Q;)} is an affinely independent collection.
(5.7)
Then
ZI,C NM={zeR"|u(x)=ui(z) =... = ug(z) > jEI{I{lla,).{..,k} uj(z)}. (5.8)

Moreover, ZIW’,C N My, is a relatively open subset of 2116

Proof. First assume {conv(Q;)}*_, is an affinely independent collection and zq €
...k Defining F : R*—F x RF-1 — RF-1 by

F(z) := (ui(x) — ug(x),...,up—1(x) — ug(x)),
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by assumption F(x¢) = 0, we will now show that every element of JF(zg) has
rank k — 1. Let M € J°F(x), and suppose the ith row is given by a vector of the
form
v; = W}EHOOV(W — ug)(Tm)

with z,, — 2o and z,,, € Dom(Vu;) N Dom(Vuy). Then there must exist points
z; € Q; for i € {1,...,k} such that v; = Z; — %y, and the assumption of affine
independence implies M has rank k—1. By Carathéodory’s theorem ( [22, Theorem
17.1] any other M € JYF(x() can be written as the convex combination of n + 1
matrices as above, meaning that we have v; = T; — Ty this time with z; € conv(ﬁi)
for i € {1,...,k}, again the hypothesis yields that M has rank k — 1. Thus we can
apply the DC constant rank theorem (Theorem 3.9) to obtain the first claim.

Now assume condition (5.7) holds. For brevity, let us notate the set on the right
hand side of (5.8) by Sg. Suppose u(xzg) = u;(xo) for any fixed index ¢ € I, then
by Lemma 2.4 we have Ou; (z9) C Ou(xp). Any extremal point of du; (zo) is a
limit of points of the form Vu;(z,,) where z,,, € Dom(Vu;) and z,, — zo, then
since Vu;(Dom(Vu)) C €; which is a closed set, we see du (zg) N Q; # 0. Thus,
we immediately see Elk N M C Si. On the other hand suppose xg € Si, then
by definition zg € EI,...J@' Suppose by contradiction xg ¢ My, then there must
exist 5 € I'\ {1,...,k} such that 37y € du (zo) N Q;. Since du (r¢) N Q; # ( for
i €{1,...,k} by Lemma 2.4, (5.7) implies the collection

{conv(y), ..., conv(Qy), conv(;)}

is affinely independent. However, by Lemma 2.4 and the definition of Si, we

must have that Ty is contained in the convex hull of & points, one from each of

{conv(Qy),...,conv(Q)} contradicting this affine independence, proving (5.8).
Finally, suppose = € ZT,...,k: N My. By (5.8), there is some open ball B,(x) on

which min u, > max wu;. Then clearly B,(z)N EI i C E;r w My, hence
1<i<k k+1<j<K

ZI,Mk N Mj, is relatively open in EI,...,k' ([

Remark 5.5. From (5.8), it is not hard to see that we can write

EI k= (EIk N M) U U E;...,k,j

©

where

N J o s, =0
GEN{1,....k}

.....

Thus Theorem 5.4 gives a criterion under which E K (a set defined solely by
which of the component functions match with the potentlal u) can be decomposed
into two disjoint sets, one which is relatively open and consists of points that only
are transported to the first k£ pieces of the target, and another set consisting points
where at least k£ + 1 of the component functions match.

We also mention that under affine independence, there can be at most one tear
of multiplicity n + 1.
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Proposition 5.6 (Uniqueness of maximal multiplicity tears). Assume u, v are
absolutely continuous probabilities measures on R™ with bounded supports. Also
suppose {ﬁi}:;l is any affinely independent collection of path connected subsets of
R"™ (which may or may not decompose sptv). Then if u is an optimal potential
tmnspoqting w to v, it can have at most one point of multiplicity n + 1 relative to
Ut

{Qi}¢:1 ’
Proof. Suppose by contradiction there exist two points xy # yo where u has multi-
plicity n + 1, then du (x¢) and du (yo) each must intersect all of the sets €2;. First
note that du (x¢), Ou (yo) must have affine dimension n (hence nonempty interior),
otherwise there would be an n — 1 dimensional affine plane intersecting all ;. Now
the convex function u* is seen to be nondifferentiable on du (xg) N du (yo), hence
this intersection must have zero Lebesgue measure. In particular, the interiors of
Ou (z9) and Ju (yp) are disjoint, and by [22, Theorem 11.3], R™ is divided into two
closed, opposing halfspaces H; and H_ with du (z¢) C Hy, Ou (yo) C H—.

Let us take z; € Ou (w9) N and ; € Ou (yo) N ; we see that z; € H, while
y; € H_ foreach 1 <i < n+1. Now each Q; is path connected, thus for each i there
exists some continuous path 7;(¢t) with v;(0) = z; and ~v;(1) = ¥;, which remains
inside €2;. Clearly there must exist some time t; € [0, 1] at which ~; intersects the
hyperplane H; N H_ for each 1 < i < n + 1. However, this would imply that
H,. N H_ is an n — 1 dimensional affine plane intersecting all of the sets Q;, a
contradiction. O

6. C1® SMOOTHNESS OF OPTIMAL MAP DISCONTINUITIES

In a previous section, affine independence of the target pieces was identified
as the geometric manifestation of the implicit function theorem hypothesis which
guarantees DC smoothness of the corresponding tears. This section is devoted
to improving this smoothness to C1'® — away from a certain (possibly empty)
exceptional closed subset of (spt u)a. If we relax affine independence to pairwise
separation of the target pieces by hyperplanes, then this small exceptional set may
potentially intersect (spt u)™t. In order to establish this goal, we begin by recalling
the required machinery from [6]. As always, we work with the bilinear cost ¢(x, Z) =
—(z,Z) on R™ x R™.

Definition 6.1 (Affine doubling). Suppose p is a Borel measure on R™ and x €
X C R™. An open neighborhood A, of x is said to be a doubling neighborhood of
w with respect to X if there exists a constant § > 0 (called the doubling constant of
i on N;) such that for any convex set Z C N, whose (Lebesgue) barycenter is in
X

)

here the dilation of Z is with respect to its barycenter.

Definition 6.2 (Centered sections). If ¢ : R" — R U {oco} is a convex function
with d¢ (R™)™ # 0, ¢ > 0, and xy € R", the centered section of ¢ at xq of height
¢ is defined by

Z2(x0) = {x € R" | ¢(x) < & + p(w0) + (ve, 2 — w0)}

where v, is chosen so that xq is the barycenter of Zg’(xo), which is bounded.
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It is known that such a v, exists, and is unique (see e.g. [6, Theorems A.7 and
A.8]). With these definitions in hand, we can state and prove the following refine-
ment in the case when one of the pieces, say 1, is strictly convex. Specifically, the
following theorem is a boundary regularity result, which gives local C1'* regular-
ity of the boundary of the region Ei where u = uq, away from a small closed set
E;. Corollary 6.4 below shows that when all the target components €Q; are strictly
conver and (spt p)? is C'-smooth, then FE; is contained in the non-transversal in-
tersections — if any — between the boundaries of EI and spt u. In what follows,
Npt u(x) = {v € R" | (v,y —x) < 0forall y € sptpu} denotes the outer normal
cone to the convex set spt p at z. In particular, x & (spt u)? implies Nypy . (z) = {0},
so By C (spt u)? if the sets {Q; }icr are affinely independent.

Theorem 6.3 (Holder continuity of optimal maps to closed convex target pieces).
Fiz probability measures u, v with densities bounded away from zero and infinity on
their supports in R™. Let spt 1 be convex and sptv = U;c1Q; a finite disjoint union
of closed sets strongly separated by hyperplanes pairwise (5.6). If Qy is strictly
convez, then

ur € Cigd (2] Nispt o) \ Bn)

loc

for some a € (0,1) (which depends only n, and the bounds of the densities of u and
v away from zero and infinity on their supports) where

By ={z e (ST nsptp)? | Vuy (2) € Nopt u(2) + conv (du (z) N (spt v\ Ql))g :
6.1

Proof. Proposition 4.5 asserts that u; € C1(R"), and Corollary 4.6 implies Vu gives
a homeomorphism between (spt v N X1)" and Q" which extends continuously to
the boundary. The purpose of this theorem is to establish a Holder estimate away
from the exceptional set Ej.

Let us write for any Borel A C R™, M1(A) := |Vui(A4)|z, the Monge-Ampére
measure of u; (here |-|z denotes the Lebesgue measure). Since Vu;(R") C O
which is convex, by [5, Lemma 2] we have for some constant C' > 0 depending
only the bounds of the densities of p and v away from zero and infinity on their
supports, for any Borel A C R"

CHANST nspt | < My(A) < ClANST Nspt plz. (6.2)

Suppose o € (spt )2 N (S1). Then for some ro > 0 small, the intersection
By, (0) Nspt p N X1 is convex and any convex Z C By, (x0) Nspt N Y] satisfies
(6.2). Thus the proof of [6, Lemma 7.5] applies and we see B, (o) is a doubling
neighborhood of M; with respect to spt /LHZI, with doubling constant §y depending
only on pu, v, and n.

Next define the convex function % by

u(@), w € sptp,
-]
00, else,

then its Legendre transform @* is an optimal potential transporting v to p which is
finite on all of R™ with 9a* (R™) C spt u by convexity of spt . Since the restriction
of &* will be an optimal potential transporting the restriction of v to 2 to the
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restriction of u to E{ Nspt i and € is connected, by subtracting a constant we can
assume 4* = u* on ;. Writing for any Borel A ¢ R", M(A) := |0a* (A)|¢ (the
Monge-Ampére measure of @*), by [5, Lemma 2] we then have for some constant
C > 0 depending only the bounds of the densities of u and v away from zero and
infinity on their supports, for any Borel A C R"

CHANspty|r < M(A) < ClANspty|,.

In turn, since ; is convex we find the proof of [6, Lemma 7.5] applies hence for
any © € ; and r > 0 such that B,(z) N UieI\{l}ﬁi = () , the open ball B,(z)
is a doubling neighborhood of M with respect to O, with doubling constant dg
depending only on u, v, and n.

Next, we will show that for » > 0 fixed, there is some £g > 0 such that whenever
z € ¥ Nsptp and Z = Vu, (z) are such that

(Vuy) (B, (z)) N E, =0, (6.3)

and € < &o, then the centered section Z% (z) C B,(Z). The proof will closely
follow that of [6, Lemma 7.11]. Suppose the claim fails: for some fixed r > 0 there
exist sequences Z; = Vuq(x;) with z; € >T N spt p satisfying (6.3), g \¢ 0 with
Zg; (Z;) ¢ Br(Z;). Extracting subsequences yields Z; — Too and z; — 2o with
Vui(Too) = Too € Qu, still satisfying (6.3); let us also define

Zmin :={Z € R" | 0"(T) = 0" (Too) + (T — Too, Too)} = 0l (Too) -

We can see that Claim #1 in the proof of [6, Lemma 7.11] still holds, so in particular
there is a nontrivial line segment contained in Z,,;,, centered at T, but otherwise
disjoint from the set €; on which @ is strictly convex. Thus Zo, € (€;)? and
Corollary 4.6 implies xo, € (EI N spt 1)?. Reordering if necessary, we may assume
u;(Zo) depends monotonically on ¢, with u1(Zs) = u2(Teo) = -+ = Uup(Te0) >
Ug+1(Zoo) for some k > 1. Then

0l (Too) = OU (Too) + Nept u(Toc)
= conv({Too } U Uz (Too) U+ -+ U Jug (Too)) + Nept p(Too) (6.4)

decomposes as the sum of a bounded component and a convex cone, in view of
Lemma 2.4. Since (6.3) for Zj implies (Vu1) (B, (Zoo)) N E1 = 0, we see T is
not contained in the closed convex set

conv(Nupt 1 (Too) + UF_0u; (200)) = conv(Qu (7o) N (spt v\ 1)),

hence can be strongly separated from it by a hyperplane ( [22, Corollary 11.4.2]).
Any segment in (6.4) centered at x., must be parallel to this hyperplane. But this
can only occur if the closed cone Nyt (%) contains a complete line parallel to

this segment, contradicting the fact that spt u has non-empty interior.
Thus [6, Theorem 7.13 and Corollary 7.14] will apply (note that differentiability
of @* is not actually necessary to do this), proving that u is C’llo’ca on (Z{ﬂspt W\ E1.
|

In addition to giving conditions under which the exceptional set E; of the theo-
rem above lies in the boundary of spt u, the following corollary shows the codimen-
sion k submanifolds of Corollary 4.10 enjoy Holder differentiability, except possibly
where they intersect the boundary (spt 1) tangentially.
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Corollary 6.4 (Holder regularity away from tangential tear-boundary intersec-
tions). Fiz x € Ey in Theorem 6.3. Assume u;(x) > uip1(x) for alli € I, and
ur(x) = up(x) > upp1(z). Also suppose the collection {conv (Ou (x) N ), s
affinely independent. If Qy is strictly convex then x € (spt u)?. If additionally, ;
is strictly convex for all i < k and (spt w)? is differentiable at x, then Y12, k)
intersects (spt p)? tangentially, meaning that the outer unit normal to sptu at x

is also normal to the C' submanifold Yi1,2,..k}- In this case, Zil ok} (15Dt 1 18

C’llc;? smooth, away from any such tangential intersections (and any possible non-

differentiabilities of (spt u)?).

Proof. Suppose x € E1 C EI Nspt p. By our assumptions and Lemma 2.4, we have
Ou (x) C conv (Uf=1 ﬁi), hence

=2 =2

k k
conv (u (z) N (sptv \ Q1)) C conv (U(@u ()N Q,)) = U conv (u (z) N Q)
Thus there exist Z; € conv (6u (z)N ﬁi) and t; > 0 with 1 = Zf:z t; such that

k
D ti(Vur(x) — %;) € Nopt () (6.5)
i=2
according to (6.1) of Theorem 6.3. Setting Z; = Vuq(x), the affine independence
of {Z; }i<i makes {Z1 — Z; }2<i<y linearly independent. Thus Zfﬁ t; = 1 forces the
sum in (6.5) not to vanish.

Now z € (spt )™ would force Nyps ,(z) = {0}, contradicting the last sentence.
Thus we conclude z is contained in the boundary of sptu. If, in addition, €;
is strictly convex for all ¢ < k then Vuj(z) — Z; = Vui(z) — Vu(z) is a (non-
zero) normal to the hypersurface ¥y ;3 = {u1 = wu;}, which is C' smooth by
Corollary 4.10, noting that a collection of two sets is affinely independent if they
are disjoint. Thus the sum in (6.5) is normal to the codimension k — 1 submanifold
Y,k = ﬁf:22{1’i} of the same corollary. Since (6.5) is non-vanishing, it is an
outer normal to spt ¢ when the latter is differentiable at x. Away from such points,
the improvement in regularity from C! to C’llo’? comes from Theorem 6.3 and the
implicit function theorem. O

When k£ = 2 and both target components are strictly convex, an analous result
was shown simultaneously and independently from us by Chen [7], who went on to
show C%® regularity of the tear provided the target components are sufficiently far
apart.

7. STABILITY OF TEARS

Our main goal of this section is to establish a stability result for the multiplicity
of singularities of an optimal potential, under certain perturbations of the target
measure. To do so, we must first choose an appropriate notion of perturbation for
the target measure. In this case, we would only expect stability under perturbations
of the target measure that prohibit moving even small amounts of mass to a far
away location. Thus a good candidate is the W, metric defined below.
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Definition 7.1 (co-Kantorovich-Rubinstein-Wasserstein distance). Given two prob-
ability measures 17 and 15 on R"™, the W, distance between them is defined by

Wao(v1,v2) i=inf {||d|| Lo (y) | ¥ € (v, v2)} .

Here, d : R® x R™ — R is the Euclidean distance, and II(r,vs) is the set of
probability measures on R™ x R™ whose left and right marginals are 17 and vs,
repectively

To obtain stability, we again require affine independence (Definition 4.7) of the
pieces of the support of the target measure. See Example A.1 for a counterexample
to stability when this independence is not present.

We are now ready to state the stability result.

Theorem 7.2 (Stability of tears). Suppose p and v are absolutely continuous prob-
ability measures with densities bounded away from zero and infinity a.e. on their
supports, and spt pu is convex. Also let u be an optimal potential transporting p to
v and suppose u has multiplicity k + 1 < K at xo € (spt ,u)mt, relative to a finite

— K
collection {Qi}izl of disjoint compact sets whose union is spt v. Reorder if neces-

sary, so that u also has multiplicity k + 1 with respect to the subcollection {ﬁl}fill
consisting of the first k + 1 sets; assume this subcollection is affinely independent
and consists of strictly convex sets.

Then for any e > 0, there exists a § > 0 depending only on €, spt u, and {Q;}£
such that for any v° with Wag (1/, 1/5) < 6 and any optimal potential u® transporting
w to V2, there is a DC submanifold of dimension n — k in B.(z¢) C R™ on which

u’ has multiplicity k + 1 relative to {J\/5 (ﬁl) }K

;1 at every point.

The discrepancy of k versus k 4+ 1 between Theorem 3.4 and Theorem 7.2 arises
because the affine hull of k£ + 1 affinely independent points generates an affine
subspace of dimension k.

We first show a lemma which uses the affine independence assumption to deduce
dim du(zp) = k, so that Theorem 3.4 can be applied. To do so requires some finer
properties of the subdifferentials of each of the functions u; which make up u in the
decomposition constructed in Lemma 4.3.

Lemma 7.3. Suppose {ul}fil is the collection of convex functions obtained by
applying Lemma 4.3 to the optimal potential u under the conditions of Theorem 7.2.
Ordering indices as in Theorem 7.2, u; € CY(R™) fori <k +1 and

8u(x0)ﬁQl—{®’ hil<i<K. (7.1)
Ou (wo) =conv | | J {Dui(xo)} |, (7.2)
1<i<k+1

u(xo) > ui(zo), k+1<i<K.

Additionally, dim du (x¢) = k.
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Proof. Apply Proposition 4.5 to obtain {ui}iK:I, then the fact that the multiplicity
of u at z( relative to {ﬁz}fil is k + 1 implies that Ju (xo) intersects exactly k + 1
of the sets Q;, each at exactly one point. -

Re-number the indicgs 1 <4 < K so that du (z) intersects €; only for 1 <i <
k+1. Since Vu;(zo) € Q; for each 4, Lemma 2.4 along with the mutual disjointness
of the Q; immediately gives (7.1), (7.2), (7.3), and (7.4).

Finally by (7.2), it is clear that dim (Qu (z¢)) < k. However, if dim (Ju (z)) < k,
the collection {ﬁi}fill would fail to be affinely independent, thus we must have
equality. This finishes the proof. O

We are now in a situation to appeal to Theorem 3.4 and finish the proof of the
stability theorem.

Proof of Theorem 7.2. We first apply Lemma 7.3 and reorder indices if necessary
to obtain convex functions u;, 1 < ¢ < K with properties (7.1) through (7.4).

Now fix an € > 0 and suppose by contradiction that the theorem fails to hold:
then there exist sequences ¢; ~\, 0 and v with W (V7 7 ) < ¢4, and optimal
potentials v’ transporting p to 7, but u’/ does not have d;-multiplicity k£ + 1 at
each point of a codimension k, DC submanifold of B.(zg). Note each u’ is convex
and all of the images Ou’(R") are contained in a fixed compact set, the collection
{uj }jil is uniformly Lipschitz. Then by Arzela-Ascoli (after adding constants to
each v/, which does not change the d;-multiplicity of any points) we can extract a
subsequence, still indexed by j, that converges uniformly. By stability of optimal
transport maps (see for example, [27, Corollary 5.23]) and convexity of spt u this
limit must be (again, up to adding a constant) equal to u.

Now by taking j large enough we may ensure the sets N, (€;) are mutually
disjoint for each j; note that by the definition of W, the assumption W, (1/, 7 ) <
§; implies spt v/ C Ufil Ns, (€%). Thus, as in Lemma 4.3 we obtain

uf(x) r= sup  ((z,7) — (uj)* (@),
zeNs; (%)
W (z) = max vl (z),

1<i<K

for z € spt v as long as j is large enough. We also comment here that ug converges
uniformly to u; for each 1 < ¢ < K, while the compactness of each set N(;j (Ql)
implies that

oul (z) NN, () #0, VzeQ. (7.5)

Clearly u and {uj }Jil satisfy the conditions of Theorem 3.4, thus for j suffi-
ciently large, we obtain existence of a DC submanifold Ei— w C Be(x0) of codimen-
sion k satisfying dim du’ (x) > k for every x € Ef%k.

At this point, fix any = € Zi_k. By (3.2) and Lemma 2.4 we see that

ou? (z) = conv U ol (x) |,

1<i<k+1
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thus (7.5) implies that for j large enough v’/ has §;-multiplicity at least k + 1 at .
On the other hand by the mutual disjointness of {ﬁi}iK:p Lemma 3.5 yields that
for j large enough, 1 <i < k+1, and i # i’ < K, we have dul (z) N N5, () = 0;
in particular this implies v/ has §;-multiplicity no more than £ 41 at . Thus if j
is large enough, u/ has d;-multiplicity exactly k + 1 at every point in X7 which

n—k’

finishes the proof by contradiction. O

APPENDIX A. FAILURE OF STABILITY WITHOUT AFFINE INDEPENDENCE

In this appendix, we provide an example to illustrate the importance of the affine
independence condition on the support of the target measure in Theorem 7.2. Note
from the definition, no collection of n + 2 or more sets can be affinely independent
in R™. The example we illustrate below has a target measure on R? whose support
consists of four strictly convex sets, and the associated optimal potential has a
point of multiplicity 4 which is unstable under certain W,, perturbations. The
source measure will have constant density, and the target measure will be absolutely
continuous with density bounded from above. This density does not have a lower
bound away from zero in its whole support, so it does not exactly satisfy all of
the remaining (i.e. other than affine independence) hypotheses of Theorem 7.2,
but we comment that the resulting optimal potential is an envelope of globally C*
functions, which is the only way in which these other conditions are required in
the proof of this theorem. In particular, this example strongly suggests that to
obtain stability there must be some restriction on the multiplicity in relation to the
ambient dimension.

We merely state this counterexample below, and refer the interested reader to
the first version of this paper available at arXiv:1708.04152v1 for computations
verifying all of the details.

Proposition A.1. Let c(x,z) = —(x,z) on R? x R2. Denoting points (x,y) € R?,
let

D = {(m,y) c R? | 2% —r} Syﬁr%—azQ}
where rg > 0 is a small constant to be determined, and take p to be the uniform

probability measure on D (see Figure 1). Also define the function

U = max u;
1<i<4

where

ua(z,y) = 4yt + y? — |2 + y? max {0, —sgn(y)} + 3|2,

and take v to be the pushforward of pu under Du. Then v is absolutely continuous
with density bounded away from infinity on its support, sptv is the disjoint union
of nonempty, compact, strictly conver sets {Qy,...,Q4}, each u; € CHR"™), and u
has a singularity of multiplicity 4 at (0,0) relative to this collection. Moreover, for
any § > 0 there exists a sequence of measures v converging to v in Wee for which
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the associated optimal potentials mapping 1 to v/ do not have any singularities of
d-multiplicity 4 relative to {Q1,...,Q4}.

Ui

Uy
Vul U
Vus(Us) Vuy(Uz)
V’LL4 U4
FIGURE 1.
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