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Assessing Gaussian Assumption of PMU Measurement Error Using Field Data
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Abstract—Gaussian phasor measurement unit (PMU) measure-
ment error has been assumed for many power system applications,
such as state estimation, oscillatory modes monitoring, voltage sta-
bility analysis, to cite a few. This letter proposes a simple yet ef-
fective approach to assess this assumption by using the stability
property of a probability distribution and the concept of redun-
dant measurement. Extensive results using field PMU data from
WECC system reveal that the Gaussian assumption is questionable.

Index Terms—Non-Gaussian distribution, PMU measurement,
stable distribution, power system operation, state estimation.

1. INTRODUCTION

ITH the wide-area deployment of phasor measurement
W units (PMUs), many power system online monitoring
and control applications become possible, including dynamic
state estimation, oscillatory modes monitoring, voltage stability
analysis, to name a few [1]-[3]. However, Gaussian measure-
ment error is usually assumed when conducting those applica-
tions. It should be noted that if Gaussian assumption is violated,
the obtained results could be misleading and harmful for power
system security.

In this letter, we propose a simple yet effective approach to
assess this assumption by using the field PMU measurements
from the Western Electricity Coordinating Council (WECC)
system. We utilize the concept of redundant measurement to
construct an error vector for Gaussian assumption assessment.
The latter is checked by the stability property of a probability
distribution and the Shapiro-Wilks test. Extensive results show
that PMU measurement error potentially follows thick-tailed
non-Gaussian probability distributions.

II. PROBLEM FORMULATION

Definition 1: PMU measurement error includes the absolute
error (or bias), the relative error and noise that is induced by
instruments, communication channels, etc. Bias is a constant
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Fig. 1. Different configurations of circuit breakers.

instead of a random variable, and therefore it does not affect the
distribution of the measurement error. It should be noted that
measurement noise sometimes has been used with measurement
error interchangeably in the literature. However, they are in fact
different and measurement error is more general. In addition, it
is the measurement error that we care most when implementing
measurement-based applications.

To analyze error statistics, the first step is to extract them
from measurements. However, as practical power systems are
typically non-stationary, it is very challenging for traditional
approaches, such as finite impulse response (FIR) digital low
pass filters, median filter [4]-[6]. An alternative way to extract
error from field PMU measurements is through a high precision
calibrator, where same inputs are fed into the calibrator and the
PMU devices under test, then the differences of their outputs are
taken as the measurement error. Although this is the best way to
obtain almost true error statistics, it is not economically feasible
as the high precision calibrator is very expensive. In this letter,
we propose a redundant measurement-based approach to check
the statistical property of the measurement error.

III. PROPOSED APPROACH
A. Concept of Redundant Measurements

Redundant measurements are often set up to guaran-
tee observability for different network topologies or operat-
ing modes. For example, Fig. 1 shows the breaker-and-half
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bus/switching configuration and double-bus-double-breaker
configuration cases in the WECC system. In order to ensure
the observability of buses 1 and 2 for the breaker-and-half
bus/switching configuration case when any one of the three
breakers opens, two PMUs are installed, one at each bus. PMUs
measure the bus voltage phasor as well as the current phasors
of the lines that are adjacent to that bus. Note that we get the
information of the breaker status from SCADA data. When all
the breakers get closed, the metered voltage magnitudes and
angles or line current phasors obtained by these two PMU de-
vices should be identical in absence of errors. Then, we say that
PMUs installed at buses 1 and 2 form a redundant case. Further-
more, if these two PMU devices are from the same vendor and
operate with almost the same environmental factors, we would
expect that the error statistics of them should be approximately
the same.

B. Assessment of Gaussian Assumption

Let S be the set of redundant measurements, for i,j € S,
define «; = ¢ + e; and x; = = + e; as the measured values
provided by PMUs, where x is the true value; e; and e; are
measurement errors associated with ith and jth PMUs. Note
that ; and x; come from different PMU devices, they are con-
sidered as independent. Furthermore, to extract measurement
error from the redundant set defined in Section I1I-A, we define
Ax;; = x; — ¢; = e; — e;. Subsequently, we have the follow-
ing theorem:

Theorem 1: A necessary condition that both e; and e; fol-
low a Gaussian distribution is that Az;; follows a Gaussian
distribution.

Proof: We will prove this theorem by contradiction.

Case I: assume that both e; and e; follow a Gaussian dis-
tribution, then by the stability property of the normal/Gaussian
distribution, it is straightforward to verify that Az;; follows a
Gaussian distribution.

Case 2: assume e; (or e;) follows a Gaussian distribution
while e; (or e;) has a non-Gaussian distribution, Az;; must
follow a non-Gaussian distribution. This is because if Ax;; is
Gaussian, by subtracting e; (or e;) from Ax;; and using the
stability property of the Gaussian distribution, e; (or e;) must
follow a Gaussian distribution. This contradicts the assumption.

Case 3: assume both e; and e; follow a non-Gaussian distri-
bution, Az;; follows a Gaussian or non-Gaussian distribution.

From cases 1-3, the Theorem follows. [ |

Remark 1: According to the central limit theorem, it is true
that the difference between two non-Gaussian random variables
can yield a Gaussian distribution as the number of measure-
ments tends to infinity. However, this can hardly hold true for
practical power systems. This is because the measurement error
of PMU depends on the operating conditions of the system and
many environmental factors, yielding time varying error statis-
tics. As a result, the independent and identically distributed
random variable assumption of the central limit theorem does
not hold true.

Remark 2: In our studies, two similar PMUs (from the same
vendor) measure the same quantities and are subject to same
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impacts of environmental factors. We can anticipate that the er-
ror statistics of these two PMU devices are quite similar. Thus,
according to the stability property of a probability distribution
and Theorem 1, if we find that Az;; follows a Gaussian dis-
tribution, it is likely that both e; (or e;) follows a Gaussian
distribution; by contrast, if Ax; ;j follows a non-Gaussian distri-
bution, it is of very high probability that both e; (or e;) follows
a non-Gaussian distribution.

Following Theorem 1, validation of the normality of Ax;;
becomes the key step. To do that, several widely used sta-
tistical tests can be applied, including W/S test, Jarque-Bera
test, Shapiro-Wilks test, Kolmogorov-Smirnov test [7]. Among
them, Shapiro-Wilks test [8] is chosen in this letter because of
its well demonstrated performance in many applications. It uses
the null hypothesis principle to check whether a sample series
is from a normally distributed population. Note that the null
hypothesis corresponds to the Gaussian assumption. In the test,
two parameters, namely p-value and «, need to be studied. Pa-
rameter « represents the significance level of the statistical test
and is usually set according to the confidence level of signifi-
cance. Note that in many existing statistical test approaches for
validating normality/Gaussian assumption, anomaly or outlier
detection, 95% is the value widely adopted for confidence level
of significance. As a result, « is set to be 1 — 0.95 = 0.05. In
this case, if the Shapiro-Wilks test returns a p value and p > a,
we conclude that the random variable follows the Gaussian dis-
tribution. The Shapiro-Wilks test can be implemented in Matlab
by calling the function SWTEST.

IV. TEST RESULTS WITH FIELD DATA

To test the effectiveness of the proposed approach, field PMU
measurements from the WECC system are used. Note that there
are many redundant measurement cases in this system, from
which nine sets of PMU redundant measurements of 18 buses
are investigated. The scan rate of the PMUs is 30 samples/s.

A. Choice of PMU Data for Testing

For all hypothesis tests, two important factors need to be
investigated: sample size, a number that is directly related to the
confidence of the test and the expected false positive rate, and
the test power, which represents the chance of false negatives.
When the sample size is small and you insist on it with high
confidence, the test power gets worse. By contrast, with larger
sample size, the test power gets better. Note that many statistical
tests will become inaccurate if the sample size is very large
(larger than 6000 for Shapiro-Wilks test for example). This is
because according to the central limit theorem, the sampling
distribution tends to be normal if the number of samples is
very large, regardless of the shape of the data. In this letter,
we have tested the cases with varying number of measurement
samples for bus set 1 and the results are shown in Fig. 2, where
p-value is shown at the top of each figure. It is clear that the
measurement errors of both voltage magnitudes and angles do
not follow a Gaussian distribution as their p values are close to 0.
In addition, it is found that the shapes of the histograms remain
unchanged for a large number of samples (see the cases with
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Fig. 2. Results of the Shapiro-Wilks test for bus set 1 with varying number of
measurement samples; 500, 1000, 1500, 3000 and 6000 for (a)—(e), respectively;
the frequency for y-axis represents the number of times the measurement error
fall into each bin.

sample sizes 3000 and 6000 for example). Thus, the number of
samples between 3000 and 6000 is a good choice.

B. Results for Multiple Bus Sets and Recommendations

Tests have been carried out on other 8 bus sets that form mea-
surement redundant cases as well. It is found that none of the
sets has a normally distributed PMU measurement error. Instead,
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Fig. 3. Results of the Shapiro-Wilks test for bus set 2.
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Fig. 4. Estimated probability distributions of the error terms for bus set 2.

they follow a non-Gaussian distribution with long tails, such as
student-t, logistic, Laplace distributions. It should be empha-
sized that due to different system operating conditions, aging
process of the PTs and CTs, varying communication channel
noises, PMU measurement error can change from time to time.
It is thus difficult to suggest a specific probability distribution
of the measurement error. On the other hand, it is worth point-
ing out that in many signal processing problems, student-t and
Laplace distributions are the two most widely used ones to model
thick-tailed distributions, which can be used to simulate realis-
tic PMU measurement error. For example, the Shapiro-Wilks
test results of bus set 2 are displayed in Fig. 3. In the mean-
time, the estimated probability distributions of the error terms
shown in Fig. 3 are displayed in Fig. 4. From these two figures,
we observe that the measurement error follows a non-Gaussian
distribution with long tails, such as student-t and logistic dis-
tributions. Note that these two most probable distributions are
selected according to the significance confidence values of the
probability distribution fitting test.

V. CONCLUSION

This letter proposes a simple yet effective approach to inves-
tigate the measurement error of the field PMU data. It is found
that the realistic PMU measurement errors are unlikely to follow
a Gaussian distribution. In future work, we will investigate the
impacts of non-Gaussian measurement error on power dynamic
state estimation, oscillatory modes monitoring, etc.
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