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1. Introduction

The theme of our paper falls at the crossroads of representation theory and
the study of higher-rank graph C*-algebras. The past two decades have seen
a burst of research dealing with representations of classes of infinite C*-
algebras, which includes the Cuntz algebras and many Cuntz—Krieger alge-
bras, as well as C*-algebras associated to directed graphs and higher-rank
graphs.

Classical results such as J. Glimm’s pioneering paper [39] indicate that,
despite their broad applicability, the representations of purely infinite C*-
algebras (such as the Cuntz algebras as well as many k-graph C*-algebras)
do not admit a Borel cross-section and hence cannot be completely described.
Researchers are consequently led to study specific families of representations
of these purely infinite C*-algebras. For example, the purely atomic and per-
mutative representations of the Cuntz algebras (introduced in [27] by the
third named author, together with D. Dutkay and J. Haussermann) have
deep connections to invariant subspace theory. Kawamura and his collabora-
tors have also identified applications of permutative representations of Cuntz
algebras to particle physics [47-50]. Purely atomic and permutative represen-
tations of Cuntz algebras also appear frequently in connection with wavelets
and Walsh bases [28,29,52], and in applications to quantum statistical me-
chanics as finitely correlated states [13,16,30,31,53,55].

Higher-rank graphs (also called k-graphs) were introduced by Kumjian
and Pask in [51] in order to broaden the class of C*-algebras which can be
studied by the combinatorial methods that had proved so fruitful in the study
of Cuntz—Krieger algebras and graph C*-algebras (cf. [8,23,43,59]). Like
their cousins the Cuntz and Cuntz—Krieger algebras, k-graph C*-algebras
admit both a graphical and a groupoid model, as well as a description in
terms of generators and relations. In addition to their importance to C*-
algebraic questions, such as Elliott’s classification program [56,60], recent
research has uncovered applications of k-graph C*-algebras and their repre-
sentations in both pure and applied mathematics, ranging from the study
of spectral triples [34,35] and of KMS states [4-7], in the pure end of the
spectrum, to a long and diverse list of other applications: branching laws
for endomorphisms [1,32,36,40,41,47], subshifts [57], endomorphisms from
measurable partitions [12,17,18], Markov measures and topological Markov
chains [2,11,26], wavelets and multiresolutions [3,37,54], signal processing
and filters, iterated function systems (IFS) and fractals [14,15,24,25,44-46],
complex projective spaces, quasi-crystals, orbit equivalence and substitution
dynamical systems and tiling systems [9,10].

Motivated by the applications indicated in the preceding paragraphs,
this paper develops the theory of purely atomic and permutative represen-
tations for the C*-algebras associated to row-finite source-free higher-rank
graphs. Compared with that of the Cuntz and Cuntz—Krieger algebras, the
representation theory of k-graph C*-algebras is still in its infancy. Repre-
sentations of C*-algebras associated to k-graphs with a single vertex are
investigated systematically in [20-22,61]. Indeed, the representations labeled
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“atomic” by these authors are similar, but not precisely equivalent, to what
we call “permutative” representations (see Sect. 4). Similar types of rep-
resentations of free semigroup algebras, which include Cuntz algebras and
Toeplitz algebras, have been studied in [19] in terms of invariant subspaces.
More recently, four of the authors of the present paper introduced the tech-
nology of A-semibranching function systems for finite k-graphs A in [36],
which enable the construction of representations of C*(A) on Lebesgue mea-
sure spaces L?(X, ). Further examples of such representations can be found
in [32,33,37]; see also [41] for A-semibranching function systems in a broader
context.

In this paper, in addition to developing the theory of purely atomic and
permutative representations of row-finite higher-rank graphs with no sources,
we analyze the relationship between these representations and the monic rep-
resentations studied in [33]. Although the present paper was motivated by the
analysis of atomic and permutative representations of Cuntz algebras carried
out in [27], we emphasize that due to the major structural differences between
Cuntz algebras and k-graph C*-algebras, the link between our work below
and [27] is more conceptual than technical. For example, the Sf-invariant
subspaces, which were a central technical tool in [27], have no clear analogue
in the k-graph setting. Indeed, we have been very pleasantly surprised by the
number of results from [27] which have analogues in the present setting of
higher-rank graphs, given the technical divergence between the two papers.

This paper is organized as follows. We briefly review background mate-
rial including higher-rank graphs A, their C*-algebras C*(A) and the projec-
tion valued measures associated to the representations of C*(A) in Sect. 2.
Any representation 7 of C*(A) in B(H) induces a projection valued mea-
sure P, defined on the infinite path space A* of A and taking values in
Proj(H); see Sect. 2.2 for details. These projection valued measures are a
central tool in our study of purely atomic representations of C*(A), which we
begin in Sect. 3. Central results from this section include our characterization
of purely atomic representations in terms of certain subsets {Orbit(w)} of the
infinite path space of A which are invariant under the canonical prefixing and
coding maps oy, 0™ from Definition 2.1. These invariant subsets correspond
to invariant subspaces of the Hilbert space on which C*(A) is represented.
In particular, Proposition 3.8 shows that if an irreducible representation of
C*(A) admits a single atom w, the representation is purely atomic. We sub-
sequently show in Theorem 3.9 that two purely atomic representations are
unitarily equivalent if and only if the corresponding projection valued mea-
sures P and P have the same support, and the ranges of P(w) and P(w), for
each atom w, have the same dimension. Proposition 3.10 identifies when two
purely atomic representations are disjoint and when a purely atomic represen-
tation is irreducible. Finally, we give necessary and sufficient conditions for a
purely atomic representation to be a monic representation in Theorem 3.12.

In Sect. 4, we define a permutative representation of C*(A) (Defini-
tion 4.1) and investigate the conditions under which a purely atomic repre-
sentation is permutative (Theorem 4.10). As already mentioned, permutative
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representations are related to the atomic representations of [21], but Propo-
sition 4.7 shows that they can also be realized as A-semibranching represen-
tations associated to a countable discrete measure space. In Theorem 4.10
(the main theorem of the last section), we show that a purely atomic rep-
resentation is permutative if it is supported on an orbit of aperiodic paths,
and we show that the representation can be decomposed into a direct sum of
permutative representations with injective encoding maps.

2. Background

2.1. Higher-rank graphs
We will now describe briefly higher-rank graphs and their C*-algebras, which
were introduced by Kumjian and Pask [51].

Let N ={0,1,2,...} denote the set of natural numbers and let k € N
with k& > 1. We write ey, ...e; for the standard basis vectors of N¥, where
e; is the vector of N¥ with 1 in the i-th position and 0 everywhere else. We
view N¥ as a category with one object (namely 0) and with composition of
morphisms given by addition.

Throughout this paper, for any category A, the notation A € A will
indicate that A is a morphism of A. Note that this is consistent with the
above description of N* as a category and the standard use of the notation
n € NF.

A countable small category A with a degree functor d : A — NF is a
higher-rank graph or k-graph if it satisfies the factorization property: for any
morphism A € A and any m,n € N¥ such that d(\) = m +n € N¥, there
exist unique morphisms p,v € A such that A = pv and d(p) = m, d(v) = n.

We often regard k-graphs as a generalization of directed graphs, so we
call morphisms A\ € A paths in A, and the objects (identity morphisms) are
often called vertices. For n € N*, we write

A":={A €A : d(\) =n}. (1)

With this notation, note that A is the set of objects (vertices) of A. Occa-
sionally, we call elements of A% (for any i) edges.

We write r, s : A — A° for the range and source maps in A respectively.
For vertices v, w € A°,

vAw:={Ae A : r(\) =v, s(A) =w}.
Combining this notational convention with that of Eq. (1) gives, e.g.,
vA" :={A e A:r(N\) =0, d(N\) =n}.

For m,n € N*, we write m V n for the coordinatewise maximum of m
and n. Given \,n € A, we write

AN ) = {(a, B) €A X A : da =18, dha) =d\) Vdn)}. (2)

If k = 1, then A™®(), ) will have at most one element; this need not be true
in a k-graph if £ > 1.
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We say that a k-graph A is finite if A" is a finite set for all n € N¥
and say that A has no sources or is source-free if vA™ # () for all v € A° and
n € NF. It is well known that this is equivalent to the condition that vA® # ()
for all v € A and all basis vectors e; of N¥. We say that A is row-finite if
[vA"| < oo for all v € A® and n € N*¥. We say that a k-graph is strongly
connected if, for all v,w € A°, vAw # 0.

To describe the infinite path space A of a k-graph, we introduce the
fundamental example €2 as follows. For k > 1, let Q; be the small category
with

Obj(%) =N*¥ and  Mor(Q) = {(p,q) € N* x N* : p < ¢}.

Again, we can also view elements of Obj(Q) as identity morphisms, via
the map Obj(Qx) > p — (p,p) € Mor(Q). The range and source maps
r,s : Mor(2,) — Obj(Qy) are given by r(p,q) = p and s(p,q) = ¢q. If we
define d : Q, — NP by d(p,q) = ¢ — p, then one can check that €, is a
k-graph with degree functor d.

Definition 2.1 ([51] Definitions 2.1). Let A be a k-graph. An infinite path in
A is a k-graph morphism (degree-preserving functor) = : Q; — A, and we
write A°° for the set of infinite paths in A. Since 2; has a terminal object
(namely 0 € N¥) but no initial object, we think of our infinite paths as having
a range 7(x) := z(0) but no source. For each m € N*¥, we have a shift map
o™ : A — A given by

o™ (z)(p,q) = z(p+m,q+m) (3)

for x € A* and (p, q) € Q). We also have a partially defined “prefixing map”
o S(A)A® — A for each A € A:

ox(z) = Az. (4)

Observe that, since x : Q — A is degree preserving and 2 contains infinitely
many edges of each degree e; € N*, the same must be true of any infinite
path x € \*°.

Remark 2.2. We now describe an alternative perspective on higher-rank
graphs, which motivates their description as generalizations of directed
graphs. Let G be an edge-colored directed graph with k& different colors of
edges, and define an additive map d : Path(G) — NF by sending an edge e
of color i, 1 < i < k, to d(e) = e¢; € N¥. For the rest of this discussion, let
“red” and “blue” denote different but arbitrary colors appearing in G.

Suppose that, for every pair of vertices v, w € G°, the number of paths
from v to w which consist of a red edge followed by a blue edge is the same as
the number of paths from v to w consisting of a blue edge followed by a red
edge. Then we can “pair up” these paths and define Ag to be the quotient
of G which arises from identifying these commuting squares.
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Hazlewood et al. proved in [42] that A is in fact a k-graph, as long as every
path in G consisting of 3 edges of different colors determines a well-defined
“commuting cube” in Ag.

Thus, an edge-colored directed graph with k different colors of edges,
and the same number of blue-red paths as red—blue paths between each pair
of vertices, gives rise to a k-graph once we specify the pairing between the
red—blue and blue-red paths. By abuse of notation we will occasionally use
the phrase “factorization rule” to denote this pairing.

In this perspective, one can view each infinite path x € A¥ as the
equivalence class of a composable sequence of edges = fifa -+ in G, such
that each of the k possible edge colors occurs infinitely often.

It is well-known that the collection of cylinder sets
Z(A) ={x e A® : z(0,d(\)) = A},

for A € A, form a compact open basis for a locally compact Hausdorff topology
on A, under reasonable hypotheses on A (in particular, when A is row-finite:
see Section 2 of [51]). If a k-graph A is finite, then A® is compact in this
topology.

Given w € A, its orbit Orbit(w) C A is defined by

Orbit(w) = {y € A : there are m,¢ € N* such that ¢™(v) = of(w)}.

We note that Orbit(w) is invariant under o™ [defined in Eq. (3)] and
(o™)~t, for all n € N*. Note also that each orbit is a Borel set, being a
countable union of points (which are countable intersections of cylinder sets).

Now we introduce the C*-algebra associated to a k-graph A. Here we
only consider row-finite k-graphs with no sources. For C*-algebras associated
to more general k-graphs, see for example [38,58].

Definition 2.3. Let A be a row-finite k-graph with no sources. A Cuntz—
Krieger A-family is a collection {t) : A € A} of partial isometries in a C*-
algebra satisfying

(CK1) {t, : v € A°} is a family of mutually orthogonal projections,

(CK2) tat, = txy if s(X) =7(n),

(CK3) t3t\ = ty(n) for all A € A,

(CK4) for all v € A and n € N¥| we have

> s
AEVA™

The Cuntz—Krieger C*-algebra C*(A) associated to A is the universal C*-
algebra generated by a Cuntz—Krieger A-family.

Thus, every Cuntz—Krieger A-family induces a representation of C*(A);
we will often use the same notation, {¢)}xen, for the representation as for its
Cuntz—Krieger A family {s) : A € A}.

One can show that

C*(A) = span{s,sj @ a,B € A, s(a) =s(8)}.
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Indeed, (CK4) implies that for all A,n € A, we have
S35y = Z SaSj- (5)

(e, B)EA™In(X,n)

2.2. Projection valued measures
Inspired by Dutkay et al. [26,27], here we review the projection valued mea-
sure associated to a representation of C*(A), which was developed in [33].
See also [33].

Let A be a row-finite k-graph with no sources. Given a representation
{tx}rea of a k-graph C*-algebra C*(A) on a Hilbert space H, we define a
projection valued function P on A*° by

P(Z(N\)) =txty forall A € A (6)

According to Proposition 3.9 of [33], the above function P can be ex-
tended to a projection valued measure on the Borel o-algebra B,(A°) gen-
erated by the cylinder sets. The proof relies on the Kolmogorov extension
theorem.

Theorem 2.4. [33, Proposition 3.9] Let A be a row-finite k-graph with no
sources. Given a representation {tx}xen of a k-graph C*-algebra C*(A) on a
Hilbert space H, then the assignment

P(Z(N) =txty for AeA

extends to a projection valued measure on the Borel o-algebra B,(A>) gen-
erated by the cylinder sets of the infinite path space A®°.

We now summarize some properties of the projection valued measure P
on A established in [33].

Proposition 2.5. [33, Proposition 2.13] Let A be a row-finite, source-free k-
graph, and fix a representation {ty : A € A} of C*(A). Then:
(a) For A,n € A with s(\) = r(n), we have tyP(Z(n))ts = P(ox(Z(n))),
where oy is the prefizing map on A given in Eq. (4).
(b) For any fized n € N¥, we have

Y WPy (Zm)ts = P(Z(0));
Xer(n)An
(c) For any \,n € A with r(\) = r(n), we have t\P(cy'(Z(n))) =
P(Z(n)tx;
(d) When A € A", we have t\P(Z(n)) = P((6™)"1(Z(n)))tr, where o™ is
defined in Eq. (3).

3. Purely atomic representations of C*(A)

In this section, we define purely atomic representations of C*(A) in terms
of the projection valued measure being purely atomic (cf. Definition 4.1 of
[27]). While many of the results in this section were inspired by similar results
established in [27] for Cuntz algebras, our proofs in the setting of higher-rank
graphs have required new techniques.
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Definition 3.1. (c.f. Definition 4.1 of [27].) Let A be a row-finite k-graph with
no sources. A representation {t)}xea of C*(A) on a Hilbert space H is called
purely atomic if there exists a Borel subset €2 C A* such that the projection
valued measure P defined on the Borel sets of A as in Theorem 2.4 satisfies

(a) P(AX\Q) = Or,

(b) P({w}) # 0y for all w € Q,

(©) BueqPHw}) = Idxn,
where the sum on the left-hand side of (c) converges in the strong operator
topology.

The points in Q C A are called atoms. They are characterized by the

fact that P({w}) is a non-zero projection.

Thus, a representation of C*(A) is purely atomic if the corresponding

projective-valued measure is purely atomic on the Borel o-algebra B,(A>)
of A*>.

Ezxample 3.2. Consider the 2-graph A associated to the edge-colored directed

graph
h
e Gu \A\’\ \‘\; UO f
9

whose factorization rules are given by eh = hf and fg = ge. With these
factorization rules, there is only one infinite path x € uA®°, namely

x=cehfgehfg---= hfgehfge--- = hgeehgee....
Similarly, one can see that there is only one infinite path y € vA°°, namely

y = fgehfgeh---=gehfgehf---=ghffghff....

In other words, A®® = {z,y}. Since A is finite, any nontrivial representation
of C*(A) with the associated projection-valued measure P and 2 satisfies
the conditions (a), (b) and (¢) of Definition 3.1, and hence it must be purely
atomic.

3.1. Characterizations of purely atomic representations
To arrive at Theorem 3.9, which characterizes unitarily equivalent purely
atomic representations as having projection valued measure with equal sup-
port and ranges, we start with the following proposition.

Proposition 3.3. Let A be a row-finite k-graph with no sources, and let {tx}rea
generate a purely atomic representation of C*(A). Let P be the associated
projection valued measure on the Borel subsets of the infinite path space A°.
Then we have the following.

(a) For A€ A and w € Z(s(N\)) C A, we have
taP{whix = P({Aw}),
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and for n € N¥ we have
o om PUD a0 = PUO™ @),
(b) Forne A™ and w € A® with n # w(0,n), we have
tyP({w})t, = 0.

Proof. These statements follow from taking the limit in the strong operator
topology on a nested sequence of cylinder sets decreasing to {w} and using
Proposition 2.5(a). O

The following Corollary is an immediate consequence of Proposition 3.3
and our observations above.

Corollary 3.4. Let A be a row-finite, source-free k-graph and let {tx}rea be
a representation of C*(A).

(a) If Orbit(w) = Orbit(y) then P{w}) =0 iff P({~}) = 0.
(b) For any purely atomic representation {tx}rea, define the support Q =
supp(P) of {tx}xea by
Q= supp(P) = {w € A* : P({w}) # 0}.
We can decompose Q2 as a disjoint union of orbits: Q = | |, Orbit(w). In
particular,

B P(Orbit(w)) = Idy.

weN

Remark 3.5. It follows from Proposition 3.3 that the subspace P(Orbit(w)) C
H is invariant for the representation {t)}aca in the sense of [27].

Ezample 3.6. (cf. [51, Proposition 2.11]) Recall that for a row-finite, source-
free k-graph A, the infinite path representation of C*(A) first given by A.
Kumjian and D. Pask via the partial isometries {S) : A € A} on the non-
separable Hilbert space ¢2(A>°) with orthonormal basis {h, : w € A®} is
given by

S)\(hw) = 5s(>\),r(w)h>\wa and S;hw = 6)\7w(07d(>\))ho.d()\)(w).
One can check that this representation is purely atomic. Indeed, for all w €
A,
P({w}> = nlglillk Sw(O,n)Sw(()’n) = Pspan he -
Here the limit is taken in the strong operator topology. This is a standard

example to keep in mind when considering both purely atomic representations
and the permutative representations which we discuss in Sect. 4 below.

We now show that any intertwiner of purely atomic representations of
a k-graph algebra intertwines the associated projection valued measures.

Proposition 3.7. Let A be a row-finite k-graph with no sources, and let {tx} xen
and {tx}ren be two purely atomic representations of C*(A) on the Hilbert
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spaces H and H’', respectively. Suppose that U : H — H' is an intertwining
operator for these representations, so that

t\U =Uty and (£,)*U =Uts forall A€ A.
Let P and P be the associated projection valued measures on B(A>®) with
respect to {tx}, {tr}. Then for every w € A,
P({whU = UP({w}).
Moreover, if U is a unitary operator so that the representations are unitarily

equivalent, then the supports of P and P are the same.

Proof. Since U intertwines the representations, we see that for every A € A,
P(Z(\)U = tx(£0)*U = Utaty = UP(Z(N)).

Therefore U intertwines the projection valued measures on all Borel subsets
in A% including the point sets. It follows that if U is unitary, then for every
w € A we have

P({w}) = UP{w})U",
so that dimP({w}) = dimP({w}) for all w € A, and hence supp(P) =
supp(P). O
We now derive some straightforward consequences of Corollary 3.4.

Proposition 3.8. Suppose that an irreducible representation {tx}rea of C*(A)
has an atom w. Then {tx}rea is purely atomic and the associated projection
valued measure is supported on Orbit(w).

Proof. Let {tx} be an irreducible representation of C*(A) with an atom w €
A°°. We first observe that for any x € A,

o, v & Z(A)
P({z})tn = {tAP({Ud(’\) (2)}), z€Z(N).

This follows from writing P({z}) = lim{t, t; : 2 € Z(n,)}, with n, =
z(0,n), and observing that if d(n) > d()), then

o=\

ity = Z ppr = e TP

K 4 P 0 else.
(p,v)EA™in(n,X) ’

Therefore, if z ¢ Z(\) then we can find Z(n) that contains = with d(n) > d(X)
and such that 7 does not extend \. Consequently, if we set

P= Y P}
xZOrbit(w)
(where the limit defining the sum is taken in the strong operator topology),
then Pty = tx 32, cz000\0rbit(w) P({c?%XM(x)}). Moreover, P is a projection
since P({z})P({y}) = 0 for = # y.
On the other hand,

tAP =ty > P({y}).

{ygOrbit(w):r(y)=s(A)}
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}Slince {y & Orbit(w) : r(y) = s(\)} = {o¥ X (2) : z € Z(\)\Orbit(w)}, we

ty\P = Pty

for any A € A. Our assumption that {t»}, is irreducible now implies that
P must be a multiple of the identity. However, P < 1 since w is an atom,
so we must have P = 0. (When A® has only one point, P = 1 on the
atom, and hence {t)}xea is purely atomic). Corollary 3.4 now implies that
P({z}) # 0 for every & € Orbit(w), completing the proof that {t)}rea is
purely atomic. O

The following result was inspired by Corollary 4.8 of [27], but the tech-
nical details are much more intricate in the setting of higher-rank graphs.

Theorem 3.9. For a row-finite, source-free k-graph A, let {tx}xea, {Tx}ren
generate purely atomic representations of C*(A), with associated projection
valued measures P, P. Then the two representations are unitarily equivalent
if and only if the following conditions are satisfied:

(a) supp(P) = supp(P) =: €; i
(b) For every x € Q, dim[Range(P({x}))] = dim[Range(P({z}))].

Proof. Suppose that the purely atomic representations {tx}ea, {t)}rea on
the same Hilbert space H are unitarily equivalent. Proposition 3.7 then im-
plies that P, P have the same support €2, and moreover that the intertwining
unitary takes P({w}) to P({w}) for every w € Q.

Now, suppose that conditions (a) and (b) hold; we will show that the
representations {t)}xea and {fx}rea of C*(A) are unitarily equivalent.

Without loss of generality, we suppose that our representations are ir-
reducible, so that  consists of a single orbit, 2 = Orbit(w). Since

dim[Range(P({w}))] = dim[Range(P({w}))]

by hypothesis, there is a unitary isomorphism U, : Range(P({w})) —
Range(P({w})), since Hilbert spaces of the same dimension are isomorphic.
For every v € Q = Orbit(w), we now construct a unitary U, : Range
(P({7})) — Range(P({7})) as follows. If v € Orbit(w) C A satisfies

v = ao’ (w) for some a € A, we would like to define U, : Range(P({v})) —
Range(P({~})) by

Uy = tall o ) Ustwogte: (7)
We must check that U, is well-defined and unitary, and that

v= € U

Y€OTbit(w)

intertwines the representations.

To see that U, is well-defined, suppose that v = ac’(w) = a’07' (). Fix
¢ € H and e > 0. Since the projections P(Z(w(0,n)) tend to P({w}) in the
strong operator topology, it is possible to find Ny € N (depending on £ € H
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and € > 0) such that, if we write 1 = (1,...1) € N*, then N;1 > 7,5’ and
whenever N > Ny,

[P({w})two,j)ta(§) — P(Z(w(0, N1))tu0,5ta(§) <e. (8)
Write A = aw(j, N1). Note that v(0, N1) = A and
tw(o, N1 o0, N1 tw(0.)ta = tuo. N1t N te = two.N1)tA-
Consequently, (8) implies that for N > Np, we have
[ P{w})tw0.5)ta(€) = tuonnta(§)ll <e 9)
and
Ustwo,n1)t4(8) — Us P{w})tu (o, ts (6]
= I0stwo,niytognnta(§) — U PHwh)tuo,nta (€l
= [Ustuo,n1)to0, N1y tw(0,5)ta(§) — U P({w})) 0.5 ta @)l
= |UsP(Z(w(0, N1)))ty0,5)ta(§) — UuPEw))tuopta @l <e.

In the same way, we can find Ny large enough so that for the same £ € 'H
and the same € > 0, for all N > Ny,

1P{w ) Ustuojte(€) = P(Z(w(0, N1)Ustuopta(©) < e
Then, since t, and Ew(O,j) are partial isometries,
||£at~:;(0,j)p({w})thw(O,j)tZ(g) - EaEZJ(OJ)p(Z(w(OvNl)))thw(O,j)tZ(f)” <e.
We now write, for N > Na,
tatio0.5y P(Z(@(0, N1)))Ustoo(o gyt = ta 5 ©(0,5) w(O NN Ustuwogte
tw(iND (0,81 Ut ta

(‘Fz

= EA Z(O,N1)thw(07j)ta'
Therefore for N > Ny we have
Fafo ) PUD Ut (€) — Eafio s Vst (Ol <= (10)
Since U, P({w}) = U,, and P({w})U, = U, Eqs. (10) and (9) combine
to give
||t~at~:(0,j)thw(o,j)t:;(f) tat;, 0.8 UstwoN-1ta (€] < 2¢
whenever N > max{Ny, Nao}.
In the same way, for the same ¢ > 0 and £ € H, we can find M’ € N
(depending on o', j', and £ € H) such that for any N’ > M’, setting A’ =
'w(j’,N'1), we have v(0, N') = A" and
||t~a’£:z(0,j/)thw(o,j/)t:/ & - fA’EZ(o,Nq)thw(O,N’-l)tZ' I < 2e.
Choosing N = N’ > max{M’, Ni, N2} implies that A = ~(0,N1) = A’.
Thus,
HEGEZ(OJ)thw(O,j)t:(g) - a’tw(OJ YUaluw(o,jnta (§)] < 4e.
Since ¢ and ¢ were arbitrary, it follows that if v = ac? (w) = /07" (w),

EGEZ(OJ)thw(Q’j)tZ — Ea’f:(o,j/)thw(OJ’)tZ' .
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Thus, the operator U, : Range(P({7})) — Range(P({})) of Eq. (7) is well-
defined.
Now we want to show that U, is unitary. Since U, is a unitary and

hence UjU, = P({w}), using the facts that P{whU, = U, and P({w})
P(Z(w(0,7))) = P({w}), one easily computes that UsU, = t,t;
P{whtuo.ita-

We now note that for v = ao’(w), t takes Range(P({y})) to

Range(P ({07 (w)})) and ¢, ;) takes Range(P({o? (w)})) to Range(P({w})).
Recalling that U, = U,P({v}), we deduce that

USUy = tatio twoitaP({7}) = tata P{7})
= P(Z(a))P({~}) = P({2})-
Similarly, one can show that
U,U; = P({3)).

which implies that U, is unitary from its domain to its range.
To show that U = @Veorbit(w) U, intertwines the representations, we

must establish that for A € A with s(\) = r(w),
t\Us = Unota.
By our construction of Uy, if s(A) = r(w),

Uyotr = E)\thit)\.

w(0,5)

Using the fact that ¢y is an isometry and that
Us = UuP({w}) = Uu P{w})P(Z(w(0, )
for any n € N*, we obtain
LU tts = UL P(Z(s(N)) = tAULP(Z(r(w))) = t\U..

Therefore we see that

U= @ U,: @ Range(P({1})—~ P Range(P({1}))

v€ Orbit(w) ~v€ Orbit(w) ~vy€ Orbit(w)

is a unitary operator that intertwines the representations {t, : A € A} and
{t,\ TN E A} O

Recall that two representations 7, 7’ of a C*-algebra A are disjoint if no
nonzero subrepresentation of 7 is unitarily equivalent to a subrepresentation
of 7'

The following proposition shows that different orbits support disjoint
representations. It also characterizes the intertwiners of those purely atomic
representations which are supported on the same orbit, and shows when a
purely atomic representation is irreducible.

Proposition 3.10. For a row-finite, source-free k-graph A, let {t\}xea, {tx}ren
generate purely atomic representations of C*(A), with associated projection
valued measures P,P. Suppose that P,P are supported on Orbit(vy) and
Orbit(w) respectively, for some y,w € A>°.

(a) If Orbit(y) # Orbit(w) then the representations are disjoint.
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(b) If Orbit(v) = Orbit(w), then the operators X : H — H which intertwine
the representations {tx}xea (on M) and {tx}rea (on M) are in bijective
correspondence with operators Y,, : Range(P({w})) — Range(P({w})),
via the formula

Y, = P{wh X P({w}).

Y., : Range(P({w})) — Range(P({w})).
(¢c) The representation {tx}ren @s irreducible if and only if
dim[Range(P({w}))] = 1.

Proof. To see (a), note that under our hypotheses, neither {,}x nor {fy}x
has nontrivial subrepresentations; therefore Theorem 3.9 implies (a). For (b),
given an operator X : H — H’ which intertwines the representations, the
operator Y, := P({w})XP({w}) is evidently a well-defined operator from
Range(P({w})) to Range(P({w})). On the other hand, given an operator
Y,, : Range(P({w})) — Range(P({w})), we can define X : H — H by setting

X|Range(P({v}) = talis(o.) Yotw.i)ta

whenever v = ao?(w) € Orbit(w). Arguments analogous to those employed
in the proof of Theorem 3.9 will show that X is well defined; we omit the
details.

For (c), let H = Range P({w}), and H = Range P({w}). Recall from
Theorem 3.9 above that if H and H have the same dimension, any unitary
U, € U(H,H) can be used to construct an intertwiner

D v @ RagePir) - P RangeP(}).

~v€ Orbit(w) ~v€ Orbit(w) ~v€ Orbit(w)

In the same way, if T, is a finite linear combination of unitary elements in
B(H) = B(Range P({w})), defining for v = ao’(w) the bounded operator

Ty = tat} o, Twtuw(o.h)tas

Theorem 3.9 shows us that T, is well-defined and that

D 7 P RagePh) - P RangeP(ir))

~v€ Orbit(w) ~v€ Orbit(w) ~v€ Orbit(w)

intertwines the representation {ty}xca with itself.

Consequently, the set of intertwiners between {¢y }xea and itself contains
the span of the unitary elements in B(H) = B(Range P({w})). However, by
Russo-Dye’s Theorem, the closure of the span of the unitary elements in
B(H) is exactly B(H). By Schur’s Lemma, our representation is irreducible
if and only if the self-intertwiners of {¢)}xea consist solely of scalar multiples
of the identity. But by our preceding construction, we see that this happens if
and only if the dimension of H = Range P({w}) is equal to 1, as desired. [
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3.2. Purely atomic representations versus monic representations

We now discuss the relation between purely atomic representations and monic
representations.

Recall first (cf. [33, Definition 4.1]) that a representation {t) : A € A}
of a finite source-free k-graph on a Hilbert space H is called monic if t) # 0
for all A € A, and there exists a vector £ € ‘H such that

spany e {tAt3E} = H.

According to Theorem 4.2 of [33], for a finite source-free k-graph A, ev-
ery monic representations of C*(A) is unitarily equivalent to a representation
of C*(A) on L?(A*, ) for some Borel measure y. The next theorem proves
that a purely atomic representation of C*(A) is monic if and only if for every
atom x € A, P({z}) is one-dimensional.

Remark 3.11. Since L2(A°°, i) is separable for any measure u associated to
a monic representation, in the setting of Theorem 3.12 we conclude that the
set of atoms for p must be countable.

Theorem 3.12. Let A be a finite k-graph with no sources. Let {t) : A € A}
be a purely atomic representation of C*(A) on a separable Hilbert space H.
Suppose that txty # 0 for all A € A. Then the representation is monic if
and only if for every atom x € A>*, P({z}) is one-dimensional. Moreover,
in this case the associated measure | arising from the monic representation
18 atomic.

Proof. Suppose that the given purely atomic representation {t) : A € A} on
H is monic, with cyclic vector & for {txt} } xea. Then by Theorem 4.2 of [33] we
can assume that H is of the form L?(A*°, i), where the measure u is given
by the projection valued measure P determined by the representation, i.e.
w(Z(N) = (P(Z(N)E,€) = ||t3¢&]|* for A € A. Since {tx}, is purely atomic,
p({w}) = [|P({w})€]? is nonzero iff w € Q. In other words, the atoms of p
are precisely the atoms of P.

To show that P({w}) is always a rank-one projection for an atom w,
we argue by contradiction. Suppose that there exists w € A and a strict
subprojection Q,, < P({w}) with Q, # P({w}). For any v = ac’/(w) €
Orbit(w), write

Q’Y = tatj;(o,j)thw(O,j)t:';v

and set @ = D, corit(w) @

The fact that the projections P({v}) are mutually orthogonal implies
that @ is indeed a sum of orthogonal projections. Moreover, Proposition 3.3
implies that each summand @, is a strict subprojection of P({~}).

We will show that ¢,Q = Qt, for all n € A. Since {t)}rca is monic by
assumption, Theorem 3.13 and Theorem 4.2 of [33] will then imply that Q
must be a multiplication operator, which contradicts the fact that each @,
is a strict subprojection of P({7v}).
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Fix n € A and v = ao’(w). As in the proof of Proposition 2.5,
Qnty = tatlo ) Qutwoptotn = Y. tath ;) Qulutets-
(p,C) €A™ (a,n)
By Proposition 3.3, t:(o j)Qw w(0,) = Qoi(w) = ng(w)P(Z(w(j,j +d(p)))),
and &7, .1 g, e = 0 unless p = w(4,7 + d(p)). Thus, the sum collapses to
(at most) a single term: Writing m = d(p) = d(a) V d(n) — d(a),

0.t = { 0Qosytuigtmtls 16 = aw(j,j +m)
0, n¢ # aw(j, j +m)
Now, using the fact that Qi) = tw(j,j+m)tZ(j,j+m)on(w), we obtain that
if Q,t, # 0,
Qyty = tncty (s j4m) Qo @) tw(ij+m)te = tnQcom+i(w)-

For each fixed 7, the map

aod (W) = Co™(w),  where aw(j,m + j) = nC,
is a bijection from {vy € Orbit(w) : Q,t, # 0} to {¥ € Orbit(w) : t,Q5 # 0}.
(Surjectivity follows by observing that, given n € A and ¥ = (o%(w) with

s(n) = r({), we can take a = n¢, j = ¢ to construct the preimage ~ of 7.)
It now follows that, as claimed,

Qt, =1,Q.

Conversely, suppose that {tx : A\ € A} is a purely atomic represen-
tation of C*(A) on a separable Hilbert space H such that for every atom
x € A, P({z})H is one-dimensional. Let Q@ C A be the support of the
associated projection valued measure P on A®°. Since H is separable and
since P({z})H is orthogonal to P({y})H for = # y € Q, we must have that
Q) is countable; let us enumerate Q = {w, }52 ;. Then

> P(fwn}) = Idx,

where the convergence is in the strong operator topology. For each n € N,
choose a unit vector e,, € P({w,})H. Define £ € H by

=2 5

We note that P({wy})(§) = 5&. It follows that for each n € N,
en € span{tts(§) = P(Z(N)(&) : A€ A}.
This is due to the fact that for each n € N,

lim tw,L(O,j)th(O,j)(g) = ]E,rgc P(Z(w(0,4)))(§)
€n

= P({wa})(©) = 2.

Therefore ¢ is a cyclic vector for {txt5 : A € A}, so that this represen-
tation is monic. O
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4. Permutative representations of C*(A)

Here we study permutative representations of C*(A). These are similar, but
not precisely equivalent, to the atomic representations of single-vertex k-
graphs studied by Davidson et al. [21]. In particular, the atomic represen-
tations of [21] permit for a rescaling, in addition to a permutation, of the
basis vectors of the Hilbert space. We refer the reader to that paper and the
references therein for more details.

4.1. Definition and first properties
Definition 4.1. (c.f. Definition 4.9 of [27].) Let A be a row-finite k-graph with
no sources. A representation {tx}xrea of C*(A) on a Hilbert space H is called
permutative if H has an orthonormal basis {e; : ¢ € I'} for some index set I
such that for each A € A there are subsets Jy and K of I and a bijection
o : Jy — K satisfying
(a) For each n € N¥ UyeanJy = Urean Ky = I;
(b) For each A € A and v € s(A\)A, we have K, C Jy and Gy 05, = Fp.
(This implies Jy, = J, whenever s(\) = r(v)).
(c) tales) = ez, (i) for i € Jy, and tx(e;) = 0, for i ¢ Jy.
(d) t3(es,(i)) = ei for i € Jy, and t3(e;) = 0 for j € Ky, if A # X but
d(A) = d(N).

An attentive reader may notice a similarity between Definition 4.1 and
the definition of a A-semibranching function system ( [36] Definition 3.2;
see also Theorem 3.1 of [32] for an equivalent formulation). Intuitively, a A-
semibranching function system is a “representation” of C*(A) on a measure
space (X, p); it consists of a family of partially defined measurable maps
{7x : Dy(ny — X}aca whose range sets Ry := 7\(Dy(y)) satisfy measure-
theoretic analogues of the Cuntz—Krieger relations. We formalize the con-
nection between permutative representations and A-semibranching function
systems in Sect. 4.2 below.

We first prove:

Lemma 4.2. Let A be a row-finite k-graph with no sources. Let {tx}rca be a
permutative representation of C*(A) on a Hilbert space H, and let {Jx}xea
and {K)}xea be as in Definition 4.1. For any n € NF if A\, X' € A" and
A # N, then we have Ky N Ky = (.

Proof. We recall if A\, \' € A™ then
ti;t)\ = (S)\/’)\tso\).

So, for A\, ) € A™ with A # X, if there exists 7 € K, N Ky, we could find
1 € Jy with 65 (i) = j, and k € Jy with & (k) = j. But then by definition of
permutative representation, we would have

thvta(e:) = th(es,@y) = th(e;) = th(es,, (k) = ex # 0.

But this contradicts the fact that t3,£y = 0 for A # X, so we must have
KynNnKy =0. O
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We define the encoding map E from the index set I into A>® by
E(i)((0,n)) = A, where A is the unique element of A" such that i € K.

(11)
To see that E(i) € A is well defined, it suffices to check that if m > n and
A = E(1)((0,n)), so that ¢ € Ky, then E(i)((0,m)) = Av for some v € A.
Thus, suppose that m > n € N*. Write E(i)((0,m)) = p. Then there exists
a unique j' € J, with 6,(j') =1 € K,,.

Write = N/ where d(\') = n. We will show that X = A. Since
Ju = I = Jyr and

ONy = 0x 00y,
we obtain i = (6, (j')) € Ky . Lemma 4.2 now implies that A = \'.

Proposition 4.3. Let A be a row-finite k-graph with no sources and let I be
an index set associated to a permutative representation {tx}aca of C*(A).
Suppose that E : I — A is the encoding map given in (11). Then we have
the following.

(a) For eachi € I and n € N¥, there is a unique A € A™ and i, € Jy C I
such that 6 (in) = i. Writing 6™ (i) = i, we have &y o 6™ (i) =i for all
i€ Ky, and 6™ oax(i) =i for all i € Jy.

(b) The map E : I — A™ defined above satisfies

ox(E(i)) = E(6x(7)) forie Jx, and o"(E(i))=E(G"(i)) foriecl.

Proof. For (a), notice that for n € N*, we have I = | ], K, so that fixing
i € I, there is a unique A € A™ such that i € K. Since & is a bijection
from Jy to K, there is a unique i,, € Jy such that &,(i,,) = i. Also, by
definition of 6", we have that &) o 6"(i) = dx(in) = ¢ for i € K, and
similarly 6™ o & (i) = i, for all i € Jj.
For (b), recall w € A is in the domain of o if and only if r(w) = s(A).

So recalling that E(i)((0,0)) is the unique v € A° such that i € J,, we will
have ox(E(i)) is defined if and only if s(X) = E(i)((0,0)), i.e. i € Jyn) =
Jr E(i))-

( (I){)ecall (@) is defined only when i € Jy, and that Condition (b) of
Definition 4.1 implies that Jy = Jyx) C I. Also, if i € Jy, we have 7, (i) € Ky,
and then

E(ax(1))((0,d(N))) = A.
On the other hand, for any w € s(A)A>, we have ox(w)(0,d(N)) = A. In
particular,

PAE@)(0,40)) = A

We thus can see if n’ € N* and n’ < d()),

)
oA(E(1))((0,n")) = E(5x(9))((0,n)) = A(0,n).
Now suppose m € N¥| m # n; = d(\). Let £ = mVn, the coordinatewise
maximum of m and n. Then n < £ and m < £. Find n/, m’ € N* such that
n+n' = m+m’ = £. Write ) := o»(E(4))((0, £)); by the factorization property,
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we can find N, v,y € A with d(X') = n/, d(y) = m, and d(y') = m’ such
that 7 = AN = v4'. Then

1 =ox(E(0)((0,0)) = ox(E(0))((0,n +n")) = AE(i)((0,n")).
Similarly, E(i)((0,n")) = A" and ox(E(7))((0,m)) = v. Now, we observe that

E(5:(1))((0,£)) = E@(1))((0,n + 1)) = A\ = n = yy = E(G(1))((0,m + m)).

To see this, we observe that 7 is the unique element of A¢ such that &y (i) €
K, = K\,; this follows from the fact that 5y o 6y = &,. In other words,

(@x(1))((0,€)) = E(54(i"))((0,£)) = n.

Since 1 = v’ with d(y) = m, we also have

E(ox(1)((0,m)) = E(&4(i"))((0,m)) = 7.

It follows that for all m € N¥,

ox(E(2))((0,m)) = v = E(a(#))((0,m)),

proving the first equality of (b).

From this, we will deduce the second equality. Let i« € I, n € NF,
and suppose that E(7)((0,n)) = A € A™. Then setting i,, = 6™ (), we have
in € Jx, i =0x008"(i) = 6(in) € K. Moreover, the first equality of (b)
gives

OX(E(in)) = E(0x(in))-
We now apply o™ to both sides of this equation to obtain
0" o gy0E(in) =0" 0 FEody(in),
and consequently E o 5" (i) = o” o E(i). O

When F is injective, we obtain the following corollary.

Corollary 4.4. Let A be a row-finite k-graph with no sources. Let {S\} be a
permutative representation of C*(A) on a Hilbert space H, and let {e; : i € I'}
be the “permuted” basis for H. Let E : I — A be the encoding map of
Equation (11). Then if E is one-to-one, the set I can be identified with a
subset of infinite paths Q := E(I) in A* and the maps {Gx : A € A} and
{6" :n € NF} can be identified with the corresponding shifts and coding
maps on the subset E(I) =: Q of A®°.

Proof. Since E is a bijection from I onto Q C A®, the map E~1: Q — I is
well-defined, and we obtain from Proposition 4.3

E looyoE(i) =6x(i) foriec.Jy, and
E loo" o E(i)=6"(i) foriecl. O
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4.2. Permutative representations and A-semibranching function systems

The objective of this section is to prove, in Proposition 4.7, that any permuta-
tive representation of a finite source-free k-graph arises from a A-
semibranching function system on a discrete measure space. We begin by
recalling the relevant definitions.

Definition 4.5. [54, Definition 2.1] Let (X, u) be a measure space. Suppose
that, for each 1 < i < N, we have a measurable map o; : D; — X, for some
measurable subsets D; C X. The family {o;}}¥, is a semibranching function
system if the following holds:

(a) Setting R; = 0;(D;), we have
WX \UiR;) =0, p(Ri N R;) =0 for i # j.
(b) For each i, the Radon—Nikodym derivative

d(p o 0i)
dp

satisfies ®,, > 0, p-almost everywhere on D;.

D, =

A measurable map o : X — X is called a coding map for the family {o;},

if coo;(x) = for all z € D,.

Definition 4.6. [36, Definition 3.2] Let A be a finite k-graph and let (X, u) be
a measure space. A A-semibranching function system on (X, p) is a collection
{D}xea of measurable subsets of X, together with a family of prefixing maps
{Tr : Dy — X}aea, and a family of coding maps {7 : X — X}, cnr, such
that
(a) For each m € N¥_ the family {7y : d(\) = m} is a semibranching function
system, with coding map 7™.
(b) If v € A%, then 7, = id, and u(D,) > 0.
(¢) Let Ry = 7a(Dx). For each A € A,v € s(A\)A, we have R, C Dy (up to
a set of measure 0), and

TATy = Ty a.C.
(d) The coding maps satisfy 7™ o 7% = 7" for any m,n € NF.

Observe that Condition (c) implies that Dy = Dy for any A € A, and
Condition (d) forces the coding maps 7" to pairwise commute.

Given a A-semibranching function system on (X, pt), Theorem 3.5 of [36]
establishes that the operators {Sx}xea € B(L?(X, u)), given by

(A = (0207 ) " (@) - vy (@) £ @)

form a representation of C*(A). For brevity, we call such a representation a
A-semibranching representation. Many A-semibranching representations are
monic; Theorem 4.5 of [33] establishes that the monic A-semibranching rep-
resentations are precisely those whose range sets {R)}xea generate the o-
algebra of (X, ), up to modifications by sets of measure zero.
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Proposition 4.7. Let A be a finite, source-free k-graph and {Tx}rca @ per-
mutative representation of C*(A). Identifying H with ¢2(I) via the bijection
between I and {e; : i € I} CH, we can view {tr}rer as a A-semibranching
representation.

Proof. In this setting, the domain sets D) C I are given by J) and the maps
oy : Jy — K, are the prefixing maps 7. The range sets Ry are therefore
identified with K, and the Radon—Nikodym derivatives are constantly equal
to 1:
_

Al

since & is a bijection. Proposition 4.3 describes the coding maps " of the
A-semibranching function system, and straightforward computations reveal
that the conditions of Definition 4.6 are satisfied. Moreover, the associated
A-semibranching representation {S)}xea satisfies

A

X1, ()Y = €51 (i) 1€ JA
Sx(es) = Sx(xqiy) = {0{ 2o " else

In other words, the A-semibranching representation agrees with the permu-
tative representation {t)}reca, as claimed. O

Remark 4.8. Tt follows from the above Proposition that the faithful sepa-
rable representation discussed in Theorem 5.1 of [32] is also a permutative
representation.

4.3. Decomposition of permutative representations

Theorem 4.10 below is an extension of Theorem 4.13 of [27] from the case
of the Cuntz algebras O to the much broader setting of higher-rank graph
C*-algebras. Before stating the Theorem, we recall a classical definition.

Definition 4.9. [51] We say that a k-graph A is aperiodic if for each v € AY,
there exists x € vA® such that for all m # n € N¥ we have 0™ () # 0" (x).

Theorem 4.10. Let A be a row-finite k-graph with no sources and let {ty :
A € A} be a purely atomic representation of C*(A) on a Hilbert space H.
If the representation is supported on an orbit of aperiodic paths, then the
representation is permutative. Moreover the representation can be decomposed
into a direct sum of permutative representations with injective encoding maps.

Proof. Let P be the projection valued measure associated to the represen-
tation {t) : A € A} and suppose it is supported on  C A®, which by our
earlier results can be decomposed into orbits corresponding to a decomposi-
tion of the original representation. So let us assume that our set §2 is equal to
a single orbit of the aperiodic path w € £ C A®°. As in the proof of Theorem
4.13 of [27], let {ey ¢}ees be an orthonormal basis for P({w})H for an index
set J.

We know that every point in the orbit of w is of the form ac’(w), for
some finite path a and an element j € N¥. Moreover, since w is an aperi-
odic path, this decomposition is unique. We define an orthonormal basis on



67 Page 22 of 26 C. Farsi et al. IEOT

P({ao’ (w)})H by {tat? 056wt = €aoi(w),etecg- The results of our previous
sections show that this is indeed an orthonormal basis for P({ac’(w)})H.

Since
Q= U {7} = U U {ao? (W)},

) JENF a€Ais(a)=r(ci (w))
we have
ldy = P(Q) = ) Y. PHad’ @)},
JENF a€A:s(a)=r(od (w))
where the sum converges in the strong operator topology. Therefore, an or-
thonormal basis for H is given by

U U {tati,(07j)eu,€}l€] = U U {eaaj(w),ﬁ}fej'
jENF a€A:s(a)=r(ci(w)) JENE aeA:s(a)=r(ci(w))
One easily checks that setting
H, = Span U U {tatl (0,5 €w.t = €aci(w),e} = {ey,e: v € O},
JENF aeA:s(a)=r(ci(w))
each H, is an invariant subspace for the representation, and
H =P H.
Leg
Thus, in this case, our index set for the orthonormal basis for H is given by:
I:={(ac?(w)=7,0): y€Q, L T}
Returning to our notation in Definition 4.1, if a € A, we have
Jo={(7,0) : L€ T, v€Q]s(a) =r(v)}
Ko={(7,0) : L€ T, v€Q, 7(0,d(a)) = a}.

The maps 7, : J, — K, are given by

&a((’y’ E)) = (a’%é)a
and the coding maps are given by 6"(v,¢) = (6™(v),¢). The encoding map
E : I — A is then given by
E((7,0) =.
One easily calculates that the conditions of Definition 4.1 hold. To com-

plete the proof, one observes that restricting the encoding map E to the
basis

I :={(v,0) :y€Q}

for the subspace Hy, results in an injective map. O
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