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Classifying complex Faraday spectra with convolutional neural networks
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ABSTRACT
Advances in radio spectropolarimetry offer the possibility to disentangle complex regions
where relativistic and thermal plasmas mix in the interstellar and intergalactic media. Recent
work has shown that apparently simple Faraday rotation measure spectra can be generated
by complex sources. This is true even when the distribution of rotation measures in the
complex source greatly exceeds the errors associated with a single component fit to the peak
of the Faraday spectrum. We present a convolutional neural network that can differentiate
between simple Faraday thin spectra and those that contain multiple (two) Faraday thin
sources. We demonstrate that this network, trained for the upcoming Polarization Sky Survey
of the Universe’s Magnetism early science observations, can identify two component sources
99 per cent of the time, provided that the sources are separated in Faraday depth by >10 per cent
of the full width at half-maximum of the Faraday point spread function, the polarized flux
ratio of the sources is >0.1, and that the signal-to-noise ratio (S/N) of the primary component
is >5. With this S/N cut-off, the false positive rate (simple sources misclassified as complex)
is <0.3 per cent. Work is ongoing to include Faraday thick sources in the training and testing
of the convolutional neural network.

Key words: methods: analytical – Physical data and processes: polarization – methods: data
analysis – methods: numerical – methods: statistical.

1 INTRODUCTION

Faraday rotation of linearly polarized radio emission gives unique
insight into the properties of the intervening magnetoionic medium.
Measurements of rotation measures (RMs) of background polar-
ized radio sources probe astrophysical magnetic fields in a variety
of environments like the solar corona (Kooi et al. 2017), H II regions
(Harvey-Smith, Madsen & Gaensler 2011), the interstellar medium
of the Milky Way (Han et al. 1997; Sun & Reich 2010; Wolleben
et al. 2010; Pshirkov et al. 2011; Van Eck et al. 2011; Jansson & Far-
rar 2012; Oppermann et al. 2012, 2015; Akahori et al. 2013), exter-
nal galaxies (Han, Beck & Berkhuijsen 1998; Gaensler et al. 2005;
Mao et al. 2012; Bernet, Miniati & Lilly 2013), and the intracluster
(Enßlin & Vogt 2003; Murgia et al. 2004; Bonafede et al. 2010,
2013) and intergalactic (Akahori & Ryu 2011; Akahori et al. 2014;
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Vacca et al. 2016) medium. Traditionally, Faraday rotation has been
measured by fitting the change in polarization angle χ as a function
of wavelength squared (λ2), parametrized by the RM defined by

χ (λ2) = χ0 + RMλ2, (1)

where χ0 is the intrinsic polarization angle of the radio emission.
This linearity with λ2 is only valid for the case of a single syn-
chrotron emitting source with an intervening cloud of magnetized
thermal plasma, i.e. only when the rotating and emitting medium
are completely separated. If there is mixing between the rotating
and emitting plasmas, or there is more than one source–screen pair
within the same beam, χ will in general not be a linear function
of λ2. Other limitations that arise with this method include the so-
called nπ ambiguity, where multiple solutions can fit a straight line
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in λ2 space,1 and bandpass depolarization, where the polarization
angle of the emission rotates so significantly across the bandwidth
that partial cancellation occurs. The wide-band spectral capability
of modern radio telescopes has allowed the use of RM synthesis
(Burn 1966; Brentjens & de Bruyn 2005; Sun et al. 2015), which
can address problems of bandwidth depolarization and multiple
emitting/rotating regions along the line of sight (or within the same
beam). RM synthesis inverts the complex polarization spectrum
P(λ2) = Q(λ2) + iU(λ2) into a Faraday spectrum:

F (φ) = K

∫ +∞

−∞
P (λ2) e−2iφ(λ2−λ2

0) dλ2, (2)

where K is a constant, and φ is the ‘Faraday depth’ of the emission,
given by

φ(r) = K ′
∫ 0

r
neB · dl, (3)

where K
′
is a constant, ne is the electron density, B is the magnetic

field vector, and dl is an infinitesimal distance along the line of
sight from the synchrotron source located at r . In the simple case
described in equation (1), φ = RM. The development of deconvolu-
tion algorithms for the Faraday spectra (e.g. Heald 2009; Bell et al.
2013) has further improved the ability of RM synthesis to reveal
multiple sources along the line of sight.

Farnsworth, Rudnick & Brown (2011) described an ambiguity in
RM derived from χ (λ2) fitting and RM synthesis where two Fara-
day components model can produce a consistent single component
solution that is neither of the input components nor their mean. This
ambiguity can lead to an error in φ derived from these methods that
is greater than what one would naively calculate from the uncer-
tainty in fitting the peak of F(φ). In the era of large radio surveys
meant to produce grids of background RMs for the archival science,
there is a need to distinguish between ‘simple’ foreground screens
and more complex sources.

One such survey is the Polarization Sky Survey of the Uni-
verse’s Magnetism (POSSUM; Gaensler et al. 2010), which will be
conducted with the Australian Square Kilometre Array Pathfinder
(ASKAP; Johnston et al. 2008) and will measure more than one mil-
lion polarized sources in the frequency range of 1130–1430 MHz
over 75 per cent of the sky. An Early Science survey, which is
being conducted as part of ASKAP’s science commissioning ob-
servations, will make use of only 12 antennae of ASKAP, but the
frequency coverage will be extended to 700–1800 MHz. The ex-
tended frequency coverage of the Early Science survey is ideal for
identifying and investigating complex Faraday spectra, provided
that these spectra can be identified in an automated way. There are a
variety of ways in which a Faraday spectrum can deviate from a sin-
gle source with a foreground Faraday screen (called Faraday thin;
Brentjens & de Bruyn 2005). It can be Faraday thick (caused by
significant mixing of Faraday rotating and emitting plasma), have
multiple Faraday thin components, or there can be external/internal
Faraday dispersion (modulation due to rapidly changing Faraday
rotating cells along the line of sight, or within a single beam).

The initial data release of the POSSUM survey will be a cata-
logue of sources with simple Faraday spectra and their associated
properties. Simple spectra come from sources with a single Fara-
day rotating screen in front of them, i.e. their polarization angle

1This can be addressed with spatial continuity arguments in the image plane
(Dolag, Vogt & Enßlin 2005).

would obey equation (1) for all λ2 values. This POSSUM Polariza-
tion Catalogue (PPC) will not include complex sources, which are
any sources that are not simple as defined above, so the pipeline
producing the catalogue must have an efficient and effective way
of determining/testing the complexity of a source. This test needs
to be able to (1) determine whether a Faraday spectrum is com-
plex in general, including cases where there are more than one
well-separated Faraday sources (peaks) in the spectrum; (2) deter-
mine whether a given peak is Faraday thin or not; and (3) provide
some way of assessing how sure we are of the resulting classifica-
tion. Initial work has shown that the second moment of the clean
components resulting from a Faraday cleaning procedure can pro-
vide some discriminating power (e.g. Brown 2011; Anderson et al.
2015), while more recent work has focused on the model fitting the
polarization spectrum and examining the statistically more likely
model in a Bayesian sense (e.g. O’Sullivan et al. 2012, 2017; Sun
et al. 2015; Purcell & West 2017).

To this end, we present the construction of a convolutional neural
network (CNN) that can automatically classify a Faraday spectrum
as either simple or complex. While it does not eliminate the ambigu-
ity presented in Farnsworth et al. (2011), the network does quantify
the range of parameters over which we have a high certainty that
the classification is correct. In Section 2 we describe the construc-
tion and training of the CNN, in Section 3 we outline the testing of
the network on simulated data, and in Section 4 we summarize the
limitations of the metric and discuss future improvements.

2 CONVOLUTIONAL NEURAL NETWORK

A few of the major difficulties for developing a test for complexity
are (a) the ad hoc nature of the initial choice of a metric, (b) the
significant work required to find a metric threshold appropriate for
the science goals, and (c) estimating the uncertainty in the accuracy
of the metric/threshold combination. For these reasons, we have
explored CNNs (LeCun & Bengio 1995; Krizhevsky, Sutskever &
Hinton 2012) as potential classifiers.

2.1 Background

Traditional neural networks (Cybenko 1989), when used as classi-
fiers, are functions that map data in some space (like an image, a
spectrum, or just a list of features) into a probability that the data
represent some class of object. Typically the function is approxi-
mated by a layered ‘network’ of matrix multiplications interspersed
with non-linear scalar functions. The essence of machine learning
is that, as we do not know what values these multidimensional ma-
trices should have ab initio, we must train the network by feeding
it example data where the classification is known (often called the
‘ground truth’ in literature) and adjusting the elements of the matri-
ces to get closer to the correct answer. This is usually accomplished
through gradient descent, where the values are adjusted to minimize
a loss function (e.g. least-squares difference between the true and
predicted answers).

In our case the data are the complex Faraday spectrum from equa-
tion (2), and we wish to find a mapping from any given spectrum to
the probability that it is complex. As the sources can show up any-
where within the spectrum, the function should be translationally
invariant, which can be introduced through the use of convolu-
tions. Instead of having each layer be a large matrix of weights,
a CNN is made up of layers of convolutions, where the weights
are a convolutional kernel that is shared across the spectrum during
the convolution. Instead of having just one kernel per layer, one
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966 S. Brown et al.

Figure 1. Three inception layers convolutional neural network (CNN) clas-
sifier. Each dense layer has an additional dropout (0.5) and activation (ReLU)
layer within it.

can apply many kernels to the spectrum and concatenate the results
at the end. The single spectrum is now transformed into multiple
representations, some of which may be better suited to detect the
signal of interest.

A CNN is thus a function that applies multiple convolutions to
the spectrum in each ‘layer’, with a non-linear ‘activation function’
applied between layers. A simple, effective, and popular choice is
the rectified linear unit (or ReLU; Nair & Hinton 2010), which func-
tionally is just ReLU(x) = max(0, x), effectively clipping negative
values. The stacking of many such layers is where the ‘deep’ in
deep machine learning comes from.

CNNs are ideal for addressing the problems associated with com-
plexity, as the training process will automatically find the series of
convolutional kernels that are optimal for classifying the spectra.
While model fitting requires large searches over parameter space
each time a spectrum is analysed, a CNN samples the space only
during training, and requires only a straightforward and efficient
‘feed-forward’ network of matrix operations to classify the sources.

One issue that can arise in using a CNN on our polarization spec-
tra is that sources (or clusters of sources) may have varying widths
in Faraday space, so fixing a convolutional kernel size may bias the
classifier. To address this, we used an ‘inception’ network initially
developed by the GoogLeNet team (Szegedy et al. 2014), which
applies a series of convolutions in parallel, each with a different
kernel size, and concatenates the results to form the next layer. This
further allows the network to search for features in the data that
distinguish complex sources. In essence, the network will find the
best metric to use during the training process, eliminating the need
to choose one at the outset.

2.2 Network architecture

The basic building block for our network architecture (Fig. 1) is an
‘inception layer’ (Fig. 2). Each inception layer will take an input
spectrum and apply five parallel channels of convolutions, using
four different kernel widths, with kernel sizes of 1, 3, 5, and 23
channels (in Faraday space each channel is 1 rad m−2). The one-

Figure 2. A zoom-in of an inception layer. Each of the convolutional layers
(in blue) has additional batch normalization and activation (ReLU) layers
within it.

channel convolution (often called a ‘1 × 1’ convolution; Szegedy
et al. 2014) is not a channel convolution at all, but a matrix multipli-
cation in the depth direction, allowing mixing between the real and
imaginary parts of the spectrum in the first application, and rela-
tionships between different kernels in subsequent layers. We chose
the 1, 3, and 5 channel width convolutions because they appear in
the original network of Szegedy et al. (2014), and the 23 channel
convolution so as to fully sample the full width at half-maximum
(FWHM) of a Faraday thin source given our frequency coverage,
which is FWHM = 22 rad m−2. In Fig. 2, each of these convolu-
tional layers are labelled as blue boxes, and come with two other
operations packaged inside. After the convolution is computed, the
outputs are normalized (called ‘batch normalization, which stabi-
lizes the gradient descent during training), and then a ReLU ac-
tivation function is applied. The layer in the green box, called a
‘maxpooling’ layer (Boureau, Ponce & LeCun 2010), reduces the
number of channels in the spectrum by taking the maximum value
in a three-channel wide kernel, then removing half the channels.
The full network is shown in Fig. 1, and the individual inception
layers are shown in Fig. 2. The ‘flatten’ layer will take the deep
network of features constructed by the inception layers and project
it into a single vector of features to be passed to the dense lay-
ers. These dense layers are traditional artificial neural networks
(Cybenko 1989), where the weights are simple matrix multiplica-
tions. To avoid overfitting during the training process, half of the
weights (selected at random) in the dense layers are set to zero dur-
ing each training iteration (called ‘dropout’; Srivastava et al. 2014).
Source code can be found on GITHUB.2

Using this inception layer as our base, we considered and tested
several CNNs with different number of layers. By monitoring our
loss function as computed on an unseen validation set of data (see
Section 3 below), we found that the best network has three con-
volutional inception layers, along with two fully connected (dense)
layers (Fig. 2).

3 TRAINING

In order to train the proposed complexity classifier, we simulated
both simple and complex spectra using a realistic observational
model. Since our current purpose is to develop a metric for the

2https://github.com/sheabrown/faraday complexity/blob/master/final/How
2Guide.ipynb
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Figure 3. An example of a polarized spectrum sampled with the POSSUM
Early Science frequency coverage used in the training data.

Table 1. Two-component parameter space.

Parameter Symbol Range

Amplitude 1 P1 1
Amplitude 2 P2 [0, 1]
Faraday depth {1, 2} φ{1, 2} [−50, +50]
Polarization angle {1, 2} χ{1, 2} [0, +π ]
Noise/channel σ [0, 0.333]

POSSUM Early Science observations, we have used the proposed
frequency coverage of the ASKAP 12 Early Science survey (700–
1300 and 1500–1800 MHz), with a total of 900, 1-MHz channels
(see Fig. 3). The current work focuses only on two-component
models (with both components being Faraday thin), which are be-
lieved to be the dominant source of complex spectra (e.g. Anderson
et al. 2015; O’Sullivan et al. 2017). The two emitting regions can
have different polarized amplitudes (P1 and P2), as well as different
intrinsic polarization angles (χ1 and χ2) and foreground Faraday
depths (φ1 and φ2). The combined polarized spectrum is given by

P (λ2) = P1 e[2i(χ1+φ1λ2)] + P2 e[2i(χ2+φ2λ2)]. (4)

We also simulate simple sources using equation (4), but withP2 = 0.
To train the network, we generated 130 000 sources (100 000 train-
ing set and 30 000 for validation), roughly half of which were com-
plex (two-component) sources, and the other half were simple.3

Table 1 shows the parameter space that was sampled at random
from a uniform distribution. We used the simplifying assumption
that both the noise and total intensity have no spectral dependence.
As a first step, we chose to train the network on the Faraday spectra
F(φ) only, as it will be computed as part of the POSSUM pipeline,
but in theory the network can be trained using the polarization spec-
trum directly as well. For each source, a polarization spectrum was
created first, and then a Faraday spectrum was created using the
standard inversion formula of Brentjens & de Bruyn (2005):

F (φ) ≈ K

N∑
i=1

Pi e−2iφ(λ2
i
−λ2

0), (5)

where K = 1/Nchannels, λ2
0 is the average λ2 of the channels, and Pi

is the measured complex polarization in channel i. Fig. 3 shows an
example of a complex polarized P(ν), and Fig. 4 shows a selection
of Faraday F(φ) spectra for complex sources in the training set.

3Each time the data simulator created a spectrum, there was a 50 per cent
probability that it would be complex. The probability is an adjustable pa-
rameter in the source code.

The network was trained using batch stochastic gradient descent
(SGD; Duda Hart & Stork 2012) on the training set of 100 000
sources, with 30 000 sources withheld for cross-validation during
the training. The SGD minimizes a loss function, and we used
the binary cross-entropy (Hinton & Salakhutdinov 2006) for this
purpose. One epoch of training consists of adjusting the network
weights with SGD using 100 000 sources, then checking how well
it does on the 30 000 validation sources. The training lasted for
100 epochs (taking roughly 3 h on a 3.30 GHz CPU with 32 GB of
RAM), though no improvement in the loss function of the validation
set was found after 55 epochs. The weights found on epoch 55 were
saved and used for testing below.

4 RESULTS AND DISCUSSION

The trained network was then applied to 100 000 new sources
randomly generated using the same parameter space as the training
set. The output for each source is a value p between 0 and 1 that can
be thought of as the probability that the source is complex. A perfect
network would return a 1 for every complex source and a 0 for every
simple source. Fig. 5 shows a histogram of p for the 100 000 test
sources. The distribution is bimodal, indicating that the network
was confident about the classification of most sources. The larger
spread in the p = 0 peak may indicate that the network is picking
up on the ambiguity of Farnsworth et al. (2011), something that we
investigate below. If we take p> 0.5 as the threshold for complexity,
we can construct the confusion matrix as shown in Table 2.

The network produces 7.2 per cent false negatives and 3.0 per cent
false positives. In order to hunt down the complex sources that
are misclassified as simple, we can plot the p for all the complex
sources as a function of both the second component’s amplitude P2

and the absolute separation in the two components’ Faraday depths
	φ = |φ1 − φ2| (Fig. 6). The majority of false negatives happen at
small P2 and 	φ. This is consistent with the results of Farnsworth
et al. (2011) and Sun et al. (2015) that point to the difficulty in
identifying two component sources when 	φ < FWHM of the
Faraday point spread function. Fig. 7 shows an example of one
of the false negatives. The false positive rate is low, and visual
inspection of p as a function of σ reveals that these occur mostly at
low S/N.

For the purposes of constructing a classifier for large-scale po-
larzation surveys like POSSUM, we would like to exclude the phase
space of sources that would likely not make it into the catalogue due
to low S/N, as well as sources where the RMs of the two components
are close enough to allow probing of a foreground Faraday screen.
We therefore searched for the region of phase space in which we can
detect >99 per cent of the complex sources, allowing for the false
positive rate to adjust appropriately based on the cut-off values. We
found that if the minimum S/N of the primary component is 5.0,
and restrict our sample to P2 > 0.1, and 	φ > 2.3 rad m−2 (which
is about 10 per cent of the 23 rad m−2 FWHM of the Faraday point
spread function), the false negatives are reduced to <1 per cent,
while the false positives are reduced to <0.3 per cent. Table 3 shows
the new confusion matrix with the cut-offs applied to the same sim-
ulated data. What these cut-offs mean for the initial POSSUM cata-
logue (the PPC) is that the network is 99 per cent confident that the
Faraday spectrum is simple, with the understanding that a secondary
component can be hiding in the above phase space. The probability
returned by the network can be recorded for each source, allowing
one to flag sources where p is close to the nominal cut-off of p< 0.5
for the PPC. We should note that one can trade a higher S/N cut-off
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Figure 4. Complex Faraday spectra from the training data (with φ1 and φ2 given by the vertical green dashed lines). No deconvolution (RM clean) was
performed.

to allow a narrower 	φ and still reach the 99 per cent, something
that might be advantageous depending on the science goal.

5 CONCLUSION AND FUTURE WORK

We have constructed a CNN that is able to distinguish between sim-
ple Faraday sources and those that contain two Faraday thin com-
ponents, demonstrating on simulated POSSUM Early Science data
that it can detect 99 per cent of complex sources with <0.3 per cent
false positive rate in a realistic and useful region of the source pa-
rameter phase space. The training and application of this network
for other observational parameters in straightforward, needing only
the frequency coverage to be changed. The most obvious future
development of the network would include (1) lifting the simplifi-
cation on the flat spectral index and channel independent noise, (2)

allowing for modified RM synthesis that includes channel weights
in equation (2), and (3) the inclusion of Faraday thick and three
component sources during training. Including complexity beyond
this may prove impractical, as O’Sullivan et al. (2017) were able
to fit just about any source using a combination of three Faraday
thin components. Given the power of CNNs used in commercial
applications, the inclusion of point (3) in to the training would
also allow for multiple classes beyond a binary simple/complex
classification.

The CNN classifier presented here is not specific to the ASKAP
telescope, and in theory could be trained on simulated data from any
radio telescope that can produce a Faraday spectrum. This method
may prove particularly useful for low-frequency dipole antennas,
where one of the major problems is to evaluate and remove instru-
mental polarization. Given sufficiently realistic simulated data, the
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Figure 5. Histogram of probability values for the 100 000 test sources.

Table 2. Confusion matrix: before cut-offs.

Predicted −> Simple Complex

True simple 48 318 1481
True complex 3618 46 583

Figure 6. Top: probability output of the network versus the relative flux of
the second component for simulated complex sources in the test data set.
Colour scale is the log of the number of sources. The black triangles at the
top are the high density of p values around 0.99, and the right-hand subplot
is a histogram showing that the vast majority of sources were classified as
complex. Bottom: like above, but plotted versus the absolute difference in
the Faraday depth (	φ) between the two components.

Figure 7. Top: Faraday spectrum of a complex source misidentified as
simple by the classifier. The two Faraday depths are labelled with vertical
green dashed lines.

Table 3. Confusion matrix: after cut-offs.

Predicted −> Simple Complex

True simple 29 281 69
True complex 247 25 337

algorithm can be trained to distinguish among instrumental and real
features.
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