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1. Introduction

The theme of our paper falls at the crossroads of representation theory and
the study of higher-rank graph C∗-algebras. The past two decades have seen
a burst of research dealing with representations of classes of infinite C∗-
algebras, which includes the Cuntz algebras and many Cuntz–Krieger alge-
bras, as well as C∗-algebras associated to directed graphs and higher-rank
graphs.

Classical results such as J. Glimm’s pioneering paper [39] indicate that,
despite their broad applicability, the representations of purely infinite C∗-
algebras (such as the Cuntz algebras as well as many k-graph C∗-algebras)
do not admit a Borel cross-section and hence cannot be completely described.
Researchers are consequently led to study specific families of representations
of these purely infinite C∗-algebras. For example, the purely atomic and per-
mutative representations of the Cuntz algebras (introduced in [27] by the
third named author, together with D. Dutkay and J. Haussermann) have
deep connections to invariant subspace theory. Kawamura and his collabora-
tors have also identified applications of permutative representations of Cuntz
algebras to particle physics [47–50]. Purely atomic and permutative represen-
tations of Cuntz algebras also appear frequently in connection with wavelets
and Walsh bases [28,29,52], and in applications to quantum statistical me-
chanics as finitely correlated states [13,16,30,31,53,55].

Higher-rank graphs (also called k-graphs) were introduced by Kumjian
and Pask in [51] in order to broaden the class of C∗-algebras which can be
studied by the combinatorial methods that had proved so fruitful in the study
of Cuntz–Krieger algebras and graph C∗-algebras (cf. [8,23,43,59]). Like
their cousins the Cuntz and Cuntz–Krieger algebras, k-graph C∗-algebras
admit both a graphical and a groupoid model, as well as a description in
terms of generators and relations. In addition to their importance to C∗-
algebraic questions, such as Elliott’s classification program [56,60], recent
research has uncovered applications of k-graph C∗-algebras and their repre-
sentations in both pure and applied mathematics, ranging from the study
of spectral triples [34,35] and of KMS states [4–7], in the pure end of the
spectrum, to a long and diverse list of other applications: branching laws
for endomorphisms [1,32,36,40,41,47], subshifts [57], endomorphisms from
measurable partitions [12,17,18], Markov measures and topological Markov
chains [2,11,26], wavelets and multiresolutions [3,37,54], signal processing
and filters, iterated function systems (IFS) and fractals [14,15,24,25,44–46],
complex projective spaces, quasi-crystals, orbit equivalence and substitution
dynamical systems and tiling systems [9,10].

Motivated by the applications indicated in the preceding paragraphs,
this paper develops the theory of purely atomic and permutative represen-
tations for the C∗-algebras associated to row-finite source-free higher-rank
graphs. Compared with that of the Cuntz and Cuntz–Krieger algebras, the
representation theory of k-graph C∗-algebras is still in its infancy. Repre-
sentations of C∗-algebras associated to k-graphs with a single vertex are
investigated systematically in [20–22,61]. Indeed, the representations labeled
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“atomic” by these authors are similar, but not precisely equivalent, to what
we call “permutative” representations (see Sect. 4). Similar types of rep-
resentations of free semigroup algebras, which include Cuntz algebras and
Toeplitz algebras, have been studied in [19] in terms of invariant subspaces.
More recently, four of the authors of the present paper introduced the tech-
nology of Λ-semibranching function systems for finite k-graphs Λ in [36],
which enable the construction of representations of C∗(Λ) on Lebesgue mea-
sure spaces L2(X,μ). Further examples of such representations can be found
in [32,33,37]; see also [41] for Λ-semibranching function systems in a broader
context.

In this paper, in addition to developing the theory of purely atomic and
permutative representations of row-finite higher-rank graphs with no sources,
we analyze the relationship between these representations and the monic rep-
resentations studied in [33]. Although the present paper was motivated by the
analysis of atomic and permutative representations of Cuntz algebras carried
out in [27], we emphasize that due to the major structural differences between
Cuntz algebras and k-graph C∗-algebras, the link between our work below
and [27] is more conceptual than technical. For example, the S∗

i -invariant
subspaces, which were a central technical tool in [27], have no clear analogue
in the k-graph setting. Indeed, we have been very pleasantly surprised by the
number of results from [27] which have analogues in the present setting of
higher-rank graphs, given the technical divergence between the two papers.

This paper is organized as follows. We briefly review background mate-
rial including higher-rank graphs Λ, their C∗-algebras C∗(Λ) and the projec-
tion valued measures associated to the representations of C∗(Λ) in Sect. 2.
Any representation π of C∗(Λ) in B(H) induces a projection valued mea-
sure P , defined on the infinite path space Λ∞ of Λ and taking values in
Proj(H); see Sect. 2.2 for details. These projection valued measures are a
central tool in our study of purely atomic representations of C∗(Λ), which we
begin in Sect. 3. Central results from this section include our characterization
of purely atomic representations in terms of certain subsets {Orbit(ω)} of the
infinite path space of Λ which are invariant under the canonical prefixing and
coding maps σλ, σn from Definition 2.1. These invariant subsets correspond
to invariant subspaces of the Hilbert space on which C∗(Λ) is represented.
In particular, Proposition 3.8 shows that if an irreducible representation of
C∗(Λ) admits a single atom ω, the representation is purely atomic. We sub-
sequently show in Theorem 3.9 that two purely atomic representations are
unitarily equivalent if and only if the corresponding projection valued mea-
sures P and P̃ have the same support, and the ranges of P (ω) and P̃ (ω), for
each atom ω, have the same dimension. Proposition 3.10 identifies when two
purely atomic representations are disjoint and when a purely atomic represen-
tation is irreducible. Finally, we give necessary and sufficient conditions for a
purely atomic representation to be a monic representation in Theorem 3.12.

In Sect. 4, we define a permutative representation of C∗(Λ) (Defini-
tion 4.1) and investigate the conditions under which a purely atomic repre-
sentation is permutative (Theorem 4.10). As already mentioned, permutative
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representations are related to the atomic representations of [21], but Propo-
sition 4.7 shows that they can also be realized as Λ-semibranching represen-
tations associated to a countable discrete measure space. In Theorem 4.10
(the main theorem of the last section), we show that a purely atomic rep-
resentation is permutative if it is supported on an orbit of aperiodic paths,
and we show that the representation can be decomposed into a direct sum of
permutative representations with injective encoding maps.

2. Background

2.1. Higher-rank graphs

We will now describe briefly higher-rank graphs and their C∗-algebras, which
were introduced by Kumjian and Pask [51].

Let N = {0, 1, 2, . . . } denote the set of natural numbers and let k ∈ N

with k ≥ 1. We write e1, . . . ek for the standard basis vectors of Nk, where
ei is the vector of Nk with 1 in the i-th position and 0 everywhere else. We
view N

k as a category with one object (namely 0) and with composition of
morphisms given by addition.

Throughout this paper, for any category Λ, the notation λ ∈ Λ will
indicate that λ is a morphism of Λ. Note that this is consistent with the
above description of Nk as a category and the standard use of the notation
n ∈ N

k.
A countable small category Λ with a degree functor d : Λ → N

k is a
higher-rank graph or k-graph if it satisfies the factorization property : for any
morphism λ ∈ Λ and any m,n ∈ N

k such that d(λ) = m + n ∈ N
k, there

exist unique morphisms μ, ν ∈ Λ such that λ = μν and d(μ) = m, d(ν) = n.
We often regard k-graphs as a generalization of directed graphs, so we

call morphisms λ ∈ Λ paths in Λ, and the objects (identity morphisms) are
often called vertices. For n ∈ N

k, we write

Λn := {λ ∈ Λ : d(λ) = n}. (1)

With this notation, note that Λ0 is the set of objects (vertices) of Λ. Occa-
sionally, we call elements of Λei (for any i) edges.

We write r, s : Λ → Λ0 for the range and source maps in Λ respectively.
For vertices v, w ∈ Λ0,

vΛw := {λ ∈ Λ : r(λ) = v, s(λ) = w}.

Combining this notational convention with that of Eq. (1) gives, e.g.,

vΛn := {λ ∈ Λ : r(λ) = v, d(λ) = n}.

For m,n ∈ N
k, we write m ∨ n for the coordinatewise maximum of m

and n. Given λ, η ∈ Λ, we write

Λmin(λ, η) := {(α, β) ∈ Λ × Λ : λα = ηβ, d(λα) = d(λ) ∨ d(η)}. (2)

If k = 1, then Λmin(λ, η) will have at most one element; this need not be true
in a k-graph if k > 1.



IEOT Purely Atomic Representations of Higher Page 5 of 26 67

We say that a k-graph Λ is finite if Λn is a finite set for all n ∈ N
k

and say that Λ has no sources or is source-free if vΛn �= ∅ for all v ∈ Λ0 and
n ∈ N

k. It is well known that this is equivalent to the condition that vΛei �= ∅
for all v ∈ Λ and all basis vectors ei of N

k. We say that Λ is row-finite if
|vΛn| < ∞ for all v ∈ Λ0 and n ∈ N

k. We say that a k-graph is strongly
connected if, for all v, w ∈ Λ0, vΛw �= ∅.

To describe the infinite path space Λ∞ of a k-graph, we introduce the
fundamental example Ωk as follows. For k ≥ 1, let Ωk be the small category
with

Obj(Ωk) = N
k, and Mor(Ωk) = {(p, q) ∈ N

k × N
k : p ≤ q}.

Again, we can also view elements of Obj(Ωk) as identity morphisms, via
the map Obj(Ωk) 
 p �→ (p, p) ∈ Mor(Ωk). The range and source maps
r, s : Mor(Ωk) → Obj(Ωk) are given by r(p, q) = p and s(p, q) = q. If we
define d : Ωk → N

k by d(p, q) = q − p, then one can check that Ωk is a
k-graph with degree functor d.

Definition 2.1 ([51] Definitions 2.1). Let Λ be a k-graph. An infinite path in
Λ is a k-graph morphism (degree-preserving functor) x : Ωk → Λ, and we
write Λ∞ for the set of infinite paths in Λ. Since Ωk has a terminal object
(namely 0 ∈ N

k) but no initial object, we think of our infinite paths as having
a range r(x) := x(0) but no source. For each m ∈ N

k, we have a shift map
σm : Λ∞ → Λ∞ given by

σm(x)(p, q) = x(p + m, q + m) (3)

for x ∈ Λ∞ and (p, q) ∈ Ωk. We also have a partially defined “prefixing map”
σλ : s(λ)Λ∞ → Λ∞ for each λ ∈ Λ:

σλ(x) = λx. (4)

Observe that, since x : Ωk → Λ is degree preserving and Ωk contains infinitely
many edges of each degree ei ∈ N

k, the same must be true of any infinite
path x ∈ λ∞.

Remark 2.2. We now describe an alternative perspective on higher-rank
graphs, which motivates their description as generalizations of directed
graphs. Let G be an edge-colored directed graph with k different colors of
edges, and define an additive map d : Path(G) → N

k by sending an edge e
of color i, 1 ≤ i ≤ k, to d(e) = ei ∈ N

k. For the rest of this discussion, let
“red” and “blue” denote different but arbitrary colors appearing in G.

Suppose that, for every pair of vertices v, w ∈ G0, the number of paths
from v to w which consist of a red edge followed by a blue edge is the same as
the number of paths from v to w consisting of a blue edge followed by a red
edge. Then we can “pair up” these paths and define ΛG to be the quotient
of G which arises from identifying these commuting squares.

w

v

∼
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Hazlewood et al. proved in [42] that ΛG is in fact a k-graph, as long as every
path in G consisting of 3 edges of different colors determines a well-defined
“commuting cube” in ΛG.

Thus, an edge-colored directed graph with k different colors of edges,
and the same number of blue–red paths as red–blue paths between each pair
of vertices, gives rise to a k-graph once we specify the pairing between the
red–blue and blue–red paths. By abuse of notation we will occasionally use
the phrase “factorization rule” to denote this pairing.

In this perspective, one can view each infinite path x ∈ Λ∞
G as the

equivalence class of a composable sequence of edges x = f1f2 · · · in G, such
that each of the k possible edge colors occurs infinitely often.

It is well-known that the collection of cylinder sets

Z(λ) = {x ∈ Λ∞ : x(0, d(λ)) = λ},

for λ ∈ Λ, form a compact open basis for a locally compact Hausdorff topology
on Λ∞, under reasonable hypotheses on Λ (in particular, when Λ is row-finite:
see Section 2 of [51]). If a k-graph Λ is finite, then Λ∞ is compact in this
topology.

Given ω ∈ Λ∞, its orbit Orbit(ω) ⊂ Λ∞ is defined by

Orbit(ω) = {γ ∈ Λ∞ : there are m, � ∈ N
k such that σm(γ) = σ�(ω)}.

We note that Orbit(ω) is invariant under σn [defined in Eq. (3)] and
(σn)−1, for all n ∈ N

k. Note also that each orbit is a Borel set, being a
countable union of points (which are countable intersections of cylinder sets).

Now we introduce the C∗-algebra associated to a k-graph Λ. Here we
only consider row-finite k-graphs with no sources. For C∗-algebras associated
to more general k-graphs, see for example [38,58].

Definition 2.3. Let Λ be a row-finite k-graph with no sources. A Cuntz–
Krieger Λ-family is a collection {tλ : λ ∈ Λ} of partial isometries in a C∗-
algebra satisfying
(CK1) {tv : v ∈ Λ0} is a family of mutually orthogonal projections,
(CK2) tλtη = tλη if s(λ) = r(η),
(CK3) t∗λtλ = ts(λ) for all λ ∈ Λ,
(CK4) for all v ∈ Λ and n ∈ N

k, we have

tv =
∑

λ∈vΛn

tλt∗λ.

The Cuntz–Krieger C∗-algebra C∗(Λ) associated to Λ is the universal C∗-
algebra generated by a Cuntz–Krieger Λ-family.

Thus, every Cuntz–Krieger Λ-family induces a representation of C∗(Λ);
we will often use the same notation, {tλ}λ∈Λ, for the representation as for its
Cuntz–Krieger Λ family {sλ : λ ∈ Λ}.

One can show that

C∗(Λ) = span{sαs∗
β : α, β ∈ Λ, s(α) = s(β)}.
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Indeed, (CK4) implies that for all λ, η ∈ Λ, we have

s∗
λsη =

∑

(α,β)∈Λmin(λ,η)

sαs∗
β . (5)

2.2. Projection valued measures

Inspired by Dutkay et al. [26,27], here we review the projection valued mea-
sure associated to a representation of C∗(Λ), which was developed in [33].
See also [33].

Let Λ be a row-finite k-graph with no sources. Given a representation
{tλ}λ∈Λ of a k-graph C∗-algebra C∗(Λ) on a Hilbert space H, we define a
projection valued function P on Λ∞ by

P (Z(λ)) = tλt∗λ for all λ ∈ Λ. (6)

According to Proposition 3.9 of [33], the above function P can be ex-
tended to a projection valued measure on the Borel σ-algebra Bo(Λ∞) gen-
erated by the cylinder sets. The proof relies on the Kolmogorov extension
theorem.

Theorem 2.4. [33, Proposition 3.9] Let Λ be a row-finite k-graph with no
sources. Given a representation {tλ}λ∈Λ of a k-graph C∗-algebra C∗(Λ) on a
Hilbert space H, then the assignment

P (Z(λ)) = tλt∗λ for λ ∈ Λ

extends to a projection valued measure on the Borel σ-algebra Bo(Λ∞) gen-
erated by the cylinder sets of the infinite path space Λ∞.

We now summarize some properties of the projection valued measure P
on Λ∞ established in [33].

Proposition 2.5. [33, Proposition 2.13] Let Λ be a row-finite, source-free k-
graph, and fix a representation {tλ : λ ∈ Λ} of C∗(Λ). Then:
(a) For λ, η ∈ Λ with s(λ) = r(η), we have tλP (Z(η))t∗λ = P (σλ(Z(η))),

where σλ is the prefixing map on Λ∞ given in Eq. (4).
(b) For any fixed n ∈ N

k, we have
∑

λ∈r(η)Λn

tλP (σ−1
λ (Z(η)))t∗λ = P (Z(η));

(c) For any λ, η ∈ Λ with r(λ) = r(η), we have tλP (σ−1
λ (Z(η))) =

P (Z(η))tλ;
(d) When λ ∈ Λn, we have tλP (Z(η)) = P ((σn)−1(Z(η)))tλ, where σn is

defined in Eq. (3).

3. Purely atomic representations of C∗(Λ)

In this section, we define purely atomic representations of C∗(Λ) in terms
of the projection valued measure being purely atomic (cf. Definition 4.1 of
[27]). While many of the results in this section were inspired by similar results
established in [27] for Cuntz algebras, our proofs in the setting of higher-rank
graphs have required new techniques.
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Definition 3.1. (c.f. Definition 4.1 of [27].) Let Λ be a row-finite k-graph with
no sources. A representation {tλ}λ∈Λ of C∗(Λ) on a Hilbert space H is called
purely atomic if there exists a Borel subset Ω ⊂ Λ∞ such that the projection
valued measure P defined on the Borel sets of Λ∞ as in Theorem 2.4 satisfies
(a) P (Λ∞\Ω) = 0H,
(b) P ({ω}) �= 0H for all ω ∈ Ω,
(c)

⊕
ω∈Ω P ({ω}) = IdH,

where the sum on the left-hand side of (c) converges in the strong operator
topology.

The points in Ω ⊂ Λ∞ are called atoms. They are characterized by the
fact that P ({ω}) is a non-zero projection.

Thus, a representation of C∗(Λ) is purely atomic if the corresponding
projective-valued measure is purely atomic on the Borel σ-algebra Bo(Λ∞)
of Λ∞.

Example 3.2. Consider the 2-graph Λ associated to the edge-colored directed
graph

u ve

h

g

f

whose factorization rules are given by eh = hf and fg = ge. With these
factorization rules, there is only one infinite path x ∈ uΛ∞, namely

x = ehfgehfg · · · = hfgehfge · · · = hgeehgee . . . .

Similarly, one can see that there is only one infinite path y ∈ vΛ∞, namely

y = fgehfgeh · · · = gehfgehf · · · = ghffghff . . . .

In other words, Λ∞ = {x, y}. Since Λ∞ is finite, any nontrivial representation
of C∗(Λ) with the associated projection-valued measure P and Ω satisfies
the conditions (a), (b) and (c) of Definition 3.1, and hence it must be purely
atomic.

3.1. Characterizations of purely atomic representations

To arrive at Theorem 3.9, which characterizes unitarily equivalent purely
atomic representations as having projection valued measure with equal sup-
port and ranges, we start with the following proposition.

Proposition 3.3. Let Λ be a row-finite k-graph with no sources, and let {tλ}λ∈Λ

generate a purely atomic representation of C∗(Λ). Let P be the associated
projection valued measure on the Borel subsets of the infinite path space Λ∞.
Then we have the following.
(a) For λ ∈ Λ and ω ∈ Z(s(λ)) ⊂ Λ∞, we have

tλP ({ω})t∗λ = P ({λω}),
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and for n ∈ N
k, we have

t∗ω(0,n)P ({ω})tω(0,n) = P ({σn(ω)}).

(b) For η ∈ Λn and ω ∈ Λ∞ with η �= ω(0, n), we have

t∗ηP ({ω})tη = 0.

Proof. These statements follow from taking the limit in the strong operator
topology on a nested sequence of cylinder sets decreasing to {ω} and using
Proposition 2.5(a). �

The following Corollary is an immediate consequence of Proposition 3.3
and our observations above.

Corollary 3.4. Let Λ be a row-finite, source-free k-graph and let {tλ}λ∈Λ be
a representation of C∗(Λ).
(a) If Orbit(ω) = Orbit(γ) then P ({ω}) = 0 iff P ({γ}) = 0.
(b) For any purely atomic representation {tλ}λ∈Λ, define the support Ω =

supp(P ) of {tλ}λ∈Λ by

Ω := supp(P ) = {ω ∈ Λ∞ : P ({ω}) �= 0}.

We can decompose Ω as a disjoint union of orbits: Ω =
⊔

ω Orbit(ω). In
particular,

⊕

ω∈Ω

P (Orbit(ω)) = IdH.

Remark 3.5. It follows from Proposition 3.3 that the subspace P (Orbit(ω)) ⊆
H is invariant for the representation {tλ}λ∈Λ in the sense of [27].

Example 3.6. (cf. [51, Proposition 2.11 ]) Recall that for a row-finite, source-
free k-graph Λ, the infinite path representation of C∗(Λ) first given by A.
Kumjian and D. Pask via the partial isometries {Sλ : λ ∈ Λ} on the non-
separable Hilbert space �2(Λ∞) with orthonormal basis {hω : ω ∈ Λ∞} is
given by

Sλ(hω) = δs(λ),r(ω)hλω, and S∗
λhω = δλ,ω(0,d(λ))hσd(λ)(ω).

One can check that this representation is purely atomic. Indeed, for all ω ∈
Λ∞,

P ({ω}) = lim
n∈Nk

Sω(0,n)S
∗
ω(0,n) = Pspan hω

.

Here the limit is taken in the strong operator topology. This is a standard
example to keep in mind when considering both purely atomic representations
and the permutative representations which we discuss in Sect. 4 below.

We now show that any intertwiner of purely atomic representations of
a k-graph algebra intertwines the associated projection valued measures.

Proposition 3.7. Let Λ be a row-finite k-graph with no sources, and let {tλ}λ∈Λ

and {t̃λ}λ∈Λ be two purely atomic representations of C∗(Λ) on the Hilbert
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spaces H and H′, respectively. Suppose that U : H → H′ is an intertwining
operator for these representations, so that

t̃λU = Utλ and (t̃λ)∗U = Ut∗λ for all λ ∈ Λ.

Let P and P̃ be the associated projection valued measures on B(Λ∞) with
respect to {tλ}, {t̃λ}. Then for every ω ∈ Λ∞,

P̃ ({ω})U = UP ({ω}).

Moreover, if U is a unitary operator so that the representations are unitarily
equivalent, then the supports of P and P̃ are the same.

Proof. Since U intertwines the representations, we see that for every λ ∈ Λ,

P̃ (Z(λ))U = t̃λ(t̃λ)∗U = Utλt∗λ = UP (Z(λ)).

Therefore U intertwines the projection valued measures on all Borel subsets
in Λ∞, including the point sets. It follows that if U is unitary, then for every
ω ∈ Λ∞, we have

P̃ ({ω}) = UP ({ω})U∗,

so that dimP ({ω}) = dimP̃ ({ω}) for all ω ∈ Λ∞, and hence supp(P ) =
supp(P̃ ). �

We now derive some straightforward consequences of Corollary 3.4.

Proposition 3.8. Suppose that an irreducible representation {tλ}λ∈Λ of C∗(Λ)
has an atom ω. Then {tλ}λ∈Λ is purely atomic and the associated projection
valued measure is supported on Orbit(ω).

Proof. Let {tλ} be an irreducible representation of C∗(Λ) with an atom ω ∈
Λ∞. We first observe that for any x ∈ Λ∞,

P ({x})tλ =

{
0, x �∈ Z(λ)
tλP ({σd(λ)(x)}), x ∈ Z(λ).

This follows from writing P ({x}) = lim{tηn
t∗ηn

: x ∈ Z(ηn)}, with ηn =
x(0, n), and observing that if d(η) ≥ d(λ), then

t∗ηtλ =
∑

(ρ,ν)∈Λmin(η,λ)

tνt∗ρ =

{
t∗ρ, η = λρ

0, else.

Therefore, if x �∈ Z(λ) then we can find Z(η) that contains x with d(η) ≥ d(λ)
and such that η does not extend λ. Consequently, if we set

P :=
∑

x�∈Orbit(ω)

P ({x})

(where the limit defining the sum is taken in the strong operator topology),
then Ptλ = tλ

∑
x∈Z(λ)\Orbit(ω) P ({σd(λ)(x)}). Moreover, P is a projection

since P ({x})P ({y}) = 0 for x �= y.
On the other hand,

tλP = tλ
∑

{y �∈Orbit(ω):r(y)=s(λ)}
P ({y}).
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Since {y �∈ Orbit(ω) : r(y) = s(λ)} = {σd(λ)(x) : x ∈ Z(λ)\Orbit(ω)}, we
have

tλP = Ptλ

for any λ ∈ Λ. Our assumption that {tλ}λ is irreducible now implies that
P must be a multiple of the identity. However, P < 1 since ω is an atom,
so we must have P = 0. (When Λ∞ has only one point, P = 1 on the
atom, and hence {tλ}λ∈Λ is purely atomic). Corollary 3.4 now implies that
P ({x}) �= 0 for every x ∈ Orbit(ω), completing the proof that {tλ}λ∈Λ is
purely atomic. �

The following result was inspired by Corollary 4.8 of [27], but the tech-
nical details are much more intricate in the setting of higher-rank graphs.

Theorem 3.9. For a row-finite, source-free k-graph Λ, let {tλ}λ∈Λ, {t̃λ}λ∈Λ

generate purely atomic representations of C∗(Λ), with associated projection
valued measures P, P̃ . Then the two representations are unitarily equivalent
if and only if the following conditions are satisfied:
(a) supp(P ) = supp(P̃ ) =: Ω;
(b) For every x ∈ Ω, dim[Range(P ({x}))] = dim[Range(P̃ ({x}))].

Proof. Suppose that the purely atomic representations {tλ}λ∈Λ, {t′λ}λ∈Λ on
the same Hilbert space H are unitarily equivalent. Proposition 3.7 then im-
plies that P, P̃ have the same support Ω, and moreover that the intertwining
unitary takes P ({ω}) to P̃ ({ω}) for every ω ∈ Ω.

Now, suppose that conditions (a) and (b) hold; we will show that the
representations {tλ}λ∈Λ and {t̃λ}λ∈Λ of C∗(Λ) are unitarily equivalent.

Without loss of generality, we suppose that our representations are ir-
reducible, so that Ω consists of a single orbit, Ω = Orbit(ω). Since

dim[Range(P ({ω}))] = dim[Range(P̃ ({ω}))]

by hypothesis, there is a unitary isomorphism Uω : Range(P ({ω})) →
Range(P̃ ({ω})), since Hilbert spaces of the same dimension are isomorphic.
For every γ ∈ Ω = Orbit(ω), we now construct a unitary Uγ : Range
(P ({γ})) → Range(P̃ ({γ})) as follows. If γ ∈ Orbit(ω) ⊂ Λ∞ satisfies
γ = aσj(ω) for some a ∈ Λ, we would like to define Uγ : Range(P ({γ})) →
Range(P̃ ({γ})) by

Uγ := t̃at̃∗ω(0,j)Uωtω(0,j)t
∗
a. (7)

We must check that Uγ is well-defined and unitary, and that

U :=
⊕

γ∈Orbit(ω)

Uγ

intertwines the representations.
To see that Uγ is well-defined, suppose that γ = aσj(ω) = a′σj′

(ω). Fix
ξ ∈ H and ε > 0. Since the projections P (Z(ω(0, n)) tend to P ({ω}) in the
strong operator topology, it is possible to find N1 ∈ N (depending on ξ ∈ H
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and ε > 0) such that, if we write 1 = (1, . . . 1) ∈ N
k, then N11 ≥ j, j′ and

whenever N ≥ N1,

‖P ({ω})tω(0,j)t
∗
a(ξ) − P (Z(ω(0, N1))tω(0,j)t

∗
a(ξ)‖ < ε. (8)

Write A = aω(j,N1). Note that γ(0, N1) = A and

tω(0,N1)t
∗
ω(0,N1)tω(0,j)t

∗
a = tω(0,N1)t

∗
ω(j,N1)t

∗
a = tω(0,N1)t

∗
A.

Consequently, (8) implies that for N ≥ N1, we have

‖P ({ω})tω(0,j)t
∗
a(ξ) − tω(0,N1)t

∗
A(ξ)‖ < ε (9)

and

‖Uωtω(0,N1)t
∗
A(ξ) − UωP ({ω})tω(0,j)t

∗
a(ξ)‖

= ‖Uωtω(0,N1)t
∗
ω(j,N1)t

∗
a(ξ) − UωP ({ω})tω(0,j)t

∗
a(ξ)‖

= ‖Uωtω(0,N1)t
∗
ω(0,N1)tω(0,j)t

∗
a(ξ) − UωP ({ω}))tω(0,j)t

∗
a(ξ)‖

= ‖UωP (Z(ω(0, N1)))tω(0,j)t
∗
a(ξ) − UωP ({ω}))tω(0,j)t

∗
a(ξ)‖ < ε.

In the same way, we can find N2 large enough so that for the same ξ ∈ H
and the same ε > 0, for all N ≥ N2,

‖P̃ ({ω})Uωtω(0,j)t
∗
a(ξ) − P̃ (Z(ω(0, N1)))Uωtω(0,j)t

∗
a(ξ)‖ < ε.

Then, since t̃a and t̃ω(0,j) are partial isometries,

‖t̃at̃∗ω(0,j)P̃ ({ω})Uωtω(0,j)t
∗
a(ξ) − t̃at̃∗ω(0,j)P̃ (Z(ω(0, N1)))Uωtω(0,j)t

∗
a(ξ)‖ < ε.

We now write, for N ≥ N2,

t̃at̃∗ω(0,j)P̃ (Z(ω(0, N1)))Uωtω(0,j)t
∗
a = t̃at̃∗ω(0,j)t̃ω(0,N1)t̃

∗
ω(0,N1)Uωtω(0,j)t

∗
a

= t̃at̃ω(j,N1)t̃
∗
ω(0,N1)Uωtω(0,j)t

∗
a

= t̃At̃∗ω(0,N1)Uωtω(0,j)t
∗
a.

Therefore for N ≥ N2 we have

‖t̃at̃∗ω(0,j)P̃ ({ω})Uωtω(0,j)t
∗
a(ξ) − t̃At̃∗ω(0,N1)Uωtω(0,j)t

∗
a(ξ)‖ < ε. (10)

Since UωP ({ω}) = Uω and P̃ ({ω})Uω = Uω, Eqs. (10) and (9) combine
to give

‖t̃at̃∗ω(0,j)Uωtω(0,j)t
∗
a(ξ) − t̃At̃∗ω(0,N1)Uωtω(0,N ·1)t

∗
A(ξ)‖ < 2ε

whenever N ≥ max{N1, N2}.
In the same way, for the same ε > 0 and ξ ∈ H, we can find M ′ ∈ N

(depending on a′, j′, and ξ ∈ H) such that for any N ′ ≥ M ′, setting A′ =
a′ω(j′, N ′1), we have γ(0, N ′) = A′ and

‖t̃a′ t̃∗ω(0,j′)Uωtω(0,j′)t
∗
a′(ξ) − t̃A′ t̃∗ω(0,N ′1)Uωtω(0,N ′·1)t

∗
A′(ξ)‖ < 2ε.

Choosing N = N ′ ≥ max{M ′, N1, N2} implies that A = γ(0, N1) = A′.
Thus,

‖t̃at̃∗ω(0,j)Uωtω(0,j)t
∗
a(ξ) − t̃a′ t̃∗ω(0,j′)Uωtω(0,j′)t

∗
a′(ξ)‖ < 4ε.

Since ε and ξ were arbitrary, it follows that if γ = aσj(ω) = a′σj′
(ω),

t̃at̃∗ω(0,j)Uωtω(0,j)t
∗
a = t̃a′ t̃∗ω(0,j′)Uωtω(0,j′)t

∗
a′ .
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Thus, the operator Uγ : Range(P ({γ})) → Range(P̃ ({γ})) of Eq. (7) is well-
defined.

Now we want to show that Uγ is unitary. Since Uω is a unitary and
hence U∗

ωUω = P ({ω}), using the facts that P̃ ({ω})Uω = Uω and P̃ ({ω})
P̃ (Z(ω(0, j))) = P̃ ({ω}), one easily computes that U∗

γ Uγ = tat∗ω(0,j)

P ({ω})tω(0,j)t
∗
a.

We now note that for γ = aσj(ω), t∗a takes Range(P ({γ})) to
Range(P ({σj(ω)})) and tω(0,j) takes Range(P ({σj(ω)})) to Range(P ({ω})).
Recalling that Uγ = UγP ({γ}), we deduce that

U∗
γ Uγ = tat∗ω(0,j)tω(0,j)t

∗
aP ({γ}) = tat∗aP ({γ})

= P (Z(a))P ({γ}) = P ({γ}).

Similarly, one can show that

UγU∗
γ = P̃ ({γ}),

which implies that Uγ is unitary from its domain to its range.
To show that U =

⊕
γ∈Orbit(ω) Uγ intertwines the representations, we

must establish that for λ ∈ Λ with s(λ) = r(ω),

t̃λUω = Uλωtλ.

By our construction of Uλω, if s(λ) = r(ω),

Uλωtλ = t̃λUωt∗λtλ.

Using the fact that tλ is an isometry and that

Uω = UωP ({ω}) = UωP ({ω})P (Z(ω(0, n)))

for any n ∈ N
k, we obtain

t̃λUωt∗λtλ = t̃λUωP (Z(s(λ))) = t̃λUωP (Z(r(ω))) = t̃λUω.

Therefore we see that

U =
⊕

γ∈ Orbit(ω)

Uγ :
⊕

γ∈ Orbit(ω)

Range(P ({γ})) →
⊕

γ∈ Orbit(ω)

Range(P̃ ({γ}))

is a unitary operator that intertwines the representations {tλ : λ ∈ Λ} and
{t̃λ : λ ∈ Λ}. �

Recall that two representations π, π′ of a C∗-algebra A are disjoint if no
nonzero subrepresentation of π is unitarily equivalent to a subrepresentation
of π′.

The following proposition shows that different orbits support disjoint
representations. It also characterizes the intertwiners of those purely atomic
representations which are supported on the same orbit, and shows when a
purely atomic representation is irreducible.

Proposition 3.10. For a row-finite, source-free k-graph Λ, let {tλ}λ∈Λ, {t̃λ}λ∈Λ

generate purely atomic representations of C∗(Λ), with associated projection
valued measures P, P̃ . Suppose that P, P̃ are supported on Orbit(γ) and
Orbit(ω) respectively, for some γ, ω ∈ Λ∞.
(a) If Orbit(γ) �= Orbit(ω) then the representations are disjoint.
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(b) If Orbit(γ) = Orbit(ω), then the operators X : H → H̃ which intertwine
the representations {tλ}λ∈Λ (on H) and {t̃λ}λ∈Λ (on H̃) are in bijective
correspondence with operators Yω : Range(P ({ω})) → Range(P̃ ({ω})),
via the formula

Yω = P̃ ({ω})XP ({ω}).

Yω : Range(P ({ω})) → Range(P̃ ({ω})).
(c) The representation {tλ}λ∈Λ is irreducible if and only if

dim[Range(P ({ω}))] = 1.

Proof. To see (a), note that under our hypotheses, neither {tλ}λ nor {t̃λ}λ

has nontrivial subrepresentations; therefore Theorem 3.9 implies (a). For (b),
given an operator X : H → H′ which intertwines the representations, the
operator Yω := P̃ ({ω})XP ({ω}) is evidently a well-defined operator from
Range(P ({ω})) to Range(P̃ ({ω})). On the other hand, given an operator
Yω : Range(P ({ω})) → Range(P̃ ({ω})), we can define X : H → H̃ by setting

X|Range(P ({γ})) = t̃at̃∗ω(0,j)Yωtω(0,j)t
∗
a

whenever γ = aσj(ω) ∈ Orbit(ω). Arguments analogous to those employed
in the proof of Theorem 3.9 will show that X is well defined; we omit the
details.

For (c), let H = Range P ({ω}), and H̃ = Range P̃ ({ω}). Recall from
Theorem 3.9 above that if H and H̃ have the same dimension, any unitary
Uω ∈ U(H, H̃) can be used to construct an intertwiner

⊕

γ∈ Orbit(ω)

Uγ :
⊕

γ∈ Orbit(ω)

Range P ({γ}) →
⊕

γ∈ Orbit(ω)

Range P̃ ({γ}).

In the same way, if Tω is a finite linear combination of unitary elements in
B(H) = B(Range P ({ω})), defining for γ = aσj(ω) the bounded operator

Tγ = tat∗ω(0,j)Tωtω(0,j)t
∗
a,

Theorem 3.9 shows us that Tγ is well-defined and that
⊕

γ∈ Orbit(ω)

Tγ :
⊕

γ∈ Orbit(ω)

Range P ({γ}) →
⊕

γ∈ Orbit(ω)

Range P ({γ})

intertwines the representation {tλ}λ∈Λ with itself.
Consequently, the set of intertwiners between {tλ}λ∈Λ and itself contains

the span of the unitary elements in B(H) = B(Range P ({ω})). However, by
Russo-Dye’s Theorem, the closure of the span of the unitary elements in
B(H) is exactly B(H). By Schur’s Lemma, our representation is irreducible
if and only if the self-intertwiners of {tλ}λ∈Λ consist solely of scalar multiples
of the identity. But by our preceding construction, we see that this happens if
and only if the dimension of H = Range P ({ω}) is equal to 1, as desired. �
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3.2. Purely atomic representations versus monic representations

We now discuss the relation between purely atomic representations and monic
representations.

Recall first (cf. [33, Definition 4.1]) that a representation {tλ : λ ∈ Λ}
of a finite source-free k-graph on a Hilbert space H is called monic if tλ �= 0
for all λ ∈ Λ, and there exists a vector ξ ∈ H such that

spanλ∈Λ{tλt∗λξ} = H.

According to Theorem 4.2 of [33], for a finite source-free k-graph Λ, ev-
ery monic representations of C∗(Λ) is unitarily equivalent to a representation
of C∗(Λ) on L2(Λ∞, μ) for some Borel measure μ. The next theorem proves
that a purely atomic representation of C∗(Λ) is monic if and only if for every
atom x ∈ Λ∞, P ({x}) is one-dimensional.

Remark 3.11. Since L2(Λ∞, μ) is separable for any measure μ associated to
a monic representation, in the setting of Theorem 3.12 we conclude that the
set of atoms for μ must be countable.

Theorem 3.12. Let Λ be a finite k-graph with no sources. Let {tλ : λ ∈ Λ}
be a purely atomic representation of C∗(Λ) on a separable Hilbert space H.
Suppose that tλt∗λ �= 0 for all λ ∈ Λ. Then the representation is monic if
and only if for every atom x ∈ Λ∞, P ({x}) is one-dimensional. Moreover,
in this case the associated measure μ arising from the monic representation
is atomic.

Proof. Suppose that the given purely atomic representation {tλ : λ ∈ Λ} on
H is monic, with cyclic vector ξ for {tλt∗λ}λ∈Λ. Then by Theorem 4.2 of [33] we
can assume that H is of the form L2(Λ∞, μ), where the measure μ is given
by the projection valued measure P determined by the representation, i.e.
μ(Z(λ)) = 〈P (Z(λ))ξ, ξ〉 = ‖t∗λξ‖2 for λ ∈ Λ. Since {tλ}λ is purely atomic,
μ({ω}) = ‖P ({ω})ξ‖2 is nonzero iff ω ∈ Ω. In other words, the atoms of μ
are precisely the atoms of P .

To show that P ({ω}) is always a rank-one projection for an atom ω,
we argue by contradiction. Suppose that there exists ω ∈ Λ∞ and a strict
subprojection Qω ≤ P ({ω}) with Qω �= P ({ω}). For any γ = aσj(ω) ∈
Orbit(ω), write

Qγ = tat∗ω(0,j)Qωtω(0,j)t
∗
a,

and set Q =
⊕

γ∈Orbit(ω) Qγ .
The fact that the projections P ({γ}) are mutually orthogonal implies

that Q is indeed a sum of orthogonal projections. Moreover, Proposition 3.3
implies that each summand Qγ is a strict subprojection of P ({γ}).

We will show that tηQ = Qtη for all η ∈ Λ. Since {tλ}λ∈Λ is monic by
assumption, Theorem 3.13 and Theorem 4.2 of [33] will then imply that Q
must be a multiplication operator, which contradicts the fact that each Qγ

is a strict subprojection of P ({γ}).
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Fix η ∈ Λ and γ = aσj(ω). As in the proof of Proposition 2.5,

Qγtη = tat∗ω(0,j)Qωtω(0,j)t
∗
atη =

∑

(ρ,ζ)∈Λmin(a,η)

tat∗ω(0,j)Qωtω(0,j)tρt
∗
ζ .

By Proposition 3.3, t∗ω(0,j)Qωtω(0,j) = Qσj(ω) = Qσj(ω)P (Z(ω(j, j + d(ρ)))),
and t∗ω(j,j+d(ρ))tρ = 0 unless ρ = ω(j, j + d(ρ)). Thus, the sum collapses to
(at most) a single term: Writing m = d(ρ) = d(a) ∨ d(η) − d(a),

Qγtη =

{
taQσj(ω)tω(j,j+m)t

∗
ζ , ηζ = aω(j, j + m)

0, ηζ �= aω(j, j + m)

Now, using the fact that Qσj(ω) = tω(j,j+m)t
∗
ω(j,j+m)Qσj(ω), we obtain that

if Qγtη �= 0,

Qγtη = tηζt
∗
ω(j,j+m)Qσj(ω)tω(j,j+m)t

∗
ζ = tηQζσm+j(ω).

For each fixed η, the map

aσj(ω) �→ ζσm+j(ω), where aω(j,m + j) = ηζ,

is a bijection from {γ ∈ Orbit(ω) : Qγtη �= 0} to {γ̃ ∈ Orbit(ω) : tηQγ̃ �= 0}.
(Surjectivity follows by observing that, given η ∈ Λ and γ̃ = ζσq(ω) with
s(η) = r(ζ), we can take a = ηζ, j = q to construct the preimage γ of γ̃.)

It now follows that, as claimed,

Qtη = tηQ.

Conversely, suppose that {tλ : λ ∈ Λ} is a purely atomic represen-
tation of C∗(Λ) on a separable Hilbert space H such that for every atom
x ∈ Λ∞, P ({x})H is one-dimensional. Let Ω ⊂ Λ∞ be the support of the
associated projection valued measure P on Λ∞. Since H is separable and
since P ({x})H is orthogonal to P ({y})H for x �= y ∈ Ω, we must have that
Ω is countable; let us enumerate Ω = {ωn}∞

n=1. Then
∞∑

n=1

P ({ωn}) = IdH,

where the convergence is in the strong operator topology. For each n ∈ N,
choose a unit vector en ∈ P ({ωn})H. Define ξ ∈ H by

ξ =
∞∑

n=1

en

2n
.

We note that P ({ωn})(ξ) = en

2n . It follows that for each n ∈ N,

en ∈ span{tλt∗λ(ξ) = P (Z(λ)(ξ) : λ ∈ Λ}.

This is due to the fact that for each n ∈ N,

lim
j→∞

tωn(0,j)t
∗
ωn(0,j)(ξ) = lim

j→∞
P (Z(ω(0, j)))(ξ)

= P ({ωn})(ξ) =
en

2n
.

Therefore ξ is a cyclic vector for {tλt∗λ : λ ∈ Λ}, so that this represen-
tation is monic. �
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4. Permutative representations of C∗(Λ)

Here we study permutative representations of C∗(Λ). These are similar, but
not precisely equivalent, to the atomic representations of single-vertex k-
graphs studied by Davidson et al. [21]. In particular, the atomic represen-
tations of [21] permit for a rescaling, in addition to a permutation, of the
basis vectors of the Hilbert space. We refer the reader to that paper and the
references therein for more details.

4.1. Definition and first properties

Definition 4.1. (c.f. Definition 4.9 of [27].) Let Λ be a row-finite k-graph with
no sources. A representation {tλ}λ∈Λ of C∗(Λ) on a Hilbert space H is called
permutative if H has an orthonormal basis {ei : i ∈ I} for some index set I
such that for each λ ∈ Λ there are subsets Jλ and Kλ of I and a bijection
σ̃λ : Jλ → Kλ satisfying
(a) For each n ∈ N

k, ∪λ∈ΛnJλ = ∪λ∈ΛnKλ = I;
(b) For each λ ∈ Λ and ν ∈ s(λ)Λ, we have Kν ⊂ Jλ and σ̃λ ◦ σ̃ν = σ̃λν .

(This implies Jλν = Jν whenever s(λ) = r(ν)).
(c) tλ(ei) = eσ̃λ(i) for i ∈ Jλ, and tλ(ei) = 0, for i /∈ Jλ.
(d) t∗λ(eσ̃λ(i)) = ei for i ∈ Jλ, and t∗λ(ej) = 0 for j ∈ Kλ′ , if λ �= λ′ but

d(λ) = d(λ′).

An attentive reader may notice a similarity between Definition 4.1 and
the definition of a Λ-semibranching function system ( [36] Definition 3.2;
see also Theorem 3.1 of [32] for an equivalent formulation). Intuitively, a Λ-
semibranching function system is a “representation” of C∗(Λ) on a measure
space (X,μ); it consists of a family of partially defined measurable maps
{τλ : Ds(λ) → X}λ∈Λ whose range sets Rλ := τλ(Ds(λ)) satisfy measure-
theoretic analogues of the Cuntz–Krieger relations. We formalize the con-
nection between permutative representations and Λ-semibranching function
systems in Sect. 4.2 below.

We first prove:

Lemma 4.2. Let Λ be a row-finite k-graph with no sources. Let {tλ}λ∈Λ be a
permutative representation of C∗(Λ) on a Hilbert space H, and let {Jλ}λ∈Λ

and {Kλ}λ∈Λ be as in Definition 4.1. For any n ∈ N
k, if λ, λ′ ∈ Λn and

λ �= λ′, then we have Kλ ∩ Kλ′ = ∅.

Proof. We recall if λ, λ′ ∈ Λn then

t∗λ′tλ = δλ′,λts(λ).

So, for λ, λ′ ∈ Λn with λ �= λ′, if there exists j ∈ Kλ ∩ Kλ′ , we could find
i ∈ Jλ with σ̃λ(i) = j, and k ∈ Jλ′ with σ̃λ′(k) = j. But then by definition of
permutative representation, we would have

t∗λ′tλ(ei) = t∗λ′(eσ̃λ(i)) = t∗λ′(ej) = t∗λ′(eσ̃λ′ (k)) = ek �= 0.

But this contradicts the fact that t∗λ′tλ = 0 for λ �= λ′, so we must have
Kλ ∩ Kλ′ = ∅. �
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We define the encoding map E from the index set I into Λ∞ by

E(i)((0, n)) = λ, where λ is the unique element of Λn such that i ∈ Kλ.
(11)

To see that E(i) ∈ Λ∞ is well defined, it suffices to check that if m ≥ n and
λ = E(i)((0, n)), so that i ∈ Kλ, then E(i)((0,m)) = λν for some ν ∈ Λ.
Thus, suppose that m ≥ n ∈ N

k. Write E(i)((0,m)) = μ. Then there exists
a unique j′ ∈ Jμ with σ̃μ(j′) = i ∈ Kμ.

Write μ = λ′ν′ where d(λ′) = n. We will show that λ′ = λ. Since
Jμ = Jλ′ν′ = Jν′ and

σ̃λ′ν′ = σ̃λ′ ◦ σ̃ν′ ,

we obtain i = σ̃λ′(σ̃ν′(j′)) ∈ Kλ′ . Lemma 4.2 now implies that λ = λ′.

Proposition 4.3. Let Λ be a row-finite k-graph with no sources and let I be
an index set associated to a permutative representation {tλ}λ∈Λ of C∗(Λ).
Suppose that E : I → Λ∞ is the encoding map given in (11). Then we have
the following.
(a) For each i ∈ I and n ∈ N

k, there is a unique λ ∈ Λn and in ∈ Jλ ⊂ I
such that σ̃λ(in) = i. Writing σ̃n(i) = in, we have σ̃λ ◦ σ̃n(i) = i for all
i ∈ Kλ, and σ̃n ◦ σ̃λ(i) = i for all i ∈ Jλ.

(b) The map E : I → Λ∞ defined above satisfies

σλ(E(i)) = E(σ̃λ(i)) for i ∈ Jλ, and σn(E(i)) = E(σ̃n(i)) for i ∈ I.

Proof. For (a), notice that for n ∈ N
k, we have I =

⊔
λ∈Λn Kλ, so that fixing

i ∈ I, there is a unique λ ∈ Λn such that i ∈ Kλ. Since σ̃λ is a bijection
from Jλ to Kλ, there is a unique in ∈ Jλ such that σ̃λ(in) = i. Also, by
definition of σ̃n, we have that σ̃λ ◦ σ̃n(i) = σ̃λ(in) = i for i ∈ Kλ, and
similarly σ̃n ◦ σ̃λ(i) = i, for all i ∈ Jλ.

For (b), recall ω ∈ Λ∞ is in the domain of σλ if and only if r(ω) = s(λ).
So recalling that E(i)((0, 0)) is the unique v ∈ Λ0 such that i ∈ Jv, we will
have σλ(E(i)) is defined if and only if s(λ) = E(i)((0, 0)), i.e. i ∈ Js(λ) =
Jr(E(i)).

Recall σ̃λ(i) is defined only when i ∈ Jλ, and that Condition (b) of
Definition 4.1 implies that Jλ = Js(λ) ⊂ I. Also, if i ∈ Jλ, we have σ̃λ(i) ∈ Kλ,
and then

E(σ̃λ(i))((0, d(λ))) = λ.

On the other hand, for any ω ∈ s(λ)Λ∞, we have σλ(ω)(0, d(λ)) = λ. In
particular,

σλ(E(i))((0, d(λ))) = λ.

We thus can see if n′ ∈ N
k and n′ ≤ d(λ),

σλ(E(i))((0, n′)) = E(σ̃λ(i))((0, n′)) = λ(0, n′).

Now suppose m ∈ N
k, m �= n; = d(λ). Let � = m∨n, the coordinatewise

maximum of m and n. Then n ≤ � and m ≤ �. Find n′, m′ ∈ N
k such that

n+n′ = m+m′ = �. Write η := σλ(E(i))((0, �)); by the factorization property,
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we can find λ′, γ, γ′ ∈ Λ with d(λ′) = n′, d(γ) = m, and d(γ′) = m′ such
that η = λλ′ = γγ′. Then

η = σλ(E(i))((0, �)) = σλ(E(i))((0, n + n′)) = λE(i)((0, n′)).

Similarly, E(i)((0, n′)) = λ′ and σλ(E(i))((0,m)) = γ. Now, we observe that

E(σ̃λ(i))((0, �)) = E(σ̃λ(i))((0, n + n′)) = λλ′ = η = γγ = E(σ̃λ(i))((0, m + m)).

To see this, we observe that η is the unique element of Λ� such that σ̃λ(i) ∈
Kη = Kλλ; this follows from the fact that σ̃λ ◦ σ̃λ = σ̃η. In other words,

(σ̃λ(i))((0, �)) = E(σ̃η(i′))((0, �)) = η.

Since η = γγ′ with d(γ) = m, we also have

E(σ̃λ(i))((0,m)) = E(σ̃η(i′))((0,m)) = γ.

It follows that for all m ∈ N
k,

σλ(E(i))((0,m)) = γ = E(σ̃λ(i))((0,m)),

proving the first equality of (b).
From this, we will deduce the second equality. Let i ∈ I, n ∈ N

k,
and suppose that E(i)((0, n)) = λ ∈ Λn. Then setting in = σ̃n(i), we have
in ∈ Jλ, i = σ̃λ ◦ σ̃n(i) = σ̃λ(in) ∈ Kλ. Moreover, the first equality of (b)
gives

σλ(E(in)) = E(σ̃λ(in)).

We now apply σn to both sides of this equation to obtain

σn ◦ σλ ◦ E(in) = σn ◦ E ◦ σ̃λ(in),

and consequently E ◦ σ̃n(i) = σn ◦ E(i). �

When E is injective, we obtain the following corollary.

Corollary 4.4. Let Λ be a row-finite k-graph with no sources. Let {Sλ} be a
permutative representation of C∗(Λ) on a Hilbert space H, and let {ei : i ∈ I}
be the “permuted” basis for H. Let E : I → Λ∞ be the encoding map of
Equation (11). Then if E is one-to-one, the set I can be identified with a
subset of infinite paths Ω := E(I) in Λ∞ and the maps {σ̃λ : λ ∈ Λ} and
{σ̃n : n ∈ N

k} can be identified with the corresponding shifts and coding
maps on the subset E(I) =: Ω of Λ∞.

Proof. Since E is a bijection from I onto Ω ⊂ Λ∞, the map E−1 : Ω → I is
well-defined, and we obtain from Proposition 4.3

E−1 ◦ σλ ◦ E(i) = σ̃λ(i) for i ∈ Jλ, and
E−1 ◦ σn ◦ E(i) = σ̃n(i) for i ∈ I. �
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4.2. Permutative representations and Λ-semibranching function systems

The objective of this section is to prove, in Proposition 4.7, that any permuta-
tive representation of a finite source-free k-graph arises from a Λ-
semibranching function system on a discrete measure space. We begin by
recalling the relevant definitions.

Definition 4.5. [54, Definition 2.1 ] Let (X,μ) be a measure space. Suppose
that, for each 1 ≤ i ≤ N , we have a measurable map σi : Di → X, for some
measurable subsets Di ⊂ X. The family {σi}N

i=1 is a semibranching function
system if the following holds:
(a) Setting Ri = σi(Di), we have

μ(X \ ∪iRi) = 0, μ(Ri ∩ Rj) = 0 for i �= j.

(b) For each i, the Radon–Nikodym derivative

Φσi
=

d(μ ◦ σi)
dμ

satisfies Φσi
> 0, μ-almost everywhere on Di.

A measurable map σ : X → X is called a coding map for the family {σi}N
i=1

if σ ◦ σi(x) = x for all x ∈ Di.

Definition 4.6. [36, Definition 3.2 ] Let Λ be a finite k-graph and let (X,μ) be
a measure space. A Λ-semibranching function system on (X,μ) is a collection
{Dλ}λ∈Λ of measurable subsets of X, together with a family of prefixing maps
{τλ : Dλ → X}λ∈Λ, and a family of coding maps {τm : X → X}m∈Nk , such
that
(a) For each m ∈ N

k, the family {τλ : d(λ) = m} is a semibranching function
system, with coding map τm.

(b) If v ∈ Λ0, then τv = id, and μ(Dv) > 0.
(c) Let Rλ = τλ(Dλ). For each λ ∈ Λ, ν ∈ s(λ)Λ, we have Rν ⊆ Dλ (up to

a set of measure 0), and

τλτν = τλν a.e.

(d) The coding maps satisfy τm ◦ τn = τm+n for any m,n ∈ N
k.

Observe that Condition (c) implies that Dλ = Ds(λ) for any λ ∈ Λ, and
Condition (d) forces the coding maps τn to pairwise commute.

Given a Λ-semibranching function system on (X,μ), Theorem 3.5 of [36]
establishes that the operators {Sλ}λ∈Λ ⊆ B(L2(X,μ)), given by

Sλ(f)(x) =
(
Φλ ◦ τd(λ)

)−1/2

(x) · χRλ
(x) · f(τn(x)),

form a representation of C∗(Λ). For brevity, we call such a representation a
Λ-semibranching representation. Many Λ-semibranching representations are
monic; Theorem 4.5 of [33] establishes that the monic Λ-semibranching rep-
resentations are precisely those whose range sets {Rλ}λ∈Λ generate the σ-
algebra of (X,μ), up to modifications by sets of measure zero.
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Proposition 4.7. Let Λ be a finite, source-free k-graph and {τλ}λ∈Λ a per-
mutative representation of C∗(Λ). Identifying H with �2(I) via the bijection
between I and {ei : i ∈ I} ⊆ H, we can view {tλ}λ∈Λ as a Λ-semibranching
representation.

Proof. In this setting, the domain sets Dλ ⊆ I are given by Jλ and the maps
σ̃λ : Jλ → Kλ are the prefixing maps τλ. The range sets Rλ are therefore
identified with Kλ, and the Radon–Nikodym derivatives are constantly equal
to 1:

Φλ =
|Kλ|
|Jλ| = 1

since σ̃λ is a bijection. Proposition 4.3 describes the coding maps σ̃n of the
Λ-semibranching function system, and straightforward computations reveal
that the conditions of Definition 4.6 are satisfied. Moreover, the associated
Λ-semibranching representation {Sλ}λ∈Λ satisfies

Sλ(ei) = Sλ(χ{i}) =

{
χ{σ̃λ(i)} = eσ̃λ(i), i ∈ Jλ

0, else.

In other words, the Λ-semibranching representation agrees with the permu-
tative representation {tλ}λ∈Λ, as claimed. �

Remark 4.8. It follows from the above Proposition that the faithful sepa-
rable representation discussed in Theorem 5.1 of [32] is also a permutative
representation.

4.3. Decomposition of permutative representations

Theorem 4.10 below is an extension of Theorem 4.13 of [27] from the case
of the Cuntz algebras ON to the much broader setting of higher-rank graph
C∗-algebras. Before stating the Theorem, we recall a classical definition.

Definition 4.9. [51] We say that a k-graph Λ is aperiodic if for each v ∈ Λ0,
there exists x ∈ vΛ∞ such that for all m �= n ∈ N

k we have σm(x) �= σn(x).

Theorem 4.10. Let Λ be a row-finite k-graph with no sources and let {tλ :
λ ∈ Λ} be a purely atomic representation of C∗(Λ) on a Hilbert space H.
If the representation is supported on an orbit of aperiodic paths, then the
representation is permutative. Moreover the representation can be decomposed
into a direct sum of permutative representations with injective encoding maps.

Proof. Let P be the projection valued measure associated to the represen-
tation {tλ : λ ∈ Λ} and suppose it is supported on Ω ⊂ Λ∞, which by our
earlier results can be decomposed into orbits corresponding to a decomposi-
tion of the original representation. So let us assume that our set Ω is equal to
a single orbit of the aperiodic path ω ∈ Ω ⊂ Λ∞. As in the proof of Theorem
4.13 of [27], let {eω,�}�∈J be an orthonormal basis for P ({ω})H for an index
set J .

We know that every point in the orbit of ω is of the form aσj(ω), for
some finite path a and an element j ∈ N

k. Moreover, since ω is an aperi-
odic path, this decomposition is unique. We define an orthonormal basis on
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P ({aσj(ω)})H by {tat∗ω(0,j)eω,� := eaσj(ω),�}�∈J . The results of our previous
sections show that this is indeed an orthonormal basis for P ({aσj(ω)})H.
Since

Ω =
⋃

γ∈Ω

{γ} =
⋃

j∈Nk

⋃

a∈Λ:s(a)=r(σj(ω))

{aσj(ω)},

we have

IdH = P (Ω) =
∑

j∈Nk

∑

a∈Λ:s(a)=r(σj(ω))

P ({aσj(ω)}),

where the sum converges in the strong operator topology. Therefore, an or-
thonormal basis for H is given by
⋃

j∈Nk

⋃

a∈Λ:s(a)=r(σj(ω))

{tat∗ω(0,j)eω,�}�∈J =
⋃

j∈Nk

⋃

a∈Λ:s(a)=r(σj(ω))

{eaσj(ω),�}�∈J .

One easily checks that setting

H� = span
⋃

j∈Nk

⋃

a∈Λ:s(a)=r(σj(ω))

{tat∗ω(0,j)eω,� = eaσj(ω),�} = {eγ,� : γ ∈ Ω},

each H� is an invariant subspace for the representation, and

H =
⊕

�∈J
H�.

Thus, in this case, our index set for the orthonormal basis for H is given by:

I := {(aσj(ω) = γ, �) : γ ∈ Ω, � ∈ J }.
Returning to our notation in Definition 4.1, if a ∈ Λ, we have

Ja = {(γ, �) : � ∈ J , γ ∈ Ω, |s(a) = r(γ)};
Ka = {(γ, �) : � ∈ J , γ ∈ Ω, γ(0, d(a)) = a}.

The maps σ̃a : Ja → Ka are given by

σ̃a((γ, �)) = (aγ, �),

and the coding maps are given by σ̃n(γ, �) = (σn(γ), �). The encoding map
E : I → Λ∞ is then given by

E((γ, �)) = γ.

One easily calculates that the conditions of Definition 4.1 hold. To com-
plete the proof, one observes that restricting the encoding map E to the
basis

I� := {(γ, �) : γ ∈ Ω}
for the subspace H�, results in an injective map. �
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