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Abstract—This paper develops a robust power system state6
estimation framework that accounts for correlations and imperfect7
time synchronization of the measurements. In this framework,8
correlations of the measurements obtained from the supervisory9
control and data acquisition (SCADA) system and the phasor10
measurement units (PMUs) are separately calculated through the11
unscented transformation and a vector auto-regression (VAR)12
model. Specifically, the PMU measurements during the waiting13
period of two successive SCADA measurement scans are buffered14
via a VAR model whose parameters are robustly estimated15
using the projection statistics. The latter take into account their16
temporal and spatial correlations and provide the needed mea-17
surement redundancy to suppress bad data and mitigate imperfect18
time synchronization. In the case where the SCADA and the19
PMU measurements do not arrive simultaneously at the control20
center, yielding imperfect measurement time synchronization,21
either the forecasted PMU measurements or the prior SCADA22
measurements from the latest state estimation run are leveraged23
to restore system observability. Finally, a robust generalized24
maximum-likelihood (GM)-estimator is extended to integrate25
the measurement error correlations and to handle the outliers,26
also known as bad data. Simulation results that stem from a27
comprehensive comparison with other alternatives under various28
conditions demonstrate the benefits of the proposed framework.29

Index Terms—Power system state estimation, measurement cor-30
relations, robust estimation, phasor measurement units, vector31
auto-regression model, bad data, generalized regression model, im-32
perfect time synchronization.33

I. INTRODUCTION34

AN ACCURATE and robust state estimator (SE) is es-35

sential for various important power system applications36
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implemented at a control center, such as optimal power flow, 37

contingency analysis, load forecasting, to name a few. The SE 38

aims at calculating the most likely states of a power system given 39

a set of assumptions, which include the following [1]: 1) the 40

measurement errors are independent and identically distributed 41

Gaussian random variables; 2) the measurements are assumed 42

to be taken at the same time, that is, they are synchronized; 43

3) the system topology and parameter values are known with 44

good accuracy. However, violations of these assumptions occur 45

quite often in practice. For example, investigations carried out 46

by the authors in [2], [3] reveal that the SCADA measurements 47

are correlated, the measurement errors do not follow a Gaussian 48

distribution due to impulsive noise [4], [5], and the SCADA 49

measurements may be taken at different times and hence, may 50

be asynchronous [6]. 51

To estimate the correlations of the SCADA measurements, a 52

point estimation approach is proposed and its impact on the state 53

estimation accuracy is investigated in [2]. This method is further 54

extended in [3] to account for the internal correlations between 55

PTs and CTs. However, their benefits are not thoroughly inves- 56

tigated in presence of PMU measurements, which are shown to 57

improve the state estimation accuracy when integrated with the 58

SCADA measurements [7]–[10]. Another interesting problem 59

that deserves further investigation is the time skewness inherent 60

in the SCADA measurements, which have a sampling rate dif- 61

ferent from that of the PMU measurements. Consequently, these 62

two types of measurements cannot be directly combined in the 63

state estimator. To address this problem, Yacine et al. [11]–[14] 64

propose to buffer the PMU measurements during the waiting 65

period of two successive SCADA measurement scans while ap- 66

plying a hypothesis test to choose the optimal buffer length. 67

Then, the statistical information, namely the sample mean and 68

the sample covariance matrix, of the buffered PMU measure- 69

ments are processed together with the received SCADA mea- 70

surements by the state estimator. Note that the temporal and the 71

spatial correlations of the PMU measurements are integrated 72

in these approaches through a non-diagonal covariance matrix. 73

However, the correlations of the SCADA measurements are ig- 74

nored. Furthermore, the SCADA and the PMU measurements 75

are assumed to arrive simultaneously at the expected time so that 76

a hybrid state estimator can be performed. But this assumption 77

may not be satisfied in practice because these two types of mea- 78

surements are typically collected at different times and may be 79
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delayed due to communication issues [15], yielding imperfect80

time synchronization. As a result, the hybrid state estimators81

proposed in [7]–[14], [16]–[19] may suffer from observability82

problems. Finally, both measurement types can be corrupted83

by large errors due to instrument failures, impulsive commu-84

nication noise, cyber attacks, among others. Consequently, the85

performances of all these estimation approaches might degrade86

significantly.87

In this paper, we develop a unified robust state estimation88

framework to overcome the aforementioned weaknesses. The89

proposed framework has the following salient features:90

1) The correlations of both the SCADA and the PMU mea-91

surements are taken into account to improve the state esti-92

mation accuracy; to this end, the unscented transformation93

is applied to calculate the self and the cross-correlations94

among the SCADA measurements while the vector auto-95

regression (VAR) is utilized to model the temporal96

and the spatial correlations among the PMU measure-97

ments; the projection statistics are extended to robustly98

estimate the VAR parameters along with the correlation99

matrices, which allows us to suppress bad PMU measure-100

ments;101

2) The impacts of imperfect time synchronization of the102

SCADA and the PMU measurements on the state esti-103

mation accuracy are investigated and mitigation methods104

are initiated;105

3) An extension of the robust Generalized Maximum-106

likelihood (GM)-estimator is proposed by integrating the107

measurement correlations through a generalized regres-108

sion model with enhanced measurement redundancy; this109

estimator is able to suppress the outliers in the SCADA110

and the PMU measurements while achieving a high sta-111

tistical efficiency;112

4) A comprehensive comparison with other alternatives un-113

der various conditions is carried out to demonstrate the114

benefits of the proposed framework.115

The remainder of this paper is organized as follows: Section II116

presents the problem formulation. The proposed robust state es-117

timation framework considering measurement correlations and118

imperfect time synchronization is elaborated in Section III. Nu-119

merical results are conducted and analyzed in Section IV and120

finally Section V concludes the paper.121

II. PROBLEM FORMULATION122

A. Hybrid State Estimator and Assumptions123

For an N -bus power system, the relationship between the124

measurement vector z ∈ Rm obtained from the SCADA system125

and the PMUs and the state vector x ∈ Rn , n = 2N − 1 < m126

is given by127

z = h(x) + e, (1)

where h(·) : Rn → Rm is a vector-valued function that relates128

the state vector x to the measurement vector z, which con-129

tains ms number of real and reactive power injection and flow130

SCADA measurements along with mp number of PMUs’ volt-131

age and current phasor measurements, yieldingm = ms +mp ;132

e ∈ Rm denotes the measurement error vector that is assumed 133

to follow a Gaussian distribution with zero mean and covariance 134

matrix R ∈ Rm×m . 135

To obtain the state estimates using both the SCADA and 136

the PMU measurements, the weighted least squares criterion is 137

usually applied [8]–[10]. This so-called hybrid state estimator 138

provides good state estimates if the following assumptions hold 139

true: 140

1) The correlations of the SCADA and the PMU measure- 141

ments are negligible, yielding a diagonal covariance ma- 142

trix R; 143

2) The SCADA and the PMU measurements arrive simulta- 144

neously so that they can be augmented together for state 145

estimation; in other words, they are assumed to be per- 146

fectly synchronized; 147

3) The measurement error vector is assumed to follow the 148

Gaussian distribution. 149

B. Problem Statement 150

The above three assumptions, which are usually violated in 151

real power systems, can be revised as follows: 152

1) Assumption 1: Both the SCADA and the PMU measure- 153

ments are actually correlated, yielding non-diagonal co- 154

variance matrix R. This assumption can be justified on 155

the basis of the following facts. The errors in the out- 156

puts of the Potential (PTs) and the Current Transformers 157

(CTs) will propagate to the power injection and the power 158

flow measurements, inducing metered values with corre- 159

lated errors [2], [3]. Furthermore, the power system loads 160

and renewable energy-based distributed generations are 161

continuously changing, exhibiting temporal correlations. 162

This in turn affects other generators and loads within the 163

same geographic area, yielding spatial correlations. Due 164

to changes in the temporally and spatially correlated loads 165

and generations, the nodal voltage and current phasors of 166

the system exhibit similar statistical properties, which can 167

be easily proved using the power flow equations [20]. As 168

a result, both the SCADA and the PMU measurement 169

errors are correlated, yielding non-diagonal covariance 170

matrix R; 171

2) Assumption 2: The SCADA and the PMU measurements 172

are assumed to arrive at different times as they rely on 173

different communication channels and time synchroniza- 174

tion processes, yielding the following two commonly seen 175

scenarios in real power systems: i) since the SCADA 176

measurements are not synchronized, it is possible that 177

the PMU measurements arrive on time while the former 178

are delayed; ii) due to communication issues, the PMU 179

measurements can be delayed while the SCADA mea- 180

surements arrive on time [15]; 181

3) Assumption 3: Both the SCADA and the PMU measure- 182

ments can be corrupted by large errors due to instrument 183

failures, impulsive communication noise, cyber attacks, 184

etc., inducing non-Gaussian measurement noise. 185

Therefore, the violations of the above three assumptions can 186

induce large biases on the final state estimates and further cause 187
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threats to the system security operation and control. In this188

paper, we aim at developing a unified robust state estimation189

framework to overcome all these problems while achieving a190

high statistical efficiency.191

III. THE PROPOSED ROBUST ESTIMATION FRAMEWORK192

The proposed robust estimation framework includes three193

major blocks, namely the integration of the measurement cor-194

relations, the construction of the generalized regression model,195

and the robust state filtering. This framework provides a system-196

atic way to integrate the measurement correlations and to ad-197

dress imperfect measurement time synchronization in the state198

estimator.199

A. Estimation of the Measurement Correlations200

1) Estimation of the SCADA Measurement Correlations: Let201

the processed measurements be the voltage magnitudes, denoted202

asVi , the current magnitudes, denoted as Ii , the angle differences203

between the voltage and the current phasors, denoted as δi , the204

real and reactive power injections respectively denoted as Pi205

and Qi , and the power flows, respectively denoted as Pf
ij and206

Qf
ij . Once the measurements obtained from the PTs and the207

CTs are corrupted by white noises, they will be propagated to208

the processed measurements through the following nonlinear209

functions:210

Pi = Vi Ii cos(δi), Qi = Vi Ii sin(δi), (2)

Pi =
∑

j∈Ni

P f
ij , Qi =

∑

j∈Ni

Qf
ij , (3)

which can be organized into the following functional form:211

zs = f(u), (4)

where zs = [V T IT P T QT (P f )T (Qf )T ]T ∈ Rms de-212

notes the measurement vector and u = [V T IT δT ]T ∈ Rns213

denotes the input vector provided by the PTs and the CTs. The214

meter errors associated with Vi , Ii and δi are propagated to the215

errors of the calculated Pi and Qi , inducing cross-correlations.216

In addition, as Qi = Pi tan(δi), Pi and Qi are also correlated217

through δi ; the correlated Pi andQi will further yield correlated218

Pf
ij and Qf

ij . It is assumed that the input vector is a Gaussian219

random variable with mean u and a diagonal error covariance220

matrix Ω, whose elements represent the known measurement221

errors of each PT and CT.222

To capture the nonlinear statistical relationships between zs223

and u, we advocate the use of the unscented transformation ap-224

proach [23]. Specifically, 2ns sigma points are deterministically225

chosen so that they capture the mean and covariance of u. They226

are expressed as227

χi = u ±
(√

2nsΩ
)

i
, (5)

with weights �i = 1/2ns, i = 1, ..., 2ns . Then, each sigma228

point is propagated through the nonlinear function f(·), yielding229

a set of transformed samples expressed as230

li = f(χi). (6)

Next, the transformed sample mean ẑsk and sample covariance 231

matrix R̂s
k at time instant k are calculated by 232

ẑsk =
2ns∑

i=1

�ili , R̂s
k =

2ns∑

i=1

�i(li − ẑsk )(li − ẑsk )
T , (7)

where R̂s
k is not diagonal to account for the measurement cor- 233

relations. 234

2) Robust Estimation of the PMU Measurement Correla- 235

tions: In this paper, it is assumed that the SCADA and the 236

PMU measurements are updated every 5 s and 1/30 s, respec- 237

tively. Due to different sampling rates, there exists a time skew. 238

To address that problem, we apply a hypothesis test [11], [12] 239

to choose the optimal buffer length of the PMUs during the 240

waiting period of two successive SCADA measurement scans. 241

Then, a VAR model is developed to capture the temporal and 242

spatial correlations of the PMU measurements. According to 243

our previous work [20], [24], the system state vector follows a 244

first-order VAR model. Since the PMUs measure actual system 245

states, it is anticipated that the buffered metered time series fol- 246

low that model as well. Formally, we have a VAR model of first 247

order and dimension d at time instant k expressed as 248

pk = Φkpk−1 + εk , (8)

where pk ∈ Rd denotes the buffered PMU measurement vector; 249

Φk ∈ Rd×d denotes the transition matrix; εk ∈ Rd is assumed 250

to be Gaussian with zero mean and covariance matrix Sk ∈ 251

Rd×d , which is not necessary diagonal due to the existence of 252

correlations. Note that the temporal and spatial correlations of 253

the PMU measurements are reflected by the diagonal and off- 254

diagonal elements of the matrices Φk and Sk , respectively. 255

To estimate the correlation matrix Φk , the least squares 256

estimator-based Yule-Walker approach may be applied [12], 257

[20], [25]. However, it breaks down when there are bad leverage 258

points, which are induced by bad PMU measurement. This is 259

due to the fact that any bad PMU measurement will show up 260

twice in the regression matrix, namely along the row and the 261

vertical axis, inducing a bad leverage point. To address this is- 262

sue, we extend the Projection Statistics (PS) proposed in [26] 263

to estimate Φk in a robust manner. Let M denote the length 264

of the buffered measurements and X = [pk−1 , ...,pk−M+1]T 265

Y = [pk−2 , ...,pk−M ]T and τ = [εk−1 , ..., εk−M+1]T denote 266

the matrices that contain the PMU metered values at different 267

time steps. We get the VAR model given by 268

X = Y Φk + τ . (9)

Then, by applying the PS [26] to the matrix Y , we get 269

PSi = max
‖�‖=1

∣∣lTi � −medj
(
lTj �

)∣∣

1.4826 med�
∣∣lT� � −medj

(
lTi �

)∣∣ , (10)

where i, j, � = 1, 2, ...,M . The PS of the ith row vector, li , 270

of the matrix Y is defined as the maximum of the standard- 271

ized projections of all the li’s on every direction � that orig- 272

inates from the coordinatewise medians of the Y and that 273

passes through every data point, and where the standardized 274

projections are based on the sample median and the median- 275

absolute-deviation. Extensive Monte Carlo simulations reveal 276
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that the PS values follow a chi-square distribution with a277

degree of freedom d. Thus, the weights can be calculated278

through γi = min[1, χ2
d,0.975/PSi ], i = 1, ...,M . After detect-279

ing the PMU measurements with large errors, we suppress their280

effects on the correlation matrix Φk and its estimation error281

covariance matrix Sk as follows:282

Φ̂k = (Y T W vY )−1Y T W vX, (11)

Ŝk = (Y T W vY )−1 , (12)

where W v = diag[γi ]. Substituting (11) into (8), we obtain the283

forecasted PMU measurement vector p̂k |k−1 and its covariance284

matrix Σ̂k |k−1 at time step k via285

p̂k |k−1 = Φ̂kpk−1 , Σ̂k |k−1 = Φ̂k Σ̂k−1|k−1Φ̂T
k + Ŝk , (13)

where Σ̂k−1|k−1 is the estimation error covariance matrix at286

time step k − 1.287

Remark: Note that the SCADA measurements are updated288

at the time instant k + jMp, j = 0, 1, ..., where k is the initial289

time instant where both the SCADA and the PMU measure-290

ments arrive at the control center andMp denotes the number of291

snapshots of the PMUs between two successive SCADA mea-292

surement scans. Since a limited number of PMUs are installed293

in the system, we have to use both the SCADA and the PMU294

measurements received at time instant k (k + jMp, j = 1, ...,295

later on) for power system state estimation. A linear state es-296

timator only processing PMU measurements can be performed297

to keep up with the PMU sampling frequency. However, due298

to the lack of measurement redundancy, the noise and bad data299

in these measurements cannot be handled effectively, yielding300

unreliable state estimates. In our proposed approach, instead of301

using them only at time instant k, we integrate all the statistical302

properties of the high speed PMU measurements between two303

successive SCADA scans through the use of a measurement304

buffering and a VAR model. As a result, the SCADA and the305

PMU measurements can be effectively combined without losing306

the benefit of a high sampling frequency of the latter.Q1 307

B. Generalized Regression Model308

Upon the arrival of the SCADA and the PMU measure-309

ments at time step k, a redundant measurement vector ξk =310

[(ẑsk )
T pTk p̂Tk |k−1 ]

T can be obtained by processing the two mea-311

surement sets, yielding the following measurement model:312

ξk = c(xk ) + vk ; (14)

where c(·) = [h(·)T ΓT
k ΓT

k ]T ; h(·) represents the nonlinear313

relationship between the SCADA measurements and the state314

vector; Γk is a constant matrix that relates the linear relationship315

between the PMU measurements and the system state vector;316

Γk contains the susceptances and the shunt capacitances of the317

π-equivalent model of the lines and transformers; the covari-318

ance of the error vector vk is diag[R̂s
k Rp

k Σ̂k |k−1 ] = LkL
T
k ;319

Lk is obtained by the Cholesky decomposition; Rp
k denotes the320

diagonal error covariance matrix of the received PMU measure-321

ment vector, whose diagonal elements are determined by the322

meter device classes of precision and the off-diagonal elements323

are set to zero. By multiplying L−1
k on both sides of (14), we 324

uncorrelate the error vector, yielding the following generalized 325

regression model: 326

yk = g(xk ) + ηk , (15)

where E[ηkηk T ] = I is an identity matrix. 327

Remark: Since the SCADA measurements are not perfectly 328

synchronized and the PMU measurements can arrive at the con- 329

trol center at different time instants due to communication de- 330

lays or cyber attacks, the metered values, ẑsk , pk and p̂k |k−1 , mat 331

not arrive simultaneously at time k. To mitigate the effects of 332

imperfect time synchronization, we present the following two 333

strategies: i) if the PMU measurements are delayed, we will 334

substitute them by the forecasted p̂k |k−1 , which makes the mea- 335

surement vector to reduce to yk = [(ẑsk )
T p̂Tk |k−1 ]

T , such that 336

the correlations of the SCADA and the PMU measurements can 337

still be leveraged; ii) if the SCADA measurements are delayed 338

or lost, we propose to use the a priori state information at the 339

latest state estimation run to restore system observability, where 340

only the SCADA measurements are used over the area not ob- 341

served by the PMUs. In this case, although the correlations of 342

the SCADA measurements may not be well integrated, we still 343

take into account the temporal and spatial correlations of the 344

PMU measurements. Note that thanks to the temporal correla- 345

tions of the PMUs, many historical SCADA measurements can 346

now be updated and only a small portions of the system are 347

affected by the imperfect time synchronization problems. Last 348

but not the least, the enhanced measurement redundancy of the 349

generalized regression model allows us to handle multiple bad 350

data, which will be shown in the next section and the numerical 351

result section. 352

C. Robust State Filtering 353

As both the SCADA and the PMU measurements can be 354

contaminated with gross errors due to instrumental errors, im- 355

pulsive communication noises, etc., this paper resorts to ro- 356

bust statistics [27] and advocates the use of the generalized 357

maximum-likelihood (GM)-estimator for robust state filtering. 358

This estimator minimizes an objective function defined as 359

J(x) =
m+mp∑

i=1

ω2
i ρ(rSi ), (16)

where the time subscript k is ignored for simplicity; m denotes 360

the total number of received SCADA and PMU measurements 361

at the time instant k; mp denotes the number of the buffered 362

PMU measurements; ωi is calculated by applying the projec- 363

tion statistics [26] to the Jacobian matrix Ψ = ∂g/∂x evalu- 364

ated at flat voltage phasor or state vector from the previous time 365

step. Formally, the weights of each measurement can be calcu- 366

lated through ωi = min[1, χ2
ν,0.975/PSi ] and ν is the number 367

of none-zero elements of the ith row of Ψ; ρ(·) denotes the 368

Huber convex cost function defined as 369

ρ (rSi ) =

{
r2
S i
/2 for |rSi | ≤ λ

λ |rSi | − λ2/2 for |rSi | > λ
, (17)
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where the parameter λ is typically set between 1.5 and 3370

[27]; rSi = ri/sωi denotes the standardized residual; ri =371

yi − gi(x̂); s = 1.4826·bm ·median |ri | denotes the robust scale372

estimate and bm denotes a correction factor [26].373

The necessary condition that the minimum of (16) satisfies is374

given by375

∂J (x)
∂x

=
m+mp∑

i=1

−αiωi
s

ψ (rSi ) = 0, (18)

where αT
i is the ith column vector of the Jacobian matrix Ψ;376

ψ (rSi ) = ∂ρ (rSi ) /∂rSi . We multiply and divide both sides of377

(18) by rSi , yielding378

ΨT W (y − g(x)) = 0, (19)

where q (rSi ) = ψ (rSi ) /rSi and W = diag (q (rSi )).379

By taking the first-order Taylor series expansion of g(x)380

about x̂
 and using the iteratively re-weighted least square381

(IRLS) algorithm [27], we obtain the following iterative form:382

Δx̂(
+1) =
(
ΨT W (
)Ψ

)−1
ΨT W (
)(y − g(x̂
)), (20)

where 
 is the iteration counter. The algorithm converges if383

‖Δx̂(
+1)‖ =
∥∥∥x̂

(
+1)
k − x̂

(
)
k

∥∥∥
∞

≤ 10−3 . (21)

D. Evaluation of Different Alternative Methods384

To demonstrate the performance of the proposed framework385

under various conditions, the following six different alternatives386

are evaluated and compared:387

1) Alternative 1 (A1): only the received SCADA measure-388

ments are processed and the measurement correlations are389

neglected, yielding a diagonal measurement error covari-390

ance matrix; this is the traditional weighted least squares391

estimator based on SCADA measurements;392

2) Alternative 2 (A2): only the received SCADA measure-393

ments are processed and the measurement correlations are394

accounted for via the non-diagonal elements of the mea-395

surement error covariance matrix; this is the weighted396

least squares estimator considering the SCADA measure-397

ment correlations that is proposed in [2];398

3) Alternative 3 (A3): the latest arriving PMU measure-399

ments and the received correlated SCADA measurements400

are processed; this is the widely used approach proposed401

in [8]–[10]; in the case where the PMU measurements are402

delayed, only the received correlated SCADA measure-403

ments will be processed, reducing A3 to A2; note that in404

that case, the covariance matrix of the PMU measurements405

is diagonal;406

4) Alternative 4 (A4): the forecasted PMU measurements407

and the received correlated SCADA measurements are408

processed; in that case, both temporal and spatial corre-409

lations of the PMU measurements are considered; note410

that this approach is the same as the one proposed in [12],411

except that here the correlations of the SCADA measure-412

ments are neglected in [12]; it turns out that the ignorance413

of the SCADA measurement correlations yields decreased414

estimation performance as shown by the simulation re- 415

sults. Thus, A4 can be considered as a better version of 416

the approach proposed in [12]; 417

5) Alternative 5 (A5): the forecasted and the latest arriving 418

PMU measurements together with the received correlated 419

SCADA measurements are processed; in the case where 420

the PMU measurements are delayed, only the other two 421

types of measurements are processed, reducing A5 to A4; 422

note that the aim of proposing A5 is to show that with the 423

increase of the measurement redundancy provided by both 424

the forecasted and the received latest PMU measurements 425

and the full consideration of measurement correlations, 426

more accurate state estimation results can be obtained 427

compared with the approach A4; 428

6) Alternative 6 (A6): since A5 is not robust to outliers 429

and measurement delays, we propose a robust version of 430

it; here, both the forecasted and the latest arriving PMU 431

measurements along with the received correlated SCADA 432

measurements are processed by the robust state estimator; 433

in the case where the PMU measurements are delayed, 434

only the other two types of measurements are processed. 435

Note that A1 to A5 make use of the WLS estimator with the 436

weights provided by the measurement error covariance matri- 437

ces; the normalized residual-based test is utilized to detect and 438

process outliers in the SCADA and the PMU measurements. In 439

addition, if the SCADA or the PMU measurements are delayed 440

or lost, the proposed mitigation strategies in Section III-B are 441

applied (see the remark herein). 442

IV. NUMERICAL RESULTS 443

Extensive simulations are carried out on the IEEE 30-bus and 444

the 118-bus test systems to assess the performance of each of 445

the aforementioned alternatives. The measurement configura- 446

tions of the two test systems are as follows: 1) the IEEE 30-bus 447

system is measured by 93 SCADA measurements, including 18 448

pairs of active and reactive power injections, 28 of pairs power 449

flows and voltage magnitude of Bus 1; 2) the 118-bus system 450

has 150 pairs of SCADA measurements, including 39 pairs of 451

injection measurements and 111 pairs of flow measurements. 452

To simulate temporally and spatially correlated PMU measure- 453

ments, the system loads are added with 2%–10% variations 454

around their nominal values that are modelled by the VARd(1) 455

process. Then, a power flow calculation is executed to get the 456

true system bus voltage and current phasors. Next, a Gaussian 457

noise with zero mean and a standard deviation of 4 × 10−3 is 458

added to the voltage and current phasors to realistically sim- 459

ulate the PMU measurements. Furthermore, a Gaussian noise 460

with zero mean and standard deviation 10−2 is added to the 461

measurements provided by the PTs and the CTs, followed by 462

the calculations of the SCADA measurements, i.e., the real and 463

reactive power injection and power flow measurements, and 464

their covariance matrix through the unscented transformation. 465

A varying percentage of system buses are randomly chosen for 466

PMU installation. The sampling rate of the PMU measurements 467

is 30 samples/s while the SCADA measurements are updated 468

every 5 s. The identified VAR model is used to forecast the PMU 469
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Fig. 1. MAE of the alternatives A1 through A6 for the IEEE 30-bus system,
where 20% randomly chosen buses are deployed with the PMUs; (a) voltage
magnitude; (b) voltage angle.

measurements as well as to calculate the full covariance matrix.470

The bad data detection threshold for the normalized residual471

test is set to 3 with 99.7% confidence level. One hundred Monte472

Carlo simulations are carried out to estimate the mean absolute473

error (MAE) of each alternative.474

A. Ideal Operating Conditions475

In this section, we evaluate the performance of each alterna-476

tive under ideal operating conditions. In other words, we assume477

that the SCADA and the PMU measurements are synchronized,478

implying that they arrive simultaneously; no bad data is sim-479

ulated in this case. Figs. 1 and 2 show the MAE of each al-480

ternative, for which the state estimator is applied to the IEEE481

30-bus and 118-bus systems; here, 20% of randomly chosen482

buses are provided with PMUs. The choice of randomly de-483

ploying PMUs is justified as follows: since most of the practical484

systems are unobservable by PMUs, it is difficult to determine485

Fig. 2. MAE of the alternatives A1 through A6 for the IEEE 118-bus sys-
tem, where 20% randomly chosen buses are deployed with PMUs; (a) voltage
magnitude; (b) voltage angle.

the optimal locations of the PMUs for state estimation; thus, 486

the random deployment is a good strategy to investigate the 487

statistical performance of each estimator under different PMU 488

placement scenarios. It is observed from these figures that the 489

proposed robust estimator achieves the best performance, fol- 490

lowed by the alternatives A5, A4, A3, A2, and finally A1, in this 491

order. Compared with A1 and A2, we find that the integration 492

of the SCADA measurement correlations will improve the state 493

estimator efficiency; the inclusion of non-correlated PMU mea- 494

surements can further improve the performance of A2; if the 495

correlations of both the SCADA and the PMU measurements 496

are taken into account, further improvement on the estimation 497

efficiency can be achieved (see A4 and A5); compared with A3 498

to A5, we find that the consideration of the PMU correlations 499

do not significantly contribute to the improvement of the state 500

estimator efficiency, which is expected since the good accuracy 501

of the PMU measurements is not the dominant factor that con- 502

tributes to that enhancement. We find that the proposed robust 503

state estimator used in A6 is slightly more efficient than the 504
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TABLE I
MAE FOR THE VOLTAGE ANGLES OF THE IEEE 30-BUS SYSTEM WITH

DIFFERENT PMU PLACEMENTS

Cases A3 A4 A5 Proposed method

Case 1 0.092 0.0875 0.0806 0.068
Case 2 0.0825 0.0749 0.071 0.051
Case 3 0.052 0.042 0.032 0.014

WLS state estimator used in A5 at most buses, and it is signif-505

icantly more efficient than the latter at some buses. This is due506

to the fact that the system loads vary randomly, among which507

a few may undergo significant changes while the remaining508

majority change slowly. It turns out that the PMU measure-509

ments from the buses that have relative large state changes may510

not be well characterized by the VAR model. In that case, the511

projection statistics algorithm and the GM-estimator will auto-512

matically identify the PMU measurements that are outliers and513

will assign relatively smaller weights to them. As a result, the514

proposed GM-estimator is more robust and more efficient than515

other alternatives.516

To investigate the impacts of the number of the sited PMU517

measurements on the estimator efficiency, we consider three518

cases on the IEEE 30-bus system with different percentage of519

buses provided with PMUs: i) Case 1: 10 percents; ii) Case 2:520

20 percents, and iii) Case 3: full system observability with the521

minimum number of PMUs, that is, Buses 2, 3, 6, 9, 10, 12,522

15, 19, 25 and 27 are provided with PMUs [21]. Note that since523

no PMU measurements are included in A1 and A2, the MAEs524

of the state estimators remain at 0.126 and 0.104, respectively525

for all cases. Table I shows the test results of the alternatives526

A3 to A6. It can be concluded from this table that, with the527

increased number of PMUs, the MAEs of all the considered528

alternatives decrease. In particular, the performance of each529

estimator has been significantly improved when the system is530

observable by PMUs. However, our proposed robust estimator531

in A6 still outperforms all the other alternatives in that case.532

B. Impact of Imperfect Measurement Time Synchronization on533

the Estimation Efficiency534

In Section IV-A, we have assessed the performance of each535

alternative when all the measurements have perfect time syn-536

chronization. Note that this assumption has been made implic-537

itly by almost all state estimation approaches proposed in the538

literature that combine PMU and SCADA measurements. How-539

ever, this may be violated in practical power systems because of540

the non-time synchronization of the SCADA measurements and541

because of the delays incurred by the PMU measurements due542

to communication problems or cyber attacks. To investigate the543

impacts that imperfect measurement synchronization has on the544

estimator efficiency, the following two scenarios are considered:545

Scenario 1: at the time instant where the state estimator is546

executed, only SCADA measurements arrive while PMU mea-547

surements are delayed. Then, the approaches A1 and A2 are not548

affected and A3 reduces to A2; A5 reduces to A4; the proposed549

approach will be the robust version of A4.550

Fig. 3. Scenario 1: MAE of each alternative on the IEEE 30-bus system in
presence of imperfect measurement time synchronization, where 20% randomly
chosen buses are provided with PMUs; (a) voltage magnitude; (b) voltage angle.

Scenario 2: only the received and the forecasted PMU mea- 551

surements are available while the SCADA measurements are 552

delayed. Consequently, the system is partially observable. To 553

resolve this problem, prior estimates obtained at the latest state 554

estimation run is used. It is found that for this scenario, the 555

results provided by the alternatives A1 and A2 are very poor, 556

making them not suitable for state estimation. This is in contrast 557

with the other alternatives. 558

Figs. 3 and 4 display the MAEs of each alternative. It is 559

observed from Fig. 3 that, due to the loss of PMU measurements, 560

both A4 and A6 provide increased estimation errors. However, 561

they still outperform the SCADA-only based state estimators. 562

When the SCADA measurements are delayed, the alternatives 563

A3 to A6 have even larger biases on the state estimates as 564

compared with Scenario 1. This is expected as the pseudo- 565

measurements have to be used to restore system observability. 566

However, these pseudo-measurements do not really reflect the 567

current system operating conditions. As a result, the WLS state 568

estimation used in A3 to A5 is unable to balance the trade-off 569
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Fig. 4. Scenario 2: MAE of each alternative on the IEEE 30-bus system in
presence of imperfect measurement time synchronization, where 20% randomly
chosen buses are provided with PMUs; (a) voltage magnitude; (b) voltage angle.

between the current PMU measurements and the prior pseudo570

SCADA measurements, yielding increased estimation biases.571

Although our proposed robust estimator used in A6 exhibits an572

increased bias as well, it achieves a better balance between these573

two types of measurements, yielding the best performance.574

C. Impact of Bad Data on Estimation Biases and Efficiency575

Both the SCADA and PMU measurements may have gross576

errors due to instrument errors, or impulsive noise, or communi-577

cation failures, yielding bad data. Regarding the approaches A1578

to A5, the normalized measurement residual-based statistical579

test is applied to detect, identify, and remove the outliers, where580

the detection threshold is set to be 3.0 for a 99.7% confidence581

level. Then, the bad data processing and the state estimation are582

repeated until no bad data is detected. It is well-known that this583

approach can handle single and multiple non-interacting bad584

data given a good measurement redundancy and the absence585

of leverage points [4], [22]. To investigate the impact of the586

Fig. 5. Case 4: MAE of each approach on the IEEE 30-bus system in presence
of bad data, where 20% randomly chosen buses are deployed with PMUs;
(a) voltage magnitude; (b) voltage angle.

outliers on state estimation biases, the following two main cases 587

are considered: 588

Case 4: four bad data occur, including two bad SCADA mea- 589

surements P8 and Q8 , as well as two bad PMU measurements, 590

θ12 and current flow I12−13 . They are assumed to be contami- 591

nated with 30% errors. 592

Case 5: four bad data occur, including two PMU measure- 593

ments and two SCADA measurements; the latter are P19−20 594

and Q19−20 , which are leverage points whose magnitudes are 595

assumed to be contaminated with 30% errors. Note that this is 596

the case of interacting and conforming bad data. The bad PMU 597

measurements are the same as in Case 4. 598

The test results for Cases 4 and 5 are depicted in Figs. 5 599

and 6. It can be observed from Fig. 5 that all the considered 600

approaches are able to handle multiple non-interacting and non- 601

conforming bad data. Compared with the cases of no bad data, 602

the estimation errors increase slightly. Due to the enhanced 603

measurement redundancy through the proposed generalized 604
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Fig. 6. Case 5: MAE of each of the six alternatives on the IEEE 30-bus system
in presence of bad data, where 20% randomly chosen buses are provided with
PMUs; (a) voltage magnitude; (b) voltage angle.

regression form and the good robustness of the GM-estimator605

with weights calculated using projection statistics, our robust606

approach significantly outperforms the other alternatives. Inter-607

estingly, the enhancement of the measurement redundancy has608

also improved the statistical efficiency of the traditional bad609

data processing method as inferred from a comparison between610

A5 and A1–A4. As for Case 5, it is observed that the normal-611

ized residual-based statistical test fails to identify the interact-612

ing and conforming bad data, yielding significantly biased state613

estimates in the alternatives A1 to A5. In fact, the weakness614

of the traditional chi-square test and the normalized residual615

single case deletion procedure when applied to clustered bad616

data has been demonstrated in [4]. Specifically, the normalized-617

residual-based method incorrectly identifies the measurements618

associated with Buses 18, 15 and 14 as outliers; the latter are619

then removed for state estimation, yielding quite low local mea-620

surement redundancy. Specifically, due to the smearing effects621

caused by the outliers θ12 and I12−13 , the measurements as-622

sociated with Buses 12–14 are removed by the alternatives623

A3 to A5, further decreasing the local measurement redun-624

dancy. In presence of interacting and conforming bad data, the625

TABLE II
COMPUTATIONAL EFFICIENCY OF EACH METHOD UNDER DIFFERENT

CONDITIONS, WHERE CASE 1 IS CARRIED OUT ON THE IEEE 30-BUS SYSTEM

WHILE CASES 4–5 ARE FOR THE IEEE 118-BUS SYSTEM

Cases A1 A2 A3 A4 A5 Proposed

Case 1 0.056 s 0.064 s 0.068 s 0.076 s 0.08 s 0.11 s
Case 4 0.34 s 0.38 s 0.48 s 0.56 s 0.86 s 0.16 s
Case 5 0.54 s 0.69 s 0.79 s 0.91 s 0.98 s 0.17 s

estimation of the SCADA measurement correlations is strongly 626

biased, making several correct SCADA measurements associ- 627

ated with Buses 12–14 unreliable. As a result, the local measure- 628

ment redundancies associated with A2–A5 are lower than that 629

of A1. This justifies why A1 outperforms A2–A5 for some local 630

buses. By contrast, the projection statistics algorithm first identi- 631

fies θ12 and I12−13 as outliers and decreases their weights; then, 632

the generalized regression model with enhanced measurement 633

redundancy and the robustness of the GM-estimator enable our 634

proposed robust estimator to effectively suppress bad SCADA 635

measurements, yielding negligible estimation biases. It should 636

be noted that the influence function of the GM-estimator [28] is 637

bounded regardless of the interacting and conforming bad data. 638

This justifies the effectiveness of the proposed robust estimator 639

against various types of outliers. 640

D. Computational Efficiency 641

The computing times of the six alternatives considered for 642

Cases 1 through 5 are displayed in Table II. Note that the results 643

for Cases 2 and 3 are similar to those of Case 1 and therefore, 644

are not displayed. All the tests are performed on a PC with In- 645

tel(X) Xeon(R) CPU, 3.2 GHz, 12 GB of RAM. The software 646

platform is Matlab. From this Table, we find that in the absence 647

of outliers, the inclusion of the measurement correlations yield 648

higher computing times. When multiple bad data occur, the al- 649

ternatives A1 to A5 become much slower than our proposed 650

robust GM-estimator (see Cases 4 and 5). This is because the 651

normalized residual-based test for bad data processing and re- 652

estimation is quite time consuming. By contrast, all bad data are 653

suppressed automatically by our proposed GM-estimator and no 654

post-processing is required, yielding improved computational 655

efficiency. Note that in Case 5, the WLS-based residual statis- 656

tical test fails to identify the correct bad data. By contrast, our 657

robust estimator automatically suppress all the bad data while 658

not requiring any re-estimations, yielding very good computa- 659

tional efficiency that is compatible with real-time applications. 660

V. CONCLUSION 661

In this paper, a robust state estimation framework is developed 662

that integrates measurement correlations and mitigates the im- 663

pacts of imperfect measurement time synchronization. The un- 664

scented transformation is applied and a vector auto-regressive 665

(VAR) model is developed to separately integrate the corre- 666

lations of the SCADA and the PMU measurements. Specifi- 667

cally, the PMU measurements are buffered during the waiting 668

period of two successive SCADA measurement scans when 669



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON POWER SYSTEMS

developing the VAR model; they provide redundant measure-670

ments for imperfect time synchronization mitigation and outliers671

suppression. The latter is achieved via a robust GM-estimator,672

which also accounts for measurement correlations. Comprehen-673

sive comparison results show that our robust GM-estimator is674

able to significantly improve estimation efficiency while bound-675

ing the estimation bias in presence of bad data.676
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