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A B S T R A C T

Online educational materials are largely disseminated through videos, and yet there is little understanding of
how these videos engage students and fuel academic success. We hypothesized that components of the elec-
troencephalogram (EEG), previously shown to reflect video engagement, would be predictive of academic
performance in the context of educational videos. Two groups of subjects watched educational videos in either
an intentional learning paradigm, in which they were aware of an upcoming test, or in an incidental learning
paradigm, in which they were unaware that they would be tested. “Neural engagement” was quantified by the
inter-subject correlation (ISC) of the EEG that was evoked by the videos. In both groups, students with higher
neural engagement retained more information. Neural engagement also discriminated between attentive and
inattentive video viewing. These results suggest that this EEG metric is a marker of the stimulus-related atten-
tional mechanisms necessary to retain information. In the future, EEG may be used as a tool to design and assess
online educational content.

1. Introduction

Student engagement is critical to academic success, and yet sur-
prisingly little is known about the neural underpinnings of this process
that lead to true psychological investment (Newmann, Wehlage, &
Lamborn, 1992). Engagement is typically assessed with surveys after
learning has commenced (Robinson & Hullinger, 2008), but these kinds
of questionnaires do not provide a direct assessment of engagement
during the learning process, and it is not clear that they are a reliable
metric of psychological investment (Trowler & Trowler, 2010). In
contrast to the classroom environment, where a teacher might readily
assess physical manifestations of disengagement, the problem is much
more acute in the increasingly common online learning environment,
where expository lectures are often presented with videos (Means,
Toyama, Murphy, Bakia, & Jones, 2009).

Online engagement can be measured by the number views or clicks
(Koller, Ng, Do, & Chen, 2013), participation in online discussion
forums (Brinton et al., 2014; Kizilcec, Piech, & Schneider, 2013), or by
the length of viewing time (Guo, Kim, & Rubin, 2014; Kim et al., 2014).
However, these outcome measures do not necessarily correlate with
academic success (Koller et al., 2013). Online courses have an

alarmingly high attrition rate of around 90% (Breslow et al., 2013;
Jordan, 2014), indicating that students engage differently in online
learning environments then they do in the classroom (Robinson &
Hullinger, 2008). Furthermore, there is a large amount of heterogeneity
in behavioral engagement with online courses (Kizilcec et al., 2013)
and there is little agreement about how this behavioral data relates to
psychological investment with the learning materials (Veletsianos,
Collier, & Schneider, 2015). To address the difficulty in measuring
engagement in the online learning environment, we leverage a method
for assessing attentional engagement from brain activity during the
process of learning and tie it to knowledge acquisition.

The approach builds upon findings that the similarity of neural re-
sponses are critical for both memory and engagement (Cohen, Henin, &
Parra, 2017; Cohen & Parra, 2016; Dmochowski et al., 2014; Hasson,
Furman, Clark, Dudai, & Davachi, 2008; Xue et al., 2010). Neural
consistency can be measured either within a subject responding to re-
peated presentations of the same stimulus, or between subjects by
measuring the similarity of their neural responses (Hasson et al., 2008;
Xue et al., 2010). Since educational videos and classroom lessons are
rarely repeated, we measure the reliability of neural responses of in-
dividual subjects by comparing them to other students, as they respond
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to the same educational videos.
We hypothesize that the similarity of electroencephalographic

(EEG) responses across subjects to educational videos will be a sensitive
measure of knowledge acquisition. When each individual's brain ac-
tivity is more similar to the group, their neural responses are more
likely being driven by the stimulus, rather than by unrelated thoughts.
To assess this similarity of individual subjects brain activity, we mea-
sured the inter-subject correlation (ISC) of EEG responses. ISC quanti-
fies how similar each individual is to their peers. ISC is predictive of
episodic memory, it is a sensitive metric of attentional state, and it is
predictive of engagement when explicitly quantified by the scarce re-
sources devoted to a video (Cohen et al., 2017; Cohen & Parra, 2016; Ki,
Kelly, & Parra, 2016). Additionally, neural synchrony may be indicative
of engagement in real-world classroom environments (Dikker et al.,
2017). These previous studies did not explore how this “neural en-
gagement” translates into an increase in learning efficacy. We predict
that ISC will be indicative of both attentional state and learning per-
formance in the context of educational videos. This study extends
previous results by relating ISC to both incidental and intentional
learning during the presentation of videos typically used in online
education.

2. Results

Knowledge acquisition was assessed in two cohorts who watched
five educational videos on topics related to physics and biology. The
first cohort (“intentional”, N= 18) took a short four alternative forced-
choice questionnaire (9–12 questions) both before and after each video.
The pre-video test (pre-test) assessed baseline knowledge on the topic
addressed by the video, and the post-video test (post-test) assessed facts
imparted during the video and was therefore an assessment of semantic
memory (Squire, 2004). Performance was much better on the post-test
(67.4 ± 6.6%) than on the pre-test (52.1 ± 5.4%, t(17) = 5.9,
p= 2e−5). The second cohort (“incidental”, N= 21, 66.4 ± 6.6%)
watched the videos without knowledge of the post-test and took the
same post-test as the first cohort after viewing all of the videos. Per-
formance on the post-test was indistinguishable between the intentional
and incidental learning groups (t(37) = 0.3, p=0.8). In fact, a TOST
equivalence test with alpha=0.05, indicates that the groups are
equivalent within±8% (Lakens, 2017). Both groups performed above
baseline level (44.6 ± 9.3%, assessed from subjects who did not see
the videos, N=26, intentional: t(42) = 28.6, p= 4e−29, incidental: t
(45) = 30.6, p= 1e−31). Two-way repeated measures ANOVAs,
conducted separately in the incidental and intentional cohorts, with
factors of subjects and movies, revealed a main effect for both factors in
both cohorts (for videos: intentional: F(4,68) = 11.1, p= 6e−7, in-
cidental: F(4,80)=8.4, p= 1e−5, and for subjects: intentional: F
(17,68) = 3.6, p= 8e−5, incidental: F(20,80) = 3.4, p=4e−5). We
predicted that “neural engagement”, as quantified by the ISC of neural
responses, would explain some of the variability in test performance
across subjects.

While subjects in both incidental and intentional cohorts watched
the videos, EEG responses were recorded to assess the ISC evoked by the

videos. ISC measures how well each individual’s EEG activity correlates
with the other members of their cohort (intentional or incidental). The
level of ISC significantly differed between the intentional and incidental
learning paradigms (intentional: 0.11 ± 0.007, incidental:
0.08 ± 0.005, t(37) = 3.7, p= 7e−4), indicating that awareness of
the upcoming test affected engagement with the videos. To measure the
effect of attentional state on ISC, following Ki et al. (2016), subjects in
both cohorts watched each video twice: while they were either at-
tending normally or while they were disattending. Subjects first wat-
ched all videos and answered all questions (attend condition). After a
short break, subjects watched all the videos again while silently
counting backwards from 1000 in steps of seven (disattend condition).
ISC was strongly modulated by the attentional state, and arguably the
engagement, of viewers in both cohorts (Fig. 1, intentional:
0.05 ± 0.007, t(17) = 13.1, p= 3e−10, incidental: 0.03 ± 0.004, t
(20) = 12.3, p= 8e−11). Furthermore, the ability of ISC to dis-
criminate between the attend and disattend conditions was assessed by
the area under the receiver operating characteristic curve (AUC), a
standard measure of discrimination performance, revealed that AUC
was nearly perfect, and highly significant for both cohorts (intentional:
AUC=0.97 ± 0.03, incidental: 0.89 ± 0.03, mean ± standard de-
viation across all five videos, AUC measures how well individuals can
be categorized as attentive or as inattentive, all p’s= 0.001). The at-
tentional state of viewers was likely modulated by several factors in-
cluding the counting task, fatigue, and motivation (see Section 3).

A three-way repeated measures ANOVA that compared ISC across
attentional states, and repeated videos and subjects in each condition
replicated the main effect for attentional state (intentional: F(1,176) =
537.0, p= 5e−52, incidental: F(1,203) = 468.4, p= 1e−51, Fig. 1).
The ANOVA revealed a main effect of video (intentional: F(4,176) =
40.0, p= 6e−23, incidental: F(4,203) = 10.0, p= 1e−7, Fig. 1).
Since ISC has been found to be a measure of neural engagement (Cohen
et al., 2017; Dmochowski et al., 2014), this indicates that different
movies interested subjects at different levels. There was also a main
effect of subject (intentional: F(17,176) = 4.8, p=4e−8, incidental: F
(20,203) = 6.8, p= 1e−13, Fig. 1), indicating significant inter-subject
variability in engagement, just as there was for test performance.

To relate ISC, a neural proxy for engagement, to knowledge acqui-
sition, ISC was used to predict performance on the post-video assess-
ment. Fig. 2A and B shows the relationship between ISC during the
attentive state and test performance (Score [%]) for each subject for all
five videos (indicated with different colors). When both ISC and test
performance are averaged across the five videos, ISC correlated with
test scores in both cohorts (Fig. 2C and D, intentional: r= 0.57,
p=0.01, N= 18, incidental: r= 0.41, p=0.07, N=21). Students
with higher ISC, indicative of higher levels of neural engagement, also
performed better on the tests querying their content. ISC in the dis-
attend state did not significantly correlate with performance (inten-
tional: r=−0.07, p= 0.8, N=18, incidental: r= 0.01, p=1,
N=21). This drop in correlation (intentional: p= 0.05, incidental:
p= 0.2) suggests that ISC’s relationship with performance is contingent
on attention, and does not easily result from other sources of variation
across subjects.

Fig. 1. ISC is highly modulated by attention in response to educational videos. Inter-subject correlation (ISC) values for each subject (connected by a line) for each
video while they either attending to (A) or were distracted from (D) the video’s content. ISC can discern attentional state in both the intentional and incidental
conditions. Each video is portrayed in a different color (see Section 4 for video descriptions).
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3. Discussion

The neural engagement evoked by educational videos was assessed
with the inter-subject correlation (ISC) of the EEG recorded during
video presentation. Subjects with high ISC elicit neural activity that is
similar to their peers and they are therefore thought to be more en-
gaged with the stimulus (Cohen et al., 2017; Dmochowski et al., 2014).
ISC correlated with performance on a post-video assessment in both an
intentional learning paradigm, in which subjects knew that they would
be tested, and in an incidental learning paradigm, in which subjects
were unaware of the test while watching the videos. After watching all
videos and answering all questions, subjects watched the videos again
while performing a distracting task. ISC could discern whether or not
subjects were fully attending to the videos.

The high level of attentional modulation found with these educa-
tional videos is similar to levels found for entertaining narratives from
conventional cinema (Ki et al., 2016). This result is surprising, because
these putatively more “engaging” stimuli are theoretically more likely
to capture attention. The evoked responses from these kinds of videos
are therefore expected to be more consistent during an attentive state
than during an inattentive state (Ki et al., 2016). The strong main effect
of attention for both the incidental and intentional learning cohorts is
likely the result of several factors. The disattend condition imposed a
distracting task and it also consistently followed the attentive condition.
Since the disattend condition always followed both the attentive con-
dition and its associated tests, subjects were probably fatigued during
this second presentation (in total the experiment lasted between 1 and
1.5 h). This likely contributed to the nearly perfect discrimination
performance of ISC. Additionally, in the intentional learning cohort, the
attentive condition was book-ended by examinations, further moti-
vating attention in this condition. Future studies should tease apart the
task, fatigue, and motivation factors that induced the strong dis-
crimination performance of ISC for the attentional state of viewers re-
sponding to educational videos.

ISC, a metric of attentional state, correlated with test performance
in both the intentional and incidental learning groups. In both cohorts,
the relationship between ISC and test performance was resolved with a
smaller sample than that used previously (Cohen & Parra, 2016) where
effect size was r= 0.49 compared to the values of r= 0.57 and
r= 0.41 found here). This may indicate that ISC is a more sensitive
metric of semantic knowledge acquisition, rather than the episodic
memories that were previously tested (Cohen & Parra, 2016; Squire,
2004). It is also possible that since subjects were tested almost im-
mediately after they watched the videos, their brain activity more
strongly reflected their knowledge acquisition than in the previous
experiment in which testing occurred three weeks after video exposure
(Cohen & Parra, 2016). As students are often tested long after initial
learning, future studies should consider testing subjects at longer la-
tencies.

We designed the intentional and incidental learning conditions with
the intention of modulating engagement with the videos. We expected
that students would be more engaged when they expected an assess-
ment. This effect was reflected by the modulation of neural engage-
ment, but not by task performance, which was unaffected by awareness
of the upcoming test. This curious dichotomy may indicate that the
behavioral assessment was not robustly sensitive to the difference in
attentional state, as indexed by the correlation of brain responses,
across the two conditions. Although intentional learning is typically
thought to result in better memories for words and pictures than in-
cidental learning (Noldy, Stelmack, & Campbell, 1990), this is not the
case when the items are processed more deeply (Schneider & Kintz,
1967). Although subjects were not instructed how to encode or process
the material, the similarity in test performance between the two cohorts
may result from a deeper level of processing inherently elicited by vi-
deos regardless of instructions (Craik & Lockhart, 1972).

The incidental learning condition is potentially more naturalistic
than the intentional condition because students are typically not cog-
nizant of an impending test when they are learning the material for it.
However, even subjects in the intentional condition did not know which
components of the video would be tested. Overall, the scenarios tested
here are more realistic than previous efforts which have typically tested
the memory for isolated words or pictures that are explicitly memorized
(Atkinson & Shiffrin, 1968; Noldy et al., 1990). Future studies should
extend these results beyond evaluations of factual information to more
conceptual forms of learning. Although knowledge of facts may be the
building blocks of more generalizable knowledge, testing this kind of
learning may not correspond to the acquisition of more abstract un-
derstanding (Mayer, 2002).

In both intentional and incidental scenarios, neural engagement, as
assessed by ISC, corresponded with memory strength. These results are
consistent with the known link between attention and memory. ISC is
therefore a potentially useful tool for relating video engagement to
educational outcomes. The portable nature of EEG has obvious trans-
lational implications for this work in evaluating online learning mate-
rials and in real-world classrooms (Dikker et al., 2017; Poulsen,
Kamronn, Dmochowski, Parra, & Hansen, 2017). Although some work
has already been done that utilizes portable EEG in classroom settings
(Dikker et al., 2017), none of this work has employed EEG as a measure
of academic success. Here we have demonstrated a measure of EEG that
is sensitive to both attentional state and knowledge acquisition. Since
this research was done with educational videos, this finding is directly
applicable to online courses where lectures are received by video. For
massive open online courses (MOOCs), there is significant concern over
low retention rates, which are attributed in part to lack of engagement
(De Freitas, Morgan, & Gibson, 2015; Koller et al., 2013). ISC could be
used to assess the engagement of learning materials in testing labs be-
fore they are disseminated. ISC has been shown to be predictive of the
preferences of large populations (Dmochowski et al., 2014), it may
therefore also be applicable to predict the educational efficacy of
learning material for the broader population.

Fig. 2. ISC predicts test performance for educational videos. A & B: Inter-sub-
ject correlation (ISC) and performance on the post-test (Score [%]) for all
subject and all videos. Each point represents an individual’s ISC and test score
for one of the five videos in either the intentional (A) or incidental (B) learning
paradigm. Each video is indicated by a different color (colors are consistent
with Fig. 1). C & D: ISC correlated positively with test performance when both
measures were averaged across all videos for each subject in both the inten-
tional (C) and the incidental (D) condition.
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4. Methods

4.1. Stimuli

The five video stimuli were selected from the ‘Kurzgesagt – In a
Nutshell’ and ‘minutephysics’ YouTube channels. They cover topics
relating to physics, biology, and computer science that are not likely to
be familiar to most subjects (Table 1, Range: 2.4–6.5min, Average:
4.1 ± 2.0min).

4.2. Experimental design

Forty-two subjects participated in one of two experimental condi-
tions: intentional or incidental learning. Twenty subjects participated in
the intentional learning condition (six female, 23.9 ± 4.2 y.o., range
18–33, two subjects were eliminated because of poor signal quality).
Twenty-two subjects participated in the incidental learning condition
(seven female, 21.4 ± 1.2 y.o., range 20–25, one subject was elimi-
nated because of poor signal quality). For both groups, videos were
presented in a random order.

In the intentional learning condition, subjects were aware that they
would be examined and they completed a short four alternative forced-
choice questionnaire both before (pre-test) and after each video (post-
test). The pre-test assessed background knowledge on the general topic
covered in the video (9–11 questions). The post-test covered informa-
tion imparted during the video (11–12 questions). Example post-test
questions and answer choices are provided in Table 1 and a spreadsheet
with all questions and answers is available at: https://tinyurl.com/
y9xqu9bz. The incidental learning cohort completed the same post-test
as the intentional learning group but after watching all five videos, and
without prior knowledge of an assessment. After finishing all videos
(attend condition) and corresponding assessments in the incidental and
intentional cohorts, following a brief break (10–15min), subjects wat-
ched the videos again (disattend condition), in the same random order
as the attend condition. During this disattend condition, subjects were
instructed to engage in the distracting task of counting backwards from
1000 in decrements of seven (Ki, et al., 2016). EEG was recorded during
all quizzes and video presentations for both intentional and incidental
cohorts.

To assess naive performance on the post-test, twenty-six subjects

completed the post-test without seeing the videos (16 female,
22.5 ± 3.8 y.o., range 18–33). These subjects were drawn from the
same experimental pool as the subjects who participated in the inten-
tional and incidental conditions. All data collection and procedures
were approved by the Institutional Review Board of the City University
of New York.

4.3. EEG data collection and preprocessing

The EEG was recorded with a BioSemi Active Two system (BioSemi,
Amsterdam, Netherlands) at a sampling frequency of 512 Hz. Subjects
were fitted with a standard, 64-electrode cap following the interna-
tional 10/10 system. The electrooculogram (EOG) was also recorded
with six auxiliary electrodes (one located dorsally, ventrally, and lat-
erally to each eye). All signal processing was performed offline in the
MATLAB software (MathWorks, Natick, MA, USA).

Data pre-processing procedures followed Cohen & Parra (2016). The
EEG and EOG data were first high-pass filtered (0.3 Hz cutoff), notch
filtered at 60 Hz and then down-sampled to 128 Hz. After extracting the
EEG/EOG segments corresponding to the duration of each stimulus,
electrode channels with high variance were manually identified and
replaced with zero valued samples. Eye-movement artifacts were re-
moved by linearly regressing the EOG channels from the EEG channels,
i.e. least-squares noise cancellation (Repovš, 2010). Outlier samples
were identified in each channel (values exceeding 3 times the distance
between the 25th and the 75th quartile of the median-centered signal)
and samples 40ms before and after such outliers were replaced with
zero valued samples. This zeroing procedure on a high-pass signal (zero
mean) does not affect subsequent computations of correlation except
for discounting correlation values by the fraction of zeroed samples.

4.4. ISC and attention analysis

Inter-subject correlation (ISC) is calculated by first finding linear
combinations of electrodes that are maximally correlated between
subjects as they attend to the same video (Dmochowski, Sajda, Dias, &
Parra, 2012). We refer to these combinations as correlated components,
akin to principal or independent components. By construction, these
linear combinations of electrodes are common to all subjects. The EEG
data for each subject during each video is then projected into the space

Table 1
Title, abbreviation, duration, web address, and example post-test question for the five videos used in experiment. *URL beginning with https://www.youtube.com/
watch?v=.

Title Abbreviation Duration URL-ending* Topic area Example post-test
question

Example post-test answer choices

Why are Stars Star-Shaped? Star 3:28 VVAKFJ8VVp4 Physics What is the shape of
stars in Hubble space
telescope photos?

1. Four pointed
2. Concentric rings
3. Six pointed
4. Series of dashes

Why Do We Have More
Boys Than Girls?

Boys 2:48 3IaYhG11ckA Biology Which of the
following scenarios
explains why the
ratio of boys to girls
changes with age?

1. Boys are more likely to die from diseases at a young age
2. Girls are less likely to survive than males due to genetic reasons.
3. Girls more vulnerable to fatal diseases.
4. The sex ratio does not change

The Immune System
Explained I – Bacteria
Infection

Immune 6:48 zQGOcOUBi6s Biology What is the first cell
type to intervene
during a bacterial
invasion?

Guard cells/macrophage
1. Memory cells
2. B-cells
3. Dendritic cells

How Modern Light Bulbs
Work

Bulbs 2:57 oCEKMEeZXug Physics The bulb does all of
the following
EXCEPT:

1. Increases the brightness of the light emitted
2. Allows the filament to produce light more efficiently
3. Prevents gas from escaping from inside the bulb
4. Prevents oxygen from reaching the filament

Who Invented the Internet?
And Why?

Internet 6:32 21eFwbb48sE Computer
Science

Most internet traffic
during the 1970s
was:

1. Written communication
2. Sharing digital images
3. Statistical data sets
4. Website retrievals
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that maximizes correlation across subjects. This component extraction
technique is a data-driven way to decide which of the electrodes are
most informative about the correlation across subjects.

ISC is calculated for each subject as they watched each video by
averaging the correlation coefficients of the projected EEG time-course
between each subject and all other subjects. The ISC calculation im-
plemented here is identical to previously published implementations
and can be reproduced with code available at http://www.parralab.
org/isc/ (Cohen & Parra, 2016; Petroni et al., 2018). Following pre-
vious research, ISC is calculated by using the sum of the three com-
ponents of the EEG that capture maximally correlated responses be-
tween subjects (Dmochowski et al., 2012). For the attention analysis,
the ISC components were trained from both the attend and disattend
conditions.

To test the difference between the attend and disattend conditions,
student’s t-tests compared individual ISC values averaged across all
stimuli for each subject. A three-way repeated measures ANOVA was
used to compare ISC values for the repeated factors of movie and
subject, and the non-repeated factor of attentional state (attend vs.
disattend). All statistical comparisons were computed within each co-
hort separately.

To test ISC’s ability to discriminate between the attend and dis-
attend conditions, discrimination performance of ISC was assessed
using the area under the receiver operating characteristic curve (AUC).
The AUC analysis quantifies how well attentive and inattentive subjects
can be distinguished by ISC. As such, each point on the receiver oper-
ating characteristic curve corresponds to one subject. Chance level of
the AUC was determined by randomly shuffling the labels for the ISC
values. Significance levels for each video and condition (incidental and
intentional) were determined by comparing the AUC from the correct
labels with 1000 renditions of randomized labels.

4.5. Test performance analysis and comparison with ISC

Test performance was assessed by calculating the percentage of
correct responses on the pre- and post-tests for each video. Student’s t-
tests compared differences in the test performance between the pre- and
post-tests and between the cohorts (incidental and intentional) after
performance had been averaged across all tests for each subject. A two-
way repeated measures ANOVA was performed with the repeated fac-
tors of movie and subject. ISC was compared to test performance by
first averaging test performance across all post-video tests and aver-
aging ISC values across all videos. A Pearson’s correlation value was
then computed between ISC and test performance. Again, all analyses
were conducted separately for each cohort.
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