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Abstract—This paper develops a robust power system state
estimation framework that accounts for correlations and imperfect
time synchronization of the measurements. In this framework,
correlations of the measurements obtained from the supervisory
control and data acquisition (SCADA) system and the phasor
measurement units (PMUs) are separately calculated through the
unscented transformation and a vector auto-regression (VAR)
model. Specifically, the PMU measurements during the waiting
period of two successive SCADA measurement scans are buffered
via a VAR model whose parameters are robustly estimated
using the projection statistics. The latter take into account their
temporal and spatial correlations and provide the needed mea-
surement redundancy to suppress bad data and mitigate imperfect
time synchronization. In the case where the SCADA and the
PMU measurements do not arrive simultaneously at the control
center, yielding imperfect measurement time synchronization,
either the forecasted PMU measurements or the prior SCADA
measurements from the latest state estimation run are leveraged
to restore system observability. Finally, a robust generalized
maximum-likelihood (GM)-estimator is extended to integrate
the measurement error correlations and to handle the outliers,
also known as bad data. Simulation results that stem from a
comprehensive comparison with other alternatives under various
conditions demonstrate the benefits of the proposed framework.

Index Terms—Power system state estimation, measurement cor-
relations, robust estimation, phasor measurement units, vector
auto-regression model, bad data, generalized regression model, im-
perfect time synchronization.

1. INTRODUCTION

N ACCURATE and robust state estimator (SE) is es-
sential for various important power system applications
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implemented at a control center, such as optimal power flow,
contingency analysis, load forecasting, to name a few. The SE
aims at calculating the most likely states of a power system given
a set of assumptions, which include the following [1]: 1) the
measurement errors are independent and identically distributed
Gaussian random variables; 2) the measurements are assumed
to be taken at the same time, that is, they are synchronized;
3) the system topology and parameter values are known with
good accuracy. However, violations of these assumptions occur
quite often in practice. For example, investigations carried out
by the authors in [2], [3] reveal that the SCADA measurements
are correlated, the measurement errors do not follow a Gaussian
distribution due to impulsive noise [4], [5], and the SCADA
measurements may be taken at different times and hence, may
be asynchronous [6].

To estimate the correlations of the SCADA measurements, a
point estimation approach is proposed and its impact on the state
estimation accuracy is investigated in [2]. This method is further
extended in [3] to account for the internal correlations between
PTs and CTs. However, their benefits are not thoroughly inves-
tigated in presence of PMU measurements, which are shown to
improve the state estimation accuracy when integrated with the
SCADA measurements [7]-[10]. Another interesting problem
that deserves further investigation is the time skewness inherent
in the SCADA measurements, which have a sampling rate dif-
ferent from that of the PMU measurements. Consequently, these
two types of measurements cannot be directly combined in the
state estimator. To address this problem, Yacine ef al. [11]-[14]
propose to buffer the PMU measurements during the waiting
period of two successive SCADA measurement scans while ap-
plying a hypothesis test to choose the optimal buffer length.
Then, the statistical information, namely the sample mean and
the sample covariance matrix, of the buffered PMU measure-
ments are processed together with the received SCADA mea-
surements by the state estimator. Note that the temporal and the
spatial correlations of the PMU measurements are integrated
in these approaches through a non-diagonal covariance matrix.
However, the correlations of the SCADA measurements are ig-
nored. Furthermore, the SCADA and the PMU measurements
are assumed to arrive simultaneously at the expected time so that
a hybrid state estimator can be performed. But this assumption
may not be satisfied in practice because these two types of mea-
surements are typically collected at different times and may be
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delayed due to communication issues [15], yielding imperfect
time synchronization. As a result, the hybrid state estimators
proposed in [7]-[14], [16]-[19] may suffer from observability
problems. Finally, both measurement types can be corrupted
by large errors due to instrument failures, impulsive commu-
nication noise, cyber attacks, among others. Consequently, the
performances of all these estimation approaches might degrade
significantly.

In this paper, we develop a unified robust state estimation
framework to overcome the aforementioned weaknesses. The
proposed framework has the following salient features:

1) The correlations of both the SCADA and the PMU mea-
surements are taken into account to improve the state esti-
mation accuracys; to this end, the unscented transformation
is applied to calculate the self and the cross-correlations
among the SCADA measurements while the vector auto-
regression (VAR) is utilized to model the temporal
and the spatial correlations among the PMU measure-
ments; the projection statistics are extended to robustly
estimate the VAR parameters along with the correlation
matrices, which allows us to suppress bad PMU measure-
ments;

2) The impacts of imperfect time synchronization of the
SCADA and the PMU measurements on the state esti-
mation accuracy are investigated and mitigation methods
are initiated;

3) An extension of the robust Generalized Maximum-
likelihood (GM)-estimator is proposed by integrating the
measurement correlations through a generalized regres-
sion model with enhanced measurement redundancy; this
estimator is able to suppress the outliers in the SCADA
and the PMU measurements while achieving a high sta-
tistical efficiency;

4) A comprehensive comparison with other alternatives un-
der various conditions is carried out to demonstrate the
benefits of the proposed framework.

The remainder of this paper is organized as follows: Section II
presents the problem formulation. The proposed robust state es-
timation framework considering measurement correlations and
imperfect time synchronization is elaborated in Section III. Nu-
merical results are conducted and analyzed in Section IV and
finally Section V concludes the paper.

II. PROBLEM FORMULATION
A. Hybrid State Estimator and Assumptions

For an N-bus power system, the relationship between the
measurement vector z € R™ obtained from the SCADA system
and the PMUs and the state vector x € R" ,n =2N —1 <m
is given by

z=nh(z)+e, (1)

where h(-) : R" — R™ is a vector-valued function that relates
the state vector o to the measurement vector z, which con-
tains m, number of real and reactive power injection and flow
SCADA measurements along with m,, number of PMUs’ volt-
age and current phasor measurements, yielding m = mg + m,;
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e € R™ denotes the measurement error vector that is assumed
to follow a Gaussian distribution with zero mean and covariance
matrix R € R™>"™,

To obtain the state estimates using both the SCADA and
the PMU measurements, the weighted least squares criterion is
usually applied [8]-[10]. This so-called hybrid state estimator
provides good state estimates if the following assumptions hold
true:

1) The correlations of the SCADA and the PMU measure-

ments are negligible, yielding a diagonal covariance ma-
trix R;

2) The SCADA and the PMU measurements arrive simulta-
neously so that they can be augmented together for state
estimation; in other words, they are assumed to be per-
fectly synchronized;

3) The measurement error vector is assumed to follow the
Gaussian distribution.

B. Problem Statement

The above three assumptions, which are usually violated in

real power systems, can be revised as follows:

1) Assumption 1: Both the SCADA and the PMU measure-
ments are actually correlated, yielding non-diagonal co-
variance matrix R. This assumption can be justified on
the basis of the following facts. The errors in the out-
puts of the Potential (PTs) and the Current Transformers
(CTs) will propagate to the power injection and the power
flow measurements, inducing metered values with corre-
lated errors [2], [3]. Furthermore, the power system loads
and renewable energy-based distributed generations are
continuously changing, exhibiting temporal correlations.
This in turn affects other generators and loads within the
same geographic area, yielding spatial correlations. Due
to changes in the temporally and spatially correlated loads
and generations, the nodal voltage and current phasors of
the system exhibit similar statistical properties, which can
be easily proved using the power flow equations [20]. As
a result, both the SCADA and the PMU measurement
errors are correlated, yielding non-diagonal covariance
matrix R;

2) Assumption 2: The SCADA and the PMU measurements
are assumed to arrive at different times as they rely on
different communication channels and time synchroniza-
tion processes, yielding the following two commonly seen
scenarios in real power systems: i) since the SCADA
measurements are not synchronized, it is possible that
the PMU measurements arrive on time while the former
are delayed; ii) due to communication issues, the PMU
measurements can be delayed while the SCADA mea-
surements arrive on time [15];

3) Assumption 3: Both the SCADA and the PMU measure-
ments can be corrupted by large errors due to instrument
failures, impulsive communication noise, cyber attacks,
etc., inducing non-Gaussian measurement noise.

Therefore, the violations of the above three assumptions can

induce large biases on the final state estimates and further cause
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threats to the system security operation and control. In this
paper, we aim at developing a unified robust state estimation
framework to overcome all these problems while achieving a
high statistical efficiency.

III. THE PROPOSED ROBUST ESTIMATION FRAMEWORK

The proposed robust estimation framework includes three
major blocks, namely the integration of the measurement cor-
relations, the construction of the generalized regression model,
and the robust state filtering. This framework provides a system-
atic way to integrate the measurement correlations and to ad-
dress imperfect measurement time synchronization in the state
estimator.

A. Estimation of the Measurement Correlations

1) Estimation of the SCADA Measurement Correlations: Let
the processed measurements be the voltage magnitudes, denoted
asVj, the current magnitudes, denoted as [;, the angle differences
between the voltage and the current phasors, denoted as d;, the
real and reactive power injections respectively denoted as P,
and @;, and the power flows, respectively denoted as Pqi and
Q{ ;- Once the measurements obtained from the PTs and the
CTs are corrupted by white noises, they will be propagated to
the processed measurements through the following nonlinear
functions:

P, =V, I; cos(6;), Qi =V; I; sin(d;), (2)
P=Y P, => (3)
JEN; JEN;
which can be organized into the following functional form:
2" = f(u), )
where 2" = [V IT PT QT (P)T (Q/)'|” € R™ de-

notes the measurement vector and w = [V I7 §7]7 ¢ R™
denotes the input vector provided by the PTs and the CTs. The
meter errors associated with V;, I; and §; are propagated to the
errors of the calculated P; and ();, inducing cross-correlations.
In addition, as @); = P; tan(¢;), P; and Q; are also correlated
through ¢;; the correlated P; and Q; will further yield correlated
P/j and Q{ ;- It is assumed that the input vector is a Gaussian
random variable with mean w and a diagonal error covariance
matrix €2, whose elements represent the known measurement
errors of each PT and CT.

To capture the nonlinear statistical relationships between z*
and u, we advocate the use of the unscented transformation ap-
proach [23]. Specifically, 2n, sigma points are deterministically
chosen so that they capture the mean and covariance of w. They
are expressed as

XiZUi(\/M)7

3

(&)

with weights w; = 1/2n4,7 = 1,...,2n,. Then, each sigma
point is propagated through the nonlinear function f(-), yielding
a set of transformed samples expressed as

i = f(xi)- (6)

Next, the transformed sample mean 2 and sample covariance
matrix I} at time instant k are calculated by

2n 2n

Zi=>wl, Ri=Y ol-z)UL-2)" O
i=1 i=1

where 1%,”; is not diagonal to account for the measurement cor-
relations.

2) Robust Estimation of the PMU Measurement Correla-
tions: In this paper, it is assumed that the SCADA and the
PMU measurements are updated every 5 s and 1/30 s, respec-
tively. Due to different sampling rates, there exists a time skew.
To address that problem, we apply a hypothesis test [11], [12]
to choose the optimal buffer length of the PMUs during the
waiting period of two successive SCADA measurement scans.
Then, a VAR model is developed to capture the temporal and
spatial correlations of the PMU measurements. According to
our previous work [20], [24], the system state vector follows a
first-order VAR model. Since the PMUs measure actual system
states, it is anticipated that the buffered metered time series fol-
low that model as well. Formally, we have a VAR model of first
order and dimension d at time instant k£ expressed as

®)

where p;. € R< denotes the buffered PMU measurement vector;
®; € RY*? denotes the transition matrix; e, € R is assumed
to be Gaussian with zero mean and covariance matrix S; €
R?*4_ which is not necessary diagonal due to the existence of
correlations. Note that the temporal and spatial correlations of
the PMU measurements are reflected by the diagonal and off-
diagonal elements of the matrices ®;, and Sy, respectively.

To estimate the correlation matrix ®;, the least squares
estimator-based Yule-Walker approach may be applied [12],
[20], [25]. However, it breaks down when there are bad leverage
points, which are induced by bad PMU measurement. This is
due to the fact that any bad PMU measurement will show up
twice in the regression matrix, namely along the row and the
vertical axis, inducing a bad leverage point. To address this is-
sue, we extend the Projection Statistics (PS) proposed in [26]
to estimate ®; in a robust manner. Let M denote the length
of the buffered measurements and X = [p 1, ..., pr_ar+1]"
Y =[pr2,.,pPrn)’ and T =[e}_1,....,ex_ar+1)" denote
the matrices that contain the PMU metered values at different
time steps. We get the VAR model given by

pr = ®rpr_1 + e,

X=Y®,+ 7. ©)
Then, by applying the PS [26] to the matrix Y, we get
170 —med; (1T¢
‘ 1 J ( J )| (10)

S, — 7
\f?\ffi 1.4826 med, ’lgﬂ — med,; (lZTE)|

where i,7,0=1,2,..., M. The PS of the ith row vector, [;,
of the matrix Y is defined as the maximum of the standard-
ized projections of all the ;’s on every direction £ that orig-
inates from the coordinatewise medians of the Y and that
passes through every data point, and where the standardized
projections are based on the sample median and the median-
absolute-deviation. Extensive Monte Carlo simulations reveal
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that the PS values follow a chi-square distribution with a
degree of freedom d. Thus, the weights can be calculated
through v = min[1, X7 ¢ 975/ PSil,i = 1,..., M. After detect-
ing the PMU measurements with large errors, we suppress their
effects on the correlation matrix ®; and its estimation error
covariance matrix S}, as follows:

e, = Y'W,Y)'YTW, X, an

S, =YTwW,Y), (12)

where W, = diag[~;]. Substituting (11) into (8), we obtain the
forecasted PMU measurement vector ﬁk‘ 1—1 and its covariance

matrix §k|k—1 at time step k via
~ = S = S /\T =~
Difi—1 = PrPr—1, Zpp—1 = Pr B p—1 P + Sk, (13)

where flk.,”k,] is the estimation error covariance matrix at
time step k£ — 1.

Remark: Note that the SCADA measurements are updated
at the time instant k + jM,,j = 0,1, ..., where k is the initial
time instant where both the SCADA and the PMU measure-
ments arrive at the control center and M, denotes the number of
snapshots of the PMUs between two successive SCADA mea-
surement scans. Since a limited number of PMUs are installed
in the system, we have to use both the SCADA and the PMU
measurements received at time instant k (k + jM,,j =1, ...,
later on) for power system state estimation. A linear state es-
timator only processing PMU measurements can be performed
to keep up with the PMU sampling frequency. However, due
to the lack of measurement redundancy, the noise and bad data
in these measurements cannot be handled effectively, yielding
unreliable state estimates. In our proposed approach, instead of
using them only at time instant &, we integrate all the statistical
properties of the high speed PMU measurements between two
successive SCADA scans through the use of a measurement
buffering and a VAR model. As a result, the SCADA and the
PMU measurements can be effectively combined without losing
the benefit of a high sampling frequency of the latter.

B. Generalized Regression Model

Upon the arrival of the SCADA and the PMU measure-
ments at time step k, a redundant measurement vector & =
[(z0)T pt ﬁ{‘ x4 }T. canbe obtainfzd by processing the two mea-
surement sets, yielding the following measurement model:

& = c(xr) + v (14)

where c(-) = [h(-)" T7 T'T]"; h(-) represents the nonlinear
relationship between the SCADA measurements and the state
vector; I'j, is a constant matrix that relates the linear relationship
between the PMU measurements and the system state vector;
T';, contains the susceptances and the shunt capacitances of the
m-equivalent model of the lines and AtransforAmers; the covari-
ance of the error vector vy, is diag[R} R 3y,_1] = Ly L} ;
L, is obtained by the Cholesky decomposition; RY denotes the
diagonal error covariance matrix of the received PMU measure-
ment vector, whose diagonal elements are determined by the
meter device classes of precision and the off-diagonal elements
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are set to zero. By multiplying L,jl on both sides of (14), we
uncorrelate the error vector, yielding the following generalized
regression model:

Yy = g(zr) + 7, (15)

where E[n;n;”] = I is an identity matrix.

Remark: Since the SCADA measurements are not perfectly
synchronized and the PMU measurements can arrive at the con-
trol center at different time instants due to communication de-
lays or cyber attacks, the metered values, 2’2 , P, and Py, |k—1, mat
not arrive simultaneously at time k. To mitigate the effects of
imperfect time synchronization, we present the following two
strategies: 1) if the PMU measurements are delayed, we will
substitute them by the forecasted ﬁk‘ k1, which makes the mea-
surement vector to reduce to y; = [(25)7 ﬁf‘ 41]7, such that
the correlations of the SCADA and the PMU measurements can
still be leveraged; ii) if the SCADA measurements are delayed
or lost, we propose to use the a priori state information at the
latest state estimation run to restore system observability, where
only the SCADA measurements are used over the area not ob-
served by the PMUs. In this case, although the correlations of
the SCADA measurements may not be well integrated, we still
take into account the temporal and spatial correlations of the
PMU measurements. Note that thanks to the temporal correla-
tions of the PMUs, many historical SCADA measurements can
now be updated and only a small portions of the system are
affected by the imperfect time synchronization problems. Last
but not the least, the enhanced measurement redundancy of the
generalized regression model allows us to handle multiple bad
data, which will be shown in the next section and the numerical
result section.

C. Robust State Filtering

As both the SCADA and the PMU measurements can be
contaminated with gross errors due to instrumental errors, im-
pulsive communication noises, etc., this paper resorts to ro-
bust statistics [27] and advocates the use of the generalized
maximum-likelihood (GM)-estimator for robust state filtering.
This estimator minimizes an objective function defined as

m+m,

Z wl?p(rsi),

i=1

J(x) = (16)

where the time subscript k is ignored for simplicity; m denotes
the total number of received SCADA and PMU measurements
at the time instant k; m, denotes the number of the buffered
PMU measurements; w; is calculated by applying the projec-
tion statistics [26] to the Jacobian matrix ¥ = dg/0x evalu-
ated at flat voltage phasor or state vector from the previous time
step. Formally, the weights of each measurement can be calcu-
lated through w; = min[1, x2 ; g75/PS;] and v is the number
of none-zero elements of the ith row of W; p(-) denotes the
Huber convex cost function defined as

7"3 /2 for|rg, | <A

Alrs,

p(rs,) = a7

for|rg. | > A

—A%/2
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where the parameter A is typically set between 1.5 and 3
[27]; rs, =1;/sw; denotes the standardized residual; r; =
y; — gi(Z); s = 1.4826-b,,, -median |r; | denotes the robust scale
estimate and b,,, denotes a correction factor [26].

The necessary condition that the minimum of (16) satisfies is
given by

m+m, w;
= > rs) =0,

i=1

dJ (x)
Ox

(18)

where aiT is the ith column vector of the Jacobian matrix W;
Y (rs,) = dp(rs,) /Ors, . We multiply and divide both sides of
(18) by rg, , yielding

W (y - g(z)) =0,

where g (rg,) =1 (rs,) /rs, and W = diag (¢ (rg,))-

By taking the first-order Taylor series expansion of g(x)
about Z‘ and using the iteratively re-weighted least square
(IRLS) algorithm [27], we obtain the following iterative form:

19)

-1
AZD = (\IITW“)\IJ) WO (y - g@), (0)
where / is the iteration counter. The algorithm converges if

||A.’/I}\(£+1>H _ Hi(’h—l)

(e+1) _ &E,QZ)HOO <103, 1)

D. Evaluation of Different Alternative Methods

To demonstrate the performance of the proposed framework
under various conditions, the following six different alternatives
are evaluated and compared:

1) Alternative 1 (A1): only the received SCADA measure-
ments are processed and the measurement correlations are
neglected, yielding a diagonal measurement error covari-
ance matrix; this is the traditional weighted least squares
estimator based on SCADA measurements;

2) Alternative 2 (A2): only the received SCADA measure-
ments are processed and the measurement correlations are
accounted for via the non-diagonal elements of the mea-
surement error covariance matrix; this is the weighted
least squares estimator considering the SCADA measure-
ment correlations that is proposed in [2];

3) Alternative 3 (A3): the latest arriving PMU measure-
ments and the received correlated SCADA measurements
are processed; this is the widely used approach proposed
in [8]-[10]; in the case where the PMU measurements are
delayed, only the received correlated SCADA measure-
ments will be processed, reducing A3 to A2; note that in
that case, the covariance matrix of the PMU measurements
is diagonal;

4) Alternative 4 (A4): the forecasted PMU measurements
and the received correlated SCADA measurements are
processed; in that case, both temporal and spatial corre-
lations of the PMU measurements are considered; note
that this approach is the same as the one proposed in [12],
except that here the correlations of the SCADA measure-
ments are neglected in [12]; it turns out that the ignorance
of the SCADA measurement correlations yields decreased

estimation performance as shown by the simulation re-
sults. Thus, A4 can be considered as a better version of
the approach proposed in [12];

5) Alternative 5 (AS5): the forecasted and the latest arriving
PMU measurements together with the received correlated
SCADA measurements are processed; in the case where
the PMU measurements are delayed, only the other two
types of measurements are processed, reducing A5 to A4;
note that the aim of proposing AS is to show that with the
increase of the measurement redundancy provided by both
the forecasted and the received latest PMU measurements
and the full consideration of measurement correlations,
more accurate state estimation results can be obtained
compared with the approach A4;

6) Alternative 6 (A6): since A5 is not robust to outliers
and measurement delays, we propose a robust version of
it; here, both the forecasted and the latest arriving PMU
measurements along with the received correlated SCADA
measurements are processed by the robust state estimator;
in the case where the PMU measurements are delayed,
only the other two types of measurements are processed.

Note that A1 to A5 make use of the WLS estimator with the

weights provided by the measurement error covariance matri-
ces; the normalized residual-based test is utilized to detect and
process outliers in the SCADA and the PMU measurements. In
addition, if the SCADA or the PMU measurements are delayed
or lost, the proposed mitigation strategies in Section III-B are
applied (see the remark herein).

IV. NUMERICAL RESULTS

Extensive simulations are carried out on the IEEE 30-bus and
the 118-bus test systems to assess the performance of each of
the aforementioned alternatives. The measurement configura-
tions of the two test systems are as follows: 1) the IEEE 30-bus
system is measured by 93 SCADA measurements, including 18
pairs of active and reactive power injections, 28 of pairs power
flows and voltage magnitude of Bus 1; 2) the 118-bus system
has 150 pairs of SCADA measurements, including 39 pairs of
injection measurements and 111 pairs of flow measurements.
To simulate temporally and spatially correlated PMU measure-
ments, the system loads are added with 2%—10% variations
around their nominal values that are modelled by the VAR, (1)
process. Then, a power flow calculation is executed to get the
true system bus voltage and current phasors. Next, a Gaussian
noise with zero mean and a standard deviation of 4 x 1072 is
added to the voltage and current phasors to realistically sim-
ulate the PMU measurements. Furthermore, a Gaussian noise
with zero mean and standard deviation 102 is added to the
measurements provided by the PTs and the CTs, followed by
the calculations of the SCADA measurements, i.e., the real and
reactive power injection and power flow measurements, and
their covariance matrix through the unscented transformation.
A varying percentage of system buses are randomly chosen for
PMU installation. The sampling rate of the PMU measurements
is 30 samples/s while the SCADA measurements are updated
every 5 s. The identified VAR model is used to forecast the PMU
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Fig. 1. MAE of the alternatives Al through A6 for the IEEE 30-bus system,
where 20% randomly chosen buses are deployed with the PMUs; (a) voltage
magnitude; (b) voltage angle.

measurements as well as to calculate the full covariance matrix.
The bad data detection threshold for the normalized residual
test is set to 3 with 99.7% confidence level. One hundred Monte
Carlo simulations are carried out to estimate the mean absolute
error (MAE) of each alternative.

A. Ideal Operating Conditions

In this section, we evaluate the performance of each alterna-
tive under ideal operating conditions. In other words, we assume
that the SCADA and the PMU measurements are synchronized,
implying that they arrive simultaneously; no bad data is sim-
ulated in this case. Figs. 1 and 2 show the MAE of each al-
ternative, for which the state estimator is applied to the IEEE
30-bus and 118-bus systems; here, 20% of randomly chosen
buses are provided with PMUs. The choice of randomly de-
ploying PMUs is justified as follows: since most of the practical
systems are unobservable by PMUs, it is difficult to determine
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Fig. 2. MAE of the alternatives Al through A6 for the IEEE 118-bus sys-
tem, where 20% randomly chosen buses are deployed with PMUs; (a) voltage
magnitude; (b) voltage angle.

the optimal locations of the PMUs for state estimation; thus,
the random deployment is a good strategy to investigate the
statistical performance of each estimator under different PMU
placement scenarios. It is observed from these figures that the
proposed robust estimator achieves the best performance, fol-
lowed by the alternatives AS, A4, A3, A2, and finally A1, in this
order. Compared with Al and A2, we find that the integration
of the SCADA measurement correlations will improve the state
estimator efficiency; the inclusion of non-correlated PMU mea-
surements can further improve the performance of A2; if the
correlations of both the SCADA and the PMU measurements
are taken into account, further improvement on the estimation
efficiency can be achieved (see A4 and AS5); compared with A3
to A5, we find that the consideration of the PMU correlations
do not significantly contribute to the improvement of the state
estimator efficiency, which is expected since the good accuracy
of the PMU measurements is not the dominant factor that con-
tributes to that enhancement. We find that the proposed robust
state estimator used in A6 is slightly more efficient than the
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TABLE I
MAE FOR THE VOLTAGE ANGLES OF THE IEEE 30-Bus SYSTEM WITH
DIFFERENT PMU PLACEMENTS

Cases A3 A4 A5 Proposed method
Case 1 0.092  0.0875  0.0806 0.068
Case2 0.0825 0.0749  0.071 0.051
Case3  0.052 0.042 0.032 0.014

WLS state estimator used in A5 at most buses, and it is signif-
icantly more efficient than the latter at some buses. This is due
to the fact that the system loads vary randomly, among which
a few may undergo significant changes while the remaining
majority change slowly. It turns out that the PMU measure-
ments from the buses that have relative large state changes may
not be well characterized by the VAR model. In that case, the
projection statistics algorithm and the GM-estimator will auto-
matically identify the PMU measurements that are outliers and
will assign relatively smaller weights to them. As a result, the
proposed GM-estimator is more robust and more efficient than
other alternatives.

To investigate the impacts of the number of the sited PMU
measurements on the estimator efficiency, we consider three
cases on the IEEE 30-bus system with different percentage of
buses provided with PMUs: i) Case 1: 10 percents; ii) Case 2:
20 percents, and iii) Case 3: full system observability with the
minimum number of PMUs, that is, Buses 2, 3, 6, 9, 10, 12,
15, 19, 25 and 27 are provided with PMUs [21]. Note that since
no PMU measurements are included in Al and A2, the MAEs
of the state estimators remain at 0.126 and 0.104, respectively
for all cases. Table I shows the test results of the alternatives
A3 to A6. It can be concluded from this table that, with the
increased number of PMUs, the MAEs of all the considered
alternatives decrease. In particular, the performance of each
estimator has been significantly improved when the system is
observable by PMUs. However, our proposed robust estimator
in A6 still outperforms all the other alternatives in that case.

B. Impact of Imperfect Measurement Time Synchronization on
the Estimation Efficiency

In Section IV-A, we have assessed the performance of each
alternative when all the measurements have perfect time syn-
chronization. Note that this assumption has been made implic-
itly by almost all state estimation approaches proposed in the
literature that combine PMU and SCADA measurements. How-
ever, this may be violated in practical power systems because of
the non-time synchronization of the SCADA measurements and
because of the delays incurred by the PMU measurements due
to communication problems or cyber attacks. To investigate the
impacts that imperfect measurement synchronization has on the
estimator efficiency, the following two scenarios are considered:

Scenario 1: at the time instant where the state estimator is
executed, only SCADA measurements arrive while PMU mea-
surements are delayed. Then, the approaches Al and A2 are not
affected and A3 reduces to A2; AS reduces to A4; the proposed
approach will be the robust version of A4.
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Fig. 3. Scenario 1: MAE of each alternative on the IEEE 30-bus system in
presence of imperfect measurement time synchronization, where 20% randomly
chosen buses are provided with PMUs; (a) voltage magnitude; (b) voltage angle.

Scenario 2: only the received and the forecasted PMU mea-
surements are available while the SCADA measurements are
delayed. Consequently, the system is partially observable. To
resolve this problem, prior estimates obtained at the latest state
estimation run is used. It is found that for this scenario, the
results provided by the alternatives Al and A2 are very poor,
making them not suitable for state estimation. This is in contrast
with the other alternatives.

Figs. 3 and 4 display the MAEs of each alternative. It is
observed from Fig. 3 that, due to the loss of PMU measurements,
both A4 and A6 provide increased estimation errors. However,
they still outperform the SCADA-only based state estimators.
When the SCADA measurements are delayed, the alternatives
A3 to A6 have even larger biases on the state estimates as
compared with Scenario 1. This is expected as the pseudo-
measurements have to be used to restore system observability.
However, these pseudo-measurements do not really reflect the
current system operating conditions. As a result, the WLS state
estimation used in A3 to AS is unable to balance the trade-off
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Fig. 4. Scenario 2: MAE of each alternative on the IEEE 30-bus system in
presence of imperfect measurement time synchronization, where 20% randomly
chosen buses are provided with PMUs; (a) voltage magnitude; (b) voltage angle.

between the current PMU measurements and the prior pseudo
SCADA measurements, yielding increased estimation biases.
Although our proposed robust estimator used in A6 exhibits an
increased bias as well, it achieves a better balance between these
two types of measurements, yielding the best performance.

C. Impact of Bad Data on Estimation Biases and Efficiency

Both the SCADA and PMU measurements may have gross
errors due to instrument errors, or impulsive noise, or communi-
cation failures, yielding bad data. Regarding the approaches Al
to A5, the normalized measurement residual-based statistical
test is applied to detect, identify, and remove the outliers, where
the detection threshold is set to be 3.0 for a 99.7% confidence
level. Then, the bad data processing and the state estimation are
repeated until no bad data is detected. It is well-known that this
approach can handle single and multiple non-interacting bad
data given a good measurement redundancy and the absence
of leverage points [4], [22]. To investigate the impact of the
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Fig.5. Case4: MAE of each approach on the IEEE 30-bus system in presence
of bad data, where 20% randomly chosen buses are deployed with PMUs;
(a) voltage magnitude; (b) voltage angle.

outliers on state estimation biases, the following two main cases
are considered:

Case 4: four bad data occur, including two bad SCADA mea-
surements Py and g, as well as two bad PMU measurements,
015 and current flow I15_13. They are assumed to be contami-
nated with 30% errors.

Case 5: four bad data occur, including two PMU measure-
ments and two SCADA measurements; the latter are Pj9_op
and Q19_20, which are leverage points whose magnitudes are
assumed to be contaminated with 30% errors. Note that this is
the case of interacting and conforming bad data. The bad PMU
measurements are the same as in Case 4.

The test results for Cases 4 and 5 are depicted in Figs. 5
and 6. It can be observed from Fig. 5 that all the considered
approaches are able to handle multiple non-interacting and non-
conforming bad data. Compared with the cases of no bad data,
the estimation errors increase slightly. Due to the enhanced
measurement redundancy through the proposed generalized
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Fig.6. Case 5: MAE of each of the six alternatives on the IEEE 30-bus system
in presence of bad data, where 20% randomly chosen buses are provided with
PMUs; (a) voltage magnitude; (b) voltage angle.

regression form and the good robustness of the GM-estimator
with weights calculated using projection statistics, our robust
approach significantly outperforms the other alternatives. Inter-
estingly, the enhancement of the measurement redundancy has
also improved the statistical efficiency of the traditional bad
data processing method as inferred from a comparison between
A5 and A1-A4. As for Case 5, it is observed that the normal-
ized residual-based statistical test fails to identify the interact-
ing and conforming bad data, yielding significantly biased state
estimates in the alternatives Al to AS5. In fact, the weakness
of the traditional chi-square test and the normalized residual
single case deletion procedure when applied to clustered bad
data has been demonstrated in [4]. Specifically, the normalized-
residual-based method incorrectly identifies the measurements
associated with Buses 18, 15 and 14 as outliers; the latter are
then removed for state estimation, yielding quite low local mea-
surement redundancy. Specifically, due to the smearing effects
caused by the outliers 615 and I15_;3, the measurements as-
sociated with Buses 12-14 are removed by the alternatives
A3 to AS, further decreasing the local measurement redun-
dancy. In presence of interacting and conforming bad data, the

TABLE II
COMPUTATIONAL EFFICIENCY OF EACH METHOD UNDER DIFFERENT
CONDITIONS, WHERE CASE 1 IS CARRIED OUT ON THE IEEE 30-BUS SYSTEM
WHILE CASES 4-5 ARE FOR THE IEEE 118-BUS SYSTEM

Cases Al A2 A3 A4 A5 Proposed
Casel 0.056s 0.064s 0.068s 0.076s 0.08s 0.11s
Case 4 0.34s 0.38 s 0.48 s 0.56s 0.86s 0.16 s
Case 5 0.54 s 0.69 s 0.79 s 091 s 098 s 0.17 s

estimation of the SCADA measurement correlations is strongly
biased, making several correct SCADA measurements associ-
ated with Buses 12—14 unreliable. As a result, the local measure-
ment redundancies associated with A2—-AS are lower than that
of Al. This justifies why A1 outperforms A2—AS5 for some local
buses. By contrast, the projection statistics algorithm first identi-
fies 015 and 11213 as outliers and decreases their weights; then,
the generalized regression model with enhanced measurement
redundancy and the robustness of the GM-estimator enable our
proposed robust estimator to effectively suppress bad SCADA
measurements, yielding negligible estimation biases. It should
be noted that the influence function of the GM-estimator [28] is
bounded regardless of the interacting and conforming bad data.
This justifies the effectiveness of the proposed robust estimator
against various types of outliers.

D. Computational Efficiency

The computing times of the six alternatives considered for
Cases 1 through 5 are displayed in Table II. Note that the results
for Cases 2 and 3 are similar to those of Case 1 and therefore,
are not displayed. All the tests are performed on a PC with In-
tel(X) Xeon(R) CPU, 3.2 GHz, 12 GB of RAM. The software
platform is Matlab. From this Table, we find that in the absence
of outliers, the inclusion of the measurement correlations yield
higher computing times. When multiple bad data occur, the al-
ternatives Al to A5 become much slower than our proposed
robust GM-estimator (see Cases 4 and 5). This is because the
normalized residual-based test for bad data processing and re-
estimation is quite time consuming. By contrast, all bad data are
suppressed automatically by our proposed GM-estimator and no
post-processing is required, yielding improved computational
efficiency. Note that in Case 5, the WLS-based residual statis-
tical test fails to identify the correct bad data. By contrast, our
robust estimator automatically suppress all the bad data while
not requiring any re-estimations, yielding very good computa-
tional efficiency that is compatible with real-time applications.

V. CONCLUSION

In this paper, arobust state estimation framework is developed
that integrates measurement correlations and mitigates the im-
pacts of imperfect measurement time synchronization. The un-
scented transformation is applied and a vector auto-regressive
(VAR) model is developed to separately integrate the corre-
lations of the SCADA and the PMU measurements. Specifi-
cally, the PMU measurements are buffered during the waiting
period of two successive SCADA measurement scans when
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developing the VAR model; they provide redundant measure-
ments for imperfect time synchronization mitigation and outliers
suppression. The latter is achieved via a robust GM-estimator,
which also accounts for measurement correlations. Comprehen-
sive comparison results show that our robust GM-estimator is
able to significantly improve estimation efficiency while bound-
ing the estimation bias in presence of bad data.
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