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Symplectic embeddings of
four-dimensional polydisks into balls

KATHERINE CHRISTIANSON
JO NELSON

We obtain new obstructions to symplectic embeddings of the four-dimensional poly-
disk P(a, 1) into the ball B(c) for 2 <a < (v/7—1)/(~/7—2) ~ 2.549, extending
work done by Hind and Lisi and by Hutchings. Schlenk’s folding construction permits
us to conclude our bound on ¢ is optimal. Our proof makes use of the combinatorial
criterion necessary for one “convex toric domain” to symplectically embed into
another introduced by Hutchings (2016). We also observe that the computational
complexity of this criterion can be reduced from O(2") to O(n?).
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1 Introduction

1.1 New obstructions to embeddings of four-dimensional polydisks

We investigate the question of when one convex toric symplectic four-manifold can be
symplectically embedded into another. In particular, we obtain new sharp obstructions
to symplectic embeddings of the four-dimensional polydisk P(a, 1) into the ball B(c).
In addition, we prove that the computational complexity in Hutchings [10] of obstructing
symplectic embeddings of convex toric four-manifolds can be reduced.

Four-dimensional toric manifolds are defined as follows.
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Definition 1.1 Let Q be a domain in the first quadrant of R%. We then associate to
a subset Xq of C? defined by

Xo =1{(z1.22) € C? | (w212 7|2 ) € Q).

Xgq is a symplectic manifold with symplectic form given by the restriction of the
standard form on C?2, namely

w = dx /\dy1 +dx; /\dyz.
We call Xgq the foric domain associated to 2. Suppose that €2 is of the form
Q={(x,y)eR2|O§x§A,O§y§f(x)},

where f: [0, A] = R>¢ is a nonincreasing function. If f is concave, then we say
that Xgq is a convex toric domain. If f is convex, then we say that Xq is a concave
toric domain.

Example 1.2 Let Q be the triangle in R? with vertices (0, 0), (a,0), and (0, b) for
any a,b > 0. Then Xgq is the 4—dimensional ellipsoid

2 2
E(a,b):{(zl,zz)eCz udSil +”|ZbZ| 51}.
a

When a = b, the manifold Xq is the 4—dimensional ball B(a) = E(a,a). The
ellipsoid E(a, b) is both a concave and a convex toric domain, since €2 is the region
lying beneath the line f(x) = (—b/a)x + b in the first quadrant of R2.

Example 1.3 Let Q be the rectangle in R? with vertices (0,0), (a,0), (0,5),
and (a, b) for any a,b > 0. Then Xgq is the polydisk

P(a.b)={(z1.22) € C? | x|z > <a, w|z[* < b}.

The polydisk P(a, b) is a convex toric domain, since €2 is the region lying beneath
the constant function f(x) = b on the interval [0, a].

In dimension 4, progress has been made on understanding questions concerning sym-
plectic embeddings. In [7], Hutchings associates to any symplectic four-manifold (X, w)
with (contact) boundary a sequence of real numbers

0=co(X) =c1(X)=c2(X) =---
such that if X" symplectically embeds into X’, then

ck(X) < ¢ (X') forall k.
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The ¢y are called ECH capacities (here ECH stands for “embedded contact homology”,
which Hutchings uses to define the capacities). Work by Choi, Cristofaro-Gardiner,
Frenkel, Hutchings, and Ramos [2] computed the ECH capacities of all concave toric
domains, yielding sharp obstructions to certain symplectic embeddings of concave toric
domains. Cristofaro-Gardiner [3] showed that ECH capacities give sharp obstructions
to symplectic embeddings of any concave toric domain into any convex toric domain.
His result generalizes the results of McDuff [11; 12] and Frenkel and Miiller [4].

Obstructions via ECH capacities are suboptimal in the case of symplectic embeddings
of a convex toric domain into a concave toric domain. For instance, the ECH capacities
of polydisks and balls (which Hutchings explicitly computes in [7]) imply that there is
no symplectic embedding of P(2,1) into B(c) for ¢ < 2. However, a result due to
Hind and Lisi [5] indicates that P(2, 1) does not symplectically embed into B(c) for
any ¢ < 3.

For this reason, Hutchings studied embedded contact homology in a more refined way
than is used to define the ECH capacities. As a result, he was able to give a new
combinatorial criterion [10, Theorem 1.19] for obstructing symplectic embeddings
which we will hereafter term the Hutchings criterion. The Hutchings criterion is a
somewhat complicated combinatorial condition; we will defer a full description of it to
the next section. Hutchings used this criterion to demonstrate several new bounds on
embeddings of polydisks into balls, ellipsoids, and polydisks.

Our first result is the following extension of results by Hutchings [10, Theorem 1.4]
and Hind and Lisi [5] on symplectic embeddings of polydisks into balls.

Theorem 1.4 Let

< V-1
7-2
If P(a, 1) symplectically embeds into B(c) then

2<a =2.54858....

a
>
c 2+2.

Remark 1.5 The bound on ¢ in this theorem is optimal: in [13, Proposition 4.3.9],
Schlenk uses “symplectic folding” to construct a symplectic embedding P(a, 1)— B(c)
whenever ¢ > 2 and ¢ > 2+ a/2.

Remark 1.6 Hutchings proved the statement of Theorem 1.4 for 2 <a < 2.4 using the
Hutchings criterion and conjectured that its full statement could also be proven using
the Hutchings criterion [9]. Our proof thus answers this conjecture in the affirmative.
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The proof of Theorem 1.4 can be found in Section 3. In the appendix we discuss
how extending these results for larger values of a is unlikely to be achieved via the
Hutchings criterion or its improvement [10, Conjecture A.3] established by Choi [1].
For a > 4, it is known that there are symplectic embeddings of P(«, 1) into B(c) for
some values with ¢ <2+ a/2; see [13, Figure 7.2].

Our other result is Corollary 1.20, which pertains to the technical details of the Hutch-
ings criterion. We give a combinatorial simplification of the Hutchings criterion for
obstructing symplectic embeddings, reducing the computational complexity of verifying
the existence of obstructions from O(2") to O(n?). We state the result in Section 1.3
after reviewing the necessary background.

1.2 Review of convex generators

We begin by defining the principal combinatorial objects involved in stating the Hutch-
ings criterion. Our exposition closely follows [10, Section 1.3].

Definition 1.7 A convex integral path A is a path in R? such that:

¢ The endpoints of A are (0, y(A)) and (x(A), 0) for some nonnegative integers
x(A) and y(A).

e The path A is the graph of a piecewise linear concave function f: [0, x(A)] —
[0, y(A)] with f/(0) <0, possibly together with a vertical line segment at the
right.

e The vertices of A (ie the points at which its slope changes) are lattice points.

Definition 1.8 A convex generator is a convex integral path A such that:

e FEach edge of A (ie each line segment between two vertices) is labeled e or /.

¢ Horizontal and vertical edges can only be labeled e.

Because we will work with convex generators frequently, we require a compact notation
for them. For any nonnegative, coprime integers ¢ and b and any positive integer m,
we will denote by e;', an edge of a convex generator that is labeled e and has
displacement vector (ma,—mb). Similarly, &, ; denotes an edge labeled / that has
displacement vector (a,—b), while el';'h, , denotes an edge labeled / that has
displacement vector (ma, —mb). Since a convex generator is uniquely specified by the
set of its edges, this notation provides an equivalence between a convex generator and
a commutative formal product of symbols e, ; and £, ,, where no two distinct factors
hgp and h, ;4 have a = ¢ and b = d and where there are no factors of /1, o or /g ;.
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As explained in [10, Section 6], the boundary of any convex toric domain can be
perturbed so that for its induced contact form and up to large action, the ECH generators
correspond to these convex generators. Before continuing to draw parallels with ECH,
we first describe a few useful aspects of convex generators.

Definition 1.9 Let A; and A, be convex generators. We then say that A{ and A,
have no elliptic orbit in common if, when we write out A; and A, as formal products,
no factor of e, ; appears in both Ay and A,. Likewise, we say that A and A, have
no hyperbolic orbit in common if, when we write out A{ and A, as formal products,
no factor of 4, ; appears in both A and A;.

If Ay and A, are convex generators with no hyperbolic orbit in common, then we
define the product Ay - A, to be the convex generator obtained by concatenating
the formal product expressions of A; and A,. This product operation is associative
whenever it is defined.

There are several combinatorial quantities associated to a convex generator that will be
of interest to us.

Definition 1.10 Let A be any convex generator. Then:

(1) The quantity L(A) is the number of lattice points interior to and on the boundary
of the region bounded by A and the x— and y—axes.

(2) The quantity m(A) is the total multiplicity of all the edges of A, ie the total
exponent of all factors of e, , and £, , in the formal product for A. Note that
m(A) is equal to one less than the number of lattice points on the path A.

(3) The quantity #(A) is the number of edges of A labeled /.

Remarkably, one can actually express the ECH index in terms of the above combinatorial
data associated to convex generators.

Definition 1.11 If A is a convex generator, we define the ECH index of A to be
I(A) =2(L(A)—1)—h(A).

Definition 1.12 Let A be a convex generator and let Xg be a convex toric domain.
We define the symplectic action of A with respect to Xq by

Ag(M) =Axo (M) = > VX pay.
veEdges(A)
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Here, for any edge v of A, we write ¥ to denote the displacement vector of v and
Pq.v to denote any point on the line ¢ parallel to v and tangent to Q2. Tangency
means that £ touches dQ2 and that Q2 lies entirely in one closed half-plane bounded
by £. Finally, vV x pg ), denotes the determinant of the matrix whose columns are given
by the two vectors.

Next, we compute the symplectic action of any convex generator with respect to our
favorite toric domains.

Example 1.13 e If Xq = P(a,b) is a polydisk, then for any convex generator A,
Ap(ap)(A) =bx(A) +ay(A).

e If Xqg = E(a,b) is an ellipsoid, then for any convex generator A, we have
AE@a,p)(A) = ¢, where the line bx + ay = ¢ is tangent to A at some point.

We have yet another definition, which is essential for computing ECH capacities
combinatorially.

Definition 1.14 Let Xg be a convex toric domain. We say that a convex generator A
with 1(A) = 2k for some integer k is minimal for Xgq if

e all edges of A are labeled e, and

« for any other convex generator A’ with all edges labeled e such that I(A’) =2k,
we have
Ag(A) < Ag(A)).

The symplectic action of minimal generators is related to ECH capacities as follows.

Remark 1.15 By [10, Proposition 5.6], if /(A) =2k and A is minimal for Xgq, then
Ag(A) = cx(Xq).

Our final definition will be key to understanding when one convex toric domain can be
symplectically embedded into another convex toric domain.

Definition 1.16 Let X and X be convex toric domains and let A and A’ be
convex generators. We write A <y, x,, A’ or A <q o/ A if

(D I(A)=1(A),

(2) Aq(A) < Aq/(A'), and

(3) x(A)+ y(A)—$h(A) = x(A) + y(A) + m(A") - 1.
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In particular, if Xg symplectically embeds into X, then the resulting cobordism
between their (perturbed) boundaries implies that A <y, x,,, A’ is a necessary condi-
tion for the existence of an embedded irreducible holomorphic curve with ECH index
zero between the ECH generators corresponding to A and A’. The inequality (3) is
what ultimately allowed Hutchings to go “beyond” ECH capacities in his criterion. It
emerges from the fact that every holomorphic curve must have nonnegative genus [10,
Proposition 3.2].

We now have all the ingredients needed to state the Hutchings criterion and our modifi-
cation.

1.3 A modification of the Hutchings criterion

The statement of the criterion we use to obstruct symplectic embeddings will be very
similar to the one given by Hutchings in [10, Theorem 1.19]. Our modification reduces
the amount of computation required to check the criterion, making the following result
a formal consequence of Hutchings’ original criterion.

Theorem 1.17 (modified Hutchings criterion) Let Xq and Xq: be convex toric
domains and A’ be a minimal generator for Xq:. Suppose that Xq symplectically
embeds into Xqs. Then there exists a convex generator A, a nonnegative integer n,
and factorizations A" = A’ --- A} and A = Ay --- Ay such that:

) Ai=qq A;- forall i.

(i) Foralli # j,if A} # A;. or A; # Aj, then A; and A;j have no elliptic orbit

in common.

(i) I(Ai-Aj)=1I(A] -A}.) foralli # j.
Remark 1.18 The difference between Theorem 1.17 and the original Hutchings
criterion [10, Theorem 1.19] is in the third item, where Hutchings’ formulation reads:

(iii)’ If S is any subset of {1,...,n}, then I([T;es Ai) = I([Ties A})-

We do not lose any information by replacing (iii) with (iii)’ in the Hutchings criterion
because of the following proposition and corollary. Definitions of the terms appearing
in the proposition and also the proof can be found in Sections 2.1-2.2.

Proposition 1.19 Let Z4,...,Z, be relative homology classes, and assume that
czizi+--+zZy=CczXz) +---+CZL(Z,). Then

HZy 4+ Z) =) IZi+Zj)—(n—2)Y_ I(Z).

i<j i=1
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Moreover, the assumption of Proposition 1.19 is satisfied for the special contact form
arising on the boundary of convex toric domains, by the discussion in Step 4 of the
proof of [10, Lemma 5.4]. We thus obtain the following corollary since I(A) is by
definition / of any relative homology class between A and the empty set.

Corollary 1.20 Let {A}}"_, and {A;}7_, be two sets of convex generators such that
the A, have no hyperbolic orbit in common and the A; have no hyperbolic orbit in
common. Suppose that forany 1 <i <n,

I(Ai) = I(A)),

and moreover that for any i # j,
I(Ai-Aj)=I(A} -A}).

Then, for any subset S C {1,2,...,n},

I(i];[in) =1(EA;).

We note that while Theorem 1.17 is technically weaker than the original Hutchings
criterion, Corollary 1.20 demonstrates that it is actually equivalent to the original
Hutchings criterion, [10, Theorem 1.19]. Thus if we want to check whether some A
obstructs a certain symplectic embedding, it is enough to check whether the conditions
in Theorem 1.17 can be satisfied.

Remark 1.21 Checking that (iii)’ is satisfied requires comparing two indices of
convex generators in O(2") different scenarios. Checking that (iii) is satisfied requires
comparing two indices in O(n?) different scenarios. This vast reduction in complexity
is beneficial in many circumstances.

Outline of paper Properties of the ECH index of two convex generators, including
the proof of Proposition 1.19, are given in Section 2. The proof of the main embedding
result, Theorem 1.4, is given in Section 3. The appendix contains a brief discussion on
the difficulties in extending Theorem 1.4 via the Hutchings criterion.
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2 Index calculations

In this section we prove Proposition 1.19. A formula for the index of the product of
two convex generators is also given via purely combinatorial methods in Section 2.3.

2.1 Preliminary definitions

Let Y be a closed 3—dimensional manifold with a nondegenerate contact form A. Let
& = ker(X) denote the associated contact structure, and let R denote the Reeb vector
field determined by A. A Reeb orbitis amap y: R/TZ — Y, for some T > 0, such
that y'(t) = R(y(t)). Let ¢;: Y — Y denote the time-7 Reeb flow. The derivative
of ¢; at y(0) restricts to a map

dos: (§,0). dA) = (). dA).

The linearized return map is the map

)] Py :=dor: (§)(0).dN) = (§1(0). dA).

We say that y is elliptic if the eigenvalues of P, are on the unit circle, positive hyper-
bolic if the eigenvalues of P, are positive, and negative hyperbolic if the eigenvalues
of P, are negative.

An orbit set is a finite set of pairs o = {(«;, m;)}, where the o; are distinct embedded
Reeb orbits and the m; are positive integers. We call m; the multiplicity of «; in «.
The homology class of the orbit set « is defined by

] =) mifei] € Hy(Y).

The orbit set « is admissible if m; = 1 whenever «; is positive or negative hyperbolic.

Let 7 be a trivialization of & over y, namely an isomorphism of symplectic vector
bundles
T y*E =5 (R/TZ) x R2.
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With respect to this trivialization, the linearized flow (d¢;);e[o,7] induces an arc of
symplectic matrices P: [0, T] — Sp(2) defined by

P =1(t) odgs o (0)7 L.

To each arc of symplectic matrices { P;};e[o,7] With Po =1 and P7 nondegenerate,
there is an associated Conley—Zehnder index CZ({P:}e[0,7]) € Z. We define the
Conley—Zehnder index of y with respect to T by

CZ(y) = CZ({Pt}iefo,1))-

This depends only on the homotopy class of the trivialization 7.
2.2 The ECH index

Let o = {(c;,m;)} and B = {(Bj,nj)} be Reeb orbit sets in the same homology class,
Yilail=2;[Bj]1=T € Hi(M). Let Hy(Y, , B) denote the set of 2—chains Z in ¥
with 0Z =}, m;a; = ; nj B, modulo boundaries of 3—chains. The set H> (Y, «, f)
is an affine space over H,(Y).

Given Z € H,(Y, a, B), we define the ECH index to be

m; nj
Ie.B.Z) =co(Z)+ Qc(Z) + Y > CZ(af) =) > CZ(B)).
i k=1 Jj k=1
where Q- is the relative intersection pairing defined in [8, Section 3.3] and ¢;(Z)
is the relative first Chern class [8, Section 3.2] of & over Z with respect to 7. The
relative intersection pairing is an analogue of the intersection number [C]- [C] for
closed curves C. As a shorthand, we define

m;
CZi@) =) "> CZ(af).
i k=1

The ECH index does not depend on the choice of trivialization 7.

We note that the Chern class term is linear in the homology class and the relative
intersection term is quadratic. The “total Conley—Zehnder” index term CZ £ typically
behaves in a complicated way with respect to addition of homology classes. However,
we can conclude for the special contact form arising on the boundary of convex toric
domains that the total Conley—Zehnder index term is linear by the discussion in Step 4
of the proof of [10, Lemma 5.4]. The addition operation on homology classes to which
we refer is spelled out in [6, Lemma 3.10]. Thus, it is reasonable that one only needs
to consider ECH indices of one- and two-term products.
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Next we restate and prove Proposition 1.19.

Proposition 2.1 Let Z4,...,Z, be relative homology classes, and assume that
czlz,+--+zy=czl(z)+---+CzL(Z,). Then

KZy+-4Zn) =) IZi+Zj)—(n—2) Y I(Zy).

i<j i=1

Proof Let L; denote the sum ¢; +CZ ﬁ which is linear under our assumptions. Then

@ I(ijzi)=Lr(anzi)+Qr(anzi)

3) =Y [Lo(Z) + Q(ZD]+2) | 0:(Zi, Z))

i=1 i=1

n n
@) =Y IZi+Zj)—(n=2)) I(Zy),
i=1 i=1
The second line (3) holds here because of the linearity of L., the quadratic property
of Q; by [6, Equation 3.11], and the fact that Q;(Z, -) is linear in - by definition.
The third line (4) holds because the 2Q:(Z;, Z;) terms coming from the terms in the
first sum each appear exactly once, while the terms in the first sum that only depend
on Z; all appear n — 1 times. O

2.3 The index of the product of two convex generators

While we have already proven Corollary 1.20, we include the following purely combi-
natorial description of the index of the product of two convex generators. We expect
this to be useful to the future study of obstructing symplectic embeddings of other
convex toric domains into concave toric domains. Before giving the general formula
of the index of the product of two convex generators, we first provide an example to
elucidate the combinatorial intuition.

Given a convex generator A, we define A(A) to be the area of Py . Similarly, if v is
an edge of A we define A, (A) to be the area of the portion of P lying underneath v.
We will also need some additional notation as follows. For any convex generator A and
any edge v of A, we write vy and vy, for the x—and y—coordinates of the displacement
vector of v. We also define the slope of v to be

niv) ==,

X
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Example 2.2 Let A = ef’oez,lem, and let I' = 82,138,1- Using (7) along with the
additivity of b and /, we have

5) I(A-T)=2AA-T)+b(A-T)—h(A-T)

=2AA-T)+b(A) +b(T)—=h(A)—h(T).
We can compute A(A -T") by summing the area under each of the edges of A-T" =
e%,oe%,161,3€%,1-

For any edge v of A, the region underneath v in A - I" will be essentially the same
shape as the region under v in A, except that v may be higher up (ie its endpoints
may have larger y—coordinates) in the product A - I". To see this, notice that the
y—coordinate of the lower-right endpoint of v in A is

YA = Z Oy,

o€Edges (A)
w(o)<u(v)

while the y—coordinate of the lower-right endpoint of v in A -T" is

YAT = Z Oy.

o €Edges (A-T)
u(@)<pu()

Thus, every edge o of I' that is steeper than v will contribute a term of 0}, t0 ya.r
which is notin y, , so that the edge v in A-I" will be translated upwards by o, relative
to the position of v in A. This translation is equivalent to taking the region beneath v
in A and adding a rectangle to the bottom of it. So 4 .r(v) will be equal to A A (v)
plus the area of several rectangles added beneath v. Thinking of area in this way allows
us to break up the area under each edge in A - I" into individual contributions from
different edges, as shown in Figure 1.

One important feature of this figure is how we split up the area under the edge eg,l
in A -T. Because both A and T" have an edge of slope —1 , we treat these as separate
and compute areas underneath them individually, even though they combine to form
one edge in A - I'. This is important because whichever copy of e, ; is on the left
(in the figure we’ve shown it as the one from A, but it would not have affected the
answer if we’d put the one from I' on the left instead) has one rectangle underneath it
contributed by the other copy of e, ;.

We can now compute A(A -I') by summing up the area contributions of each region
of A -T shown in Figure 1. Let R be the sum of the areas of all the rectangles added
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y
4
e,
2.7)
y
An(et,o) ‘e,
4]4( . 7)) 'Z
62-/) Y /§
‘»
-~/
3 v €2,1 €1
Aplet o) 7@
- o2 o2 1.3 o2
v 0,1 0,1 0.1
X X X
_ 3 _ 2 _ 3 2 2
A_€1,062,1e1,3 I'=e,; €5, A'F_el,062,1e1,3€0,1

Figure 1: The graph on the right shows A - I broken up into pieces of
area from A and I'" along with rectangles added by taking the product.
Rectangles that were added by taking the product are labeled with the edge
that necessitated that rectangle. The graphs on the left and center show A
and I' for comparison.

by taking the product as described above (that is, all the rectangles underneath A -I" in
the figure except the one labeled A A(e?,o))- Then

A(A-T) = An(e] o) +Anley ) +Ar(ey ) +Anler3) + R
=A(A)+A) + R.
Plugging back into (5) and applying (7) then gives
©)  I(A-T)=2(AA)+A[) + R) +b(A) +b(T) —h(A) — h(I'")
= (2A(A) +b(A)—h(A)) + CAT) +b(I')—h(I')) + 2R
=I(A)+I1(T)+2R.

Equation (6) is precisely the sort of expression we want for the index of the product of
two convex generators. By generalizing the above arguments as follows, we obtain a
formula for the product of two arbitrary generators with no hyperbolic orbit in common,
with an explicit expression for R.

Proposition 2.3 Let A and T" be any two convex generators that have no hyperbolic
orbit in common. Then

IA-T)=IA)+ID)+2 Y > uxoy+2 Y > vxoy.

veEdges (A) o€Edges (T') veEdges (I') o€Edges (A)
w(@)=u@®) w(@)<u@)
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3 On symplectic embeddings of a polydisk into a ball

Our main goal in this section is to prove Theorem 1.4, that for 2 <a < (v/7—1)/(~/7-2),
if P(a, 1) symplectically embeds into B(c) then ¢ > 2+ a/2. Before proceeding we
need some preliminary results. In Section 3.1 we provide some notation and prove a
useful formula for the index of a convex generator via Pick’s theorem. In Section 3.2
we prove a necessary result regarding the nature of repeated factors in the Hutchings
criterion.

With these results in hand, the plan of attack will be to assume that the statement of
Theorem 1.4 is false and apply the modified Hutchings criterion, Theorem 1.17, to
the generator A’ = eﬁ{l for a suitable choice of d. By [10, Lemma 2.1] this is a
minimal generator for B(c). This gives us an integer n, a convex generator A, and
factorizations A’ = A --- A} and A = Ay --- A,. To obtain a contradiction, we show
that no choice of the A} and A; is possible. We do so in three steps:

(1) We prove that for sufficiently large m2, there is no convex generator A such that
A <P(a,1),B(c) e’ffl. If we choose d to be very large, this will imply that we
cannot have n = 1. This step is the content of Proposition 3.7, which is proved
in Section 3.3.

(2) We use Proposition 3.4 to show that there cannot exist any i # j such that
A= A} and A; = A;. In conjunction with Step 1, this will imply that the set
of all possible values of # is bounded. This step is the content of Proposition 3.8,
which is proved in Section 3.4.

(3) Using Steps 1 and 2, we show that there is a maximum possible index of the
product []}—, A’; which does not depend on . On the other hand, this product
must be equal to A’ = ei{l. Because of Step 1, we will be able to pick d to be
arbitrarily large, which will make the index of A’ arbitrarily large, resulting in a
contradiction. This step is contained in the proof of Theorem 1.4, which is given
in Section 3.5.

In the appendix we discuss the difficulties in using the Hutchings criterion to extend
Theorem 1.4.

3.1 A helpful lemma via Pick’s theorem

We first fix some notation and then prove a useful formula for the index of a convex
generator. For any convex generator A, let P be the region bounded by A and the
x—and y-axes. Recall that we define A(A) to be the area of Py .
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Definition 3.1 For any convex generator A, we define

b(A) = x(A) +y(A) +m(A).

Recall that the formal product 1 is the path A with no edges which starts and ends
at (0,0). Note that b(A) computes the lattice points on the boundary of any A # 1 if
and only if A does not lie entirely on one axis.

Remark 3.2 The operator b is additive under products of convex generators. In other
words, for any convex generators A and ', we have
b(A-T)=x(A-T)+y(A-T)+m(A-T)
=x(A)+xT)+yA) +y@T) +m(A) +m(T)
=b(A)+b(T).

Using the above notation, we can now prove a useful formula for the index of a convex
generator.

Lemma 3.3 Let A be any convex generator. Then
(7) I(A) =2A(A) +b(A) — h(A).

Proof First, suppose that A lies entirely on one axis. If A = e, for some x > 0,

we have
I(A)=2x=2-04+2x—0=2A(A) +b(A)—h(A).

The case where A = e, for some y > 0 is analogous.

Next, suppose that A does not lie entirely on one axis. Since P, is the region bounded
by A and the x— and y-axes, Pick’s theorem yields

A(A) =i(Pp)+ 3b(Pp)—1,

where i(Pp) is the number of lattice points in the interior of Px and b(Pp) is
the number of lattice points on the boundary of P, . Rearranging and noting that
L(A) =i(PA)+b(Pp), we obtain

L(A) =i(Pp) 4+ b(Pr) = A(A) + $b(Pr) + 1 = A(A) + $b(A) + 1,

where the last equality follows from the fact that A does not lie entirely on one axis.
We can then use this expression for L(A) to compute /(A):

(8) I(A) = 2(L(A) — 1) = h(A) = 2A(A) + b(A) — h(A). O
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3.2 Repeated factors in the Hutchings criterion

We will prove the following proposition.

Proposition 3.4 Let A and A’ be nontrivial convex generators with no edges labeled h.
Suppose that A and A’ satisfy (1) and (3) of Definition 1.16 and that I(A - A) =
I(A'-A’). Then

A(A') < (b(A) =12,

Moreover, A must be of the form e where x, y € Z~¢ are coprime and satisty

X,y

xy=2A(A") and x+y=»b(A")—1.

Equivalently, x and y must be nonnegative coprime integers such that

©) {x.p} = {b(A/)‘li\/(b(fz\/)—l)z—sA(A’) }

Proof We will make repeated use of (7) of Lemma 3.3. Using (7) along with the
additivity of b, we get
(10) I(A-AN)=2AAN-AN)+b(A-AN)—h(A-AN)=2A(A-A)+2b(AN).

Recall that P, denotes the region bounded by A and the x— and y—axes. Then the
region bounded by A - A and the x— and y-axes is P, dilated by a factor of 2, which
has 4 times the area of P ;ie

(11) A(A-A) = 4A(A).
Substituting (11) into (10) and using (7) again yields
I(A-A) = 8A(A) +2b(A) = 4A(A) + 2(A(A) + b(A)) = 4A(A) + 2I(A).
Likewise for A’ we obtain
I(A'- Ny = 4A(A) + 21(A)).
Because we assumed I(A-A) = I(A’-A’), we have
4A(A) +21(A) = 4A(A') + 21(A).
Since I(A) = I(A’), we have

(12) A(A) = A(A).
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Now, because of (7), we have
I(A) =2A(A) +b(A) = I(A') =2A(A) + b(N).
Combining this equation with (12) gives
(13) b(A) = x(A) + y(A) +m(A) = b(A).
On the other hand, the fact that A <q o/ A’ implies that
(14) x(A)+y(A) =b(A) -1

Since m(A) > 0, the only way that (13) and (14) can simultaneously hold is if (14) is an

equality and we have m(A) =1. So A must have the form e where ged(x, y)=1.

X,y
This allows us to compute properties of A explicitly, so that (14) becomes

(15) X(A)+y(AN)=x+y=>b(A)—1,
and (12) becomes
Xy ’
AR) =5 = AW)
or equivalently
(16) xy =2A(A).

Using (15) and (16) to solve for x and y yields (9). Finally, we note that since x and y
are real, the square roots in (9) must be real. O

Remark 3.5 There are a few interesting interactions between the conditions of
Theorem 1.17 and Proposition 3.4. For instance, Proposition 3.4 allows us to rewrite (ii)
of Theorem 1.17 as:

(i) For all i # j, if A; and A; have any elliptic orbit €xy in common, then
Ai=Aj=e,,.

In addition, by arguing as in the proof of Theorem 1.4, one can sometimes use
Theorem 1.17(i) along with Proposition 3.4 to prove that the set of possible values
of I(A’) is bounded. This type of argument appears in Section 3.5.

3.3 Elimination of sufficiently large convex generators

We first prove some useful inequalities on the x and y endpoints of certain convex
generators.
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Lemma 3.6 Let a > 1 and ¢ < 2+ a/2, and suppose d and A are such that
A =P(a.1).B) ¢f,1- Then

17) X(A) < (2+%)d—ay(A)
and

dla—2)+2
(18) y(A) < a1

Proof By Example 1.13, we have
Ap(a,1)(A) =x(A) +ay(A).
Our assumptions tell us

(19 X(A)+ap(h) = Ap@(A) = Apey(ed ) =cd < (2+ 4 )d

and
(20) X(A) +y(8) Z x(ef )+ y(ef ) +mlef ) —1=3d 1.
We solve for x(A) in (19), obtaining
x(A) < (2 + %)d —ay(A).
Combining (19) and (20) gives
3d =1+ (a—1)y(A) < x(A) +ay(A) < (2 + %)d.

Solving for y(A) shows

d(g—l)-l-l d(a—
P _da—2)+2
s s TR -

We now use the above lemma to eliminate sufficiently large convex generators from
consideration in the proof of Theorem 1.4.

Proposition 3.7 Let

2<a< ﬁ_l,
V712

and suppose that ¢ <2+ a/2. Then there exists some d, > 1 such that for any d > d,
and any convex generator A, we have A £p(4,1),B(c) ef’l.
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Proof Fix some d, and suppose there exists A < 3(11,1- Let x =x(A) and y = y(A).
Because A is convex, it lies inside the rectangle [0, x] x [0, y]. Thus, the maximum
possible value of L(A) occurs when A contains all the lattice points inside this
rectangle, and the largest /(A) could be is when A contains all these lattice points
and has no edges labeled /. Noting also that I(A) =1 (ei{l) =d(d + 3), we see that

2+ D+ D - =2(x+ 1)+ 1)—2>I(A) =d(d +3)

or equivalently
0>dd+3)+2-2(x+1)(y+1).

The substitution of (17) into this equation yields
(21) 0>2ay*—y((4+a)d +2—2a)+d(d +3)— (4 +a)d.

We now wish to substitute (18) into (21), while still maintaining a valid inequality.
This is permissible provided the right-hand side of (21) is nonincreasing with respect to
increasing y. Notice that the derivative of the right-hand side of (21) with respect to y is

4ay — (4+a)d —2 4+ 2a.
Substituting (18) into this expression gives us

d(@®—Ta+4)+2a*+1)
a—1 '

(22) day—(4+a)d —2+2a <

Now, a2 — 7a + 4 has roots (7 & +/33)/2 ~ 0.628, 6.372. Since a is between these
two roots, we have a? — 7a + 4 < 0. So the expression in (22) will be negative for
all d above some sufficiently large value d;. In this case, we can substitute (18) into
the right-hand side of (21) and multiply by 2(a — 1)? to obtain

(23) 0> (—3a* 4 10a —6)d* —2Q2a* +a—1)d + 4(a®> —a + 1).

The coefficient of d? in (23) is negative for sufficiently large @, and its roots are
(54 +/7)/3 ~ 0.7848, 2.5486. Note that (54 +/7)/3 = (v/7—1)/(+/7—2). Because
our value of a is between these two roots, we can conclude that the coefficient of d?
is positive. Thus, if d is larger than some sufficiently large value d,, the right-hand
side of (23) will be positive, a contradiction.

We have shown that if d > d; and d > d5, then the existence of A results in a contra-
diction. Since d; and d, depend only on a by construction, setting d, = max{d;, d,}
now Yyields the desired statement. |
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3.4 Elimination of repeated factors of convex generators

Proposition 3.8 Let 2 <a <3, c <2+a/2, and d = 1. Then, for any convex
generator A, at least one of the following holds:

D) A Zp(,1),B() eii,r
.. d
(i) I(A-A)#I(e}9).

Proof To obtain a contradiction, suppose there exists a A such that A <p(, 1), B(c) ei’il
and I(A-A)=1 (eff’{). We can then apply Proposition 3.4 with A’ = eﬁ{l. Noting
that A(A’) =d?/2 and b(A’) = 3d, we get A = e, ,, where

X,y

v = 3d—1++/5d?>—6d+1

24) .
and
_ d?

On the other hand, A <p(4,1),B(c) ei{l implies that
x4ay = X(A) +ap(A) = Apy(A) < Apy(ef ) = ed < (2+ 5 )d.
Substituting in our expression (25) for y and multiplying by x gives
x% +ad? < (2 + %)xd.
We then substitute in our expression (24) for x and multiply by 4 to get

(3d —1)? £+ (6d —2)V5d% —6d + 1+ 5d*> —6d + 1 + 4ad?
<(@4+a)d(3d—1£+v5d%*—6d +1)

or equivalently
Q2 +a)d?+ (a—8)d +2+(2d —2—ad)v/5d* —6d + 1 <0.
The left-hand side of this equation can be factored:
(26)  (-d—1x+V5d?>—6d +1)(3—a)d — 1+ V1—6d +5d?) <0.
The zeros of the left factor (if they exist) occur when
(—d —1)?> =5d* —6d + 1,

ie when d = 0 or d = 2. Likewise, the zeros of the right factor (if they exist) occur
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when

(B—a)d —1)> =5d*—6d + 1
or equivalently when

d((—a* + 6a —4)d —2a) = 0.

This equation holds when d = 0 and when d = 2a/(—a* + 6a —4). Note that for all
2<a<3, wehave | <2a/(—a*+6a—4) <2.

Suppose the sign of the square roots in (26) is positive. Then, both factors in (26) go
to oo as d — o0, and both possible zeros of both factors are actually zeros of these
factors. If d > 2, then d is at least as large as all of the zeros of the left-hand side
of (26), which means that the left-hand side of (26) is nonnegative, a contradiction.
The only remaining option is d = 1. In this case, the left-hand side of (26) is again

nonnegative, a contradiction.

Next, suppose the sign of the square roots in (26) is negative. Then, both factors of
the left-hand side of (26) go to —oo as d — oo, and none of the possible zeros of the
left-hand side of (26) is an actual zero. This implies that the left-hand side of (26) is
always positive, a contradiction. a

3.5 Proof of Theorem 1.4

Throughout this proof, the symbol < between two convex generators abbreviates the
symbol <P(a,1),B(c)-

Proof of Theorem 1.4 Suppose by way of contradiction that ¢ < 2 4+ a/2 and that
P(a, 1) symplectically embeds into B(c). By Proposition 3.7, there exists some d,
such that for any d > d,, there is no convex generator A satisfying A < ei{l. For any
d € Z~g, define

Na=#{A|A<ef ),
and let

da
N =Y "dNy.
d=1
Note that for any d, there are a finite number of convex generators with index equal

to [ (65{1), which implies that the N; and N are finite.
Now, fix any integer D > N . The generator A’ = ef | is minimal for B(c) by [10,

Lemma 2.1]. So we can apply Theorem 1.17 to obtain a convex generator A, an
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integer 1, and factorizations A’ = A --- A} and A = Ay --- A, satisfying the three
numbered conditions of Theorem 1.17.

Suppose that there exists some i 7# j such that A} = A} and A; = Aj. Then let
['=A;=Aj,and write A} = A’ = ei{l for some . Condition (i) of Theorem 1.17
implies that I' < eflal, and condition (iii) of Theorem 1.17 implies

I(T-T) = I(A;-A}) = I(e}9).

However, the values of I and d then contradict the statement of Proposition 3.8. So,
for all i # j, we must have either A # A;. or Aj #A;.

We claim that with this constraint, it is impossible to have I(A’) =1 (]_[;'=1 A;.):

As before, by Proposition 3.7, there exists some d, such that for any d > d,, there is
no convex generator A satisfying A < 6(11,1- Thus for all d > d,,

Ng=#{A|A<ef }=0.

Assuming d < d,, the maximum possible value of 7 (]_[:7=1 A;) must then occur when

there is precisely one choice of i such that A} = efl,l and A; =n, for any n < ef}l.

When A = ei{l and A; =1, we obtain

n dq Ng da
’( [ Aé-) - ’( [TI1 d) = Iefy= M) = 1ell) = N(V +3).
i=1 d=1i=1
If we again fix any integer D > N then the generator A’ = ef 1 is minimal for B(c)

by [10, Lemma 2.1]. Thus
I(A) = I(eP)) = D(D +3) > N(N +3).

Any other choice of the A; appearing in the factorization of A must be a subset of the
above choice of the A;. As aresult, 1 (]_[:7:1 A;) will be even smaller. Thus, there are
no possible choices for the A; such that I ([]/_; A}) = I(A’), contradicting the fact
that I ([Tj=; A’) = I(A').

To obtain the statement that if P ((«/7 —1)/(V7-2), 1) symplectically embeds
into B(c) then ¢ > 2 4+ a/2, we appeal to the following limiting argument. Let
ao = (v7—1)/(¥7—2). We have just proven, for all a < ag, if P(a, 1) symplectically
embeds into B(c) then ¢ >2+a/2. Thus if P(ag, 1) symplectically embeds into B(c)
then ¢ > 2+ ag/2. |
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Appendix: Difficulties extending Theorem 1.4 via the
Hutchings criterion

Theorem 1.4 implies that symplectic folding yields optimal embeddings of P(a, 1)

2<a< VIl

V-2
For a > (v/7—1)/(¥/7—2), our method of proving Theorem 1.4 breaks down. More
specifically, the proof of Proposition 3.7 relies on the fact that a < (+/7—1)/(+/7—2) in
order to conclude that the coefficient of d2 in (23) is positive, yielding a contradiction

into B(c¢) whenever

=2.54858....

for sufficiently large d. When « is larger than this value, the conclusions of the
proposition will no longer hold, so we will no longer be able to consider convex
generators 6111,1 for arbitrarily large d in the proof of Theorem 1.4.

It is natural to ask whether this upper bound on a can be extended by applying the
Hutchings criterion and using different methods of proof than those used in Theorem 1.4.
As this discussion concerns approaches which don’t work, the more technical proofs
are omitted from this version of this paper, but they can be found in Appendix A of the
most recent arXiv version.

Since ei"’l is a minimal generator for B(c) for all 4 > 1, we might try applying
the Hutchings criterion to ej{l for some specific, not necessarily large choice of d,
allowing us to avoid the use of Proposition 3.7. We would then argue as follows.
For some fixed a > (v/7—1)/(~/7 —2), suppose we have some ¢ < 2 + a/2 such
that P(a, 1) symplectically embeds into B(c). We can apply the modified Hutchings
criterion, Theorem 1.17, to A’ = ei{l to obtain an integer n, a convex generator A,

and factorizations A’ = A ---A; and A = A --- A, satisfying Theorem 1.17(1)—(iii).

To obstruct the symplectic embedding we assumed to exist, we must show that no
possible choice of the A; and A exists. In particular, we must show that there exists
no convex generator I' such that I' <p4.1), B(¢) eﬁlz otherwise, we will not be able to
obstruct the possibility that n =1, A} = A’ = eﬁi’l, and Ay =A=T.

However, we can actually prove that for any a > (v/7—1)/(~/7—2) and any d > 1, there
is some ¢ <2+ a/2 and some convex generator I' such that I' <p4,1), B(c) eﬁl for
every d > 1. This implies that it is impossible to improve on the results of Theorem 1.4
by applying the Hutchings criterion to convex generators of the form efl’l. The proof
of this fact relies on the following construction of a convex generator satisfying certain
constraints.
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Lemma A.1 Let d > 9. Then there exists some convex generator A = ef:, Oem,leé/’ |
such that

(27) 0<F<13d—-1++V7d?-3),

(28) V =13d—2-7d>—6d +4F),

(29) m=1GBd -2+ V7d?>—6d +4F)—F.

The proof of this lemma follows by direct, albeit brute force, calculations. This lemma

then shows that applying the Hutchings criterion to ei{l for any d > 1 cannot improve
upon Theorem 1.4.

Proposition A.2 Let
N
V-2

For any d > 1, there exists some € > 0 and some convex generator A such that

az

=2.54858. ...

A Zp(a,1),B(c) ei{l, where c =2+ a/2—€.

Proof First, note that when d = 1, we have e%’o =<P(a,1),B(c) €1,1 forany ¢ =2, and
when d = 2, we have ef’o <P(a,1),B(c) eil for any ¢ > 2.5. Since 2 and 2.5 are less
than 2 4 a/2 for any possible value of a, the desired statement follows for d =1, 2.

Moreover, if 3 <d <8, we can define A = ef e where

m,1>
F=1(d*-3d+2) and m=}(—d*+9d—6).
F and m are positive integers for all 3 < d < 8. In addition we have
(30) x(A)+y(A)=F+m+1
= 2(6d —4) +1
=3d—1

= X(eii,l) + y(el,l)d —I—m(ef,]) -1,
and (8) yields

(31) I(A)=2F +m+2F +m+2
=2d*—6d+4—d*+9d —6+2
=d*+3d
=I(ef ).

Finally,

Ap@,1)(A) =x(A)+ay(A) =3d -2 +a,
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so that Ap(,,1)(A) < (24 a/2)d whenever

a> % =2.
Because a > 2 by assumption, we must have Ap 4, 1)(A) < (2+a/2)d . Then, for any

0<e=<(Q2+a/2)—Ap,1)(A)/d, we obtain

Ap@)(N) =2+a/2—e€)d = AB(2+a/2—e)(efl,1)-

This equation, together with (30) and (31), implies that A <p(4,1),B(c) efl,l for
c=24a/2—e¢, as desired.

We are left with the case where d > 9. Here, we can apply Lemma A.1 to construct
some convex generator A = efi oem’le(l)/’ 1 satisfying (27), (28), and (29). We will prove
that A <p(4,1),B(c) ejl’l for some ¢ of the desired form. First, notice that

(32) x(A) + y(A) = (F+m)+(V +1)
=13d-2-VIN+1@Bd-2+VI)+1
=3d—1

= x(ef D+ yefp+mef -1,
where

J =7d*—6d +4F.
Moreover, using (8) and substituting in (32) gives
I(A) =2AA) +x(A)+ y(A) +m(A)
=2FV+1)+mQV+1)+3d—-1+F+V+1
=2FV+1)+2Vm+3d—-14+F+V +m+1
=2V(F+m)+2F+3d—1+x(A)+ y(A).
Substituting in (32) again and using the definitions of m and V' produces
(33) I(A)=13d—2—-~7)3d —2+J)+2F +6d -2
=2-3d+d*—2F+2F+6d -2
=d?+3d = 1(cf ).
In light of (33) and (32), we see that A <p(q4,1),B(c) ei{l if and only if Ap(4,1)(A) <
AB(c) (eii,l). We will show

(34) Apany(A) < (2 + %)d.
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Then, forany 0 <€ < (2+a/2) — Apa,1)(A)/d, we have

Ap@n(A) = (2 + % — G)d = AB(2+a/2—e)(€§l,1),
so that A <p(4,1),B(c) ei{l, where c =2+a/2—e€.
To prove (34), we first use (32) and (28) to compute Ap(4,1)(A):
Ap@,1)(A) = x(A) +ay(A)

=3d—-14+(@a—-1)y(A)

=3d—1+@-1)(13d-2-VJ)+1)
Using this calculation, (34) is equivalent to

(a—1)(3d —J) < (a—2)d +2.

Rearranging produces

VI—d—2<a(NJT-2d).
Since v/J —2d > ~/7d% —6d —2d > 0 for all d > 2, the above inequality becomes

J—d-2
(35) VI-d-2 a
VI —2d
The left-hand side of (35) is increasing for all F' and all d > 2, and its limit as d — o0 is
VT=L ) sagss.
NGB

Since a is at least this limit value by assumption and d > 9, we conclude that (35) is
true, hence so is (34). O

Now that we know we cannot use any generator of the form ei{l to improve upon the
results of Theorem 1.4, we might ask if we can apply the Hutchings criterion to any
other generator for the ball.

First, we investigate other possibilities for minimal generators. These must uniquely
minimize the symplectic action among all convex generators of equal index. The
following lemma shows that in every index grading other than those of the eﬁl, the
action with respect to any ball is nonuniquely minimized, so that the ei{l are the only
minimal generators for B(c). The proof of this lemma is by direct construction.

Lemma A.3 Let ¢ > 0, and let k be a positive integer such that 2k #* I(ei"’l)
for all d > 1. Then there exist two distinct convex generators which minimize the
symplectic action with respect to B(c) among convex generators with index 2k .
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As a result, we cannot apply Theorem 1.17 to any convex generators other than
the ei{l in order to understand symplectic embeddings into the ball. Combined with
Proposition A.2, this implies that in fact, Theorem 1.17 cannot be used to extend the
upper bound on «a in the statement of Theorem 1.4.

The improvement of the Hutchings criterion [10, Conjecture A.3], proven in Choi [1],
allows the statement of Theorem 1.17 to be weakened so that one need only assume
that all edges of A’ are labeled e (as opposed to the requirement that A’ be minimal).
As a result, one could conceivably improve upon Theorem 1.4 using a nonminimal
generator.

For instance, we could try to apply the Hutchings criterion to the convex generators
constructed in Lemma A.3, which nonuniquely minimize the symplectic action in their
index grading. However, preliminary evidence suggests that these generators (as well
as all others of equal index and symplectic action) will do no better than the ei’il.

Moreover, [10, Conjecture A.3] would also allow one to use a generator that does not
minimize the symplectic action at all. This choice would likely weaken the action
inequality in the definition of < between convex generators for most relevant cases.
Thus the Hutchings criterion should on the whole yield weaker combinatorial conditions
for nonminimal generators than it does for minimal ones. In short, some possibility
remains to extend the statement of Theorem 1.4 to larger values of a using the Hutchings
criterion, but it will require methods beyond the scope of this paper.
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