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Design sketching is an important skill for designers, engineers, and creative professionals, as it allows them

to express their ideas and concepts in a visual medium. Being a critical and versatile skill for many different

disciplines, courses on design sketching are often taught in universities. Courses today predominately rely

on pen and paper; however, this traditional pedagogy is limited by the availability of human instructors, who

can provide personalized feedback. Using a stylus-based intelligent tutoring system called SketchTivity, we

aim to eventually mimic the feedback given by an instructor and assess student-drawn sketches to give stu-

dents insight into areas for improvement. To provide effective feedback to users, it is important to identify

what aspects of their sketches they should work on to improve their sketching ability. After consulting with

several domain experts in sketching, we came up with several classes of features that could potentially dif-

ferentiate expert and novice sketches. Because improvement on one metric, such as speed, may result in a

decrease in another metric, such as accuracy, the creation of a single score may not mean much to the user.

We attempted to create a single internal score that represents overall drawing skill so that the system can

track improvement over time and found that this score correlates highly with expert rankings. We gathered

over 2,000 sketches from 20 novices and four experts for analysis. We identified key metrics for quality as-

sessment that were shown to significantly correlate with the quality of expert sketches and provide insight

into providing intelligent user feedback in the future.
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1 INTRODUCTION

Drawing is one of the oldest forms of human expression, predating even written communication.
Throughout history, it has been used in a wide range of fields, including art, design, engineering,
science, and education. Learning to draw is considered vital in learning to produce other forms of
visual art. Not only are the skills acquired through learning drawing helpful in drawing a single
design, but it is often the first step in producing new artwork. Furthermore, an artist’s ability and
intelligence—his or her understanding of form, artistic vision, and conceptual framework—can be
revealed through their drawing. As such, drawing can be a powerful form of communication.
A sketch is a rapidly executed freehand drawing that is not usually intended to be a finished

work [75]. Sketches are commonly preliminary drawings created prior to more sophisticated art-
work or concepts. They are usually drawn quickly and with minimum detail to express and docu-
ment high-level ideas for brainstorming and quick communication. Designers and other creative
professionals use design sketches to quickly generate and explore ideas and communicate these
ideas to others [31]. Even with the growing popularity of modern computing devices and software,
design sketching is still used in various stages of the design process by experts in the field of art,
engineering, and design because of its many benefits: It can be used to convey preliminary design
ideas [61], identify and solve hidden challenges using visual sketches [61], assist in the ideation
process during the exploration of ideas with loose sketches [12], and engage and attract the au-
dience with designs [67]. The imperfection of sketches implies and encourages changeability, as
opposed to CAD designs that demand the addition of details. The more detailed and complete a
design, and the more time invested in it, the harder it becomes to abandon the design in exchange
for a better one. Design sketching not only allow designers to communicate their ideas but also
lets the learners improve their general academic performance and problem-solving capability [61],
hone analytical skills [18], stimulate both halves of the brain [63], and improvewriting and critical
thinking skills when sketching is integrated into the thought process [15]. Design sketching also
assists in other academic areas by boosting self-confidence from successful artistic pursuits [39]
and improving three-dimensional (3D) spatial recognition skills [68].

Courses on design sketching are crucial to the development of future engineers. Traditionally,
these courses are taught in classroom environments where students are taught by instructors and
students practice on their own at home. The students’ sketches are later presented to their peers
and instructor to obtain feedback. This paradigm makes it difficult for the instructor to give valu-
able and detailed feedback as the class size increases.
To eliminate the problems that exist in the regular classroom setup, we have built an intelligent

tutoring system called SketchTivity, a web-based platformwhere students can practice their design
sketching fundamentals and get real-time humanlike feedback and assessment. SketchTivity has
various lessons and challenges that allow students to practice the basics of design sketching. One
major challenge of such an application is to mimic or possibly even improve on the immediate and
useful feedback given by a dedicated human instructor.
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Feedback is critical to steady progress in learning a new skill. Students are not only more mo-
tivated when they obtain immediate personalized feedback, but they also master the skill more
quickly. Furthermore, feedback keeps students engaged in the activity of learning. Feedback is
also critical to online activities. Chen et al. [13] identified immediate feedback as one the most im-
portant factor behind an optimal experience for web activities. Thus our system places an emphasis
on providing users with feedback throughout the process of learning design sketching. While this
article does not provide specific feedback techniques, it provides underlying information about
what differentiates experts and novices so that a computer may effectively provide feedback and
judge the progress of a user.
Artificial intelligence not only can learn from given data but also has the capability of discov-

ering new facts about the data [66]. In this study, we apply artificial intelligence on sketch data
not only to grade the sketches automatically without human intervention but also to discover what
about a sketch determines its quality. Feature types were influenced by the rubrics of experts and
then analyzed through the statistical significance of feature values that distinguish experts from
novices.
The major contributions of this research are features to identify the quality of a sketch as well

as the underlying meaning of the metrics that can eventually lead to humanlike intelligent per-
sonalized feedback. We have also designed a holistic score based on the features of a sketch. Such
a score of overall goodness of a sketch is not intended to be shown to the user, as we expect that
personalized, directed feedback that tells the user what to focus on will be more effective for them.
Rather, such a metric provides value to the computer and to the overall analysis of the learning
platform. When learning how to sketch, one metric, such as speed, may suffer when focusing on
accuracy and vice versa. An overall score helps the computer to put in perspective a decrease in
accuracy after suggesting to users that they try to increase their speed.

2 RELATEDWORK

Web-based educational applications and intelligent-tutoring systems are gaining popularity in the
domain of education and have proven to be an effective way of teaching and learning. Before
diving into the details of our study, this section describes the related and relevant prior work to
illustrate how SketchTivity differs from existing systems.

2.1 Sketch-based Intelligent Tutoring Systems

Sketch-based intelligent tutoring systems are applications that enable users to draw on a sketch-
based user interface and to be provided feedback and assessment on their solutions. Mechanix [55,
73, 74], a sketch-based tutoring system for students enrolled in statics courses, allows students to
enter planar trusses and free body diagrams into the system. These are then checked against the
solution entered by the instructor to give detailed, real-time feedback. Mechanix helps students
reach the correct answer by giving beneficial feedback such as “You are missing an input force at
Node B” and “You have not drawn an axis.” However, it does not provide feedback on the quality of
the actual drawing, just feedback on forces and their locations [24, 72]. Mechanix has been shown
to improve student learning and homework motivation [2–6].
Maestoso [8, 70] is another tutoring system that uses a sketch-based interface in the field of

music for novice learners to learn music theory. It enables students to progress through lessons
covering the fundamentals of music theory. This research tool also gives automated instructor-
emulated feedback. It provides details on corrections to their solution and also reviews where
students were unsuccessful in their solution. Other representative disciplines where sketch-based
tutoring systems have been incorporated include East Asian languages [69, 71], math [40], and
electrical engineering [16].
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Tutoring systems that are more closely related to drawing and sketching instruction have fo-
cused solely on fine art drawing or other specific forms. Applications like iCanDraw [17] and
EyeSeeYou [14] provide direction and feedback to the users while drawing faces and eyes, respec-
tively, from an image to learn drawing technique. The Drawing Assistant [37], PortraitSketch [81],
and Painting with Bob [9] are extensions of iCanDraw and EyeSeeYou that either incorporate a
wider set of figures and detailed features or provide a digital painting platform for novices. These
systems tend to focus on drawing specific forms rather than a general approach to drawing any
form from one’s imagination.

2.2 Creativity Support Tools

Some systems are not strictly educational but support users in creative activities. ShadowDraw [46]
helps users draw certain forms like bicycles more accurately by utilizing a database of sketches
and providing underlays (shadows) for the user to trace over as they sketch. Similarly, Ma et al.
[51] built a sketch-based video annotation tool that assists users with their sketches by utilizing
beautification and a database of user submitted sketches. While our system also helps users draw
specific forms more accurately, it does so in a way that does not involve tracing or beautification.
Instead, a faded scaffolding approach [38] is used that mirrors design sketching pedagogy.

2.3 Mobile Drawing Applications

Mobile-based pen and stylus interfaces have been developed in recent years and used widely
in fields of drawing and sketching. Current educational drawing applications that teach design
sketching can be divided into two categories: drawing instruction applications and drawing gam-
ing applications. While drawing instruction applications have adapted aspects of drawing instruc-
tions on mobile devices, drawing gaming applications employ drawing as a game mechanic and
do not necessarily teach drawing skills.

2.3.1 Drawing Instruction Applications. The Learn to Draw Sketchbook by Walter Foster1 is a
drawing instruction application that focuses on a fine art style of drawing and relies on a step-
by-step tracing approach to teach drawing. The step-by-step approach is effective; however, it
relies purely on tracing and does not teach drawing from imagination or perspective sketching.
Furthermore, there is no way to gauge the performance of the users’ sketch in the application.
Draw This from Peter Hamilton2 is another application that uses a step-by-step guidance ap-

proach. Another valuable feature is that it incorporates accuracy metrics on tracing shapes. The
downside of this application is that it relies purely on the tracing of shapes and forces users to
draw shapes in a certain way, which is not the standard technique taught in design sketching. It
does not help users understand three-dimensionality and perspective. The assessment capability
provided by this application is limited and does not help students understand the areas to focus
on.

2.3.2 Drawing Gaming Applications. Circled3 developed by Underbeak4 is an application in
which the sole objective is to draw circles of various sizes accurately. It measures the accuracy of
user’s circles and, depending on the performance, more levels and modes are unlocked. Although
this application provides feedback, it is limited to one feature—accuracy of the circle. It does not

1https://goo.gl/LdnV4n.
2http://goo.gl/RX57sn.
3https://goo.gl/cyMvdi.
4http://goo.gl/EfVXDN.
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consider the speed and the technique used while drawing circles that are important factors in
labeling them as good sketches.
Draw Something5 is a multiplayer game that allows people to sketch and have others guess

what they sketched. This game can be a good tool for improving visual communication skills.
That said, it does not teach users any sketching techniques and is not professionally oriented. The
application also has no way of automatically assessing the sketches drawn.

2.4 Sketch Recognition

Sketch recognition is the automated recognition of hand-drawn sketches and diagrams. Sketch
recognition algorithms can be classified primarily into three categories: gesture-based recogni-
tion [62, 79], geometric recognition [25–27] and vision recognition [23, 54]. Gesture-based sketch
recognition uses the inherent properties of the sketch path and timing to identify shapes. In these
recognition algorithms either the system learns the user’s style of drawing or the user has to learn
in a style required by the system. Rubine used features like initial angle, sharpness, speed, and total
angle traversed to recognize shapes. These are some of the most popular features cited in sketch
recognition research. Sezgin, Stahovich, and Davis [65] took advantage of gesture-based features
like speed and curvature to distinguish different shapes.
Geometric recognizers usually utilize a bottom-up approach where the basic shapes like lines,

arcs, or circles are recognized first. A higher level recognizer is built on top of this low-level rec-
ognizer that uses geometric constraints to check if the primitive shapes when put together form
a more complex shape. They allow users to draw a shape in a natural way. PaleoSketch [58] is a
powerful low-level geometric recognizer capable of recognizing more than 10 basic shapes (up to
18 depending on the version [28, 29]) with high accuracy.
Vision-based algorithms use concepts from computer vision similar to those used on images

after preprocessing of the sketches, focusing on the pixels left on the screen after the sketch is
drawn. The screen coordinates are used by Kara and Stahovich [41] to apply template matching
algorithms. Hausdorff, Modified Hausdorff, the Tanimoto coefficient, and the Yule coefficient are
used in this article.
Some algorithms combine multiple approaches. KnitSketch [52] segments sketches into struc-

tural forms using both gesture-based and geometric sketch recognition. Still more state-of-the-art
approaches like statistic and graph-based methods [48, 49] for sketch recognition continue to push
the field further.
All the existing algorithms enable us to only identify different shapes, whereas SketchTivity

assesses the sketches as well. SketchTivity uses geometric recognition in its first phase to recognize
shapes and gesture-based features, which help to distinguish users for the assessment phase. We
take advantage of the fact that gesture-based recognizers are user dependent in the second phase
of our system.

3 DESIGN SKETCHING

Before discussing the software and our methods of evaluation, it is important to discuss tradi-
tional pedagogy in design sketching education. This is helpful in understanding the motivation of
SketchTivity and the evaluation system presented in this study.

3.1 Traditional Pedagogy

Students in many disciplines, including industrial design, architecture, concept design, trans-
portation design, and mechanical engineering, are often required to enroll in courses that

5https://goo.gl/GiS3hl.
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Fig. 1. Design sketch of camera.

teach fundamentals of design sketching because of the benefits design sketching and its related
applications provide. These courses train students to learn sketching and draw quality sketches
that approach the level of professionals in their respective fields. Students practice basic shapes
and perspective drawing to eventually be able to combine primitives quickly and accurately to
create complex three-dimensional sketches, such as that shown in Figure 1.

Students have several resources at their disposal to learn design sketching and master it. Sketch-
ing is typically taught in studio environments for industrial design and architecture. In studios,
students are taught by the instructors during class time and are expected to practice on their own
outside of class. Later, these sketches are shared for feedback from both the instructor and peers.
This studio setting is the predominant means by which students learn sketching in universities.
As the availability of instructors for feedback is typically limited to classroom and office hours, as
the classroom size grows, it becomes increasingly difficult for the instructors to provide valuable
individualized feedback to all of the students
Sketchbooks have proven to be an effective tool for learning sketching, as they provide both

mobility and accessibility for students to practice their design sketching regularly and continu-
ously [57]. An advantage of using sketchbooks is that one can keep track of the history of his or
her practice and progress, which is important in regulating learning.

3.2 What Are Sketches?

In the previous sections, we discussed where sketches are used and how they are traditionally
taught. This sections explainswhat sketches are andwhat the qualities of a good sketch are. Buxton
provides in-depth knowledge of the characteristics of a design sketch [12]. He defines sketches as
having the following qualities:

• Quick—A sketch is quick to make or at least gives that impression.
• Timely—A sketch can be provided when needed.
• Inexpensive—A sketch is cheap. Cost must not inhibit the ability to explore a concept, es-

pecially early in the design process.
• Disposable—If you cannot afford to throw it away when done, then it is probably not a

sketch.
• Plentiful—Sketches tend not to exist in isolation.
• Clear Vocabulary—The style in which a sketch is rendered follows certain conventions that

distinguish it from other types of renderings.
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• Distinct Gesture—There is a fluidity to sketches that give them a sense of openness and
freedom.

• Minimal Detail—Include only what is required to render the intended purpose or concept.
• Appropriate Degree of Refinement—By its resolution or style, a sketch should not suggest

a level of refinement beyond that of a project being depicted.
• Suggest and Explore Rather than Confirm—Sketches don’t “tell,” they “suggest.”
• Ambiguity—Sketches are intentionally ambiguous, and much of their value derives from

their being able to be interpreted in different ways [12].

4 OVERVIEW OF SKETCHTIVITY

SketchTivity is a web-based stylus and touch capable intelligent tutoring system that allows stu-
dents to learn and practice design sketching fundamentals [36, 47, 76, 78]. It incorporates the
practices of traditional instructional pedagogy with artificial intelligence and entertainment [77],
allowing students to practice a series of shapes with increasing complexity from simple, basic geo-
metric shapes like lines and circles to more complex three-dimensional primitives, such as cuboids
and cylinders. It also recognizes, analyzes, and evaluates the sketches using sketch recognition
techniques.
SketchTivity has been integrated into the mechanical engineering design curriculum at the

Georgia Institute of Technology as part of a pilot section. At Georgia Tech, they think it is crucial
for a graduate to be able to sit down at a potential dinner and quickly sketch out several potential
solutions with a client. As such, the students are taught sketching fundamentals [33]. Twenty stu-
dents took part in a pilot using SketchTivity. Comparing the first half of their sketches versus the
second half of their sketches, we show a significant increase in both accuracy (different in mean =
1.33832, p < 0.00001) and speed (difference in mean = 1.19862, p < 0.00001) [42]. It has also been
shown to improve student sketching ability on a pre- and post-test graded by human experts [32,
34, 35].

4.1 User Interface

4.1.1 Lessons and Challenges. The system includes three main parts: lessons, challenges, and a
sketchbook. The lessons section has been organized into basic, perspective, and primitive shapes.
Figures 2, 3, and 4 show various lessons in the software. Currently, there are eight lessons over-
all, each having their own sub-lessons that differ by variations in angles, sub-types, and visibil-
ity of vanishing points in perspective within the shape. For example, the Lines lesson has three
sub-lessons—horizontal lines, vertical lines, and diagonal lines. The following are the lessons and
sub-lessons that are currently active: lines—horizontal, vertical, and diagonal; curves—horizontal
arcs, vertical arcs, diagonal arcs, s-curves, and accelerated curves; boxes—squares and rectangles;
circles—three different levels of scaffolding; planes—planes in two-point perspective with closer
and farther vanishing points; ellipses—circles inscribed within squares in two-point perspective,
with three different levels of scaffolding; three-dimensional boxes—cubes and cuboids; and cylin-
ders.
Challenges (Figure 5) are designed to give the students an opportunity to enhance learning and

improve their creativity, imagination, and perspective skills. These skills are much needed for de-
sign sketching. The sketchbook (Figure 6) has a plain sketching area with different tools, including
pens and markers in various colors and thicknesses to choose from for free-form drawing. Both
challenges and sketchbook sketches can be saved by the user.
Each of the lessons has eight exercises that are generated variations of the same problem by

varying parameters such as angle, length, size, and location in space (perspective). These variants
help students improve their muscle memory and hone their skill in drawing a particular shape. The
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Fig. 2. Basic shapes.

Fig. 3. Perspective shapes.

screen displays visual cues to indicate what a student is expected to draw. For example, the lines
lesson has two dots that a student has to connect using a straight line. Also, students are given
guidelines in the form of scaffolding to teach them proportions in drawing better. These scaffolding
are removed slowly as one progresses to next sub-lessons. After the shape is recognized in an
exercise, the system takes the student automatically to the next exercise. Students are evaluated
and the results combining all of the exercises are displayed at the end of the lesson.

4.1.2 Drawing Tools. The students can view any of the completed exercises in the current lesson
by clicking on the review panel on the left-hand side of the screen. This is a valuable tool for
students to see how they are progressing through a lesson. Also, to help students while drawing,
there are three buttons provided on the screen—Undo, Skip, and Next (see Figure 7). The Undo
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Fig. 4. Primitive shapes.

Fig. 5. Challenges.

button can be used to erase unintended strokes on the screen. Usage of this button is limited to
once per exercise to restrict students from overusing theUndo button to submit better sketches. The
Skip and Next buttons have similar functionality to each other. While the Skip button is designed
to bypass the current exercise in a lesson, the Next button progresses to next exercise when the
students are done with drawing, but the system failed to recognize it.

4.1.3 Architecture. The software is developed to work over the Internet on mobile devices. The
front-end is developed using HTML5, CSS3, and JavaScript. All the recognition and evaluation
algorithms are executed by the browser using JavaScript. This significantly reduces the load on
the server and greatly speeds up responses in real time. The system runs on an Apache server. The
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Fig. 6. Sketchbook.

Fig. 7. Sample lesson in progress.

server-side has been developed using PHP where all the functions relating to storing sketch data
and user sessions are executed. The sketches and user details are stored in a MySQL database.
The software stores each shape drawn by the user as a JSON document encoded as a BLOb6 in

the database. The system also stores the undone strokes to know the activity of users that led to
final submission. Unfinished and unrecognized submissions that have been submitted by users are
stored as well. The skipped lessons are not stored in the database.

6Binary Large Object.
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4.2 Recognition System

4.2.1 Sketch Representation. Modern pen-based interfaces provide positional information al-
ong with current time in two-dimensional coordinate system that is usually the window coor-
dinates. The software generates a point as the pen or stylus moves over the input device. We
record each point as its x-y coordinate along with its timestamp. The timestamp recorded is the
Epoch time, which is the time that has elapsed since 00:00:00 Coordinated Universal Time (UTC),
Thursday, January 1, 1970, in milliseconds. A stroke is a collection of time-ordered points that are
between the pen-up and pen-down events. A sketch is composed of one or more strokes and is
defined as a shape when it satisfies geometric constraints and is recognized by our software.

4.2.2 Preprocessing. Before passing strokes to our recognition system, it is necessary to prepro-
cess the strokes. Sezgin and Davis [56, 64] state that the input strokes will contain noisy and inac-
curate samples, which is caused by spatial and temporal quantization of the input by the hardware.
Spatial digital noise comes from conversion of ink positions to screen coordinates. The difference
in the sampling rates of the operating system and the tablet causes temporal quantization errors.
This motivates us to eliminate and decrease the problems caused by such noise, and we resample
points and time to do so. This also helps make subsequent steps in the process easier.

4.2.3 Resample Points. The number of points sampled by the system depends on the speed
of the pen movement and the sampling rate of the hardware. There will be fewer points as speed
increases. We then use the resampling algorithm described in the ShortStraw corner finding recog-
nizer [80]. This resampling algorithm does not target a fixed number of points but rather resamples
in such a way that the points are equidistant from each other. Resampling this way helps control
for devices with different sampling rates or screen sizes.

4.2.4 Resample Time. It became apparent that the timestamps recorded for points of strokes
that were drawn very quickly were not accurate. The timestamp remains the same for many con-
secutive points in such cases, causing problems when calculating speed, as mentioned by Sezgin
and Davis [64]. To solve this issue, we resample time as well. We linearly interpolate the timestamp
for a group of points with the same timestamp based on distance between the first point in the
group and the next point in the stroke with a different timestamp.

4.2.5 Merging and Segmenting. To make recognition easier, we merge and segment the com-
prising strokes based on the geometric constraints of our recognition algorithm. For squares, rect-
angles, cubes, and cuboids, we segment the strokes to obtain the individual edges of the shape.
For circles and ellipses, we merge the strokes that satisfy the following conditions: (i) The strokes
are consecutive. The difference in the timestamps between the last point of the first stroke and the
first point of the next stroke are less than a threshold. (ii) The strokes are close to each other. The
distance between one of the end points of one stroke is close to one of the end points of the other
stroke.

4.2.6 Overtracing and Overdrawing. Overtracing is the technique of drawing over an already-
drawn stroke. This is a natural way of drawing closed shapes like circles and ellipses. In these
specific cases of circles, it is usually observed that the end of circle overlaps with the beginning
of the stroke. To facilitate this while keeping in mind our recognition and evaluation components
of the system, we allow users to overtrace until it is within some threshold and ignore these extra
data for our future processing of the strokes.
For straight lines connecting two given end points, the correct technique of drawing in design

sketching is to draw beyond the end points ensure high line quality throughout the stroke. This
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Table 1. Recognition Results

Shapes #Completed sketches #Recognized Efficiency

Rectangles 314 311 0.99044586
Circles 919 914 0.994559304
Ellipses 567 566 0.998236332
Planes 64 63 0.984375

Cubes/Cuboids 251 224 0.892430279
Cylinders 615 608 0.988617886

technique is called overdrawing. In our system, overdrawn strokes are accepted and will be con-
sidered in further steps of recognition and evaluation.

4.2.7 Recognition. In our system, while we have an expectation of what shape users will draw
each time, we still need to perform recognition to know when the user is finished drawing the
intended shape. We have a Next button that allows users to click that they are done, but we have
found that clicking that button every time interrupts the flow of their drawing practice. Thus,
we use recognition to determine when the user is done drawing. While we could use a simple
timeout, we found that fast, fluid sketches drawn quickly one after another are the best, so any
timeout would have to be as short as possible. However, novices tend to pause between strokes
while learning, so any timeout would need to be long enough to accommodate novices. Thus, we
perform recognition to be able to intelligently know when the user is finished so that the system
can provide immediate feedback as soon as the user is done drawing and advance to the next
sketch after a short time for them to digest their feedback.
To achieve recognition, we rely on a unique combination of established sketch recognition al-

gorithms. We use geometric recognition to identify the shape of the sketches drawn by students.
The user interface lets a student draw strokes until the shape is recognized. Each time a stroke
is drawn the recognition system takes that stroke, combines it with the previous drawn strokes
and checks to see if the geometric constraints for the shape are satisfied. Once recognition is com-
pleted, the strokes are sent to the next stage for evaluation. Recognition results, as defined by the
system correctly predicting that the student has finished his or her sketch before he or she has
pressed Next, are shown in Table 1. Shapes that are not properly recognized are often due to tight
system tolerances or sloppy user drawings. Additionally, when working with the system, students
often became curious about the boundaries of what could be accepted, and they would experiment
with the interface. So, recognition also serves as data validation. Because an unrecognized shape
could mean that the shape was a completely invalid shape, the feature values were not included
as part of this analysis.

4.2.8 Recognition Accuracy. In the spring 2016 semester in which 20 students participated in
testing the software, our system recognizedmore than 97% of the sketched forms. Table 1 shows the
efficiency of recognizing these basic forms. Each form has its own recognition algorithm and was
iteratively tested and improved throughout the development process to be as robust as possible.
The system recognizes the form after certain criteria have been fulfilled (e.g., a cube has 8 corners
and 12 edges connecting them). The system checks for this criteria at the end of every stroke drawn.
The user can also demand that a partially completed diagram be evaluated by clicking a button.
The unrecognized sketches were either drawn deliberately to break the system, or they were

incomplete or drawn in a way that was unexpected. For example, several students drew the hidden
lines (back side) of the cube with a dashed line. We plan to support this in the future.
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Fig. 8. Examples of unrecognized cubes. Cube A used dotted lines. Cube B has out-of-place lines and is

missing the bottom side. Cube C is missing the bottom side, as the user assumed the construction lines

could serve as the bottom side.

For all the shapes except cubes, students got their first exercise of a particular lesson recog-
nized, implying an intuitive user interface. In the case of cubes, the students sometimes took a
few attempts to understand what the exercise was expecting (i.e., all the sides were to be drawn
irrespective of whether visible or not), and sometimes the recognizer failed them when what they
drew was unexpected. The students sometimes joined the wrong corners or omitted important
edges on the lower or invisible faces of the cube. Figure 8 shows examples of cube drawings that
were not recognized by the system.
We have sketch data from experts as well. The recognition rates for those sketches were not

included in the dataset because it was 100%.

5 GRADING RUBRIC

One of the essential elements of an intelligent tutoring system is to provide immediate feedback
to the students to help in identifying the errors and guide them towards better understanding
of the concepts [7]. Thus, assessing sketches and giving feedback is a significant component of
SketchTivity. In this section, we explain different rubrics we use to assess the student sketches.

5.1 Pre-evaluation Processing

Before sending the sketches to the evaluation system, we preprocess the segmented and merged
strokes to ignore the hooks at the start and end of the stroke that are common when drawing fast.
When removing hooks, we limit the removal to no more than 5% of the stroke at either end for
further analysis. In an effort not to remove points from the stroke such that we lose significant
information about it, we also restrict the number of points removed to be a maximum of 5 points.

5.2 Categories for Grading Rubric

To design an assessment system for the sketches, the first step is to get useful features from the
sketch that determine the quality of sketch. We have divided our evaluation features into three
categories as given below. They are in order of hierarchy from more traditional to less traditional
methods of sketching evaluation.

• Visual—The features in this category are dependent on how the final sketch looks. We con-
sider only the x-y coordinates of the points on the sketch for all features in this category.

• Technique—These are a set of features that are dictated by the finesse with which the user
executes the sketches. The features in this category include the timestamps of the points as
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Fig. 9. Left: good smoothness, poor accuracy; right: good accuracy, poor smoothness.

well as the x-y vector coordinates of the sketches. From these data, we can measure features
like speed and speed fluidity.

• Planning—These are a set of features that demonstrate high level planning in sketching the
whole shape. These features tell us the way the strokes of the shape are drawn as well as
how sketchers think about the shape they are drawing and what they are focusing on.

The set of features and/or their inspiration that have been used in this study for evaluating
sketches have come from the following listed sources:

• Characteristics of sketches (mentioned in Section 3.2)
• Interviews of experts (instructors of design sketching)
• Features used in sketch recognition that we believed could capture the features and tech-

niques described by the expert
• Features from motor-control studies that we believed could capture the fluidity and consis-

tency mentioned by the experts [1, 21, 53]
• Planning features that we believe are important to identify the expertise level of the user

based on watching experts drawing in action.

5.3 Motivations for Grading Rubric

This section briefly explains the motivation for choosing the initial set of features. Detailed expla-
nation of the features is given in the following section.

5.3.1 Visual. Design sketches are drawn to represent ideas in visual form and to be shared with
others. An important aspect of this is to be able to visually depict the idea that is conceived in one’s
mind and express it on paper. Visual accuracy, realism, and neatness of the sketches are important.
One of the important reasons why computer-aided design (CAD) became popular was because
one could draw accurate and precise designs using it, and drawings could be easily modified later
without redrawing. We consider two different measures to evaluate sketches in SketchTivity based
on this property of design sketches as explained below.

• Accuracy—Accuracy refers to the degree of conformity and correctness of the shape com-
pared to the expected shape. In other words, this tells how close the sketch is to the expected
shape.

• Smoothness—Smoothness refers to a state of consistency in the sketch. A wavy and jittery
sketch is not neat and legible. This is another way of seeing the precision of the sketch.

Both accuracy and smoothness are needed in a sketch for it to clearly communicate the ideas
of the person drawing it. A sketch with shaky or poor line quality can become too ambiguous
and may be misinterpreted. This is generally not ideal unless the sketch is intentionally abstract.
Figure 9 illustrates the difference between accuracy and smoothness.While the left one is a smooth
fluid stroke, it is not accurate with respect to the desired shape, which in this case is a simple line.
Conversely, the right one is accurate but not smooth.

5.3.2 Motion-based Technique. Themotivation behind this category of features is to see how an
user moves his hand during the process of sketching. Sketching is an acquired skill and the experts
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who have a lot of experience in sketching will have noticeable differences in their sketches and
sketch quality.

• Speed—A designer draws multiple sketches in the early stages of the process to be able to
decide what works and what does not. Hence, it becomes important for him/her to be quick
enough in generating the sketches and putting his/her ideas on paper in visual form. This
is also a feature that has been derived from design sketching practices.

• Speed fluidity—In the past several decades, there has been an abundance of research on the
model of human movement towards a goal in human–computer interaction [21, 22]. Our
motivation for this particular feature is from the research on the minimum jerk’s law and
trajectory-based Fitts’ law. The speed of the motion is maximum in the middle of the path
of the movement and decreases as you move away from this.

• Accuracy vs. speed—There has also been research in applying Fitts’ law to find many other
interesting relationships in hand movement. Fitts’ law [53] provides details of how speed
and accuracy have a tradeoff in aimed movements. Similar tradeoffs can be applicable to
trajectory-based movements like using a stylus on tablets as well. This motivates us to
further analyze the relationship between these features and see how they differ between
experts and novice users.

5.3.3 Planning. An experienced designer who has more knowledge about the concepts of de-
sign sketching and its techniques will plan initially before starting to draw and will have an idea
of what they are going to sketch. The expert has had enough experience to know which strokes
should be drawn next and in the order that will make the sketch look good. This set of features has
been developed from consulting with domain experts and referring to design sketching textbooks.

• Number of strokes—A user may drawn a square using a single stroke or multiple strokes.
The number of strokes is an important feature for shapes such as rectangles and cubes, as
novices tend to draw rectangles in one single stroke, while experts tend to draw rectangles
using four lines.

• Stroke order coupling—When drawing a complex shape, one tends to use multiple strokes.
There are exponential permutations of drawing the shape using multiple strokes. Experts,
however, will group the drawing of parallel lines, whereas novices may group the drawing
of connected lines. This is because novices tend to think of rectangles as four 90◦ angles
in a row, whereas experts think of rectangles as two sets of parallel lines that meet at a
vanishing point. In 2D perspective sketching, a drawn rectangle does not actually have 90◦

angles, even if the real-life representation does. This is a significant difference between how
novices and experts perceive the world.

• Stroke direction coupling—A stroke can be drawn from left to right or right to left, bottom
to top or top to bottom for a line, and clockwise or anti-clockwise for circles and ellipses. Be-
cause novices think of the rectangle as a closed shape, this can also be a big difference. How-
ever, this feature can be very dependent on handedness. Thus, for rectangles and cuboids,
this feature instead measures if parallel lines are in the same direction.

• Overdrawing—A recommended practice is for the lines to be drawn beyond the end points
to have a higher quality line between the end points. An inexperienced person may not
know this or know the importance of this technique and may fail to follow it.

5.4 Features Used

5.4.1 Accuracy. To measure the accuracy of a shape with respect to the ideal expected shape
based on the visual guidelines given, called the reference shape, we use motivation from template
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Fig. 10. Deviation of horizontal line at one point.

Fig. 11. Deviation of a diagonal Line.

based sketch recognition algorithms [41, 79]. For a given sketch, we find the distance between
each of the points on the sketch and its corresponding point on the reference shape to calculate
the deviation at that point. The measures used for measuring accuracy are as follows:

• Maximum deviation—The maximum of all deviations in a stroke(s).
• Average deviation—Calculated by adding the deviations at every point and dividing it by

the total number of points.
• Hausdorff similarity—Hausdorff distance is a popular method used to compare how similar

two sketches are [41]. Hausdorff distance between two sets of points A and B is given by
the equation

H (A,B) = max(h(A,B),H (B,A)), (1)

where

h(A,B) = max
a∈A

( min
b ∈B ‖a−b ‖

). (2)

We use this distance and get the similarity measure for the sketch using the equation given
below.7 When the Hausdorff distance is zero, the similarity is 100%,

similarity (A,B) = 1 − (H (A,B).

√
2

300
)

1
1.4

. (3)

For lines (Figure 11), deviation at each point is calculated by finding a point on reference shape
that is closest to it. This is same as the drawing a perpendicular line to the reference shape from
the point on the sketch. Figure 10 illustrates this.

In case of circles (Figure 12) and ellipses (Figure 13), the distance between a point on the sketch
and the point on the reference shape that is at the same radial angle to the center is the deviation
of a point on the circle or ellipse. We first connect the point to the center and then find the point
of intersection of that line on the reference shape to get the deviation of a point.
Squares and rectangles (Figure 14) are made of four sides. The evaluation system is given four

strokes that make up the sketch of the square the user drew. They are merged and segmented
before recognition phase. We find the corresponding line on the reference shape that is closest the
user line and implement the same algorithm that we used for lines to get deviation at each point
on these lines.

7http://goo.gl/52OsBi.
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Fig. 12. Deviation of circle at one point.

Fig. 13. Deviation of an ellipse.

Fig. 14. Deviation of a rectangle.

Cubes and cuboids (Figure 15) are made of 12 edges. For this also, like squares and rectangles,
the user strokes are merged/segmented to form 12 separate lines representing the edges in the
preprocessing stage, and then the corresponding edges of the reference shape that is closest to the
user stroke is identified. After this, a similar method used for rectangles and squares is used to get
the deviation for each point on the drawn cuboid.

5.4.2 Speed. Speed quantifies how fast the strokes in the sketch were drawn by the user. It
measures the rate at which the user moves the pen over the screen of the tablet. It is calculated by
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Fig. 15. Deviation of cubes.

using the following formula for speed:

speed =
distance

time
. (4)

At each point the distance covered from the previous point is divided by the difference in their
timestamps to get the speed. The features that have been used to measure speed are as follows:

• Maximum speed
• Minimum speed
• Average speed given by speed between consecutive points:

avдSpeed =
1

n

n
∑

i=1

√

(xi − xi−1)2 + (yi − yi−1)2
ti − ti−1

. (5)

For all the shapes, these features are calculated in the same way. For complex shapes that have
multiple strokes, the speed of each stroke is calculated to give a value for the whole shape together.
Average speed is calculated by using the total path length traversed by each of the strokes divided
by the time taken to finish the whole shape; that is, start time of the first stroke and the end time
for the last stroke.

5.4.3 Smoothness or Accuracy Consistency. The texture of the sketch defines the smoothness.
It is a way to represent the precision of the sketch. Smoothness helps in measuring the closeness
of the sketch to the desired shape. It is defined as the measure of deviation of the stroke from the
ideal shape that the user was intending to draw. A smooth stroke is drawn steadily without jolts
during the action of sketching. Mathematically, the strokes that are differentiable at least once are
smooth. A good quality sketch should have no unwanted kinks or cusps.
For calculating smoothness, we take motivation from three of the Rubine [62] features rep-

resenting the curvature and sharpness. While the first two features denote the curvature of the
stroke, the third feature distinguishes smooth strokes and those with sharp angles. The absolute
angle of a “V” curve and “U” curve can be the same, but the sharpness feature help in distinguish-
ing between them. The angle at a point p is calculated as shown in Figure 16 using Equation (6),

θp = arctan
∆xp∆yp−1 − ∆xp−1∆yp
∆xp∆xp−1 − ∆yp∆yp−1

. (6)
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Fig. 16. Smoothness calculation of lines.

The following features are measured to know the smoothness of the sketch:

• Maximum absolute angle—maximum of absolute angle at every point
• Average angle—average of angle at every point at every point

averaдeanдle =

∑p−2
p=1 θ

p − 2
(7)

• Average absolute angle—average of absolute angle at every point

averaдeabsoluteanдle =

∑p−2
p=1 |θ |
p − 2

(8)

• Average squared angle—average of square of angle at every point

averaдesquareanдle =

∑p−2
p=1 θ

2

p − 2
(9)

• Total angle—sum of angle at every point at every point

totalanдle =

p−2
∑

p=1

θ (10)

• Total absolute angle—sum of absolute angle at every point

totalabsoluteanдle =

p−2
∑

p=1

|θ | (11)

• Total squared angle—sum of square of angle at every point

totalsquaredanдle =

p−2
∑

p=1

θ 2. (12)

For lines, at each point the angle between two lines—one joining the point and previous point
and another joining the point and the next point—is calculated. Figure 16 demonstrates how the
angle is calculated among points p1, p2, and p3.
To get the smoothness of circles, it is not possible to use what has been used for lines because

of the curvature of the circle. The angle between two adjacent lines joining consecutive points in
a circle will always be at an angle, and this is dependent on the radius of the circle. To simplify
the calculations of the circle sketch assessment, the reference circle is stretched in such a way that
it forms a straight line. The points on the user’s stroke are also stretched such that the distance
between points on the original user sketch and the corresponding point on the original reference
shape (the reference point at the same radial angle as the user point) is the same after stretching
the shape. Figure 17 shows this concept.
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Fig. 17. Smoothness calculation of circles.

This is done by making a line the same length of the already resampled circle stroke. For each
new point, the x-value is simply increased consistently by the resampled distance between the
points (see Equation (13)). The y-value is simply the distance of the current point from the center
point c minus the radius (see Equation (14)),

xnewi
= distance (poldi ,pold )i−1)

=

√

(xoldi − xoldi−1 )2 + (yoldi − yoldi−1 )2,
(13)

ynewi
= distance (ci ,poldi )

=

√

(xci − xoldi )2 + (yci − yoldi )2 − r .
(14)

We assess ellipses in much the same way as circles. The ellipse reference shape is stretched into
a straight line.
The smoothness of each of the four edges of squares and rectangles is measured separately to

come up with a single value for each of the features mentioned in the list above. Each of the 12
edges of the cubes and cuboids are taken individually, and their smoothness is measured to get the
smoothness features of the whole shape.

5.4.4 Speed Fluidity. Speed fluidity calculates how the speed changes during the drawing of
a stroke. When drawing in a straight line, the speed profile generalizes to a regular parabola, in
which the pen speeds up and then slows down as shown in Figure 18. This has been used in the
past to recognize gestures before they are completed [50].
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Fig. 18. Velocity vs. time graph while moving hand in space towards a target.

The following features have been used to measure it.

• Speed fluidity middle 50 to last 25—This is the ratio of speed between the points at 1/4th
distance and 3/4th distance of the stroke to the speed between the points at 3/4th distance
and the last point.

• Speed fluidity first 75 to last 25—This is the ratio of speed between the first point and the
point at 3/4th of the distance of the stroke and the speed between the point at 3/4th distance
of the stroke and the last point. Since the speed decreases in the end, the ratio is expected
to be more than 1.

5.4.5 Planning.

• Stroke coupling and breaking—This feature helps us measure the way the strokes are cou-
pled and broken to get the final recognizable sketches. It is speculated that the quality
sketches will break the shape into components and try to draw them individually to get
higher realism and better quality. We number the strokes in the final shape to determine
this. We do not consider the stray strokes and the strokes that were removed using the Undo
button.

• Stroke direction coupling—This feature helps us measure the direction of each of the strokes
in the shape and gives the sketch an overall value. The possible directions for a straight line
are top-to-bottom, bottom-to-top, right-to-left, and left-to-right. Two possible directions for
circles and ellipses are clockwise and counterclockwise
For horizontal lines, strokes drawn from left to right are given a score of 1 while strokes
drawn from right to left are given a score of −1. Similarly, for vertical lines, we give a score
of 1 and −1 for lines being drawn from top-to-bottom and bottom-to-top, respectively. In
the case of diagonal likes, we treat them like horizontal or vertical lines depending on the
angle they make with the x-axis. We use the grading score similar to the closer of the two
possibilities—horizontal and vertical.
For circles and ellipses, we assign a score of +1 and −1 for clockwise and anticlockwise
respectively. To find the direction, we consider four points on the stroke that are equidistant
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from each other, which will be the stroke’s start point, the stroke’s end point, and two points
in between. Depending on how close the start and end points are, these four points will
more-or-less form a shape similar to a triangle, with three lines connecting the four end
points. Then we use Equation (15) to get the direction. This assumes that there is not a lot
of overtracing. If there is a lot of overtracing, then more points are needed (or, rather, they
should be closer together). One way to estimate the number of points needed is to multiply
the length of the stroke by 3/2πr . Equation (15) essentially just computes the angles between
the points and checks if they are continually increasing or decreasing. The last line is only
if the number of points was poorly estimated,

θ1 = anдle (p1 ⇒ p2) = atan2(y2 − y1,x2 − x1)
θ2 = anдle (p2 ⇒ p3) = atan2(y3 − y2,x3 − x2)
θ3 = anдle (p3 ⇒ p4) = atan2(y4 − y3,x4 − x3)

i f (θ2 − θ1) > π {θ2 = θ2 − 2π }
i f (θ1 − θ2) > π {θ2 = θ2 + 2π }
i f (θ3 − θ2) > π {θ3 = θ3 − 2π }
i f (θ2 − θ3) > π {θ3 = θ3 + 2π }

i f (θ3 < θ2 < θ1){return clockwise}
i f (θ1 < θ2 < θ3){return counterclockwise}

else{repeat process with one more equidistant point },

(15)

We give a score ranging from 0 to 2 to squares and rectangles depending on the direction
of each of the component strokes. When the strokes that are parallel are drawn in the same
direction, the score is incremented by 1. Scores between 0 and 6 are given to cubes and
cuboids based on the direction of the component strokes in the sketch. Drawing parallel
sides of the cuboid with strokes in same direction moves the stroke towards 6.

• Stroke order coupling—This feature lets us check the order inwhich the strokes of a complex
shape that can have multiple strokes are drawn. This feature does not mean anything for
lines, circles, and ellipses. For the other two shapes, we describe the algorithm used briefly
below.
For squares and rectangles, we assign a binary score of 0 or 1 to the shapes based on the
drawing of parallel lines together.We give the sketches in which the parallel lines have been
drawn one after the other (i.e., drawing the top and the bottom horizontal side of the shape
together and left and right vertical side of the square together) a score of 1 and the rest of
the sketches a score of 0.
A binary score of 0 or 1 is given to the cubes and cuboids depending on the order of drawing
the top face, bottom face, and edges. We give a score of 1 when all the sides of one face or
the vertical edges are drawn together one after the other before proceeding to another face
or the vertical edges.

• Overdrawing—Designers draw the lines beyond the desired end points to get a better quality
of line between the end points. To check this feature, we added a feature that is the ratio of
length of the stroke to the total length of the whole shape. For complex shapes, the length
of the strokes is added to get the path length of the sketch.

5.4.6 Ratio Metrics. There has been research on the tradeoff between accuracy and speed in
the motor skills while moving the hand to an aimed target. To see if this kind of relationship exists
in the act of sketching as well, we add the following features to our set:
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• Ratio of average absolute angle to average speed
• Ratio of average square angle to maximum speed
• Ratio of average deviation to average speed
• Ratio of maximum deviation to maximum speed
• Ratio of average deviation to size of shape

Table 2 shows the final list of features used in analysis.While all of them are novel in this context,
the table lists which of them are based on new algorithms created specifically for this article.

6 DATA COLLECTION

Our first goal was to determine which of these features were significantly different between
novices and experts. This section describes the experiments conducted.
All the users were given separate credentials to login and draw sketches in each of the lessons

using our software SketchTivity. To maintain consistency, they were all asked to useWacom Cintiq
tablets. All users were told to go through five of the lessons—Lines, Circles, Rectangles, Ellipses,
and Cuboids.
Novice data—We used data collected at Georgia Tech from 20 students enrolled in ME 1770,

Introduction to Engineering Graphics and Visualization. The class predominantly consists of fresh-
men Mechanical Engineering students ranging from ages 18 to 19. They had no formal education
in design sketching, but some had taken K–12 art classes.
Expert data—We collected data from four different experts with expertise in the area of design

sketching. They all had a high level of comfort in usingWacom Cintiq tablets. One of the experts is
an instructor for the course, two other experts are lecturers and professors in the Industrial Design
Department at Georgia Tech, and the final expert is a Master’s graduate student who has been the
TA for the course.
For this study, we use only the sketches that have been recognized by our recognition system,

i.e., incomplete sketches that the system failed to recognize were not included. A total of 2,627
sketches collected from both experts and students were used for our analysis.
Table 3 shows the number of shapes for each of the shapes for both experts and novices.
Once the data were collected, we used our evaluation system to get all the feature values that

were discussed in the previous section and other features that we believed are important and stored
them in the database.
While differences between novices and experts can be more visibly seen in more complex

sketches, sketch recognition can allow for differences to be seen even in the fundamental basic
shapes and primitives comprising complex sketches. This is part of the motivation of our study,
as mastering these basic fundamentals is crucial to producing more expert-level sketches, and it is
important to assess improvement in them.

6.1 Analysis and Results

6.1.1 Correlation between Features. To see the relationships between different parameters
while drawing, we perform a correlation between the different features discussed above. The anal-
ysis showed that there is moderate correlation between some of the features. The pair of features
that has this kind of relationship were (i) speed and smoothness—positive correlation and (ii) ac-
curacy and size of shape—negative correlation. So we added some more features to check for these
relationships in the data. Table 4 shows the correlation for all the shapes for those features. Most
of the other features had a correlation <0.05.

6.1.2 Experts vs. Students. The first step in developing a grading system is to check which of
the features are helpful in making a quality sketch. For this analysis, we checked to see which of
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Table 2. Overall List of Features

Feature Category Novelty (Inspired by)
Accuracy Metrics Accuracy No

Average deviation Accuracy No [60, 65]
Maximum deviation Accuracy No [20, 65]
Hausdorff similarity Accuracy No [20, 41]
Speed Metrics Speed No

Maximum speed Speed No [62]
Minimum speed Speed No [65]
Average speed Speed No [65]
Accuracy Consistency Metrics Smoothness Yes for curved shapes

Maximum angle (Accuracy
Consistency)

Yes for curved, No [62]

Average angle (Accuracy
Consistency)

Yes for curved, No [62]

Average absolute angle (Accuracy
Consistency)

Yes for curved, No [62]

Average square angle (Accuracy
Consistency)

Yes for curved, No [62]

Total angle (Accuracy
Consistency)

Yes for curved, No [62]

Total absolute angle (Accuracy
Consistency)

Yes for curved, No [62]

Total squared angle (Accuracy
Consistency)

Yes for curved, No [62]

Speed Consistency Metrics Fluidity Yes

Ratio of middle 50% to last 25% of stroke Fluidity Yes
Ratio of first 75% to last 25% of stroke Fluidity Yes
Planning Metrics Planning Yes

Number of strokes Planning No [30]
Stroke order coupling Planning Yes
Stroke direction coupling Planning Yes
Overdrawing—Ratio of path length to
reference length

Planning No [59, 60]

Combined Metrics Combined Yes

Ratio of average absolute angle to average
speed

Combined Yes

Ratio of average square angle to average speed Combined Yes
Ratio of average deviation to average speed Combined Yes
Ratio of maximum deviation to maximum
speed

Combined Yes

Ratio of average deviation to size of shape Combined Yes
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Table 3. Number of Sketches

Shapes #Student sketches #Expert sketches

Lines 343 62
Circles 952 103
Rectangles 231 61
Ellipses 548 61
Cuboids 224 42

Table 4. Correlation between Features

Pair of features Lines Circles Rect. Ellipses Cuboids

Average absolute

angle and average

speed

−0.25 −0.75 −0.65 −0.64 −0.58

Average square angle

and average speed

−0.41 −0.67 −0.47 −0.56 −0.23

Average deviation

and size of shape

0.10 0.544 0.43 0.10 0.47

the features work well in distinguishing novices from experts in the hope that we can use these
features to eventually provide them targeted helpful feedback to improve their drawing. There are
multiple ways of doing this using univariate analysis. We use Welch’s t-test and subset selection
to achieve this. Welch’s t-test is a statistical test used to determine if two sets are significantly
different from each other.
The next step is to see how well this set of features aids in distinguishing the two classes of

users. To identify this, we use machine-learning classification algorithms.

6.1.3 Statistical Analysis. - We performed a t-test for each of the features on expert and student
data. Welch’s t-test, which controls for unequal variances, is used to see whether means of two sets
of data are significantly different from each other. We use a t-test to understand if these features
can be used to distinguish between the users and which of these features might be more useful in
distinguishing novices from experts. The results of running a t-test for lines, circles, rectangles,
and cuboids is given in Tables 5, 6, 7, 8, and 9, respectively. Any feature having a p-value below
α = 0.05 is considered significant and has been marked in gray in the tables.

For lines, most features were significantly different between novices and users. Lines are a fun-
damental building block for sketching. Enhanced speed, accuracy, and fluidity/consistency of lines
benefit sketching many more advanced shapes, making it clear why so much time is spent on
sketching lines in design sketching classes. An interesting feature to note is overtracing (ratio of
path length to reference length). Experts draw through the marked end points, whereas novices
tend to start and end at the marked end points.
For circles, we see an interesting effect in that accuracy does not contribute significantly towards

distinguishing novices from experts. However, the smoothness of the lines does play an effect. We
note that the minimum and average speeds are more significant (which are higher in experts),
but not the maximum speed, showing that consistency is much more important than just drawing
quickly. Notice that the ratio of path length to reference length is not significant, since experts do
not do as much over-tracing on circles as they do on lines. Additionally, novices are less worried
about stopping at the end points, so they do more over-tracing than they are do for other shapes.
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Table 5. t-Test Results for Lines

Rectangles, like lines, have accuracy as a distinguishing feature, along with speed and many
other of the same features as lines. Again, like circles, we see for rectangles that maximum speed
is not a distinguishing feature and that rather average and minimum speeds that encourage con-
sistency are higher differentiators. Planning features such as number of strokes and stroke or-
der are extremely important, because experts draw parallel lines together, whereas novices do
not.
In terms of significant features, ellipses look similar to circles, which is not surprising. Ellipses

are harder to draw than circles, so we do get one accuracy feature with significance (Hausdorff),
but in general it is the smoothness, fluidity, and speed features that make the most difference.
For cuboids, we get the surprising result that accuracy is not significantly different, just speed,

smoothness, and fluidity. This may be because as more lines go on the screen, there is more con-
fusion, and our eyes are better at averaging to get the right answer. In terms of planning features,
while the number of strokes is significant—since we still get many novices drawing rectangles in
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Table 6. t-Test Results for Circles

a single stroke—stroke order is not. This may be because there are many parallel lines, and experts
may group them in very different ways.
Table 10 highlights the features that were statistically significantly different for each shape.

Again, this shows that speed, smoothness, and fluidity were important across all shapes. Note that
the number of strokes is not considered for lines as the shape is immediately recognized after the
first stroke. Note that stroke order is not considered for lines for the same reason. Likewise, it is
not considered for ellipses and circles, since most experts draw those shapes with one stroke, and
number of strokes will capture that feature.
Classification—To test how well the set of features can distinguish the experts and students, we

also performed classification on the data.We testedmultiple classifiers (e.g., Linear, REPTree, SVM,
Random Forest, etc.). Each classifier performed similarly (yet slightly worse) than the random for-
est classifier, and thus we report only the results of the Random Forest classifier here. Random
Forest is an ensemble learning method that outputs the most commonly produced result of many
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Table 7. t-Test Results for Rectangles

individual trees and has been shown to achieve high accuracy across a wide range of problems [11].
All results use 10-fold cross-validation to classify the experts and students. Since the number of
experts in our study is much less than the number of students, the number of samples in both
classes is imbalanced, making it not suitable to be used for classification directly. We use a method
called undersampling that randomly removes instances from the majority class to reduce its ef-
fect on the machine-learning algorithm. To do this, we use Weka, an open source package that
contains a number of machine-learning algorithms. The results of the classification are given in
Table 11.

We notice that novices and experts are more strongly differentiated for those shapes that include
perspective points. We think this is because many novices may already have lots of practice draw-
ing lines and circles. But once they have to start thinking about perspective points, their sketches
start to show evidence of hesitation and uncertainty, including a slower speed, wavering lines,
stops and starts, and so on.
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Table 8. t-Test Results for Ellipses

6.2 Holistic Score

For the computer to keep track of a students’ overall progress, we designed a holistic gradingmetric
to evaluate the sketches. To design a metric that increased as sketches increased, we needed not
only data that were labeled isExpert and notIsExpert but also continuous values that represent the
goodness of a sketch to train and test against.
We collected 40 sketches of each shape type8 and divided them into 2 groups of 20.9 We then

asked two experts to rank all of the shape groups from best to worst (1 being the best).
Ranked data give much more fine-grained information about how a sketch improves over time.

This also helps address the problem that our current data were only divided between experts and
novices, and both expert and novice data will vary over time. Thus, it is possible to have examples
where individual novice sketches are better than individual expert sketches. These ranked sketches

8Except cuboids, where we only had 37 linked metrics to drawings.
9Twenty and 17 for the cuboids.
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Table 9. t-Test for Cuboids

will serve as both our initial training data (only half is used in training) as well as our gold standard
for comparing our numerical improvement.
The experts ranked the sketches based on perceivable differences between accuracy and line

quality (smoothness of line work) of the various forms. These two metrics form the basis for grad-
ing in design sketching courses and are also among the only features that can be observed by hu-
mans. Sketches are ideally accurate and the line work is clean and smooth as opposed to choppy
and inconsistent [45].

6.2.1 Similarity Metric. Before we could use our rankings as training or a gold standard, we
need to make certain that the rankings were reliable. As such, we analyzed the similarity of the
ranked lists from the two experts: E1 and E2.
To determine the similarity of the two experts, we first computed the Euclidean distance (see

Equation (16)) for each group of 20 sketches between reviewers E1 and E2.
Note that the similarity metric would be the negative of this value (see Equation (17)).
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Table 10. Summary of Feature p-values (p < 0.05 Is Shaded)
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Table 11. Results of Random Forest Classification

Recall Precision F -measure
Lines 0.799 0.799 0.799
Circles 0.631 0.633 0.630
Rectangles 0.840 0.840 0.839
Ellipses 0.910 0.911 0.910
Cuboids 0.982 0.982 0.982

We arrived at this number by first randomly selecting 20 shapes from each of our shape groups
and sending them to two experts to rank independently from 1 to 20, where 1 was the best. The
average rank then served as the gold standard,

distance (x ,y) =

√

√

20
∑

i=1

(E1i − E2i )2, (16)

similarity (x ,y) =

√

√

20
∑

i=1

(E1i − E2i )2. (17)

We used a Monte Carlo method to determine the standard distribution for a random set of
rankings. We generated 1 million random rankings from 1 to 20. After doing this several times, we
noted that 95% of the data always produced a Euclidean distance of greater than 28.77 or a similarity
less than −28.77. For all shapes, the two reviewers had a similarity greater than −28.77, or p < .05.
Looking at their data, it was interesting to note that the two experts were almost identical towards
the beginning and end of the spectrum but had more disagreement in the middle. Table 12 shows
the details for the two experts for their first set of 20 ranked lines.

6.2.2 Training the Classifier. We trained a classifier on the average rank produced by our two
experts. Because we do not have a lot of data, we first reduced the number of features to help avoid
over-fitting. For each shape, we removed all features with p > 0.001. We then trained a linear re-
gression classifier on this data using 20-fold leave-one-out cross-validation. Tables 12 and 13 shows
the similarity of the two expert raters as well as the computer versus the average of the expert
raters.
We chose linear regression, because we were looking for a human-understandable model that

could guide our future thinking and provide insight into how we can provide effective and intel-
ligent feedback to the user. The linear regression model produces not only a ranking but also an
equation that can be easily integrated into our system to provide internal rankings. We were look-
ing for more than just a number; we also wanted our model to help guide our HCI, UX, and future
development so we could also provide helpful feedback based on the values for the features in the
algorithm (such as “try drawing faster, and with more purpose next time”). An additional benefit is
that this model can easily run in real time in javascript on an HTML browser without having to do
any processing on the server, which could cause a delay. Since this simplest model does perform
reasonably well, this implies that a more complex model, such as one that uses Random Forest or
another classifier, and/or one that retrains itself as it gets more data, would do even better.
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Table 12. Similarity of Rankings for Experts and the Computer

Computer values for Set 1 (S1) were produced by 20-fold cross-validation. Computer values for Set 2 (S2) used

the equations from S1.

6.2.3 Equations Created. Using the data from rankings, we trained a linear classifier for each
of the shapes and produced the equations listed in Equation (18),

LineRank = 0.5965 ∗ avдDev
− 7.3061 ∗minSpeed + 8.0342

CircleRank = 0.3339 ∗ ratioAvдDevToAvдSpeed
+ 1.2463

RectanдleRank = −48.1763 ∗minSpeed

+ 14.4651 ∗ avдSpeed + 0.3612 ∗ avдSquareAnдle
+ 0.0137 ∗ totalAbsAnдle − 0.0008 ∗ totalSquareAnдle
− 11.1426

EllipseRank = −6.28 ∗ avдSpeed
+ 0.4381 ∗ avдSquareAnдle − 0.0742 ∗ avдSqAnдleToAvдSpeed
+ 12.885

(18)
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Table 13. Similarity of Rankings for Experts and the Computer

Computer values for Set 1 (S1) were produced by 20-fold cross-validation. Computer values for Set 2 (S2) used the equations

from S1.

CubeRank = 33.7661 ∗ avдSpeed
+ 0.0848 ∗maxAnдle + 10.5368 ∗ avдAbsAnдle
− 0.436 ∗ avдSquareAnдle + −77.9688 ∗ overdrawinд
− 2.7829 ∗ strokeDirection + −23.2111 ∗ ratioMiddle50ToLast25

+ 0.4516 ∗ ratioMaxDevToMaxSpeed + 91.1589.

Because the data input to the system rank between 1 and 20, where 20 is worst, the generated
linear regression equation maps onto a scale that is predominately between 1 and 20 for most
feature values. However, with extreme feature values, the actual ends of the scale can be anywhere
between −∞ to ∞ depending on the feature values As we would ideally have a scale between 0
and 1, where 1 is best, we altered the equation such that the value v was mapped to 1 −v/20. We
also applied a max and min so that the value remained between 0 and 1 even in extreme cases, e.g.,
1 −max (0,min(1,v/20). Equation (19) shows the normalized equations. While this may collapse
values at the top and the bottom, this should still be okay for generalized improvement tracking,
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LineRank = 1 −max (1,min(0, (0.5965 ∗ avдDev
− 7.3061 ∗minSpeed + 8.0342)/20))

CircleRank = 1 −max (1,min(0, (0.3339 ∗ ratioAvдDevToAvдSpeed
+ 1.2463)/20))

RectanдleRank = 1 −max (1,min(0, (−48.1763 ∗minSpeed

+ 14.4651 ∗ avдSpeed + 0.3612 ∗ avдSquareAnдle
+ 0.0137 ∗ totalAbsAnдle − 0.0008 ∗ totalSquareAnдle
− 11.1426)/20))

EllipseRank = 1 −max (1,min(0, (−6.28 ∗ avдSpeed
+ 0.4381 ∗ avдSquareAnдle − 0.0742 ∗ avдSqAnдleToAvдSpeed
+ 12.885)/20))

CubeRank = 1 −max (1,min(0, (33.7661 ∗ avдSpeed
+ 0.0848 ∗maxAnдle + 10.5368 ∗ avдAbsAnдle
− 0.436 ∗ avдSquareAnдle + −77.9688 ∗ overdrawinд
− 2.7829 ∗ strokeDirection + −23.2111 ∗ ratioMiddle50ToLast25

+ 0.4516 ∗ ratioMaxDevToMaxSpeed + 91.1589)/20)).

(19)

6.2.4 Testing Our Equations. Using our second set of completely new sketches ranked by the
experts, we tested our equations to produce another computer ranking. We then computed a
similarity metric between the computers rankings and the average rankings between the two
experts.
Figures 19, 20, 21, 22, and 23 show some of the high- and low-scoring sketches for each of the

shapes.

6.3 Discussion

The statistical analysis we performed using t-tests shows that most of the features for lines and
rectangles are significant. Table 14 shows the features and how significant they were in differen-
tiating experts and novices for the various forms. One interesting observation from the results is
that the accuracy of the experts and novices for shapes including circles, ellipses, and cuboids does
not differ significantly. This is congruent with the theory of design sketching. Design sketches are
used to quickly get as many ideas as possible on the paper to share them with others, generating
further ideas. Hence, experts do not always give attention to perfect accuracy and concentrate on
other aspects of the sketch like the concept itself and line quality. Below are a few metrics that do
matter when modeling expert sketching ability.

6.3.1 Accuracy. Accuracy may be dependent on the size of the shape. As the shapes increase
in size, accuracy decreases because of the need to change the hand gesture to draw bigger strokes.
The pen can be moved over screen by moving the wrist, elbow, or shoulder. Accuracy metrics
are surprisingly poor differentiators for circles, ellipses, and cuboids. For circles and ellipses, this
is because the simple shapes to not affect the overall perception of the three-dimensional shape.
Rather, it is the surrounding lines that affect the shape more. Thus a visually appealing circle or
ellipse only needs to be smooth, quickly drawn, and of circular shape. In terms of cuboids, we
believe that viewers are accustomed to averaging/reconciling lines that go to the same vanishing
point. But more importantly, we think that experts focus more on having lines going in the right
general direction than exactly fitting the right end points.
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Table 14. Summary of Features Used in the Generated Equations

6.3.2 Speed. Speed was a strong feature across all shapes. The only anomaly is that the maxi-
mum speed was not significant in circles. However, the minimum speed was, implying that con-
sistency is even more important than just simply going fast. When drawing straight lines there is
a larger increase in speed, so higher maximum speed may be as a result from some straight line
segments within the circle, leading to jerkier strokes. Experts tend to be much faster than novices,
and this may be due to higher confidence and an ability to plan farther ahead.

6.3.3 Average Square Angle. The features that represent smoothness of strokes are better in
experts than students. The average angle does not contribute to making the sketches of better
quality; however, the average squared angle does. This is because average angle can be in both
positive and negative quadrants, hence cancelling offwhen the stroke is wavy, whereas the average
absolute angle measures overall waviness independent of the quadrant.

6.3.4 Speed Fluidity. Both features to measure speed fluidity perform fairly well in case of lines,
rectangles, ellipses, and cubes. The t-values of these shapes for the features show that the speed
decreases as a pen approaches the end points in cases of straight lines but increases for ellipses.

6.3.5 Planning Metrics. The features under planning perform moderately well for all shapes
except for circles, although they are most valuable for cuboids.
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Fig. 19. High-score (top) and low-scoring lines (bottom). Note the importance of both accuracy and

speed/fluidity. The top lines appear stronger and more confident, whereas the bottom lines show

hesitation.

The number of strokes performs relatively well for rectangles, ellipses, and cuboids. The experts
drew each of a rectangle or a cuboid with one stroke, whereas students drew several sides with a
single stroke. For ellipses the opposite occurs, experts try to draw the whole shape with one stroke
but the novice uses multiple strokes to finish the shape.
Stroke direction coupling was significant for all of the shapes with lines. Experts tended to draw

all parallel lines in the same direction, whereas novices would draw them in different directions.
This is again tied to the fact that novices would draw multiple lines with the same stroke.
Overdrawing, or the ratio between the stroke length and the reference length, also performs

well for our dataset. Stroke order performs well in case of rectangles, confirming that the experts
draw the parallel lines together.

6.3.6 Speed Ratios. Speed and smoothness or deviation together contribute to the visual clarity
of sketches. To see how they perform together, we included several ratio features. Average square
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Fig. 20. The top two circles show high scores produced by drawn circles, whereas the bottom two show low

scores. Note that for circles, both good and bad circles may have accuracy errors. You can see confidence

and speed in the top two circles, whereas you can see hesitation in the bottom two circles.

angle to average speed, average deviation to average speed, and maximum deviation to maximum
speed all perform particularly well. Speed, as mentioned above, is a particularly powerful distin-
guishing feature. Accuracy is affected by the speed with which one draws. On one hand, the faster
one draws, the lower the accuracy. On the other hand, as one draws faster, fluidity and smooth-
ness should improve. Ideally, one will improve both in accuracy and in speed, and these represent
overall metrics that represent those improvements.
It is interesting that for circles, the single feature average deviation to average speedwas enough

to predict the ranking of sketches. And this feature was important for all shapes. Though accuracy
of experts and students is not significantly different, the ratio of average deviation and average
speed is significantly different. This proves that when students draw at a speed equal to the experts
their accuracy will be worse than the experts and vice versa.
We also checked the ratio of other visual features (deviation and square angle) to speed. All of

these features performed relatively well.

7 TAKE-AWAY POINTS

This set of features/groups of features helps in distinguishing experts from novices in sketching.
One other finding that was not surprising was that as shape complexities increase, the experts
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Fig. 21. The top two rectangles show high scores produced by drawn rectangles, whereas the bottom two

show low scores. Again, notice the hesitation and disfluency in the bottom sketches.

perform much better than the novices, and there is significant difference in the sketches. The nov-
ices had difficulty drawing complex shapes like cuboids and ellipses, which require more practice.
From this information, we can begin modeling expert sketching ability and can develop an em-

pirically based evaluation system.
Through the design of this system as well as the analysis of experts versus novices, we have

learned several things, which we list here:

• UI Design—For effective practice, users should keep their hand in approximately the same
place, this means that users should not have to click a submit button each time.

• UI Design—For effective practice, users should continuously sketch one shape after the next,
with little to no wait time after each shape.

• UI Design—Any timeout would be too long for experts and too short for novices.
• UI Design—By automatically recognizing when the user has completed the shape, we can

provide immediate personalized feedback the instant the user lifts up their pen.
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Fig. 22. High and low scores for ellipses. This figure is a good example of how much more fludity and speed

matter more for ellipses than perfect accuracy.

• UI Design—For the same reasons, after displaying the feedback, the sketchbook should au-
tomatically progress to the next sketch after a minimal time for them to review the feedback
(while also providing them away to go back and review that feedback as long as they want
later in the lesson).

• Accuracy—While accuracy is certainly important, it is not the only measurement that dis-
tinguishes novices from experts. Speed and consistency features are sometimes even more
important.

• Accuracy—Accuracy is not a distinguishing feature for circles. We think this is because
when looking at a drawing in two-point perspective, lines play a much greater perceptual
part in harmonious viewing of the image, as it is harder to use circles to gain perspective.
Speed and consistency continues to play an important part.

• Planning—Experts tend to draw rectangles in four strokes. Novices tend to draw rectangles
in a continuous stroke, as they think of rectangles as four 90◦ angles. Novices draw the
shape as they perceive it and how it exists in real life. Experts draw the shape as they
actually visualize it, in which a rectangle is drawn as two sets of parallel lines that extend
to a vanishing point. Similar things happen with cubes to an extent, with novices using
fewer strokes and a more haphazard manner and experts grouping their strokes to parallel
lines. However, due to the large number of lines in a cube, experts may switch between
groups of parallel lines, and this is not captured in stroke order; rather, another feature
would need to be invented to properly capture that.
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Fig. 23. High and low scores for cuboids. Even though the top and bottom cubes have a similar amount of

red, drawing confidence, speed, and fluidity come across strongly in the top two figures.

• Planning—Stroke direction is very dependent on handedness, so any model that would in-
clude that feature needs to take that into account. That said, experts tended to be consistent.
Their direction related to the vanishing points, and this was seen in the cuboid section.

• Recognition—Just as sketch recognition systems benefit from visual, gestural, and percep-
tion/geometric techniques, evaluating goodness of drawing also benefits from the same
three categories of features.

• Single Score—While a single score is not necessarily helpful for a student who needs tar-
geted feedback, it is very useful for the system to be able to weigh tradeoffs as the user
starts to pick up speed and loses accuracy or vice versa. The single score helps quantify
improvement even as some metrics are decreasing and others are increasing.

8 CONCLUSION

As design sketching is widely used to quickly and effectively communicate ideas in a wide range
of disciplines, it is commonly taught in universities. Traditionally, students are taught in a typical
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classroom setting, where theymay not receive significant amounts of personalized feedback due to
the size of the class and the limited availability of the instructor. To explore the possibility of using
SketchTivity, a web-based intelligent tutoring system, to provide users with personalized feedback
we develop a single internal score representative of drawing ability. To do this, we extracted a set
of features from samples belonging to five shape types, lines, circles, ellipses, squares, and cuboids,
and processed the significant features through Linear Regression to produce an equation designed
to evaluate the quality of the sketch. When the equation results are compared against analyses
completed by expert human sketchers, we found that our algorithm can statistically significantly
evaluate the quality of a sketch.

9 FUTURE WORK

This work provides insight into how novices’ sketches differ from experts’ as well as a possi-
ble metric for a holistic internal computer score to represent overall progress. By noting which
metrics distinguish experts and novices, we can identify certain occurrences and provide helpful
feedback phrases to use when appropriate, such as, “We noticed that you are stopping at the end
point for each stroke. Attempting to sketch through the end point may make your sketches more
fluid.” The internal holistic score will help measure overall progress, as encouraging sketchers
to increase speed may initially decrease accuracy, and vice versa. By combining those two things
together, we hope to use this information to provide personalized informative feedback to help im-
prove progress. This work also forms an empirically based starting point to introduce fun gaming
mechanics to the software that may improve student motivation and self-efficacy.
Pressure is also an important criteria in sketching to produce quality sketches. In the future,

a pressure-sensitive device can be used to get pressure and line-weight-related features as well.
Signature verification is a field that is similar to sketch recognition and user identification in
SketchTivity. Extensive research has been done in this field, not only on recognizing the distinct
identity [19] of the sketcher but also on recognizing the age and gender of the sketcher [43, 44].
Pressure and other features, such as entropy [10], should be tested to see if they can be used to
improve our results. Furthermore, such algorithms can be used in implementing a sketch-based
biometric system.

9.1 ConvertingQuality Measurements to Instructive Feedback

While our current work does not fully convert quality measurements to intelligent instructive
feedback, it is a necessary first step towards that goal. Some future ways in which this can be
achieved include the following:

• Being transparent to users about their performance in the metrics most directly relevant to
expert sketching ability like accuracy, smoothness, and speed and displaying this informa-
tion in scales after exercises. These data can also be mapped over time to show changes in
performance in the individual metrics.

• Utilizing additional metrics like stroke order, pressure, and so on, to provide humanized
feedback in the form of dialogue and a “virtual” instructor.

• Taking advantage of metrics that cannot be obtained without sketch recognition to provide
feedback that goes beyond what human instructors are capable of.

• Utilizing relationships between metrics to construct higher-level aggregate metrics that can
more directly lead to instructive feedback, e.g., the positive correlation between speed and
smoothness can lead to a single metric called line quality and dialogue, such as “your line
quality is poor, try sketching a little faster!”
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• Testing the various feedback based on the feature values and evaluating how it effects stu-
dent performance.

• Obtaining more qualitative and quantitative grading data from experts, both in the form
of ranking, but more importantly in terms of textual feedback that could help in designing
the feedback of our system so that the words used by real human instructors could be used
to guide the feedback. We could also codify this real feedback using machine learning and
build classifiers for automated feedback in the system.
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