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Assessing Gaussian Assumption of PMU Measurement Error Using Field Data1
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Abstract—Gaussian phasor measurement unit (PMU) measure-3
ment error has been assumed for many power system applications,4
such as state estimation, oscillatory modes monitoring, voltage sta-5
bility analysis, to cite a few. This letter proposes a simple yet ef-6
fective approach to assess this assumption by using the stability7
property of a probability distribution and the concept of redun-8
dant measurement. Extensive results using field PMU data from9
WECC system reveal that the Gaussian assumption is questionable.10

Index Terms—Non-Gaussian distribution, PMU measurement,11
stable distribution, power system operation, state estimation.12

I. INTRODUCTION13

W ITH the wide-area deployment of phasor measurement14

units (PMUs), many power system online monitoring15

and control applications become possible, including dynamic16

state estimation, oscillatory modes monitoring, voltage stability17

analysis, to name a few [1]–[3]. However, Gaussian measure-18

ment error is usually assumed when conducting those applica-19

tions. It should be noted that if Gaussian assumption is violated,20

the obtained results could be misleading and harmful for power21

system security.22

In this letter, we propose a simple yet effective approach to23

assess this assumption by using the field PMU measurements24

from the Western Electricity Coordinating Council (WECC)25

system. We utilize the concept of redundant measurement to26

construct an error vector for Gaussian assumption assessment.27

The latter is checked by the stability property of a probability28

distribution and the Shapiro-Wilks test. Extensive results show29

that PMU measurement error potentially follows thick-tailed30

non-Gaussian probability distributions.31

II. PROBLEM FORMULATION32

Definition 1: PMU measurement error includes the absolute33

error (or bias), the relative error and noise that is induced by34

instruments, communication channels, etc. Bias is a constant35
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Fig. 1. Different configurations of circuit breakers.

instead of a random variable, and therefore it does not affect the 36

distribution of the measurement error. It should be noted that 37

measurement noise sometimes has been used with measurement 38

error interchangeably in the literature. However, they are in fact 39

different and measurement error is more general. In addition, it 40

is the measurement error that we care most when implementing 41

measurement-based applications. 42

To analyze error statistics, the first step is to extract them 43

from measurements. However, as practical power systems are 44

typically non-stationary, it is very challenging for traditional 45

approaches, such as finite impulse response (FIR) digital low 46

pass filters, median filter [4]–[6]. An alternative way to extract 47

error from field PMU measurements is through a high precision 48

calibrator, where same inputs are fed into the calibrator and the 49

PMU devices under test, then the differences of their outputs are 50

taken as the measurement error. Although this is the best way to 51

obtain almost true error statistics, it is not economically feasible 52

as the high precision calibrator is very expensive. In this letter, 53

we propose a redundant measurement-based approach to check 54

the statistical property of the measurement error. 55

III. PROPOSED APPROACH 56

A. Concept of Redundant Measurements 57

Redundant measurements are often set up to guaran- 58

tee observability for different network topologies or operat- 59

ing modes. For example, Fig. 1 shows the breaker-and-half 60
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bus/switching configuration and double-bus-double-breaker61

configuration cases in the WECC system. In order to ensure62

the observability of buses 1 and 2 for the breaker-and-half63

bus/switching configuration case when any one of the three64

breakers opens, two PMUs are installed, one at each bus. PMUs65

measure the bus voltage phasor as well as the current phasors66

of the lines that are adjacent to that bus. Note that we get the67

information of the breaker status from SCADA data. When all68

the breakers get closed, the metered voltage magnitudes and69

angles or line current phasors obtained by these two PMU de-70

vices should be identical in absence of errors. Then, we say that71

PMUs installed at buses 1 and 2 form a redundant case. Further-72

more, if these two PMU devices are from the same vendor and73

operate with almost the same environmental factors, we would74

expect that the error statistics of them should be approximately75

the same.76

B. Assessment of Gaussian Assumption77

Let S be the set of redundant measurements, for i, j ∈ S,78

define xi = x + ei and xj = x + ej as the measured values79

provided by PMUs, where x is the true value; ei and ej are80

measurement errors associated with ith and jth PMUs. Note81

that xi and xj come from different PMU devices, they are con-82

sidered as independent. Furthermore, to extract measurement83

error from the redundant set defined in Section III-A, we define84

Δxij = xi − xj = ei − ej . Subsequently, we have the follow-85

ing theorem:86

Theorem 1: A necessary condition that both ei and ej fol-87

low a Gaussian distribution is that Δxij follows a Gaussian88

distribution.89

Proof: We will prove this theorem by contradiction.90

Case 1: assume that both ei and ej follow a Gaussian dis-91

tribution, then by the stability property of the normal/Gaussian92

distribution, it is straightforward to verify that Δxij follows a93

Gaussian distribution.94

Case 2: assume ei (or ej ) follows a Gaussian distribution95

while ej (or ei) has a non-Gaussian distribution, Δxij must96

follow a non-Gaussian distribution. This is because if Δxij is97

Gaussian, by subtracting ei (or ej ) from Δxij and using the98

stability property of the Gaussian distribution, ej (or ei) must99

follow a Gaussian distribution. This contradicts the assumption.100

Case 3: assume both ei and ej follow a non-Gaussian distri-101

bution, Δxij follows a Gaussian or non-Gaussian distribution.102

From cases 1–3, the Theorem follows. �103

Remark 1: According to the central limit theorem, it is true104

that the difference between two non-Gaussian random variables105

can yield a Gaussian distribution as the number of measure-106

ments tends to infinity. However, this can hardly hold true for107

practical power systems. This is because the measurement error108

of PMU depends on the operating conditions of the system and109

many environmental factors, yielding time varying error statis-110

tics. As a result, the independent and identically distributed111

random variable assumption of the central limit theorem does112

not hold true.113

Remark 2: In our studies, two similar PMUs (from the same114

vendor) measure the same quantities and are subject to same115

impacts of environmental factors. We can anticipate that the er- 116

ror statistics of these two PMU devices are quite similar. Thus, 117

according to the stability property of a probability distribution 118

and Theorem 1, if we find that Δxij follows a Gaussian dis- 119

tribution, it is likely that both ei (or ej ) follows a Gaussian 120

distribution; by contrast, if Δxij follows a non-Gaussian distri- 121

bution, it is of very high probability that both ei (or ej ) follows 122

a non-Gaussian distribution. 123

Following Theorem 1, validation of the normality of Δxij 124

becomes the key step. To do that, several widely used sta- 125

tistical tests can be applied, including W/S test, Jarque-Bera 126

test, Shapiro-Wilks test, Kolmogorov-Smirnov test [7]. Among 127

them, Shapiro-Wilks test [8] is chosen in this letter because of 128

its well demonstrated performance in many applications. It uses 129

the null hypothesis principle to check whether a sample series 130

is from a normally distributed population. Note that the null 131

hypothesis corresponds to the Gaussian assumption. In the test, 132

two parameters, namely p-value and α, need to be studied. Pa- 133

rameter α represents the significance level of the statistical test 134

and is usually set according to the confidence level of signifi- 135

cance. Note that in many existing statistical test approaches for 136

validating normality/Gaussian assumption, anomaly or outlier 137

detection, 95% is the value widely adopted for confidence level 138

of significance. As a result, α is set to be 1 − 0.95 = 0.05. In 139

this case, if the Shapiro-Wilks test returns a p value and p ≥ α, 140

we conclude that the random variable follows the Gaussian dis- 141

tribution. The Shapiro-Wilks test can be implemented in Matlab 142

by calling the function SWTEST. 143

IV. TEST RESULTS WITH FIELD DATA 144

To test the effectiveness of the proposed approach, field PMU 145

measurements from the WECC system are used. Note that there 146

are many redundant measurement cases in this system, from 147

which nine sets of PMU redundant measurements of 18 buses 148

are investigated. The scan rate of the PMUs is 30 samples/s. 149

A. Choice of PMU Data for Testing 150

For all hypothesis tests, two important factors need to be 151

investigated: sample size, a number that is directly related to the 152

confidence of the test and the expected false positive rate, and 153

the test power, which represents the chance of false negatives. 154

When the sample size is small and you insist on it with high 155

confidence, the test power gets worse. By contrast, with larger 156

sample size, the test power gets better. Note that many statistical 157

tests will become inaccurate if the sample size is very large 158

(larger than 6000 for Shapiro-Wilks test for example). This is 159

because according to the central limit theorem, the sampling 160

distribution tends to be normal if the number of samples is 161

very large, regardless of the shape of the data. In this letter, 162

we have tested the cases with varying number of measurement 163

samples for bus set 1 and the results are shown in Fig. 2, where 164

p-value is shown at the top of each figure. It is clear that the 165

measurement errors of both voltage magnitudes and angles do 166

not follow a Gaussian distribution as their p values are close to 0. 167

In addition, it is found that the shapes of the histograms remain 168

unchanged for a large number of samples (see the cases with 169



IEE
E P

ro
of

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 00, NO. 00, 2017 3

Fig. 2. Results of the Shapiro-Wilks test for bus set 1 with varying number of
measurement samples; 500, 1000, 1500, 3000 and 6000 for (a)–(e), respectively;
the frequency for y-axis represents the number of times the measurement error
fall into each bin.

sample sizes 3000 and 6000 for example). Thus, the number of170

samples between 3000 and 6000 is a good choice.171

B. Results for Multiple Bus Sets and Recommendations172

Tests have been carried out on other 8 bus sets that form mea-173

surement redundant cases as well. It is found that none of the174

sets has a normally distributed PMU measurement error. Instead,175

Fig. 3. Results of the Shapiro-Wilks test for bus set 2.

Fig. 4. Estimated probability distributions of the error terms for bus set 2.

they follow a non-Gaussian distribution with long tails, such as 176

student-t, logistic, Laplace distributions. It should be empha- 177

sized that due to different system operating conditions, aging 178

process of the PTs and CTs, varying communication channel 179

noises, PMU measurement error can change from time to time. 180

It is thus difficult to suggest a specific probability distribution 181

of the measurement error. On the other hand, it is worth point- 182

ing out that in many signal processing problems, student-t and 183

Laplace distributions are the two most widely used ones to model 184

thick-tailed distributions, which can be used to simulate realis- 185

tic PMU measurement error. For example, the Shapiro-Wilks 186

test results of bus set 2 are displayed in Fig. 3. In the mean- 187

time, the estimated probability distributions of the error terms 188

shown in Fig. 3 are displayed in Fig. 4. From these two figures, 189

we observe that the measurement error follows a non-Gaussian 190

distribution with long tails, such as student-t and logistic dis- 191

tributions. Note that these two most probable distributions are 192

selected according to the significance confidence values of the 193

probability distribution fitting test. 194

V. CONCLUSION 195

This letter proposes a simple yet effective approach to inves- 196

tigate the measurement error of the field PMU data. It is found 197

that the realistic PMU measurement errors are unlikely to follow 198

a Gaussian distribution. In future work, we will investigate the 199

impacts of non-Gaussian measurement error on power dynamic 200

state estimation, oscillatory modes monitoring, etc. 201
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