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Abstract. We prove a nonsmooth implicit function theorem applicable to

the zero set of the difference of convex functions. This theorem is explicit

and global: it gives a formula representing this zero set as a difference of
convex functions which holds throughout the entire domain of the original

functions. As applications, we prove results on the stability of singularities of

envelopes of semi-convex functions, and solutions to optimal transport prob-
lems under appropriate perturbations, along with global structure theorems

on certain discontinuities arising in optimal transport maps for the bilinear

cost c(x, x̄) := −〈x, x̄〉 for x, x̄ ∈ Rn. For targets whose components satisfy
additional convexity, separation, multiplicity, and affine independence assump-

tions we show these discontinuities occur on submanifolds of the appropriate
codimension which are parameterized locally as differences of convex functions

(DC, hence C2 rectifiable), and — depending on the precise assumptions —

C1,α smooth. Under these hypotheses, any n+ 1 affinely independent compo-
nents of the target measure select at most one point from the source measure

where the transport divides between all n + 1 specified target components.
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1. Introduction

The question of regularity for maps solving the optimal transportation problem of
Monge and Kantorovich is a celebrated problem [23] [26]. Under strong hypotheses
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relating the target’s convexity to curvature properties of the transportation cost,
optimal maps are known to be smooth, following work of Caffarelli on bilinear
costs [5] and Ma, Trudinger, and Wang more generally [19]. In the absence of such
convexity and curvature properties, much less is true. Partial regularity results
— which quantify the size of the singular set — are available in several flavors.
The set of discontinuities of an optimal map is known to be contained in the non-
differentiabilities of a (semi-)convex function, hence to have Hausdorff dimension
at most n − 1 in Rn. In fact, Zaj́ıček [30] has shown such discontinuities lie in a
countable union of submanifolds parameterized as graphs of differences of convex
functions — referred to as DC submanifolds hereafter. The closure of this set of
discontinuities was shown to have zero volume by Figalli with Kim (for the bilinear
cost [13]) or with DePhilippis (for non-degenerate costs [11]), and is conjectured to
have dimension at most n − 1. Even for n = 2 with the bilinear cost this conjec-
ture remains open, in spite of the additional structure established by earlier work
of Figalli in this case [12]. See related work of Chodosh et al [8] and Goldman
and Otto [15]. The present manuscript is largely devoted to providing evidence
for this conjecture by providing concrete geometries in which it can be confirmed.
Typically these consist of transportation to a collection of disjoint target compo-
nents, which we allow to be convex or non-convex. This forces discontinuities along
which the optimal map tears the source measure into separate components, one
corresponding to each component of the target. We study the regularity of such
tears. We show that when the target components can be separated by a hyperplane,
the corresponding tear is a DC hypersurface. For the bilinear cost, when several
tears meet, their intersection is a DC submanifold of the appropriate codimension
provided the corresponding target components are affinely independent. When the
corresponding target components are strictly convex, we show the tears are C1,α

smooth, and that the optimal maps are smooth on their complement. We show
stability of such tears when the data are subject to perturbations which are small
in a sense made precise below.

A core result of this paper is a nonsmooth version of the classical implicit function
theorem for convex functions. More specifically, we wish to write the set where
two convex functions coincide as the graph of a DC function, where DC stands
for difference of convex, alternately denoted c − c [14] or ∆-convex [25] in some
references. The idea of inverse and implicit function theorems have been explored
in various nonsmooth settings, e.g. by Clarke [9], and Vesely and Zaj́ıček [25,
Proposition 5.9]; see also [29] [20, Appendix] [27, Theorem 10.50]. Two major
aspects set apart the version we present here from previous theorems. The first is
the explicit nature of the theorem: we are able to explicitly write down the function
whose graph gives the coincidence set in terms of partial Legendre transforms of
the original convex functions, thus we term this an “explicit function theorem”
in contrast to the traditional implicit version. Second, our result is of a global,
rather than a local nature: existing implicit function theorems generally state the
existence of a neighborhood on which a surface can be written as the graph of a
function, in our theorem we obtain that the domain of this function is actually the
projection of the entire original domain on some hyperplane. Our method of proof
relies on the construction of Alberti from [1, Lemma 2.7], foreshadowed in Zaj́ıček’s
work [30].
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Our interest in this theorem is motivated by its application to the optimal trans-
port problem of Monge and Kantorovich mentioned above. Let Ω and Ω be subsets
of complete metric spaces, and take a Borel measurable, real valued cost function
c : Ω×Ω→ R. The optimal transport problem is: given any two probability mea-
sures µ and ν on Ω and Ω respectively, find a measurable mapping T : sptµ→ spt ν
pushing µ forward to ν (denoted T#µ = ν), such that∫

Ω

c(x, T (x))µ(dx) = inf
S#µ=ν

∫
Ω

c(x, S(x))µ(dx). (OT)

The applications we present here concern the global structure of discontinuities in
T , stability results for such tears, and the regularity of T on their complement, in
the case when Ω = Ω = Rn and c(x, x̄) = −〈x, x̄〉. For the first application, we ask
if there is some structure for these discontinuities when the support of the target
measure is separated into two compact sets — by a hyperplane. One would expect
the source domain to be partitioned into two sets, which are then transported to
each of the pieces in the target. Under suitable hypotheses we show this is the case,
and the interface between these two pieces is actually a DC hypersurface (thus
C2 rectifiable) which can be parameterized as a globally Lipschitz graph. In the
second application, we consider a target measure consisting of several connected
components. This should result in a transport map that must split mass amongst
the pieces, and we investigate the structure and stability of this splitting. It turns
out a stability result can be obtained when considering perturbations of the target
measure under the Kantorovich-Rubinstein-Wasserstein L∞ metric (W∞ in Defi-
nition 7.1 below), along with an appropriate notion of affine independence for the
pieces (Definition 4.7 below). We also provide an example to illustrate this inde-
pendence condition plays the role of an implicit function hypothesis and is crucial
for stability.

At the suggestion of the referees, and for simplicity of exposition, we consider the
bilinear cost function c(x, x̄) = −〈x, x̄〉 exclusively hereafter. However, a number
of the results presented can be extended to cost functions satisfying the so called
Ma-Trudinger-Wang condition — known as MTW costs, see e.g. [17,19,23,24]. It is
known that the MTW condition is necessary for regularity in the optimal transport
problem [18]. We explore this direction in more detail in a future work; see also
the first arXived version of the present manuscript.

The outline of the paper is as follows. In Section 2 we set up and prove the
“explicit function theorem” for convex differences. We then apply the explicit
function theorem in Section 3, to show stability for singular points of envelopes
of semi-convex functions under certain perturbations. In Section 4, we recall some
necessary background material concerning the optimal transport problem and begin
to explore consequences of known regularity results in our setting. Section 6 proves
DC rectifiability of the (codimension k) tears along which the source is split into
k+ 1 components whose images have affinely independent convex hulls. For k = n,
Proposition 5.6 shows the corresponding tear consists of a single point. Section
6 shows these tears are C1,α provided the corresponding target components are
strictly convex; in the simplest case k = 1, a similar result was found by Chen [7]
simultaneously and independently of the present manuscript: the main thrust of his
work is to improve regularity of the tear to C2,α when the pair of strictly convex
target components are sufficiently far apart. Smoothness of the map away from
such tears is shown in Corollary 4.6. Section 7 shows such tears are stable. Lastly,
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we include an appendix sketching an example which shows the affine independence
of target measures components is necessary for stability.

Throughout this paper, for 1 ≤ i ≤ n we will use the notation πi : Rn → Ri

to denote orthogonal projection onto the first i coordinates, and ei for the ith unit
coordinate vector. We also reserve the notation Acl, Aint, and A∂ for the closure,
interior, and boundary of a set A respectively. Also, given any point x ∈ Rn, we
will write xi for the ith coordinate of x. Hi will refer to the i-dimensional Hausdorff
measure of a set in Euclidean space. Finally, conv(A) denotes the closed convex
hull of a set A while Nε(A) = {x | dist(x,A) ≤ ε}.

2. An “explicit function theorem” for convex differences

For the remainder of the paper, by convex function with no other qualifiers we
will tacitly mean a closed, proper, convex function on Rn i.e., a function defined
on Rn taking values in R ∪ {∞}, whose epigraph is a non-empty, closed, convex
set. The effective domain of u (which we often just call its domain) is defined to
be the set Dom(u) := {x ∈ Rn | |u(x)| < ∞}. Also, we will use the notations
x′ := πn−1(x) and A′ := πn−1(A) for any point x ∈ Rn and set A ⊂ Rn.

Recall by the classical implicit function theorem, if f , g : Rn → R are smooth,
the set {f = g} is the graph of a smooth function of n− 1 variables, near any point
on the set where ∇f 6= ∇g. We aim to prove an analogue of this theorem, but for
two convex functions without any assumptions of differentiability. In order to do
so, we need an appropriate replacement for the inequality of gradients, which will
be formulated in terms of the subdifferential : recall for a convex function u and x0

in its domain,

∂u (x0) := {x̄ ∈ Rn | 〈x− x0, x̄〉+ u(x0) ≤ u(x), ∀x} , (2.1)

while for a subset A of its domain,

∂u (A) :=
⋃
x∈A

∂u (x) .

We also recall here the Legendre transform of a (proper) convex function u is the
(closed, proper, convex) function u∗ : Rn → R ∪ {∞} defined by

u∗(x̄) := sup
x∈Rn

[〈x, x̄〉 − u(x)] = sup
x∈Dom(u)

[〈x, x̄〉 − u(x)]. (2.2)

Definition 2.1 (Separating hyperplane). If Λ+ and Λ− are any two sets in Rn

and v is a fixed unit vector, recall that a hyperplane {x ∈ Rn | 〈x, v〉 = a} is said
to strongly separate Λ+ and Λ− (with spacing d) if there exists a d > 0 such that

〈x−, v〉 < a − d < a + d < 〈x+, v〉

for any x+ ∈ Λ+ and x− ∈ Λ−.

Let us also recall some terminology on DC (difference of convex) functions here.

Definition 2.2 (DC functions, mappings [2, 21]). A function h : Λ → R on a
convex domain Λ ⊂ Rn is said to be a DC function if it can be written as the
difference of the restrictions to Λ of two convex functions that are finite on Λ. A
mapping from Λ to a Euclidean space Rm is said to be a DC mapping if each of
its coordinate components is a DC function.
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The key hypothesis of our theorem is the strong separation of the subdifferentials
of two convex functions. One feature that differentiates our theorem from the usual
implicit function theorem is that we can actually write down the function whose
graph gives the equality set between the two convex functions we consider, and
explicitly state the domain of this function. Thus we term this an “explicit function
theorem.” We first state the following Theorem 2.3 in terms of the subdifferential
of the envelope of two convex functions, and formulate the actual explicit function
theorem as Corollary 2.5 below.

Theorem 2.3 (DC tears). Let u+ and u− be convex functions and write u :=
max {u+, u−}. Also let Λ ⊂ Dom(u) ⊂ Rn a convex (but not necessarily bounded)
set, and Λ+, Λ− compact subsets of Rn with ∂u+ (Λ) ⊂ Λ+ and ∂u− (Λ) ⊂ Λ−.
We define

Σ : =
{
x ∈ Λ | ∂u (x) ∩ Λ+ 6= ∅ and ∂u (x) ∩ Λ− 6= ∅

}
,

C+ : =
{
x ∈ Λ | ∂u (x) ∩ Λ− = ∅

}
,

C− : =
{
x ∈ Λ | ∂u (x) ∩ Λ+ = ∅

}
.

Also, suppose that (after a rotation of coordinates) for some a0 ∈ R the hyperplane
Π := {xn = a0} strongly separates Λ+ and Λ− with spacing d0 > 0, and Λ+ ⊂
{xn > a0}.

Writing Λ′ := πn−1(Λ), define the functions h± : Rn−1 → R∪{∞}, h : (Λ′)cl →
R by

h±(x′) : =

{
−
u∗
x′ (a0∓d0)

2d0
, x′ ∈ Λ′,

∞, x′ ∈ Rn−1 \ Λ′,
(2.3)

h(x′) : = h+(x′)− h−(x′), x′ ∈ Λ′, (2.4)

where u∗x′ is the Legendre transform of the function ux′(t) := u(x′, t) of one variable.

Then h± are both convex (but possibly not closed) on Rn−1 and finite on Λ′ (so in
particular, h is a DC function), with

Σ = {(x′, h(x′)) | x′ ∈ Λ′} ∩ Λ, (2.5)

C+ = {(x′, xn) | x′ ∈ Λ′, h(x′) < xn} ∩ Λ,

C− = {(x′, xn) | x′ ∈ Λ′, h(x′) > xn} ∩ Λ.

Moreover,

‖h‖Lip (πn−1(Σ)) ≤ |tan Θ| ≤ diam[πn−1(Λ+ ∪ Λ−)]

2d0
(2.6)

where

cos Θ := inf
x̄+∈Λ+,x̄−∈Λ−

〈 x̄+ − x̄−
|x̄+ − x̄−|

, en〉.

We will need the following classical result on subdifferentials of envelopes of
convex functions (which can be obtained for example, by [10, Proposition 2.3.12]
applied to convex functions).

Lemma 2.4. If u = maxi ui for some finite collection of convex functions ui, then

∂u (x0) = conv

(⋃
i∈I

∂ui (x0)

)
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where I := {i | u(x0) = ui(x0)}.

Using this result, we find the following reformulation of Theorem 2.3.

Corollary 2.5 (Explicit function theorem). Under the same notation and hypothe-
ses as Theorem 2.3,

{x ∈ Λ | u+(x) = u−(x)} = {(x′, h(x′)) | x′ ∈ Λ′} ∩ Λ,

{x ∈ Λ | u+(x) > u−(x)} = {(x′, xn) | x′ ∈ Λ′, h(x′) < xn} ∩ Λ,

{x ∈ Λ | u+(x) < u−(x)} = {(x′, xn) | x′ ∈ Λ′, h(x′) > xn} ∩ Λ.

Proof. Lemma 2.4 immediately yields the corollary from Theorem 2.3. �

Before embarking on the proof of Theorem 2.3, we need one more topological
result on the subdifferential of a convex function. It is well-known to experts, but
lacking a convenient reference we provide a proof. We will only use the result in
one dimension in the proof of Thereom 2.3, but this lemma will also be used in
later sections in its full generality.

Lemma 2.6 (Connected subdifferential images). If u is a convex function, C ⊂
Dom(u) is connected, and ∂u(C) is bounded, then ∂u(C) is connected.

Proof. Assume ∂u(C) 6= ∅, else the lemma is trivial. Let us write Dom(∂u) :=
{x ∈ Rn | ∂u(x) 6= ∅}. We first prove that C ⊂ Dom(∂u). If not, the sets
A := C ∩Dom(∂u) and B := C \Dom(∂u) are both nonempty, and their union is C.
Let x ∈ A, then ∂u(x) is a nonempty, bounded set. Hence by [22, Theorem 23.4],
there is an open ball around x contained in Dom(∂u), in particular A ∩ Bcl = ∅.
Next suppose there is some x ∈ B ∩ Acl. Then there is a sequence xk → x with
{xk}∞k=1 ⊂ A, hence there exist points x̄k ∈ ∂u(xk) for each k. Since ∂u(C) is
assumed bounded, we can extract a subsequence to assume x̄k converges to some
x̄. Finally by [22, Theorems 10.1 and 23.4], we have u(xk) → u(x) as k → ∞.
Thus this would imply that x̄ ∈ ∂u(x), contradicting the definition of B, hence
B ∩ Acl = ∅. However, this shows that A and B separate the connected set C, a
contradiction. Since A 6= ∅ by our assumptions, the only possibility left is that
B = ∅ and the claim is proved.

Now suppose the lemma is false, then there exist nonempty sets D1 and D2 ⊂ Rn

such that ∂u(C) = D1∪D2, and D1∩Dcl
2 = ∅ = D2∩Dcl

1 . Define Ci := ∂u∗(Di)∩C
for i = 1, 2. Since x̄ ∈ ∂u(x) if and only if x ∈ ∂u∗(x̄) we immediately have Ci 6= ∅
for each i. Also by definition, C1 ∪ C2 ⊂ C. To see the opposite inclusion, let
x ∈ C. Since ∂u(x) 6= ∅ by our above claim, by the inclusion ∂u(x) ⊂ D1 ∪D2 we
immediately have x ∈ C1 ∪ C2.

Now, suppose there exists some x ∈ C1∩Ccl
2 . Then we claim there exist x̄1 ∈ D1

and x̄2 ∈ D2 such that both are contained in ∂u(x). The existence of x̄1 is by
definition of C1 and the relation between ∂u and ∂u∗. For x̄2, note there is a
sequence of points {yk}∞k=1 ⊂ C2 with yk → x. This implies there is a sequence
{ȳk}∞k=1 ⊂ D2 with ȳk ∈ ∂u(yk). Since ∂u(C) is bounded, so is D2, hence we may
pass to a subsequence and assume ȳk → x̄2 as k → ∞ for some x̄2 ∈ Dcl

2 . Since u
is assumed closed, it is lower semicontinuous, hence we have for any fixed y ∈ Rn,

u(y) ≥ lim inf
k→∞

(u(yk) + 〈y − yk, ȳk〉)

≥ lim inf
k→∞

u(yk) + lim
k→∞

〈y − yk, ȳk〉 ≥ u(x) + 〈y − x, x̄2〉.
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Since Dom(u) 6= ∅ as it is proper, the above implies u(x) <∞ and thus x̄2 ∈ ∂u(x).
However, as D1 ∩Dcl

2 = ∅, we actually obtain x̄2 ∈ ∂u(x) \D1 = D2.
Now, by convexity of the subdifferential, the line segment ` := {(1−λ)x̄1 +λx̄2 |

λ ∈ [0, 1]} is contained in ∂u(x) = D1 ∪ D2. This is a contradiction as D1 ∩ `
and D2 ∩ ` would be separating sets for the convex, hence connected set `, thus
C1 ∩ Ccl

2 = ∅. A symmetric argument shows that C2 ∩ Ccl
1 = ∅, thus we obtain a

contradiction with the connectedness of C. �

Proof of Theorem 2.3. Fix any such strongly separating hyperplane, by our as-
sumptions we have Λ+ ⊂ {xn > a0 + d0} and Λ− ⊂ {xn < a0 − d0}. Also, if

x′ ∈ Λ′, let us write Λx
′

:= {t ∈ R | (x′, t) ∈ Λ}.
We first claim that given x′ ∈ Λ′, there is at most one xn ∈ Λx

′
such that

(x′, xn) ∈ Σ, and it must be that xn = h(x′). Indeed, fix an x′ ∈ Λ′ and suppose
there exists such an xn. First by [1, Proposition 2.4], for any (x′, t) ∈ Λ we have

∂ux′ (t) = πn (∂u (x′, t)) (2.7)

where πn : Rn → R is projection onto the nth coordinate. Then since ∂u (x′, xn) is
convex and intersects both Λ+ and Λ−, we must have [a0−d0, a0 +d0] ⊂ ∂ux′ (xn),
which implies xn ∈ ∂u∗x′ ([a0 − d0, a0 + d0]) by [22, Theorem 23.5]. We also im-

mediately see that the values u∗x′(a0 ± d0) are both finite. By the definition of

subdifferential, we have the inequalities

u∗x′(a0 + d0) ≥ u∗x′(a0 − d0) + xn(a0 + d0 − (a0 − d0)),

u∗x′(a0 − d0) ≥ u∗x′(a0 + d0) + xn(a0 − d0 − (a0 + d0)),

which combined implies xn = h(x′), and in particular there can only be at most
one such xn for each x′.

Now suppose x′ ∈ Λ′ is such that Λx
′ 6= ∅ but there is no t ∈ Λx

′
where ∂u (x′, t)

intersects both of the sets Λ±. In particular by Lemma 2.4 (recalling (2.7)), either

∂ux′
(

Λx
′
)
⊂ (a0 +d0,∞) or ∂ux′

(
Λx
′
)
⊂ (−∞, a0−d0), suppose it is the former;

thus we assume

∂ux′
(

Λx
′
)
⊂ (a0 + d0,∞). (2.8)

We now claim there exist numbers t± ∈ R such that a0 ± d0 ∈ ∂ux′ (t±) respec-
tively.

To this end, first note by combining [22, Theorem 25.6] with Lemma 2.6, we can
find that for any interval I ⊂ R (possibly unbounded), the set ∂ux′ (I) is also an

interval. Since Λ is convex the fiber Λx
′

is an interval, thus we see that ∂ux′
(

Λx
′
)

is also an interval. Combining this fact with Lemma 2.4, (2.7), and (2.8), it is
sufficient to show that the subdifferential of ux′ contains a number less than or
equal to a0 − d0 somewhere.

Fix an arbitrary t0 ∈ Λx
′
. Since u±(x′, ·) are closed, proper, and convex, if either

equals ∞ at any point in (−∞, t0), by Lemma 2.4, (2.7), and [22, Section 24 and
Theorem 25.6] we easily obtain a point t where ∂ux′ (t) ∩ (−∞, a0 − d0) 6= ∅. If
there is a point t < t0 where u+(x′, t) ≤ u−(x′, t) < ∞, by monotonicity of the
subdifferential of u−(x′, ·), (2.7), and our hypotheses, again using Lemma 2.4 gives
the desired conclusion.
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Suppose we are in the final remaining case: u−(x′, ·) < u+(x′, ·) = ux′(·) < ∞
on (−∞, t0), and assume by contradiction that

∂ux′ ((−∞, t0)) ⊂ (a0 − d0,∞).

Take any p− ∈ πn (∂u− (x′, t0)), then we have p− < a0 − d0 − ε for some small
ε > 0. For t < t0 and p ∈ ∂ux′ (t), by the contradiction assumption, p > a0 − d0.
Thus we find, using [1, Proposition 2.4],

ux′(t0) ≥ ux′(t) + p(t0 − t) > u−(x′, t) + p(t0 − t)
≥ u−(x′, t0) + (p− p−)(t0 − t)
≥ u−(x′, t0) + (a0 − d0 + ε− a0 − d0)(t0 − t),

rearranging gives

u(x′, t0)− u−(x′, t0) > ε(t0 − t),
a contradiction taking t↘ −∞, thus we have proved the claim.

Note this claim shows that u∗x′(a0±d0) are both finite, in particular h± are both

finite valued for such x′. Then by [22, Theorem 23.5] we have

u∗x′(a0 + d0) = t+(a0 + d0)− u(x′, t+). (2.9)

Since by definition

−u∗x′(a0 − d0) = inf
t∈R

(u(x′, t)− t(a0 − d0)) ≤ u(x′, t+)− t+(a0 − d0),

we find that

h(x′) ≤ u(x′, t+)− t+(a0 − d0) + t+(a0 + d0)− u(x′, t+)

2d0
= t+ < inf Λx

′
, (2.10)

the last inequality from (2.8) and monotonicity of the subdifferential.

The case ∂ux′
(

Λx
′
)
⊂ (−∞, a0 − d0] can be handled by a symmetric argument

yielding that h(x′) > sup Λx
′
. Thus we find h± are both finite valued on all of Λ′.

We will next show h± are both convex (essentially, this is just the fact that a
supremum of a family of jointly convex functions gives a concave function). To this
end, fix x′0, x′1 ∈ Λ′ and t0, t1 ∈ R, and define (x′λ, tλ) := ((1 − λ)x′0 + λx′1, (1 −
λ)t0 + λt1). Then x′λ ∈ Λ′, hence u∗x′λ

(a0 + d0) is finite. By the convexity of u, we

can calculate

u∗x′λ
(a0 + d0) ≥ tλ(a0 + d0)− u(x′λ, tλ)

≥ (1− λ)t0(a0 + d0)− (1− λ)u(x′0, t0) + λt1(a0 + d0)− λu(x′1, t1),

where the right hand sides of the second and third lines above may take the value
−∞. By taking a supremum on the right hand side, first over t0, then over t1, we
obtain

u∗x′λ
(a0 + d0) ≥ (1− λ)u∗x′0(a0 + d0) + λu∗x′1(a0 + d0),

then since Λ′ is convex, the epigraph of h+ will be a convex set. A similar argument
for u∗x′λ

(a0 − d0) proves the epigraph of h− is convex as well. Since we have shown

h̃± are both finite on Λ′, we see they cannot attain the value −∞ anywhere on Rn,
hence are proper. Then by definition, the functions h± are closed.

By the calculations at the beginning of the proof we immediately obtain the first
line in (2.5). Now fix x ∈ C+. If there is no t ∈ Λx

′
where ∂u (x′, t) intersects both
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Λ±, by (2.10) we see that h(x′) < xn. Now suppose there exists a t ∈ Λx
′

where
∂u (x′, t) intersects both of the sets Λ±; we must have t = h(x′). Take x̄ ∈ ∂u (x)
and (ȳ′, a0) ∈ ∂u (x′, h(x′)). By monotonicity of the subdifferential we find that

0 ≤ 〈x− (x′, h(x′)), x̄− (ȳ′, a0)〉
= (xn − h(x′))(x̄n − a0).

However, by Lemma 2.4 and since ∂u (x) does not intersect Λ−, we have must have
x̄n − a0 ≥ 0, thus xn ≥ h(x′). Since ∂u (x′, h(x′)) intersects both sets Λ±, the
above inequality must be strict, thus we obtain the second line of (2.5). The third
can be obtained from a symmetric argument.

Lastly we prove the Lipschitz bound (2.6). To do so, we will show that any
circular cone of slope |tan Θ| opening in the positive or negative en direction, with
vertex on the set Σ ∩Λ remains on one side of Σ. Specifically, fix a point in Σ ∩Λ
and after a translation, assume it is the origin. We claim that if xn ≥ |x′||tan Θ|
with x′ ∈ Λ′, then

h(x′) ≤ xn. (2.11)

Let us assume h(x′) ≥ 0, otherwise the above claim is immediate. First note that

∃ x̄± ∈ Λ± s.t. 〈(x′, h(x′)), x̄+ − x̄−〉 ≤ 0 =⇒ (2.11) holds. (2.12)

Indeed by the definition of Θ, this would imply that

0 ≥ 〈x′,
x̄′+ − x̄′−
|x̄+ − x̄−|

〉+ h(x′)

(
x̄n+ − x̄n−
|x̄+ − x̄−|

)
≥ 〈x′,

x̄′+ − x̄′−
|x̄+ − x̄−|

〉+ h(x′) cos Θ

and rearranging terms,

h(x′) ≤ 1

cos Θ
〈−x′,

x̄′+ − x̄′−
|x̄+ − x̄−|

〉

≤ |x′|
cos Θ

|x̄′+ − x̄′−|
|x̄+ − x̄−|

≤ |x′||tan Θ| ≤ xn,

giving (2.11). Now let x̄0,± ∈ ∂u± (0) and ˜̄x± ∈ ∂u± (x′, h(x′)); by Lemma 2.4 we
have that x̄0,± ∈ ∂u (0) and ˜̄x± ∈ ∂u (x′, h(x′)). In particular,

u(y) ≥ u(0) + max {〈y, x̄0,+〉, 〈y, x̄0,−〉} ,
u(y) ≥ u(x′, h(x′)) + max {〈y − (x′, h(x′)), ˜̄x+〉, 〈y − (x′, h(x′)), ˜̄x−〉}

for any y. Taking y = (x′, h(x′)) in the first and y = 0 in the second inequality,
plugging the second into the first and rearranging terms we obtain

〈(x′, h(x′)), ˜̄x−〉 ≥ min {〈(x′, h(x′)), ˜̄x+〉, 〈(x′, h(x′)), ˜̄x−〉}
≥ max {〈(x′, h(x′)), x̄0,+〉, 〈(x′, h(x′)), x̄0,−〉}
≥ 〈(x′, h(x′)), x̄0,+〉.

Thus we have (2.12), hence (2.11).
A symmetric argument can be used to show xn ≤ h(x′) whenever xn ≤ −|x′||tan Θ|,

as a result we obtain the Lipschitz bound (2.6). �
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3. Stability of singularities

In this section, we will use the explicit function theorem from the previous section
to show a stability result for singularities, and will extend our discussion from
convex functions to semi-convex functions. First a few definitions.

Definition 3.1 (Semi-convexity). Recall that a real valued function u defined on
some Λ ⊂ Rn is said to be semi-convex if for any x0 ∈ Λ, there exists an r > 0
and some C > 0 for which the function x 7→ u(x) + C|x− x0|2 is convex when set
to ∞ outside Br(x0)cl. We will say that a family {uj} of semi-convex functions
has uniformly bounded constant of semi-convexity near x0 if there is some r > 0
on which the same constant C > 0 can be chosen to make all of the functions
uj + C|· − x0|2 convex after setting all of them to ∞ outside Br(x0)cl.

Definition 3.2 (Subdifferential of a semi-convex function). The subdifferential of
a semi-convex function u is defined by

∂u (x0) := {p ∈ Rn | u(x) ≥ u(x0) + 〈x− x0, p〉+ o(|x− x0|), ∀x→ x0} .

If u is a convex function, this definition is equivalent to (2.1).

Definition 3.3 (Legendre transform). If u is a real-valued function defined on some
subdomain Dom(u) of Rn, its Legendre transform is the convex function defined
by the equation (2.2) with the convention u :=∞ outside Dom(u).

It is well known that for a semi-convex function u, if ∂u (x) is a singleton, then
x ∈ Dom(u)int, and u is actually differentiable at x. We will be interested in the
behavior of u at points of nondifferentiability, namely we will be concerned with
the dimension of ∂u (x) (whenever we refer to the dimension of a convex set, we
will always mean the dimension of its affine hull). In some sense, this dimension is
a measure of how severe the singularity of u is at x: for example the function |x|
on Rn has an n dimensional subdifferential at the origin which corresponds to a
conical singularity, while |x1| has a 1 dimensional subdifferential at the origin, and
the function remains differentiable in the {x1 = 0} subspace.

In particular, we are interested in the stability of the dimension of the subdiffer-
ential of a sequence of semi-convex functions, as detailed in the following theorem,
whose proof is deferred to the end of this section.

Theorem 3.4 (Stability of singularities). Suppose that u is a real valued function,
finite on an open neighborhood Nx0

of some point x0 ∈ Rn, of the form

u = max
1≤i≤K

ui, (3.1)

for some K <∞ where all ui are semi-convex. Also fix some 1 ≤ k ≤ min {K − 1, n}
and assume that for any 1 ≤ i ≤ k + 1:

ui ∈ C1(Nx0
),

u(x0) = ui(x0) > ui′(x0), ∀ k + 2 ≤ i′ ≤ K,

and dim ∂u (x0) = k. Finally, let
{
uji

}∞
j=1

be a sequence for which each uji is semi-

convex with uniformly bounded constant of semi-convexity near x0, uji −−−→
j→∞

ui

uniformly in compact subsets of Nx0 for each 1 ≤ i ≤ K, and write uj := max
1≤i≤K

uji .
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Then for any ε > 0, there exists an index Jε such that for any j > Jε, there exists

a set Σjn−k ⊂ Bε(x0) with Hn−k
(

Σjn−k

)
> 0 on which

uj(x) = uji (x) > uji′(x), ∀ x ∈ Σjn−k, 1 ≤ i ≤ k + 1, k + 2 ≤ i′ ≤ K. (3.2)

Moreover, Σjn−k is the graph of a DC mapping over an open set in Rn−k and

dim ∂uj (x) ≥ k ∀x ∈ Σjn−k, (3.3)

with equality on a set of full Hn−k measure in Σjn−k.

In preparation, we shall need a result on stability of the subdifferentials of a
sequence of convergent convex functions. By a straightforward modification of the
proof of [22, Theorem 25.7], we obtain the following lemma.

Lemma 3.5. Suppose that u and {uj}∞j=1 are convex functions, finite and with

uj → u pointwise on some open convex domain Λ, and also assume that u is
differentiable on Λ. Then for any compact Λ0 ⊂ Λ and ε > 0 there exists j0 such
that

∂uj (x) ⊂ Bε(∇u(x))

for all j ≥ j0 and x ∈ Λ0.

Proof. Suppose that the proposition fails, then for some compact Λ0 ⊂ Λ and ε > 0,
there exists a sequence {xj}∞j=1 ⊂ Λ0 and pj ∈ ∂uj (xj) for which |pj −∇u(xj)| >
ε. By passing to subsequences, we may assume that xj → x0 ∈ Λ0, and for
some fixed index 1 ≤ i ≤ n that 〈pj −∇u(xj), ei〉 >

√
ε
n for all j (the case of

〈pj −∇u(xj), ei〉 < −
√

ε
n is treated by a similar argument). Then, for any λ > 0,

since pj ∈ ∂uj (xj) we find that

uj(xj + λei)− uj(xj)
λ

≥ 〈pj , ei〉 >
√
ε

n
+ 〈∇u(xj), ei〉.

Recalling that uj converges uniformly on compact subsets of Λ and∇u is continuous
on Λ ( [22, Theorem 10.8 and Theorem 25.5]), by first taking the limit j →∞ (for
all small enough λ > 0 so that xj + λei ∈ Λ) and then λ ↘ 0, we obtain the

contradiction 〈∇u(x0), ei〉 ≥
√
ε/n+ 〈∇u(x0), ei〉, finishing the proof. �

Remark 3.6. We remark that if the limiting function u is not differentiable, then
Lemma 3.5 above fails, even upon replacing Bε(∇u(x)) by Nε(∂u (x)), as seen by
the following example. On Λ = R let uj := |x− 1/j| converging to u := |x|, and
take the compact subdomain Λ0 := [−1, 1]. Then if ε = 1/2, for any j0 ∈ N we see
that

∂uj0

(
1

j0

)
= [−1, 1] 6⊂ [

1

2
,

3

2
] = N1/2

(
∂u

(
1

j0

))
,

hence there is no choice of j0 for which the proposition holds uniformly over [−1, 1].

Next we recall the generalized (Clarke) Jacobian of a mapping G (at a point x0,
in the last k variables).
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Definition 3.7 (Clarke Jacobian). If G : Bε(x0) ⊂ Rn → Rk is a Lipschitz
function on a neighbourhood of x0, we define JCG(x0) to be the closed convex hull
of all k × n matrices which can be written as limits of the form

lim
n→∞

DG(xn)

where xn → x0 and G is differentiable at each xn.
Moreover if 1 ≤ k ≤ n, using the notation x = (x′, x′′) ∈ Rn−k ×Rk we write

JCx′′G(x0) for the set of k × k matrices consisting of the last k columns of elements
in JCG(x0).

A combination of Clarke’s inverse function theorem [9, Theorem 1] and results of
Vesely and Zaj́ıček [25] on DC mappings yields the following DC implicit function
theorem.

Theorem 3.8 (DC implicit mapping theorem [25, Proposition 5.9]). Suppose U ⊂
Rn−k × Rk is open, G : U → Rk is a DC mapping, and G(x0) = 0 for some
x0 = (x′0, x

′′
0) ∈ U . Then if every element of JCx′′G(x0) is invertible, there exists

δ > 0 and a bi-Lipschitz, DC mapping φ from Bδ(x
′
0) ⊂ Rn−k into Rk such that

for all (x′, x′′) ∈ Bδ(x′0)×Bδ(x′′0) ⊂ Rn−k ×Rk:

G(x′, x′′) = 0 if and only if x′′ = φ(x′).

Additionally, a careful inspection of the proof of [4, Theorem 3.1] combined
with [25, Theorem 5.1] yields the following DC constant rank theorem.

Theorem 3.9 (DC constant rank theorem). Suppose U ⊂ Rn is open, G : U → Rk

is a DC mapping, and G(x0) = 0 for some x0 ∈ U . Then if every element of
JCG(x0) has rank k, after a possible re-ordering and rotation of coordinates, the
same conclusion as Theorem 3.8 above holds.

We shall also need:

Lemma 3.10 (Coincident roots). Suppose φ±1 , . . . , φ
±
k are real valued convex func-

tions on [−1, 1]n, such that φ±i > φ∓i on the set {x ∈ [−1, 1]n | xi = ±1}, and
∂φ+

i ([−1, 1]n) and ∂φ−i ([−1, 1]n) are compact sets separated by a hyperplane nor-
mal to ei for each 1 ≤ i ≤ k. Then, there exists a point in ] − 1, 1[n where all 2k
functions φ±1 = . . . = φ±k agree.

Proof. For any x ∈ Rn, let us write x̂i := (x1, . . . , xi−1, xi+1, . . . , xn). Fix 1 ≤
i ≤ k, by Corollary 2.5, there is a DC function hi defined on all of Îi := {x̂i | x ∈
[−1, 1]n} such that the graph of hi over this set is exactly

{x ∈ [−1, 1]n | φ+
i (x) = φ−i (x)};

by the intermediate value theorem we see for any x̂ ∈ Îi there exists x ∈ [−1, 1]n

where φ+
i (x) = φ−i (x) and x̂i = x̂, and in particular the range of hi is contained in

[−1, 1]. Now define the mapping F : [−1, 1]n → [−1, 1]n by

F (x) := (h1(x̂1), . . . , hk(x̂k), xk+1, . . . , xn),

this mapping is continuous, thus by Brouwer’s fixed point theorem it has a fixed
point in [−1, 1]n. However, we see that at this fixed point we must have φ±1 =
. . . = φ±k , by the assumptions on the φ±i this point clearly must be in the interior
]− 1, 1[n. �
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With these preparations, we are ready to prove the main stability result.

Proof of Theorem 3.4. By [1, Theorem 1], the set of points x where dim ∂u (x) ≥
k + 1 has zero Hn−k measure, hence the final claim will follow immediately from
(3.3).

Suppose we are given u, x0, and a sequence
{
uj
}∞
j=1

as in the hypotheses of

Theorem 3.4. Now by Lemma 2.4 we have

∂u (x0) = conv

 ⋃
1≤i≤k+1

{∇ui(x0)}

 , (3.4)

and since dim (∂u (x0)) = k, the collection {∇ui(x0)−∇uk+1(x0)}ki=1 must be
linearly independent, subtraction of a fixed linear function followed by a linear
change of coordinates allows us to assume ∇ui(x0) = en−k+i for 1 ≤ i ≤ k and
∇uk+1(x0) = 0. Next fix ε > 0, without loss of generality assume that Bε(x0) ⊂
Nx0

. By our assumptions, we may add a fixed quadratic function centered at x0 to

assume all uji and ui are convex on Bε(x0), for 1 ≤ i ≤ k + 1 (possibly shrinking ε
as well). By taking j large enough and possibly shrinking ε further, by the uniform

convergence of each uji we may assume

min
1≤i≤k+1

uji > max
k+2≤i≤K

uji (3.5)

on Bε(x0).
Define the mapping F j : Bε(x0)→ Rk by

F j(x) := (uj1(x)− ujk+1(x), . . . , ujk(x)− ujk+1(x))

then we see that if x ∈ Bε(x0), the set JCx′′F
j(x) is contained in the collection of

k × k matrices for which the ith row is contained in the convex hull of vectors of
the form

lim
m→∞

Dx′′(u
j
i − u

j
k+1)(xm)

where xm → x and uji , u
j
k+1 are differentiable at each xm. Here Dx′′ indicates

the projection of the gradient of a function onto the last k variables. Since each
function ui is C1, after shrinking ε if necessary and taking j large enough, by
applying Lemma 3.5 we can assume that for any x ∈ Bε(x0) and pji ∈ ∂u

j
i (x) we

have {
pji ∈ B 1

4
(ei), 1 ≤ i ≤ k,

pjk+1 ∈ B 1
4
(0).

(3.6)

In particular, this implies that every matrix in JCx′′F
j(x) will be invertible, thus we

can apply the DC implicit mapping theorem above to F j , provided there exists at
least one point xj ∈ Bε(x0) where F j vanishes.

To this end, we translate so x0 = 0, then we can apply the C1 implicit function
theorem to ui − uk+1 for each 1 ≤ i ≤ k. For η > 0 small enough we then get
ui−uk+1 > 0 on {x ∈ [−η, η]n | xi = η} while ui−uk+1 < 0 on {x ∈ [−η, η]n | xi =

−η} for all i ≤ k. For any j large enough uji − u
j
k+1 satisfies the same inequalities.

Thus recalling (3.6), a dilation by 1/η allows us to apply Lemma 3.10 above to
conclude the existence of a sequence xj ∈ ]− η, η[n⊂ Bε(x0) such that F j(xj) = 0.
In particular, we may now apply the DC implicit mapping theorem to find a ball
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Bj ⊂ πn−k(Bε(x0)) and a DC mapping Φj : Bj → Bε(x0) whose graph passes

through xj for which uj1(Φj(x′)) = . . . = ujk+1(Φj(x′)) for all x′ ∈ Bj . Let

Σjn−k := {(x′,Φj(x′)) | x′ ∈ Bj} ∩Bε(x0).

As a Lipschitz graph over Bj ⊂ Rn−k we see Σjn−k has strictly positive Hn−k
measure. Thus by Lemma 2.4, this implies (3.3), while (3.5) yields (3.2) to finish
the proof. �

4. Applications to optimal transport

In this sequel, we apply the explicit function theorem and stability theorems
from the previous two sections to the optimal transport problem. For all of the
remaining sections, Ω = Ω = Rn, and we fix the cost function c(x, y) = −〈x, y〉.
As before, the notation Hi refers to the i-dimensional Hausdorff measure of a set.

At this point we recall Brenier’s classical result about existence of solutions to
(OT).

Theorem 4.1 (Optimal transport maps [3] [20]). Given Borel probability measures
µ and ν on Rn, with µ absolutely continuous with respect to Lebesgue, there exists
a convex function u : Rn → R ∪ {∞}, finite µ-a.e., such that the µ-a.e. defined
mapping T (x) := ∇u(x) solves (OT) uniquely and T (Dom∇u) ⊂ spt ν. We call
such a u an optimal potential transporting µ to ν.

Remark 4.2. If spt ν is bounded, we can see that the optimal potential u is finite
valued on all of Rn and is uniformly Lipschitz.

In this first lemma, we show that if the support of the target measure consists of
a (finite) union of disjoint, compact pieces, we can write the optimal potential as a
maximum (of a finite number) of corresponding convex functions. For any function
u, we will write Dom(∇u) for the set of points where u is differentiable, which in
the case of a convex function is a set of full Lebesgue measure in Dom(u).

Lemma 4.3 (Optimal maps to separated targets). Suppose µ is absolutely con-
tinuous, while spt ν is a disjoint union of an arbitrary (i.e. finite, countable, or
uncountable) collection {Ωi}i∈I of compact subsets of the compact set Ω, and u is
an optimal potential transporting µ to ν. Then the convex functions ui : Rn → R,
i ∈ I defined by

ui(x) := sup
x̄∈Ωi

(〈x, x̄〉 − u∗(x̄)) (4.1)

satisfy

∇ui(x) ∈ Ωi, ∀ x ∈ Dom(∇u), ∀ i ∈ I, (4.2)

u(x) = sup
i∈I

ui(x), ∀ x ∈ Rn. (4.3)

Proof. First observe by ui is finite valued on all of Rn. Clearly ui is convex and
lower semicontinous, hence differentiable a.e.. Fix i and let x be such a point
of differentiability, by compactness of Ωi there exists an x̄ ∈ Ωi achieving the
supremum in the definition of ui(x). The inclusion (4.2) then follows immediately
by differentiation of ui at x.
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Now as u is convex by we see that for x ∈ Rn,

u(x) = sup
x̄∈Rn

[〈x, x̄〉 − u∗(x̄)]

= sup
x̄∈spt ν

[〈x, x̄〉 − u∗(x̄)]

= sup
i∈I

ui(x), (4.4)

proving (4.3). The reason why we may change the supremum above from being
over Rn to just over spt ν is as follows. As mentioned previously, u is differentiable
almost everywhere on Dom(u) (which is Rnby compactness of spt ν), so there exists
a sequence xj → x where u is differentiable at xj and ∃ x̄j ∈ ∂u(xj) = {∇u(xj)}
for each j. By [27, Theorem 10.28] (the assumption (H∞) of the reference is
automatically satisfied by our assumption that Ω is bounded) we must have x̄j ∈
spt ν, then by compactness, we may pass to a subsequence and assume x̄j → x̄0 for
some x̄0 ∈ spt ν, necessarily x̄0 ∈ ∂u(x). However, this implies

sup
x̄∈Rn

[〈x, x̄〉 − u∗(x̄)] = sup
x̄∈Rn

inf
y∈Rn

[〈x− y, x̄〉+ u(y)]

≤ u(x) ≤ 〈x− y, x̄0〉+ u(y)

for any y ∈ Rn, thus we may take the supremum merely over spt ν. �

Under additional assumptions on the source and target measures, we can improve
Lemma 4.3 to Proposition 4.5 below. The idea is based on one used by Caffarelli
and McCann [6, Theorem 6.3].

Remark 4.4 (Strict convexity). Recall that a set A is strictly convex if the mid-
point of any nontrivial segment in A lies in the interior of A. Also a convex function
u is strictly convex if for every x0 ∈ Dom(u) and x̄0 ∈ ∂u(x0), we have

{x ∈ Rn | 〈x− x0, x̄0〉+ u(x0) = u(x)} = {x0} .

Proposition 4.5 (Continuous optimal maps onto closed convex target pieces). In
addition to the hypotheses of Lemma 4.3, assume that µ and ν are absolutely con-
tinuous with densities bounded away from zero and infinity a.e. on their supports,
and sptµ is convex and bounded. Additionally suppose for some i ∈ I the compact
set Ωi is strictly convex, then the convex function ui from Lemma 4.3 belongs to
C1(Rn),

∂ui(R
n) ⊂ Ωi, (4.5)

and for any x ∈ sptµ the intersection ∂u(x) ∩ Ωi contains at most one point.

Proof. Since Ωi is convex, combining [5, Lemma 1 (b)] with (4.2) yields ∂ui(R
n) ⊂

Ωi to establish (4.5).
Next we show that each ui is C1 on Rn. Indeed, note that u∗ is an optimal

potential transporting ν to µ with cost function c(x̄, x) = −〈x̄, x〉 defined on Rn ×
Rn, then by [5] we have that u∗ ∈ C1,ᾱ

loc ((spt ν)int) for some ᾱ ∈ (0, 1] and u∗

is strictly convex when restricted to Ω
int

i . By convexity of the subdifferential, if
there was a point x where ui fails to be differentiable, there must exist of some
nontrivial line segment ` ⊂ ∂ui (x) ⊂ Ωi. However, by the strict convexity of Ωi,

this would imply that ` ∩ Ω
int

i contains more than one point. It can be seen that

this contradicts the strict convexity of u∗ on Ω
int

i , thus ui must be differentiable on
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Rn. The fact that the subdifferential of a convex, lower semicontinuous function
has a closed ( [22, Theorem 24.4]) implies ui ∈ C1(Rn).

Now if x ∈ sptµ and ∂u(x)∩Ωi contains more than one point, the same argument
as the previous paragraph combined with the representation (4.4) again yields a
contradiction. �

As a corollary to its proof we obtain the following interior homeomorphism result,
which can be upgraded to a diffeomorphism using results from the literature.

Corollary 4.6 (Optimal homeomorphisms onto open, convex target pieces). As-
sume the same hypotheses as Proposition 4.5. Then the map Ti(x) := ∇ui(x) is a

homeomorphism from the interior of {x ∈ sptµ | u(x) = ui(x)} to Ω
int

i ; its inverse
is Cᾱloc for some ᾱ > 0 depending only on n and the bounds on the densities of µ and

ν. If the densities of µ and ν are (a) locally Dini continuous or (b) Ck,αloc for some
0 < k + α 6∈ N on the interiors of these two sets, then Ti defines a diffeomorphism

which in case (b) is Ck+1,α
loc smooth.

Proof. The strict convexity and C1,ᾱ
loc regularity of u∗ on Ω

int

i from the preceding

proof shows the map S(x̄) := ∇u∗(x̄) restricted to Ω
int

i is a homeomorphism (and
Cᾱloc). We assert this restriction has range Rint where R := {x ∈ sptµ | u(x) =
ui(x)}, and its inverse is Ti.

First note that u∗(x̄) = (ui)
∗(x̄) for x̄ ∈ Ωi. Indeed, ui ≤ u implies (ui)

∗ ≥ u∗

everywhere, while for x̄ ∈ Ωi the opposite inequality is obtained by taking ȳ = x̄ in

(ui)
∗(x̄) = sup

x∈Ω
[〈x, x̄〉+ inf

ȳ∈Ω̄i
(−〈x, ȳ〉+ u∗(ȳ))].

Then, recall

u(x) + u∗(x̄) ≥ 〈x, x̄〉 for all (x, x̄) ∈ Rn ×Rn, (4.6)

and equality holds if and only if x̄ ∈ ∂u(x) (or equivalently x ∈ ∂u∗(x̄)). For

x̄ ∈ Ω
int

i , we have ∂u∗(x̄) = {S(x̄)} thus

u(S(x̄)) = 〈S(x̄), x̄〉 − u∗(x̄) = 〈S(x̄), x̄〉 − (ui)
∗(x̄)

= 〈S(x̄), x̄〉+ inf
y∈Ω

(−〈y, x̄〉+ ui(y)) ≤ ui(S(x̄)).

Since the reverse inequality always holds, we have u(S(x̄)) = ui(S(x̄)). Then as S

is injective and continuous, the set S(Ω
int

i ) is open, hence it must be contained in
Rint.

We now claim that Ti pushes the restriction of µ to Rint forward to the restriction
of ν to Ωi. Let us write T (x) := ∇u(x), defined for x ∈ Dom(∇u) so T#µ = ν. By

Lemma 2.4 and (4.2), we see that x ∈ Dom(∇u) with T (x) ∈ Ωi only if u(x) = ui(x)
and u(x) > uj(x) for all j 6= i, in particular, T−1(Ωi) ⊂ Rint. On the other hand, if
x ∈ Rint, then u = ui on a neighborhood of x and in particular, u is differentiable
at x. Hence we must have ∂u(x) = {Ti(x)} = {T (x)} for all x ∈ Rint. Thus if
Ē ⊂ Ωi is measurable, we have

µ(Rint ∩ T−1
i (Ē)) = µ(Rint ∩ T−1(Ē)) = µ(T−1(Ē)) = ν(Ē)

and the claim is proven.
Thus again using the main result of [5] gives that Ti is continuous and injective

on Rint, hence Ti(R
int) ⊂ Ω

int

i .
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We complete the proof of the claim by showing S ◦ Ti = idRint . Since for each

x ∈ Rint, we have ∂u(x) = {Ti(x)} ⊂ Ω
int

i , as argued above this yields ∂u∗(Ti(x))) =
{S(Ti(x)))}. The equality conditions in (4.6) then force x = S(Ti(x)) as required.
The continuous [16] (or Hölder and higher [5]) differentiability of T asserted in cases
(a) and (b) then follows; see also [28]. �

Next we wish to make some finer observations on the structure of the boundaries
of the sets above, and in particular the sets where more than two of the functions
ui coincide. For this we need some notion of “independence” for subcollections of
{Ωi}i∈I , which we call affine independence. Its role is to guarantee the natural
implicit function theorem hypothesis is satisfied in the applications which follow.

Definition 4.7 (Affine independence). A finite collection
{

Λi
}k
i=1

of k ≤ n + 1
subsets of an n dimensional vector space is said to be affinely independent if no k−2
dimensional affine subspace intersects all of the sets in the collection. (Equivalently,
any collection of k points, each from a different set Λi, is affinely independent in
the usual sense.)

We also define an alternate notion measuring the severity of a singular point
that we call the multiplicity. Essentially the multiplicity of a singular point counts
“how many pieces of the target domain does a singular point get transported to?”

Definition 4.8 (Multiplicity along tears). Let µ, ν be probability measures with
µ absolutely continuous. Also suppose spt ν is a disjoint union of some collection of
sets

{
Ωi
}
i∈I for some index set I and u is an optimal potential of (OT) transporting

µ to ν, with x0 ∈ sptµ. Then we define the multiplicity of u at x0 relative to
{

Ωi
}
i∈I

by

#
{
i ∈ I | Ωi ∩ ∂u(x0) 6= ∅

}
.

When the collection
{

Ωi
}
i∈I is clear, we will simply refer to the multiplicity of u

at x0.

Finally, in order to simplify the statements and proofs of our results, we define
notation for coincidence sets and multiplicity sets of the functions ui and u. For
the remainder of the paper, we will consider only the case when spt ν consists of a
disjoint union of a finite number of sets.

Definition 4.9 (Tearing and coincidence sets). Suppose we have compactly sup-
ported probability measures µ and ν with µ absolutely continuous, and spt ν =
∪i∈IΩi a finite disjoint union of compact sets Ωi. Then Lemma 4.3 asserts

u = sup
i∈I

ui with ∇ui(x) ∈ Ωi, ∀ x ∈ Dom(∇u),

where u is the optimal potential taking µ to ν.
For any subset I ′ ⊂ I of indices, we then define the sets

ΣI′ : = {x ∈ Rn | ui(x) = uj(x), ∀ i, j ∈ I ′}, (4.7)

Σ↑I′ : = {x ∈ Rn | u(x) = ui(x), ∀ i ∈ I ′}. (4.8)

Also for any k ∈ Z≥0 we define

Mk : = {x ∈ Rn | u has multiplicity exactly k at x}, (4.9)

M≥k : = {x ∈ Rn | u has multiplicity at least k at x}, (4.10)
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where multiplicity here taken relative to the collection {Ωi}i∈I in Definition 4.8.

Under a suitable assumption of affine independence, a quick application of the
usual implicit function theorem yields the following corollary from Proposition 4.5.

Corollary 4.10 (Affine independence of convex targets yields C1 smooth tears of
each expected codimension). Assume that µ and ν are absolutely continuous with
densities bounded away from zero and infinity a.e. on their supports, and sptµ
is convex and bounded. Let spt ν = ∪i∈IΩi be a finite disjoint union of compact
sets, and u = maxui be from Lemma 4.3. Finally suppose {Ω1, . . . ,Ωk} forms an
affinely independent collection of strictly convex sets. Then Σ1,...,k := Σ{1,...,k} is a

C1 submanifold of M having codimension k − 1.

Proof. Note the set Σ1,...,k consists of the zero set of the system of k− 1 equations

u1(x) = u2(x) = · · · = uk(x); (4.11)

recall u1, . . . , uk are all contained in C1(Rn) by Proposition 4.5. The implicit
function theorem condition for the zero set of this system to be a C1 submani-
fold of the appropriate dimension is that the vectors {∇uj(x) − ∇uk(x)}k−1

j=1 be

linearly independent when (4.11) holds, which is equivalent to affine independence
of {∇uj(x)}kj=1. But since ∇ui(x) ∈ Ωi by (4.2), this follows from the affine inde-

pendence of {Ωi}ki=1. �

Next, we establish two elementary relationships between the sets Σ↑ and M .
Specifically, we show that the closure M cl

k of all points with multiplicity lie in a

union of tears; we later prove that when the disjoint components of spt ν = ∪i∈IΩi
can be separated by hyperplanes pairwise (5.6), these tears lie in DC submanifolds.

Lemma 4.11 (Covering multiplicity sets with tears). Suppose µ and ν are prob-
ability measures with µ absolutely continuous, and spt ν =

⋃
i∈I Ωi is a disjoint

union of compact sets. Then multiplicity is upper semicontinuous:

M cl
k ⊂M≥k. (4.12)

Additionally, fix a positive integer k and suppose that for any collection of indices
I ′ ⊂ I with #(I ′) = k, {

Ωi
}
i∈I′ is affinely independent. (4.13)

Then

M≥k ⊂
⋃

{I′⊂I|#(I′)=k}

Σ↑I′ . (4.14)

Proof. Suppose x0 ∈ M cl
k , so there is a sequence {xm}∞m=1 ⊂ Mk converging to

x0. We may pass to a subsequence and assume, without loss of generality, that
each ∂u(xm) only intersects Ω1, . . . ,Ωk out of the collection {Ωi}i∈I , and take
x̄i,m ∈ ∂u(xm) ∩ Ωi for i ∈ {1, . . . , k}. Since each Ωi is compact, we may pass to

further subsequences to assume each x̄i,m converges as m → ∞ to some x̄i ∈ Ωi,
and by upper semicontinuity of the subdifferential we see that x̄i ∈ ∂u(x0), meaning
x0 ∈M≥k.

Now assume (4.13) holds and take x0 ∈ Rn \
⋃
{I′⊂I|#(I′)=k} Σ↑I′ . If #(I) < k,

then clearly x0 6∈ M≥k, thus assume #(I) ≥ k. Since u is the maximum of the ui,
it is clear that u(x0) = ui(x0) for at least one index i, and this can only hold for at
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most k′ ≤ k − 1 distinct indices; suppose we have u(x0) = uij (x0) for 1 ≤ j ≤ k′

and strict inequality for all other indices. Then by Lemma 2.4 and (4.2)

∂u(x0) ⊂ conv

 ⋃
1≤j≤k′

conv
(
Ωij
) = conv

 ⋃
1≤j≤k′

Ωij

 .

Thus if the multiplicity of u at x0 is k or greater, there exists an index i′ 6∈
{i1, . . . , ik′} for which ∂u(x0)∩Ωi′ 6= ∅, by the above inclusion this implies there is
a point in Ωi′ which can be written as the convex combination of k′ points, one from
each of the sets {Ωi1 , . . . ,Ωi′k}. Since k′ ≤ k − 1 and #(I) ≥ k, we can complete

{i1, . . . , i′k, i′} to a subset of I with cardinality k to obtain a contradiction with
(4.13), hence x0 6∈M≥k.

�

5. Global structure of optimal map discontinuities

Our first result is the following proposition which — apart from its final sentence
— follows rapidly from our explicit function theorem. As always, we consider the
bilinear cost c(x, x̄) = −〈x, x̄〉 on Rn.

Proposition 5.1 (Hyperplane separated components induce DC tears). Suppose
µ and ν are absolutely continuous probability measures with bounded supports, and
spt ν = Ω1 ∪ Ω2 is such that Ω1 and Ω2 are strongly separated by some hyperplane
Π.

Then an optimal potential u transporting µ to ν can be written u = max{u1, u2},
where u1 and u2 are convex functions, finite on Rn such that

∇ui(x) ∈ Ωi, ∀ x ∈ Dom(∇u). (5.1)

Moreover, the sets

Σ : =
{
x ∈ Rn | ∂u (x) ∩ Ωi 6= ∅, i = 1, 2

}
= {x ∈ Rn | u1(x) = u2(x)},

C1 : =
{
x ∈ Rn | ∂u (x) ∩ Ω2 = ∅

}
= {x ∈ Rn | u1(x) > u2(x)},

C2 : =
{
x ∈ Rn | ∂u (x) ∩ Ω1 = ∅

}
= {x ∈ Rn | u1(x) < u2(x)}.

are connected and given by the graph, open epigraph, and open subgraph respectively
of a globally Lipschitz DC function h defined as in (2.3) on the hyperplane Π.

If sptµ is convex and Ωi is connected for either i = 1 or 2, then sptµ∩ (Ci ∪Σ)
is also connected.

Proof. Let us assume Π = {x ∈ Rn | xn = 0} = Rn−1. By Lemma 4.3 we find that
u = max{u1, u2}, both ui are convex and finite on Rn, and we have (5.1). Since
Ω1 and Ω2 are strongly separated by Rn−1, so are their convex hulls, and (5.1)
implies ∂ui (Rn) ⊂ conv(Ωi). As u1 and u2 are finite on all of Rn by compactness
of Ω1 and Ω2 respectively, we can apply Corollary 2.3 with the choice Λ = Rn to
obtain the function h defined on Rn−1 along with all claimed properties above; the
connectedness from continuity of h.

Now assume sptµ is convex and Ω1 is connected. Let d(x) := d(x, sptµ)2 which
is finite and convex on Rn, and define ũ := u+ d. An easy calculation gives

∂d (x) =

{
{0}, x ∈ sptµ,

d(x, sptµ)
x−πsptµ(x)
|x−πsptµ(x)| , x 6∈ sptµ,
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where πsptµ(x) is the (unique) closest point projection of x onto sptµ. Thus we see
by [22, Theorem 23.8] that

∂ũ (x) = ∂u (x) , ∀ x ∈ sptµ. (5.2)

Next we will show that ∂ũ∗ (x̄) ⊂ sptµ for every x̄ ∈ Ω1 (this is a nontrivial

claim for x̄ ∈ Ω
∂

1 ). Applying [22, Theorem 16.4] gives

ũ∗(x̄) = inf
ȳ∈Rn

(u∗(x̄− ȳ) + d∗(ȳ)), (5.3)

we will now proceed to calculate d∗(ȳ). Let us write h(ȳ) := supx∈sptµ〈x, ȳ〉 for
the support function of sptµ, since sptµ is compact, for each ȳ ∈ Rn there exists
z(ȳ) ∈ sptµ such that h(ȳ) = 〈z(ȳ), ȳ〉. Clearly d∗(0) = 0, so assume ȳ 6= 0. Then
by definition,

d∗(ȳ) = sup
x∈Rn

(〈x, ȳ〉 − d(x, sptµ)2) = sup
{x∈Rn|〈x,ȳ〉>〈z(ȳ),ȳ〉}

(〈x, ȳ〉 − d(x, sptµ)2).

Fix any x such that 〈x, ȳ〉 > 〈z(ȳ), ȳ〉, and an arbitrary y ∈ sptµ, then for some
λ ∈ [0, 1) we have xλ := (1−λ)y+λx satisfies 〈xλ, ȳ〉 = 〈z(ȳ), ȳ〉. Then we calculate

|x− y| ≥ |x− xλ| ≥ 〈x− xλ,
ȳ

|ȳ|
〉 = 〈x− z(ȳ),

ȳ

|ȳ|
〉,

hence taking an infimum over y ∈ sptµ,

〈x, ȳ〉 − d(x, sptµ)2 ≥ h(ȳ) + 〈x− z(ȳ), ȳ〉 − 〈x− z(ȳ), ȳ〉2

|ȳ|2
.

This last quantity can be seen to be maximized over 〈x, ȳ〉 > 〈z(ȳ), ȳ〉 when

〈x− z(ȳ), ȳ〉 = |ȳ|2
2 , yielding

d∗(ȳ) = h(ȳ) +
|ȳ|2

2
− |ȳ|

2

4
= h(ȳ) +

|ȳ|2

4
.

By choosing ȳ = 0 in (5.3), for any x̄ ∈ Rn we clearly have

ũ∗(x̄) ≤ u∗(x̄).

On the other hand, suppose x̄0 ∈ Ω
int

1 . By [26, Theorem 2.12] u∗ is an optimal
potential transporting ν to µ, then by [27, Theorem 10.28] and convexity of sptµ,
we have that ∂u∗ (x̄0) ∈ sptµ, let x0 ∈ ∂u∗ (x̄0). Then for any ȳ ∈ Rn,

u∗(x̄0 − ȳ) + h(ȳ) +
|ȳ|2

4
≥ u∗(x̄0) + 〈x̄0 − ȳ − x̄0, x0〉+ 〈ȳ, x0〉 = u∗(x0),

thus taking an infimum over ȳ ∈ Rn and recalling (5.3) gives ũ∗ ≥ u∗ on Ω
int

1 .
Since the Legendre transform of a convex function is always closed, we then have

ũ∗ ≡ u∗ on all of Ω1 = Ω
cl

1 . Now let x̄0 ∈ Ω1 and suppose x0 ∈ ∂ũ (x̄0). Then for
any x̄, ȳ ∈ Rn, again using (5.3),

u∗(x̄− ȳ) + h(ȳ) +
|ȳ|2

4
≥ ũ∗(x̄) ≥ ũ∗(x̄0) + 〈x̄− x̄0, x0〉

= u∗(x̄0) + 〈x̄− x̄0, x0〉.
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We can let ȳ vary over Rn \ {0} while setting x̄ = ȳ + x̄0 in the equation above,
then dividing through by |ȳ| we find

sup
x∈sptµ

〈x, ȳ
|ȳ|
〉+
|ȳ|
4
≥ 〈x0,

ȳ

|ȳ|
〉,

taking ȳ → 0 radially gives

sup
x∈sptµ

〈x, ω〉 ≥ 〈x0, ω〉, ∀ω ∈ Sn−1,

hence we must have x0 ∈ sptµ as claimed.
We now claim that

∂ũ∗
(
Ω1

)
= sptµ ∩ (C1 ∪ Σ), (5.4)

then the proof will be complete by applying Lemma 2.6. Suppose x0 ∈ sptµ ∩
(C1 ∪ Σ). Recall by (5.2), ∂u (x0) = ∂ũ (x0). There are two possibilities, either
u1(x0) > u2(x0), or u1(x0) = u2(x0). In the first case, ∂u (x0) = ∂u1 (x0), while
in the second case, by Lemma 2.4 we have ∂u (x0) = conv(∂u1 (x0) ∪ ∂u2 (x0)).
In either case, since ∂u1 (x0) ∩ Ω1 6= ∅ by (5.1), there exists y0 ∈ Ω1 such that
y0 ∈ ∂ũ (x0). Hence x0 ∈ ∂ũ∗ (y0) ⊂ ∂ũ∗

(
Ω1

)
.

Now suppose x0 ∈ ∂ũ∗
(
Ω1

)
but u2(x0) > u1(x0). As we have shown above, x0 ∈

sptµ. Then by (5.2) combined with Lemma 2.4, ∂ũ (x0) = ∂u (x0) = ∂u2 (x0) ⊂
conv(Ω2). However this is a contradiction, as this gives ∂ũ (x0) ∩ Ω1 = ∅. This
concludes the proof of (5.4). �

We can also obtain some structure in the case where spt ν consists of more than
two regions separated by hyperplanes. Before we state the results, some setup.

Again, µ and ν are absolutely continuous probability measures with bounded
supports. We will assume spt ν = ∪i∈IΩi is a decomposition into finitely many
compact disjoint sets; i.e. henceforth we assume that I is finite. Then if u is an
optimal potential transporting µ to ν, by Lemma 4.3 there exist convex functions
ui, i ∈ I on Rn such that

u = sup
i∈I

ui with ∇ui(x) ∈ Ωi, ∀ x ∈ Dom(∇u). (5.5)

If some Ωi is strictly convex, sptµ is convex, and the densities of µ and ν are
bounded away from zero and infinity on their supports, by Proposition 4.5 we have
ui ∈ C1(Rn). We often require that each Ωi can be strongly separated from each
Ωj by a hyperplane, so that their convex hulls are disjoint, hence

∂ui (Rn) ⊂ conv(Ωi) are mutually disjoint. (5.6)

We begin with two corollaries of Theorem 2.3 (the sets ΣI′ and Σ↑I′ below for a
collection of indices I ′ are defined by (4.7) and (4.8) respectively):

Corollary 5.2 (DC rectifiability of Σij). If Ωi and Ωj can be strongly separated
by a hyperplane Π for some i 6= j in Definition 4.9, then Σij := Σ{i,j} is a globally
Lipschitz DC graph over Π.

Proof. The convex hull of Ωi contains ∂ui(R
n) and is strongly separated from

∂uj(R
n) ⊂ conv(Ωj) by Π. The claim therefore follows from Theorem 2.3. Again

we can take Λ = Rn in the explicit function theorem. �
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This result allows us to deduce a variant of Proposition 4.5 which requires neither
convexity of sptµ nor strict convexity of Ω1:

Corollary 5.3 (Continuous optimal maps to convex target pieces). Fix absolutely
continuous probability measures µ and ν on Rn whose densities are bounded away
from zero and infinity on their (compact) supports. Let u = maxui be from Lemma

4.3. Assume Ω1 is convex, and disjoint from conv(Ωi) for each i > 1 such that Σ↑i
intersects Ω1 := (sptµ) ∩ Σ↑1. If, in addition (sptµ)∂ ∩ Σ↑1 has zero volume, then
∇u1 ∈ Cαloc(Ωint

1 ) and is injective on Ωint
1 .

Proof. The boundary of Ω1 is contained in the union of those Σ↑1,i intersecting

sptµ and (sptµ)∂ ∩ Σ↑1. Corollary 5.2 shows the former are DC hypersurfaces,
hence contain zero volume, like the latter. Caffarelli’s results [5] now assert u1 ∈
C1,α
loc (Ωint

1 ) and is strictly convex there. �

In the above corollary, ∇u1 gives a homeomorphism between the interior of

Ω1 := (sptµ) ∩ Σ↑1 and some open subset V1 := ∇u1(Ωint
1 ) of full volume in Ω1;

however, the price we pay for the lack of convexity of sptµ is that we can no longer
conclude differentiability of u1 up to the boundary of Ω1 because we cannot preclude
the possibility that u∗ fails to be strictly convex along a segment in Ω1 \ V1.

The next theorem shows that Σ↑i1,...,ik is a disjoint union of Σ↑i1,...,ik ∩Mk and⋃
j∈I\{i1,...,ik} Σ↑i1,...,ik,j : the first being a DC submanifold of codimension k−1, the

second a finite union of closed sets with Hausdorff dimension at most n − k. For
implications of affine independence in a simpler setting, see the C1 description of
higher codimension tears coming from strictly convex target components in Corol-
lary 4.10. Since DC functions are C2 recitifiable, the following theorem relaxes
our earlier convexity hypotheses and — outside of a negligible set — improves our
conclusion from C1 to C2.

Theorem 5.4 (DC rectifiability of higher multiplicity tears). Fix probability mea-
sures µ and ν on Rn with µ absolutely continuous and spt ν = ∪i∈IΩi a finite
disjoint union of compact sets, and let u be an optimal potential taking µ to ν. If
{conv(Ω1), . . . , conv(Ωk)} is an affinely independent collection, for any x0 ∈ Σ1,...,k

there exists r0 > 0 such that Br0(x0)∩Σ1,...,k is contained in the image of an open
subset of Rn+1−k under a bi-Lipschitz DC mapping.

Suppose in addition that the existence of a point x such that ∂u (x) ∩Ωi 6= ∅ for
each of i = 1, . . . , k, and j implies

{conv(Ω1), . . . , conv(Ωk), conv(Ωj)} is an affinely independent collection.

(5.7)

Then

Σ↑1,...,k ∩Mk = {x ∈ Rn | u(x) = u1(x) = . . . = uk(x) > max
j∈I\{1,...,k}

uj(x)}. (5.8)

Moreover, Σ↑1,...,k ∩Mk is a relatively open subset of Σ↑1,...,k.

Proof. First assume {conv(Ωi)}ki=1 is an affinely independent collection and x0 ∈
Σ1,...,k. Defining F : Rn+1−k ×Rk−1 → Rk−1 by

F (x) := (u1(x)− uk(x), . . . , uk−1(x)− uk(x)),
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by assumption F (x0) = 0, we will now show that every element of JCF (x0) has
rank k− 1. Let M ∈ JCF (x0), and suppose the ith row is given by a vector of the
form

vi := lim
m→∞

∇(ui − uk)(xm)

with xm → x0 and xm ∈ Dom(∇ui) ∩ Dom(∇uk). Then there must exist points
x̄i ∈ Ωi for i ∈ {1, . . . , k} such that vi = x̄i − x̄k, and the assumption of affine
independence implies M has rank k−1. By Carathéodory’s theorem ( [22, Theorem
17.1] any other M ∈ JCF (x0) can be written as the convex combination of n + 1
matrices as above, meaning that we have vi = x̄i− x̄k this time with x̄i ∈ conv(Ωi)
for i ∈ {1, . . . , k}, again the hypothesis yields that M has rank k− 1. Thus we can
apply the DC constant rank theorem (Theorem 3.9) to obtain the first claim.

Now assume condition (5.7) holds. For brevity, let us notate the set on the right
hand side of (5.8) by Sk. Suppose u(x0) = ui(x0) for any fixed index i ∈ I, then
by Lemma 2.4 we have ∂ui (x0) ⊂ ∂u (x0). Any extremal point of ∂ui (x0) is a
limit of points of the form ∇ui(xm) where xm ∈ Dom(∇ui) and xm → x0, then
since ∇ui(Dom(∇u)) ⊂ Ωi which is a closed set, we see ∂u (x0) ∩ Ωi 6= ∅. Thus,

we immediately see Σ↑1,...,k ∩Mk ⊂ Sk. On the other hand suppose x0 ∈ Sk, then

by definition x0 ∈ Σ↑1,...,k. Suppose by contradiction x0 6∈ Mk, then there must

exist j ∈ I \ {1, . . . , k} such that ∃x̄0 ∈ ∂u (x0) ∩ Ωj . Since ∂u (x0) ∩ Ωi 6= ∅ for
i ∈ {1, . . . , k} by Lemma 2.4, (5.7) implies the collection

{conv(Ω1), . . . , conv(Ωk), conv(Ωj)}

is affinely independent. However, by Lemma 2.4 and the definition of Sk, we
must have that x̄0 is contained in the convex hull of k points, one from each of
{conv(Ω1), . . . , conv(Ωk)} contradicting this affine independence, proving (5.8).

Finally, suppose x ∈ Σ↑1,...,k ∩Mk. By (5.8), there is some open ball Br(x) on

which min
1≤i≤k

ui > max
k+1≤j≤K

uj . Then clearly Br(x) ∩ Σ↑1,...,k ⊂ Σ↑1,...,k ∩Mk, hence

Σ↑1,...,k ∩Mk is relatively open in Σ↑1,...,k. �

Remark 5.5. From (5.8), it is not hard to see that we can write

Σ↑1,...,k = (Σ↑1,...,k ∩Mk) ∪
⋃

j∈I\{1,...,k}

Σ↑1,...,k,j

where

(Σ↑1,...,k ∩Mk) ∩
⋃

j∈I\{1,...,k}

Σ↑1,...,k,j = ∅.

Thus Theorem 5.4 gives a criterion under which Σ↑1,...,k (a set defined solely by

which of the component functions match with the potential u) can be decomposed
into two disjoint sets, one which is relatively open and consists of points that only
are transported to the first k pieces of the target, and another set consisting points
where at least k + 1 of the component functions match.

We also mention that under affine independence, there can be at most one tear
of multiplicity n+ 1.
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Proposition 5.6 (Uniqueness of maximal multiplicity tears). Assume µ, ν are
absolutely continuous probabilities measures on Rn with bounded supports. Also

suppose
{

Ωi
}n+1

i=1
is any affinely independent collection of path connected subsets of

Rn (which may or may not decompose spt ν). Then if u is an optimal potential
transporting µ to ν, it can have at most one point of multiplicity n + 1 relative to{

Ωi
}n+1

i=1
.

Proof. Suppose by contradiction there exist two points x0 6= y0 where u has multi-
plicity n+ 1, then ∂u (x0) and ∂u (y0) each must intersect all of the sets Ωi. First
note that ∂u (x0), ∂u (y0) must have affine dimension n (hence nonempty interior),
otherwise there would be an n−1 dimensional affine plane intersecting all Ωi. Now
the convex function u∗ is seen to be nondifferentiable on ∂u (x0) ∩ ∂u (y0), hence
this intersection must have zero Lebesgue measure. In particular, the interiors of
∂u (x0) and ∂u (y0) are disjoint, and by [22, Theorem 11.3], Rn is divided into two
closed, opposing halfspaces H+ and H− with ∂u (x0) ⊂ H+, ∂u (y0) ⊂ H−.

Let us take x̄i ∈ ∂u (x0) ∩ Ωi and ȳi ∈ ∂u (y0) ∩ Ωi; we see that x̄i ∈ H+ while
ȳi ∈ H− for each 1 ≤ i ≤ n+1. Now each Ωi is path connected, thus for each i there
exists some continuous path γi(t) with γi(0) = x̄i and γi(1) = ȳi, which remains
inside Ωi. Clearly there must exist some time ti ∈ [0, 1] at which γi intersects the
hyperplane H+ ∩ H− for each 1 ≤ i ≤ n + 1. However, this would imply that
H+ ∩ H− is an n − 1 dimensional affine plane intersecting all of the sets Ωi, a
contradiction. �

6. C1,α smoothness of optimal map discontinuities

In a previous section, affine independence of the target pieces was identified
as the geometric manifestation of the implicit function theorem hypothesis which
guarantees DC smoothness of the corresponding tears. This section is devoted
to improving this smoothness to C1,α — away from a certain (possibly empty)
exceptional closed subset of (sptµ)∂ . If we relax affine independence to pairwise
separation of the target pieces by hyperplanes, then this small exceptional set may
potentially intersect (sptµ)int. In order to establish this goal, we begin by recalling
the required machinery from [6]. As always, we work with the bilinear cost c(x, x̄) =
−〈x, x̄〉 on Rn ×Rn.

Definition 6.1 (Affine doubling). Suppose µ is a Borel measure on Rn and x ∈
X ⊂ Rn. An open neighborhood Nx of x is said to be a doubling neighborhood of
µ with respect to X if there exists a constant δ > 0 (called the doubling constant of
µ on Nx) such that for any convex set Z ⊂ Nx whose (Lebesgue) barycenter is in
X,

µ(
1

2
Z) ≥ δ2µ(Z),

here the dilation of Z is with respect to its barycenter.

Definition 6.2 (Centered sections). If φ : Rn → R ∪ {∞} is a convex function

with ∂φ (Rn)
int 6= ∅, ε > 0, and x0 ∈ Rn, the centered section of φ at x0 of height

ε is defined by

Zφε (x0) := {x ∈ Rn | φ(x) < ε+ φ(x0) + 〈vε, x− x0〉}

where vε is chosen so that x0 is the barycenter of Zφε (x0), which is bounded.
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It is known that such a vε exists, and is unique (see e.g. [6, Theorems A.7 and
A.8]). With these definitions in hand, we can state and prove the following refine-
ment in the case when one of the pieces, say Ω1, is strictly convex. Specifically, the
following theorem is a boundary regularity result, which gives local C1,α regular-

ity of the boundary of the region Σ↑1 where u = u1, away from a small closed set
E1. Corollary 6.4 below shows that when all the target components Ω̄i are strictly
convex and (sptµ)∂ is C1-smooth, then E1 is contained in the non-transversal in-

tersections — if any — between the boundaries of Σ↑1 and sptµ. In what follows,
Nsptµ(x) := {v ∈ Rn | 〈v, y − x〉 ≤ 0 for all y ∈ sptµ} denotes the outer normal
cone to the convex set sptµ at x. In particular, x 6∈ (sptµ)∂ implies Nsptµ(x) = {0},
so E1 ⊂ (sptµ)∂ if the sets {Ω̄i}i∈I are affinely independent.

Theorem 6.3 (Hölder continuity of optimal maps to closed convex target pieces).
Fix probability measures µ, ν with densities bounded away from zero and infinity on
their supports in Rn. Let sptµ be convex and spt ν = ∪i∈IΩ̄i a finite disjoint union
of closed sets strongly separated by hyperplanes pairwise (5.6). If Ω1 is strictly
convex, then

u1 ∈ C1,α
loc ((Σ↑1 ∩ sptµ) \ E1)

for some α ∈ (0, 1) (which depends only n, and the bounds of the densities of µ and
ν away from zero and infinity on their supports) where

E1 :={x ∈ (Σ↑1 ∩ sptµ)∂ | ∇u1(x) ∈ Nsptµ(x) + conv
(
∂u (x) ∩ (spt ν \ Ω̄1)

)
}.
(6.1)

Proof. Proposition 4.5 asserts that u1 ∈ C1(Rn), and Corollary 4.6 implies∇u gives

a homeomorphism between (spt ν ∩ Σ↑1)int and Ω̄int
1 which extends continuously to

the boundary. The purpose of this theorem is to establish a Hölder estimate away
from the exceptional set E1.

Let us write for any Borel A ⊂ Rn, M1(A) := |∇u1(A)|L, the Monge-Ampère
measure of u1 (here |·|L denotes the Lebesgue measure). Since ∇u1(Rn) ⊂ Ω1

which is convex, by [5, Lemma 2] we have for some constant C > 0 depending
only the bounds of the densities of µ and ν away from zero and infinity on their
supports, for any Borel A ⊂ Rn

C−1|A ∩ Σ↑1 ∩ sptµ|L ≤M1(A) ≤ C|A ∩ Σ↑1 ∩ sptµ|L. (6.2)

Suppose x0 ∈ (sptµ)∂ ∩ (Σ↑1)int. Then for some r0 > 0 small, the intersection

Br0(x0) ∩ sptµ ∩ Σ↑1 is convex and any convex Z ⊂ Br0(x0) ∩ sptµ ∩ Σ↑1 satisfies
(6.2). Thus the proof of [6, Lemma 7.5] applies and we see Br0(x0) is a doubling

neighborhood of M1 with respect to sptµ∩Σ↑1, with doubling constant δ0 depending
only on µ, ν, and n.

Next define the convex function ũ by

ũ(x) =

{
u(x), x ∈ sptµ,

∞, else,

then its Legendre transform ũ∗ is an optimal potential transporting ν to µ which is
finite on all of Rn with ∂ũ∗ (Rn) ⊂ sptµ by convexity of sptµ. Since the restriction
of ũ∗ will be an optimal potential transporting the restriction of ν to Ω1 to the
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restriction of µ to Σ↑1 ∩ sptµ and Ω1 is connected, by subtracting a constant we can

assume ũ∗ = u∗ on Ω1. Writing for any Borel A ⊂ Rn, M̃(A) := |∂ũ∗ (A)|L (the
Monge-Ampère measure of ũ∗), by [5, Lemma 2] we then have for some constant
C > 0 depending only the bounds of the densities of µ and ν away from zero and
infinity on their supports, for any Borel A ⊂ Rn

C−1|A ∩ spt ν|L ≤ M̃(A) ≤ C|A ∩ spt ν|L.

In turn, since Ω1 is convex we find the proof of [6, Lemma 7.5] applies hence for
any x ∈ Ω1 and r > 0 such that Br(x) ∩

⋃
i∈I\{1}Ωi = ∅ , the open ball Br(x)

is a doubling neighborhood of M̃ with respect to Ω1, with doubling constant δ0
depending only on µ, ν, and n.

Next, we will show that for r > 0 fixed, there is some ε0 > 0 such that whenever

x ∈ Σ↑1 ∩ sptµ and x̄ = ∇u1(x) are such that

(∇u1)−1(Br(x̄)) ∩ E1 = ∅, (6.3)

and ε < ε0, then the centered section Z ũ
∗

ε (x̄) ⊂ Br(x̄). The proof will closely
follow that of [6, Lemma 7.11]. Suppose the claim fails: for some fixed r > 0 there

exist sequences x̄j = ∇u1(xj) with xj ∈ Σ↑1 ∩ sptµ satisfying (6.3), εj ↘ 0 with

Z ũ
∗

εj (x̄j) 6⊂ Br(x̄j). Extracting subsequences yields x̄j → x̄∞ and xj → x∞ with

∇u1(x∞) = x̄∞ ∈ Ω1, still satisfying (6.3); let us also define

Zmin := {x̄ ∈ Rn | ũ∗(x̄) = ũ∗(x̄∞) + 〈x̄− x̄∞, x∞〉} = ∂ũ (x∞) .

We can see that Claim #1 in the proof of [6, Lemma 7.11] still holds, so in particular
there is a nontrivial line segment contained in Zmin, centered at x̄∞ but otherwise
disjoint from the set Ω1 on which ũ is strictly convex. Thus x̄∞ ∈ (Ω1)∂ and

Corollary 4.6 implies x∞ ∈ (Σ↑1 ∩ sptµ)∂ . Reordering if necessary, we may assume
ui(x∞) depends monotonically on i, with u1(x∞) = u2(x∞) = · · · = uk(x∞) >
uk+1(x∞) for some k ≥ 1. Then

∂ũ (x∞) = ∂u (x∞) +Nsptµ(x∞)

= conv({x̄∞} ∪ ∂u2 (x∞) ∪ · · · ∪ ∂uk (x∞)) +Nsptµ(x∞) (6.4)

decomposes as the sum of a bounded component and a convex cone, in view of
Lemma 2.4. Since (6.3) for x̄k implies (∇u1)−1(Br(x̄∞)) ∩ E1 = ∅, we see x̄∞ is
not contained in the closed convex set

conv(Nsptµ(x∞) + ∪ki=2∂ui (x∞)) = conv(∂u (x∞) ∩ (spt ν \ Ω̄1)),

hence can be strongly separated from it by a hyperplane ( [22, Corollary 11.4.2]).
Any segment in (6.4) centered at x∞ must be parallel to this hyperplane. But this
can only occur if the closed cone Nsptµ(x∞) contains a complete line parallel to
this segment, contradicting the fact that sptµ has non-empty interior.

Thus [6, Theorem 7.13 and Corollary 7.14] will apply (note that differentiability

of ũ∗ is not actually necessary to do this), proving that u is C1,α
loc on (Σ↑1∩sptµ)\E1.

�

In addition to giving conditions under which the exceptional set E1 of the theo-
rem above lies in the boundary of sptµ, the following corollary shows the codimen-
sion k submanifolds of Corollary 4.10 enjoy Hölder differentiability, except possibly
where they intersect the boundary (sptµ)∂ tangentially.
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Corollary 6.4 (Hölder regularity away from tangential tear-boundary intersec-
tions). Fix x ∈ E1 in Theorem 6.3. Assume ui(x) ≥ ui+1(x) for all i ∈ I, and
u1(x) = uk(x) > uk+1(x). Also suppose the collection {conv

(
∂u (x) ∩ Ωi

)
}ki=1 is

affinely independent. If Ω1 is strictly convex then x ∈ (sptµ)∂ . If additionally, Ωi
is strictly convex for all i ≤ k and (sptµ)∂ is differentiable at x, then Σ{1,2,...,k}
intersects (sptµ)∂ tangentially, meaning that the outer unit normal to sptµ at x

is also normal to the C1 submanifold Σ{1,2,...,k}. In this case, Σ↑{1,2,...,k} ∩ sptµ is

C1,α
loc smooth, away from any such tangential intersections (and any possible non-

differentiabilities of (sptµ)∂).

Proof. Suppose x ∈ E1 ⊂ Σ↑1 ∩ sptµ. By our assumptions and Lemma 2.4, we have

∂u (x) ⊂ conv
(⋃k

i=1 Ωi

)
, hence

conv
(
∂u (x) ∩ (spt ν \ Ω̄1)

)
⊂ conv

(
k⋃
i=2

(∂u (x) ∩ Ωi)

)
=

k⋃
i=2

conv
(
∂u (x) ∩ Ωi

)
Thus there exist x̄i ∈ conv

(
∂u (x) ∩ Ωi

)
and ti ≥ 0 with 1 =

∑k
i=2 ti such that

k∑
i=2

ti(∇u1(x)− x̄i) ∈ Nsptµ(x) (6.5)

according to (6.1) of Theorem 6.3. Setting x̄1 = ∇u1(x), the affine independence

of {x̄i}i≤k makes {x̄1− x̄i}2≤i≤k linearly independent. Thus
∑k
i=2 ti = 1 forces the

sum in (6.5) not to vanish.
Now x ∈ (sptµ)int would force Nsptµ(x) = {0}, contradicting the last sentence.

Thus we conclude x is contained in the boundary of sptµ. If, in addition, Ωi
is strictly convex for all i ≤ k then ∇u1(x) − x̄i = ∇u1(x) − ∇ui(x) is a (non-
zero) normal to the hypersurface Σ{1,i} = {u1 = ui}, which is C1 smooth by
Corollary 4.10, noting that a collection of two sets is affinely independent if they
are disjoint. Thus the sum in (6.5) is normal to the codimension k− 1 submanifold
Σ{1,...,k} = ∩ki=2Σ{1,i} of the same corollary. Since (6.5) is non-vanishing, it is an
outer normal to sptµ when the latter is differentiable at x. Away from such points,
the improvement in regularity from C1 to C1,α

loc comes from Theorem 6.3 and the
implicit function theorem. �

When k = 2 and both target components are strictly convex, an analous result
was shown simultaneously and independently from us by Chen [7], who went on to
show C2,α regularity of the tear provided the target components are sufficiently far
apart.

7. Stability of tears

Our main goal of this section is to establish a stability result for the multiplicity
of singularities of an optimal potential, under certain perturbations of the target
measure. To do so, we must first choose an appropriate notion of perturbation for
the target measure. In this case, we would only expect stability under perturbations
of the target measure that prohibit moving even small amounts of mass to a far
away location. Thus a good candidate is the W∞ metric defined below.
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Definition 7.1 (∞-Kantorovich-Rubinstein-Wasserstein distance). Given two prob-
ability measures ν1 and ν2 on Rn, the W∞ distance between them is defined by

W∞(ν1, ν2) := inf
{
‖d‖L∞(γ) | γ ∈ Π(ν1, ν2)

}
.

Here, d : Rn × Rn → R is the Euclidean distance, and Π(ν1, ν2) is the set of
probability measures on Rn × Rn whose left and right marginals are ν1 and ν2,
repectively

To obtain stability, we again require affine independence (Definition 4.7) of the
pieces of the support of the target measure. See Example A.1 for a counterexample
to stability when this independence is not present.

We are now ready to state the stability result.

Theorem 7.2 (Stability of tears). Suppose µ and ν are absolutely continuous prob-
ability measures with densities bounded away from zero and infinity a.e. on their
supports, and sptµ is convex. Also let u be an optimal potential transporting µ to

ν and suppose u has multiplicity k + 1 ≤ K at x0 ∈ (sptµ)
int

, relative to a finite

collection
{

Ωi
}K
i=1

of disjoint compact sets whose union is spt ν. Reorder if neces-

sary, so that u also has multiplicity k+ 1 with respect to the subcollection
{

Ωi
}k+1

i=1
consisting of the first k + 1 sets; assume this subcollection is affinely independent
and consists of strictly convex sets.

Then for any ε > 0, there exists a δ > 0 depending only on ε, sptµ, and {Ωi}Ki=1,
such that for any νδ with W∞

(
ν, νδ

)
< δ and any optimal potential uδ transporting

µ to νδ , there is a DC submanifold of dimension n − k in Bε(x0) ⊂ Rn on which

uδ has multiplicity k + 1 relative to
{
Nδ
(
Ωi
)}K
i=1

at every point.

The discrepancy of k versus k+ 1 between Theorem 3.4 and Theorem 7.2 arises
because the affine hull of k + 1 affinely independent points generates an affine
subspace of dimension k.

We first show a lemma which uses the affine independence assumption to deduce
dim ∂u(x0) = k, so that Theorem 3.4 can be applied. To do so requires some finer
properties of the subdifferentials of each of the functions ui which make up u in the
decomposition constructed in Lemma 4.3.

Lemma 7.3. Suppose {ui}Ki=1 is the collection of convex functions obtained by
applying Lemma 4.3 to the optimal potential u under the conditions of Theorem 7.2.
Ordering indices as in Theorem 7.2, ui ∈ C1(Rn) for i ≤ k + 1 and

∂u (x0) ∩ Ωi =

{
{Dui(x0)} , 1 ≤ i ≤ k + 1,

∅, k + 1 < i ≤ K,
(7.1)

∂u (x0) = conv

 ⋃
1≤i≤k+1

{Dui(x0)}

 , (7.2)

u(x0) = ui(x0), 1 ≤ i ≤ k + 1, (7.3)

u(x0) > ui(x0), k + 1 < i ≤ K. (7.4)

Additionally, dim ∂u (x0) = k.
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Proof. Apply Proposition 4.5 to obtain {ui}Ki=1, then the fact that the multiplicity

of u at x0 relative to
{

Ωi
}K
i=1

is k + 1 implies that ∂u (x0) intersects exactly k + 1

of the sets Ωi, each at exactly one point.
Re-number the indices 1 ≤ i ≤ K so that ∂u (x0) intersects Ωi only for 1 ≤ i ≤

k+1. Since ∇ui(x0) ∈ Ωi for each i, Lemma 2.4 along with the mutual disjointness
of the Ωi immediately gives (7.1), (7.2), (7.3), and (7.4).

Finally by (7.2), it is clear that dim (∂u (x0)) ≤ k. However, if dim (∂u (x0)) < k,

the collection
{

Ωi
}k+1

i=1
would fail to be affinely independent, thus we must have

equality. This finishes the proof. �

We are now in a situation to appeal to Theorem 3.4 and finish the proof of the
stability theorem.

Proof of Theorem 7.2. We first apply Lemma 7.3 and reorder indices if necessary
to obtain convex functions ui, 1 ≤ i ≤ K with properties (7.1) through (7.4).

Now fix an ε > 0 and suppose by contradiction that the theorem fails to hold:
then there exist sequences δj ↘ 0 and νj with W∞

(
ν, νj

)
< δj , and optimal

potentials uj transporting µ to νj , but uj does not have δj-multiplicity k + 1 at
each point of a codimension k, DC submanifold of Bε(x0). Note each uj is convex
and all of the images ∂uj(Rn) are contained in a fixed compact set, the collection{
uj
}∞
j=1

is uniformly Lipschitz. Then by Arzelà-Ascoli (after adding constants to

each uj , which does not change the δj-multiplicity of any points) we can extract a
subsequence, still indexed by j, that converges uniformly. By stability of optimal
transport maps (see for example, [27, Corollary 5.23]) and convexity of sptµ this
limit must be (again, up to adding a constant) equal to u.

Now by taking j large enough we may ensure the sets Nδj
(
Ωi
)

are mutually

disjoint for each j; note that by the definition ofW∞, the assumptionW∞
(
ν, νj

)
<

δj implies spt νj ⊂
⋃K
i=1Nδj

(
Ωi
)
. Thus, as in Lemma 4.3 we obtain

uji (x) : = sup
x̄∈Nδj (Ωi)

(〈x, x̄〉 −
(
uj
)∗

(x̄)),

uj(x) = max
1≤i≤K

uji (x),

for x ∈ sptµ as long as j is large enough. We also comment here that uji converges

uniformly to ui for each 1 ≤ i ≤ K, while the compactness of each set Nδj
(
Ωi
)

implies that

∂uji (x) ∩Nδj
(
Ωi
)
6= ∅, ∀ x ∈ Ω. (7.5)

Clearly u and
{
uj
}∞
j=1

satisfy the conditions of Theorem 3.4, thus for j suffi-

ciently large, we obtain existence of a DC submanifold Σjn−k ⊂ Bε(x0) of codimen-

sion k satisfying dim ∂uj (x) ≥ k for every x ∈ Σjn−k.

At this point, fix any x ∈ Σjn−k. By (3.2) and Lemma 2.4 we see that

∂uj(x) = conv

 ⋃
1≤i≤k+1

∂uji (x)

,
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thus (7.5) implies that for j large enough uj has δj-multiplicity at least k+ 1 at x.

On the other hand by the mutual disjointness of
{

Ωi
}K
i=1

, Lemma 3.5 yields that

for j large enough, 1 ≤ i ≤ k + 1, and i 6= i′ ≤ K, we have ∂uji (x) ∩ Nδj
(
Ωi′
)

= ∅;
in particular this implies uj has δj-multiplicity no more than k + 1 at x. Thus if j

is large enough, uj has δj-multiplicity exactly k + 1 at every point in Σjn−k, which
finishes the proof by contradiction. �

Appendix A. Failure of stability without affine independence

In this appendix, we provide an example to illustrate the importance of the affine
independence condition on the support of the target measure in Theorem 7.2. Note
from the definition, no collection of n+ 2 or more sets can be affinely independent
in Rn. The example we illustrate below has a target measure on R2 whose support
consists of four strictly convex sets, and the associated optimal potential has a
point of multiplicity 4 which is unstable under certain W∞ perturbations. The
source measure will have constant density, and the target measure will be absolutely
continuous with density bounded from above. This density does not have a lower
bound away from zero in its whole support, so it does not exactly satisfy all of
the remaining (i.e. other than affine independence) hypotheses of Theorem 7.2,
but we comment that the resulting optimal potential is an envelope of globally C1

functions, which is the only way in which these other conditions are required in
the proof of this theorem. In particular, this example strongly suggests that to
obtain stability there must be some restriction on the multiplicity in relation to the
ambient dimension.

We merely state this counterexample below, and refer the interested reader to
the first version of this paper available at arXiv:1708.04152v1 for computations
verifying all of the details.

Proposition A.1. Let c(x, x̄) = −〈x, x̄〉 on R2×R2. Denoting points (x, y) ∈ R2,
let

D :=
{

(x, y) ∈ R2 | x2 − r2
0 ≤ y ≤ r2

0 − x2
}

where r0 > 0 is a small constant to be determined, and take µ to be the uniform
probability measure on D (see Figure 1). Also define the function

u = max
1≤i≤4

ui

where

u1(x, y) = x2 + y2 − x6 + y,

u2(x, y) = 4x2 + y2 − y6 + x− 3xy,

u3(x, y) = 4x2 + y2 − y6 − x+ 3xy,

u4(x, y) = 4y4 + y2 − |x|3 + y2 max {0,− sgn(y)}+ 3|x| 32 ,

and take ν to be the pushforward of µ under Du. Then ν is absolutely continuous
with density bounded away from infinity on its support, spt ν is the disjoint union
of nonempty, compact, strictly convex sets {Ω1, . . . ,Ω4}, each ui ∈ C1(Rn), and u
has a singularity of multiplicity 4 at (0, 0) relative to this collection. Moreover, for
any δ > 0 there exists a sequence of measures νj converging to ν in W∞ for which
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the associated optimal potentials mapping µ to νj do not have any singularities of
δ-multiplicity 4 relative to {Ω1, . . . ,Ω4}.

Figure 1.
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