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Abstract—Due to the communication channel noises, GPS
synchronization process, changing environment temperature and
different operating conditions of the system, the statistics of the
system process and measurement noises may be unknown and
they may not follow Gaussian distributions. As a result, the
traditional Kalman filte -based dynamic state estimator (DSE)
may provide strongly biased state estimates. To address these
issues, this paper develops a robust Generalized Maximum-
likelihood Unscented Kalman Filter (GM-UKF). The statistical
linearization approach is presented to derive a compact batch-
mode regression form by processing the predicted state vector
and the received measurements simultaneously. This regression
form enhances the data redundancy and allows us to detect
bad PMU measurements and incorrect state predictions, and
filte out unknown Gaussian and non-Gaussian noises through
the generalized maximum likelihood (GM)-estimator. The latter
minimizes a convex Huber function with weights calculated via
the projection statistics (PS). Particularly, the PS is applied to
a proposed 2-dimensional matrix that consists of temporally
correlated innovation vectors and predicted states. Finally, the
total influenc function is used to derive the error covariance
matrix of the GM-UKF state estimates, yielding the robust state
prediction at the next time instant. Extensive simulations carried
out on the IEEE 39-bus test system demonstrate the effectiveness
and robustness of the proposed method.

Index Terms—Dynamic state estimation, robust estimation,
unscented Kalman filte , non-Gaussian noise, total influenc
function, bad data.

I. INTRODUCTION

RELIABLE and accurate dynamic state variables of the
synchronous machines are of paramount importance for

power system real-time monitoring and control. For example,
the rotor speeds can be taken as inputs by power system
stabilizers to enhance small-signal stability [1] while the rotor
angles can be leveraged for the design of generator out-of-
step relays [2], and so on. However, most of the machine
dynamic state variables are not directly measured. Thanks
to the widespread deployment of Phasor Measurement Units
(PMUs) on power transmission grids, it becomes possible to
utilize synchronized PMU measurements to estimate the full
state variables of a synchronous generator by using a Kalman
filte -based dynamic state estimator (DSE) [3]–[13].
In [3]–[6], the extended Kalman filte (EKF) is used to

estimate the state variables of a synchronous generator with
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different model orders. However, the first-orde Taylor series
expansion-based EKF will produce large estimation errors or
even may diverge when the system nonlinearity is strong.
The latter can be caused by severe disturbances or heavy
loading conditions that significantl stress the system. To
circumvent first-orde approximation errors of the EKF, several
other nonlinear filter have been proposed and applied to
power system dynamic state estimation, such as the unscented
Kalman filte (UKF) [7]–[11], the ensemble Kalman filte [12],
the particle filte [13], to name a few.
The Kalman-type filter work well only under certain con-

ditions [14]–[16]. Firstly, the means and covariance matrices
of the system process noise wk and measurement noise vk
are assumed to be known at each time instant, which are Qk

and Rk, respectively. This is because the Kalman-type filter
require the knowledge of Qk and Rk for the calculation of
the prediction and filterin covariance matrices. Thirdly, the
attractiveness of the Kalman filte stems from its optimality
under the Gaussian assumption. Finally, the system model is
assumed to known exactly. However, for practical dynamical
systems, these assumptions might not hold true given that 1)
Qk and Rk may be difficul to obtain; this is because both
noises depend heavily on the actual operating conditions of
the system and are changing from time to time; 2) the process
and observation noise may not follow Gaussian distributions.
This is demonstrated by two recent investigations conducted
by Pacifi Northwest National Laboratory (PNNL) [17], [18],
where the PMU measurement errors of the voltage and current
phasors obey non-Gaussian probability distributions; 3) the
vector-valued state transition and measurement functions are
with uncertainties, yielding unknown system process noise;
4) the received measurements can be biased significantl
due to impulsive communication noise, cyber attacks, etc,
inducing bad PMU measurements. Under these conditions,
the aforementioned Kalman filte -based DSEs may obtain
significantl biased estimation results.
To address these issues, this paper develops a robust Gen-

eralized Maximum-likelihood Unscented Kalman Filter (GM-
UKF). It has the following salient features:

• The statistical linearization approach is presented to de-
rive a compact batch-mode regression form by processing
in a robust way the predicted state vector and the received
measurements simultaneously, yielding a robust filter

• Projection statistics are extended to reliably detect obser-
vation and innovation outliers by analyzing the temporal
correlations of a 2-dimensional innovation matrix;
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• The proposed GM-UKF is able to filte out unknown
Gaussian and non-Gaussian noises and to suppress ob-
servation and innovation outliers while achieving high
statistical efficien y; note that the observation outliers
(or bad data) refer to the received PMU measurements
with large errors induced by impulsive communication
noise or loss of communications, among others. As for
the innovation outliers, they may be induced by the failure
of the automatic voltage controller or the power system
stabilizers or by impulsive system process noise, yielding
incorrect predicted state variables;

• The total influenc function is derived and the expression
of the estimation error covariance matrix of the GM-UKF
state estimates is calculated, allowing us to perform a
robust state prediction at the next time step.

The rest of the paper is organized as follows. Section
II presents the problem formulation. Section III develops
the proposed GM-UKF. Section IV shows and analyzes the
simulation results. Finally Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, the nonlinear discrete-time state space model
of a synchronous generator is firs derived. Then, the statistical
model of the system process and measurement noises is
discussed. Finally, the problem statement is presented.

A. Nonlinear Discrete-Time State Space Model
A discrete-time state space representation of a general

nonlinear dynamical power system at time instant k can be
expressed as

xk = f (xk−1,uk) +wk, (1)

zk = h (xk) + vk, (2)

where xk is the state vector; f(·) is the vector-valued function
that relates xk to xk−1; uk represents the system input
vector; zk is the measurement vector; h(·) is the vector-
valued measurement function; wk and vk are system process
and measurement noises, respectively, which are not necessary
assumed to be Gaussian; their covariance matrices are denoted
by Qk and Rk , respectively. The above discrete-time state
space form is usually derived from the differential and alge-
braic equations that govern the system dynamics. The reader
is referred to Appendix A for details. The objective of this
paper is to develop a robust filte method aimed at estimating
the dynamic state variables of the synchronous generator.
B. Statistical Model of Noises
Due to the communication channel noises, GPS synchro-

nization process, changing environment temperature and dif-
ferent operating conditions of the system, the statistics of the
PMU measurement and system process noises may be un-
known to the control center and they may not follow Gaussian
distributions. For example, experiments conducted by PNNL
[17], [18] reveal that the PMU measurement noise follows a
non-Gaussian distribution. There are several models that can
be applied to model deviations from Gaussian assumption.
Among them, the Gaussian sum distribution is widely used
because any non-Gaussian distribution p(x) can be expressed
as, or approximated sufficientl well, by a finit sum of known

Gaussian densities according to the Wiener approximation
theorem [20], i.e.,

p(x) =
NA∑
i=1

aiN (xi,Σi), (3)

where ai is the weight and
NA∑
i=1

ai = 1; NA is the number

of Gaussian components; the mean and covariance matrix
associated with the ith Gaussian component are denoted by
xi and Σi, respectively.
A popular variant of (3) used in robust statistics is the ε-

contaminated model [21]. It models the full neighborhoods of
a Gaussian distribution in the probability space and is given
by the following functional form:

G = (1− ε)Φ + εK, (4)

where G denotes the probability distribution of the random
vector x; Φ denotes the Gaussian probability distribution; K
denotes an unknown probability distribution, which can be
a heavy-tailed distribution such as the Laplace distribution.
Here, ε ∈ [0 0.5) regulates the level of the non-Gaussian
contamination, e.g., a small ε indicates a small fraction of
non-Gaussian errors. Note that as long as ε �= 0, G is a non-
Gaussian distribution, which is usually the case for practical
power systems.
Remark: The ε-contaminated model is based on the assump-

tion that the majority of the measurement error roughly follows
a Gaussian distribution, a widely accepted assumption in the
statistical literature. It is a convenient mathematical model that
allows us to derive the bias-sensitivity of the estimator to
infinitesima contamination and to investigate the maximum
fraction of outliers that the estimator can withstand, termed
the breakdown point.
C. Problem Statement
To highlight the significanc of the contributions of this

paper, we list the following open problems related to power
system dynamic state estimation that are pinpointed in the
current literature:

• Experiments conducted by PNNL reveal that PMU noises
follow non-Gaussian distributions, including Laplace and
Cauchy distributions. However, existing power system
dynamic state estimation approaches, including [7]–[10],
assumes that both system process and measurement
noises are Gaussian. As a result, the estimated states that
they provide are significantl biased;

• Under the assumption that both system process and
measurement noises follow a Gaussian distribution, a
normalized innovation-based outlier detection test [8]
may be applied. However, the detection threshold is
system dependent and challenging to set in presence of
unknown non-Gaussian noise distributions. In addition, it
also supposes that the system model is exact, which is not
true in presence of innovation outliers. It turns out that
this type of outliers are rarely discussed in the literature
despite the fact that they frequently occur in practice due
to model parameter errors, controller failures, to cite a
few;
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• A robust state prediction covariance matrix to outliers
along with a reformulation of the Kalman filte as a batch-
mode regression problem is required to derive a robust
dynamic state estimator in power systems.

In this paper, we propose a robust GM-UKF to address all the
above challenges.

III. THE PROPOSED ROBUST UKF
In this section, the four main steps of the proposed robust

UKF are presented, namely a batch-mode regression form step,
a robust outlier detection step, a robust regression step, and
a robust error covariance matrix updating step. Then, some
practical implementation issues are discussed.

A. Batch-Mode Regression Step
Similar to the traditional UKF, 2n sigma points with weights

wi, i = 1, ..., 2n are generated to capture the statistics of the
state estimate x̂k−1|k−1 ∈ R

n×1 at time step k-1. Formally,
we have [22]

χi
k−1|k−1

= x̂k−1|k−1 ±
(√

nΣxx
k−1|k−1

)
i
, (5)

and wi = 1
2n , i = 1, ..., 2n; Σxx

k−1|k−1 is the covariance
matrix of x̂k−1|k−1 ∈ R

n×1. Note that the least number of
sigma points is n+ 1, but 2n is the recommended number in
the literature [22]. By substituting each sigma point into the
nonlinear system process model (1), we obtain the following
transformed sigma points:

χi
k|k−1

= f
(
χi

k−1|k−1

)
. (6)

Then, the weighted sample mean and sample covariance ma-
trix of these transformed sigma points are used to approximate
the predicted state vector and its covariance matrix by

x̂k|k−1 =
2n∑
i=1

wiχ
i
k|k−1

, (7)

Σxx
k|k−1 =

2n∑
i=1

wi(χ
i
k|k−1

− x̂k|k−1)(χ
i
k|k−1

− x̂k|k−1)
T+Qk.

(8)
To construct the regression form, we defin

x̂k|k−1 = xk − ek, (9)

where xk is the true state vector; ek is the prediction error; and
E
[
eke

T
k

]
= Σxx

k|k−1 . By applying the statistical linearization
[23] to the nonlinear measurement equation around x̂k|k−1 ,
we obtain

zk = Hk

(
xk − x̂k|k−1

)
+ h

(
x̂k|k−1

)
+ vk + εk, (10)

where Hk = (Σxz
k|k−1

)T (Σxx
k|k−1

)−1 is the statistical regres-
sion matrix; Σxz

k|k−1
is the cross-covariance matrix define as

Σxz
k|k−1

=

2n∑
i=1

wi(χ
i
k|k−1

− x̂k|k−1)(z
i
k|k−1

− ẑk|k−1)
T ,

where ẑk|k−1 =
2n∑
i=1

wiz
i
k|k−1

is the predicted measurement

vector and zi
k|k−1

= h(χi
k|k−1

); εk is the statistical lineariza-
tion error used to compensate the system nonlinearity; its

covariance matrix is

R̃k = E
[
εkεk

T
]
= Σzz

k|k−1
− (Σxz

k|k−1
)TΣxx

k|k−1Σ
xz
k|k−1

,
(11)

where the self-covariance matrix Σzz
k|k−1

is calculated by

Σzz
k|k−1

=
2n∑
i=1

wi(z
i
k|k−1

− ẑk|k−1)(z
i
k|k−1

− ẑk|k−1)
T +Rk.

(12)
By processing the predicted state and the measurements si-
multaneously, we obtain the following batch-mode regression
form:[

zk +Hkx̂k|k−1 − h(x̂k|k−1)
x̂k|k−1

]
=

[
Hk

I

]
xk+

[
vk + εk
−ek

]
(13)

which can be rewritten into a compact form as

z̃k = H̃kxk + ẽk. (14)

The error covariance matrix is given by

Σk = E
[
ẽkẽ

T
k

]
=

[
Σk|k−1 0

0 Σxx
k|k−1

]
= SkS

T
k , (15)

where Σk|k−1 = E[(νk + εk)(νk + εk)
T
] = Rk + R̃k;

I is an identity matrix; Sk is calculated by the Cholesky
decomposition technique.
Due to the nonlinear system state transition and measure-

ment functions, the predicted state vector and measurements
are correlated, yielding non-diagonal covariance matrix Σ k.
To uncorrelate them, we pre-multiply S−1

k on both sides of
(14), yielding

S−1
k z̃k = S−1

k H̃kxk + S−1
k ẽk, (16)

which can be put into the compact form given by

yk = Ckxk + ξk, (17)

where E[ξkξk
T ] = I can be easily verified

B. Robust Outlier Detection Step
For practical power system, the received PMU measure-

ments can be significantl biased because of impulsive com-
munication noise, loss of communications, etc., yielding ob-
servation outliers. For the innovation outliers, they may be
induced in several different ways, such as incorrect generator
parameters due to saturations, failure of controllers (exciter,
power system stabilizer), impulsive system process noise,
yielding incorrect predicted state variables. To detect them,
we apply the Projection Statistics (PS) to the following 2-
dimensional matrix Zk:

Zk =

[
zk−1 − h(x̂k−1|k−2) zk − h(x̂k|k−1)

x̂k−1|k−2 x̂k|k−1

]
, (18)

where zk−1−h(x̂k−1|k−2) and zk−h(x̂k|k−1) are the innova-
tion vectors while x̂k−1|k−2 and x̂k|k−1 are the predicted state
vectors at time instants k-1 and k, respectively. The choice of
Zk is motivated by the fact that the innovation vector and
the predicted state vector are time series samples of power
system responses and have strong temporal correlations. If
outliers occur, this relationship is violated. Thus, by checking
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this statistical property of the matrix Zk, we are able to
detect observation and innovation outliers. Note that in Zk,
innovation vector consists of values around zeros while the
values of the predicted states are close to the system state
variables that are different from zeros. As a result, they are
clustered around different points and need to be processed
separately by the PS. The PS is define as [25]:

PSj = max
‖�‖=1

∣∣lTj �−medi
(
lTi �

)∣∣
1.4826medκ

∣∣lTκ �−medi
(
lTi �

)∣∣ , (19)

for i, j, κ = 1, 2, ...,m+ n, where lTj , lTi and lTκ are the jth,
ith and κth row vector of Zk, respectively. The detailed imple-
mentation steps of PS are shown in the Appendix B. Note that
innovation vectors and predicted state vectors define above
are random variables roughly obeying a Gaussian distribution,
yielding a bi-variate Gaussian Zk. As a result, the PS values
that are calculated based on the distribution of Zk follow a
chi-squares distribution with 2-degree of freedom as shown by
extensive Monte Carlo simulations. This allows us to derive a
statistical test to detect outliers. Formally, we have{ H0 : |Π| = 0

H1 : 1 ≤ |Π| ≤ m+ n
, (20)

where Π = {PSi > χ2
2,0.975, i = 1, ...,m+ n}; |Π| represents

the cardinality of the set Π; H1 and H0 correspond to occur-
rence of outliers and no outliers, respectively. Note that the
detection threshold is set to be χ2

2,0.975 because the PS values
follow a Chi-square distribution with 2 degree of freedom [5].
The detected outliers are downweighted via

�i = min
(
1, d2

/
PS2

i

)
, (21)

where the parameter d is usually set equal to 1.5 to yield
good statistical efficien y at different distributions without
increasing too much the bias induced by the outliers.

C. Robust Regression Step

After the detection of the outliers, the Weighted Least
Squares (WLS) estimator can be applied to the regression
model (17) to obtain the state estimates. However, it is well-
known that the WLS is only optimal under Gaussian assump-
tion with known variances, which is not the case for practical
measurement noise. To filte out non-Gaussian measurement
noise, we propose to use a robust Generalized-Maximum Like-
lihood (GM)-type estimator. It aims to minimize an objective
function given by

J (xk) =

m+n∑
i=1

�2
i ρ (rSi) , (22)

where �i is calculated by (21); rSi = ri/s�i is the standard-
ized residual; ri = yi − cTi x̂ is the residual, where cTi is the
ith row vector of the matrix Ck; s = 1.4826 · bm·mediani |ri|
is the robust scale estimate; 1.4826 is a correction factor
chosen to ensure consistency of the proposed method under
the Gaussian distribution [25]; bm is a correction factor to
achieve unbiasedness for a finit sample of size m + n at a

given probability distribution [25]; ρ(·) is the convex Huber-ρ
function [21] expressed as

ρ (rSi) =

{ 1
2r

2
Si
, for |rSi | < λ

λ |rSi | − λ2
/
2, elsewhere

, (23)

where the parameter λ is typically chosen between 1.5 to 3 in
the literature.
Thanks to the convexity of the Huber-ρ function, the so-

lution to an iterative algorithm will be a global minimum.
Thus, the necessary and sufficien condition for optimality of
objective function (22) is

∂J (xk)

∂xk
=

m+n∑
i=1

−�ici
s

ψ (rSi) = 0, (24)

where ψ (rSi) = ∂ρ (rSi)/∂rSi .
As ψ(·) is a nonlinear function, an iterative algorithm has

to be used to obtain the global mimimum. In this paper, we
advocate the use of the Iteratively Reweighted Least Squares
(IRLS) algorithm [24], [26]. To this end, we divide and
multiply the standardized residual rSi to both sides of (24),
yielding the following matrix form

CT
k W (yk −Ckxk) = 0, (25)

where W =diag(q (rSi)) and q (rSi) = ψ (rSi)/rSi . Then,
the state vector at the j iteration is calculated through

Δx̂
(j+1)
k|k =

(
CT
k W

(j)Ck

)−1

CT
k W

(j)yk, (26)

where Δx̂
(j+1)
k|k = x̂

(j+1)
k|k − x̂

(j)
k|k . The algorithm converges

when
∥∥∥Δx̂

(j+1)
k|k

∥∥∥
∞

≤ 10−2.

D. Robust Error Covariance Matrix Updating Step
After the robust regression step, the error covariance matrix

Σxx
k|k is updated so that the state prediction for the next step

can be performed. In our previous work [5], the total influenc
function-based error covariance matrix updating approach is
used. In this paper, we follow that work and derive the
asymptotic error covariance matrix of our GM-UKF at time
sample k as

Σxx
k|k =

EΦ[ψ2(rSi)]
{EΦ[ψ′(rSi)]}2

(
CT
k Ck

)−1(
CT
k Q�Ck

)(
CT
k Ck

)−1

(27)
where Q� = diag

(
�2
i

)
; the coefficien EΦ[ψ2(rSi)]

{EΦ[ψ′(rSi)]}2 can
be shown to be 1.0369 if λ = 1.5.

E. Practical Implementation Issues of the GM-UKF
There are several parameters of the proposed GM-UKF that

need to be determined, namely the settings of the breakpoint
λ of the Huber ρ-function, the parameter d of the weighting
function, and the convergence tolerance of the IRLS algorithm.
λ determines the trade-off that we wish to achieve between
a least-squares and a least-absolute-value fit Indeed, when
λ→ 0, the Huber ρ-function tends to the least-absolute-value
ρ-function and when λ → ∞, it tends to the least-squares
ρ-function. Regarding the parameter d, it determines the
statistical efficien y of the PS at the assumed probability dis-
tribution along with the robustness of the GM-estimator [24].
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Decreasing this parameter too much shrinks the dimensions of
the 97.5% confidenc ellipse. As a result, good measurements
may be unduly downweighted, which yields a decrease in
the statistical efficien y. On the other hand, increasing d will
increase the bias of the GM-estimator. Extensive simulations
have shown that the parameters λ and d can be set to 1.5
to achieve a good statistical efficien y at the Gaussian and
many other non-Gaussian distributions while achieving a good
robustness to outliers. Regarding the convergence tolerance
threshold of the IRLS algorithm, a typical value is 0.01;
decreasing this value results in small incremental changes of
the state estimates while increasing the computing time of the
algorithm.
Another important problem that needs to be addressed is

how to properly choose the covariance matrices Qk and Rk

for the system process and measurement noises. Since the
classes of precisions of the PMU devices are provided, we
can use them to derive the variances of the measurement
noise, which are the diagonal elements of covariance matrix
Rk. It is interesting to note that the robust GM-UKF will
identify those data points that are within the given standard
deviations from the regression surface that fit the majority
of the data points and mainly relies on them to provide the
best state estimates while suppressing the outliers. Now, how
to set up the diagonal elements of the covariance matrix Qk?
If they are chosen smaller than those associated with Rk, the
Kalman filte -based DSE will automatically put more emphasis
on the predicted state vector for state estimation; by contrast,
if they are chosen larger, the filte will rely more on the
measurements, and consequently, the estimation results may
be biased under non-Gaussian noise. To address this issue, we
propose to assign similar values to the diagonal elements of
Qk as those of Rk with appropriate dimensions and let the
GM-UKF balance the tradeoff between state predictions and
measurements for state estimation. As a result, our GM-UKF
does not require the exact information of the noise statistics,
which relaxes the general assumption of a Kalman filte -based
DSE.

IV. NUMERICAL RESULTS

Extensive simulations are carried out on the 10-machine
IEEE 39-bus New England system to assess the effectiveness
and robustness of the proposed GM-UKF. It is assumed that
a large system disturbance occurs at t=0.5s by opening the
transmission line between Buses 15 and 16. The time-domain
simulation results are used to generate a collection of samples
of the nodal voltage magnitudes and phase angles as well
as of the real and reactive power injections at the terminal
buses of all the generators. All parameter values of the two-
axis generator model are taken from an IEEE report [27]. The
PMU scan rate is assumed to be 50 samples/second. For the
state initialization, the steady-state power fl w solutions with
10% errors are used. Due to space limitation, not all the 9
state variables of each generator are shown; instead estimated
values of the rotor angle and speed, the fiel voltage and the
mechanical power of Generator 5 are utilized for illustration
purposes. 100 Monte Carlo simulations at each PMU sample
are conducted and the mean values are considered as the fina
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Fig. 1. Scenario 1: Mean absolute error of the GM-IEKF, the UKF, and the
GM-UKF in presence of Gaussian noise; (a) small Gaussian noise with zero
mean and covariance matrix 10−6I; (b) large Gaussian noise with zero mean
and covariance matrix 10−4I.

solution. The Mean Absolute Error (MAE) is utilized as the
index to evaluate the overall performance of each method.
The traditional UKF and the GM-IEKF [5] are included for
comparisons. The diagonal elements of the system process
and measurement noise covariance matrices are assumed to
be 10−6.

A. Scenario 1: Occurrence of Small and Large Gaussian
Noise
In the scenario 1, we assume that both the system process

and measurement noises follow a Gaussian distribution. Al-
though this is a rare case for practical power system, we would
like to compare the performances of the GM-IEKF, the UKF,
and the GM-UKF under this ideal condition. Please note that in
the existing literature about Kalman filte -based power system
DSEs, Gaussian assumption is explicitly assumed for the sys-
tem process and measurement noises. Specificall , a Gaussian
random variable with zero mean and covariance matrix 10−6I
is added to simulate system process and measurement noises
with appropriate dimensions. The test results are displayed
in Fig. 1-(a). It is observed from this figur that under this
ideal condition, the UKF outperforms the GM-IEKF as the
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Fig. 2. Scenario 2: Mean absolute error of the GM-IEKF, the UKF, and the
GM-UKF in presence of non-Gaussian noise that is represented by Gaussian
mixture model; (a) 5% of the data is contaminated by another Gaussian
component with zero mean and covariance matrix 10−5I; (b) 10% of the
data is contaminated by another Gaussian component with zero mean and
covariance matrix 10−5I. Note that the true covariance matrix is 10−6I.

former is a better nonlinear filte than the EKF. However, their
statistical efficien y is much lower than our GM-UKF. When
the covariance matrices are increased from 10−6I to 10−4I,
the comparison results of three filter are shown in Fig. 1-(b).
It should be noted that this is not the ideal condition anymore
as the covariance matrices of system process and measurement
noises are assumed to be 10−6I with appropriate dimensions
while their true values are 10−4I. It is observed from Fig.
1-(b) that the GM-IEKF achieves comparative performance as
the UKF. Our GM-UKF outperforms the GM-IEKF and the
UKF, yielding the highest statistical efficien y.
B. Scenario 2: Occurrence of Small Non-Gaussian Noise
In practice, both the system process and measurement noises

are unknown and may deviate from the Gaussian assumption.
This is because they depend on the operating condition of a
system and may change from time to time. In this section, we
test the scenario that the deviation from Gaussian assumption
is small. To do that, a bimodal Gaussian mixture model with
zero means, covariance matrices of 10−6I and 10−5I and
weights of 0.95 and 0.05, are assumed for both the system
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Fig. 3. Scenario 3: Mean absolute error of the GM-IEKF, the UKF, and the
GM-UKF in presence of non-Gaussian noise that is represented by Gaussian
mixture model; (a) 5% of the data is contaminated by another Gaussian
component with zero mean and covariance matrix 10−4I; (b) 10% of the
data is contaminated by another Gaussian component with zero mean and
covariance matrix 10−4I. Note that the true covariance matrix is 10−6I.

process and measurement noises with appropriate dimensions.
The test results are shown in Fig. 2-(a). Compared with the
Gaussian noises scenario, the state estimates provided by UKF
are significantl biased as it is unable to filte out non-Gaussian
noise. By contrast, both GM-IEKF and GM-UKF are capable
of filterin out non-Gaussian noises thanks to their statistical
robustness provided by the GM-estimator. However, GM-UKF
achieves better statistical efficien y than GM-IEKF. When the
deviation from Gaussian assumption increases slightly, that
is, 10% of the data is contaminated by another Gaussian
component with zero mean and covariance matrix 10−5I (this
is simulated by changing the weights 0.95 and 0.05 to 0.9
and 0.1 for the Gaussian mixture model, respectively), the
estimation results are displayed in Fig. 2-(b). It is found
that with increased degree of the deviation from Gaussian
assumption, estimation errors of all three filter increase.
However, our GM-UKF still has a comparative performance
as the previous case and it achieves the highest statistical
efficien y.
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Fig. 4. Scenario 4: Tracking performance of the GM-IEKF, the UKF, and
the GM-UKF in the presence of bad PMU measurements from t=3s to t=5s,
where the terminal real and reactive power measurements of Generator 5 are
corrupted by 10% and 30% errors, respectively. (a) 10% errors of P5 and
Q5; (a) 30% errors of P5 and Q5.

C. Scenario 3: Occurrence of Large Non-Gaussian Noise

In Scenario 2, we have tested the case that both system
process and measurement noises deviate slightly from the
Gaussian assumption. Due to the changing operating status of
the communication channels, the GPS synchronization process
and the actual power systems, the deviation from Gaussian
assumption can be large. Thus, it is important to investigate
the robustness of the proposed GM-UKF to these scenarios.
In this section, a bimodal Gaussian mixture with zero means,
covariance matrices of 10−6I and 10−4I and weights of
0.95 and 0.05, are assumed for both the system process and
measurement noises with appropriate dimensions. It should be
noted that different combination of covariance matrices for the
Gaussian mixture model will yield completely different non-
Gaussian distributions. The mean absolute errors of each filte
are plotted in Fig. 3-(a). From the results obtained in Scenario
2, it is found that all three filter have increased estimation
errors. The UKF has the largest increased estimation errors
among three filters followed by the GM-IEKF. Our GM-UKF
has a slight increase of the estimation error, demonstrating
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Fig. 5. Tracking performance of the GM-IEKF, the UKF, and the GM-UKF
in the presence of innovation outliers from t=5s to t=7s, where the transient
reactance of the Generator 5 is corrupted with 30% errors.

its good robustness to unknown non-Gaussian noise. When
the deviation from Gaussian assumption is further increased,
that is, 10% of the data is contaminated by another Gaussian
component with zero mean and covariance matrix 10−4I
(this is simulated by changing the weights 0.95 and 0.05 to
0.9 and 0.1 for the Gaussian mixture model, respectively),
the estimation results are displayed in Fig. 3-(b). A similar
conclusion can be drawn from the results displayed in Fig.
3-(a).

D. Scenario 4: Occurrence of Outliers

Due to impulsive noise, loss of communication channels
and saturations of the Potential Transformer (PT) and the
Current Transformer (CT), bad PMU measurements can occur,
yielding significan deviation from the Gaussian assumption of
the measurement noise. To demonstrate the robustness of each
filte , the following two cases are considered and tested:
Case 1: it is assumed that the received terminal real and

reactive power measurements of Generator 5 are corrupted
with 10% errors from t=3s to t=5s.
Case 2: the received terminal real and reactive power

measurements of Generator 5 are corrupted with 30% errors
from t=3s to t=5s.
The UKF-based normalized innovation statistical test [7],

[8] is applied to detect observation outliers. Note that the
detection threshold is system dependent and is challenging to
set in presence of unknown non-Gaussian noise distributions.
Following [7], [8], the detection threshold is set to be 8. Fig.
4 displays the mean absolute error of each of the three filter
for these two scenarios. It can be found that the innovation
statistical test is able to detect measurements with large gross
errors while it fails to detect them when the gross error magni-
tudes are relatively smaller. This does not come as a surprise
because the statistics of the system process and observation
noise are unknown, yielding non-optimal detection threshold.
Interestingly, while the GM-IEKF is able to withstand bad
PMU measurements and provide reasonably good results, it
produces large biases on the state estimates at the time when
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TABLE I
AVERAGE COMPUTING TIMES OF THE THREE FILTERS AT EACH PMU

SAMPLE.

Scenarios UKF GM-IEKF GM-UKF
Scenario 1 6.20ms 9.55ms 9.48ms
Scenario 2 6.23ms 9.58ms 9.50ms
Scenario 3 6.25ms 9.60ms 9.52ms
Scenario 4 6.36ms 9.66ms 9.62ms

the gross measurement errors occur. By contrast, our GM-
UKF suppresses more effectively the bad PMU measurements,
yielding much smaller biases on the state estimates.
In addition to observation outliers, the system model can be

corrupted by incorrect parameters due to generator saturations,
controller failures, among others, yielding innovation outliers.
In this paper, we assume that the transient reactance of
Generator 5 is corrupted by 30% errors from t=5s to t=7s
due to saturations, yielding incorrect predicted state variables.
The test results are displayed in Fig. 5. It is observed that the
normalized innovation-based statistical test fails to detect the
innovation outliers. This is expected because it assumes that
the system model is reliable; in fact, it is unable to decide
whether the predicted state variables or the observations are
wrong. By contrast, our proposed GM-UKF will rely on the
projection statistics to suppress the innovation outliers while
exhibiting higher statistical efficien y than GM-IEKF.

E. Assessment of Computational Efficienc
The computing times of the UKF, the GM-IEKF and the

GM-UKF in Scenarios 1-4 at each PMU sample are displayed
in Table I. All the tests are performed on a PC with Intel
Core i5, 2.50 GHz, 8GB of RAM. Note that all the approaches
are implemented in a distributed manner for each generator.
It can be concluded from this table that all three filter
have comparative computational efficien y. The UKF has the
fastest computing speed, followed by the GM-UKF. It is worth
pointing out that although GM-UKF requires a slightly more
execution time than the UKF, its computing time at each
PMU sample is much lower than the actual PMU scan rate
(20 ms). This demonstrates that our GM-UKF is suitable to
track the dynamics of the system states in real-time. The
major differences between GM-UKF and UKF that induce
different computing times are the detection and processing
outliers using projection statistics and the noise filterin using
the iteratively reweighted least squares algorithm based GM-
estimator.

V. CONCLUSION

In this paper, a robust GM-UKF is proposed to handle
unknown statistics of system process and measurement noises
as well as bad PMU measurements. A batch-mode regression
form is firs derived using the statistical linearization approach
and by processing the predicted state vector and measurements
simultaneously. This regression form enhances the data re-
dundancy and allows us to detect bad PMU measurements
and filte out unknown Gaussian and non-Gaussian noises
through the GM-estimator. The error covariance matrix of the
GM-UKF state estimates is derived from the total influenc
function of the GM-estimator. Numerical results carried out

on the IEEE 39-bus test system demonstrate the effectiveness
and robustness of the proposed method. In the future work,
we will extend our approach to develop a generalized GM-
UKF for simultaneously estimating the system states and
generator model parameters whose values are either inaccurate
or incorrect.

APPENDIX A
TWO-AXIS GENERATOR MODEL

The differential and algebraic equations of the 9th-order
two-axis generator model with IEEE-DC1A exciter and
TGOV1 turbine-governor are represented as follows:
Differential equations:

T ′
do

dE′
q

dt
= −E′

q − (Xd −X ′
d) Id + Efd, (28)

T ′
qo

dE′
d

dt
= −E′

d −
(
Xq −X ′

q

)
Iq, (29)

dδ

dt
= ω − ωs, (30)

2H

ωs

dω

dt
= TM − Pe −D (ω − ωs) , (31)

TE
dEfd
dt

= − (KE + SE (Efd))Efd + VR, (32)

TF
dVF
dt

= −VF +
KF

TE
VR − KF

TE
(KE + SE (Efd))Efd,

(33)

TA
dVR
dt

= −VR +KA (Vref − VF − V ) , (34)

TCH
dTM
dt

= −TM + PSV , (35)

TSV
dPSV
dt

= −PSV + PC − 1

RD

(
ω

ωs
− 1

)
, (36)

Algebraic equations:

Vd = V sin (δ − θ) , Vq = V cos (δ − θ) , (37)

Id =
E′
q − Vq

X ′
d

, Iq =
Vd − E′

d

X ′
q

, (38)

Pe = VdId + VqIq, Qe = −VdIq + VqId, (39)

where T ′
do, T ′

qo, TE , TF , TA, TCH and TSV are time constants,
in seconds; KE , KF and KA are controller gains; Vref and
PC are known control inputs; E ′

q , E′
d, Efd, VF , VR, TM and

PSV are the q-axis and d-axis transient voltages, fiel voltage,
scaled output of the stabilizing transformer and scaled output
of the amplifie , synchronous machine mechanical torque and
steam valve position, respectively; Xd, X ′

d, Xq and X ′
q are

generator parameters; V and θ are the terminal bus voltage
magnitude and phase angle, respectively; Pe and Qe are the
active and reactive electrical power outputs; Id and Iq are the
d and q axis currents, respectively.
By applying time discretization to (28)-(39), we get

(1)-(2), yielding the state vector given by xk =
[δ ω E′

d E
′
q Efd VF VR TM PSV ]. The relationships given

by (28)-(36) and (37)-(39) are represented in compact forms
by the vector-valued function f(·), which relates xk to xk−1,
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and by h(·), respectively. The system input vector is denoted
by uk = [Vref PC ]

T . The measurement vector zk contains
a collection of voltage and current phasor measurements.
For the case of the decentralized DSE, only metered values
provided by the generator terminal PMUs are used; these
PMUs measure the generator voltage and current phasors and
the associated real and reactive power injections.

APPENDIX B
PROJECTION STATISTICS ALGORITHM

The main steps of implementing the projection statistics
algorithm are shown as follows:

• Step 1: For a point li in an n-dimensional space, calculate
the coordinate-wise median given by

M =

{
med

j=1,...,m
(lj1) , ..., med

j=1,...,m
(ljn)

}
, (40)

where m is the number of points;
• Step 2: Calculate the directions for projections uj = lj−

M , j = 1, ...,m;
• Step 3: Normalize uj to get

�j =
uj

‖uj‖ =
uj√

u2j1 + ...u2jn

; j = 1, ...,m; (41)

• Step 4: Calculate the standardized projections of the
vectors {l1, ..., lm} on �j , which are given by

ζ1j = lT1 �j ; ζ2j = lT2 �j ; ..., ζmj = lTm�j ; (42)

• Step 5: Calculate the median of {ζ1j , ..., ζmj} = ζmed,j ;
• Step 6: Calculate the median absolute deviation (MAD)
MADj = 1.4826 · b · med

i
|ζij − ζmed,j |, where the

correction factor is b = 1 + 15/(m− n);
• Step 7: Calculate the standardized projections

Pij =
|ζij − ζmed,j |
MADj

for i = 1, ...,m; (43)

• Step 8: Repeat steps 4–7 for all vectors {�1, ..., �m} to
get the standardized projections {Pi1, ..., Pim} for i =
1, ...,m;

• Step 9: Calculate the projection statistics

PSi = max {Pi1, ..., Pim} for i = 1, ...,m. (44)
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