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ABSTRACT
We study the inverse problem of identifying a variable param-
eter in variational and quasi-variational inequalities. We con-
sider a quasi-variational inequality involving a multi-valued
monotone map and give a new existence result. We then for-
mulate the inverse problem as an optimization problem and
prove its solvability. We also conduct a thorough study of the
inverse problem of parameter identification in noncoercive
variational inequalities which appear commonly in applied
models. We study the inverse problem by posing optimiza-
tionproblemsusing theoutput least-squares and themodified
output least-squares. Using regularization, penalization, and
smoothing, we obtain a single-valued parameter-to-selection
map and study its differentiability. We consider optimiza-
tion problems using the output least-squares and the mod-
ified output least-squares for the regularized, penalized and
smoothened variational inequality. We give existence results,
convergence analysis, and optimality conditions. We provide
applications and numerical examples to justify the proposed
framework.
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1. Introduction

An inverse problem commonly refers to the process of estimating intrinsic fea-
tures of a physical model from a measured output of the model. For example,
when a partial differential equation is characterizing the model, a measurement
of its solution can be used to estimate the force term, the involved material
parameters, the boundary conditions and the initial conditions, giving rise to a
spectrum of inverse problems. The field of inverse problems has attracted a great
deal of attention in the recent years because of the ever-growing list of essen-
tial applications in domains such as biomedical sciences, finance, engineering,
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2 A. A. KHAN ET AL.

social sciences, and related areas. Although most of the research in inverse prob-
lems is in the context of partial differential equations, there are studies which
deal with inverse problems in variational inequalities, and much recently in
quasi-variational inequalities.

The primary objective of this work is twofold. Firstly, we develop a general
framework for the identification of a variable parameter in multi-valued quasi-
variational inequalities. This generality is motivated by some recent applications
which lead to quasi-variational inequalities with multi-valued maps. Secondly,
confining to a variational inequality, we study the impact of data contamination
on the identification process. Since variational and quasi-variational inequalities
model numerous applied phenomenon, the developed identification process is
expected to have wide applicability. For instance, applications of variational and
quasi-variational inequalities can be found in elastohydrodynamic [1], energy
production management [2], equilibrium problems [3–5], frictional elastostatic
contact [6], frictionless quasistatic contact with history-dependent stiffness [7],
image processing [8], Nash game equilibrium [9], multiobjective elliptic control
[10], reaction-diffusion [11], sandpiles formation [12], shape optimization [13],
superconductivity models [14], and numerous others.

To give a brief overview of the related research, we begin by recalling that an
inverse problem in variational inequalities appears in the elastohydrodynamic
lubrication problem (EHL). The EHL problem results in a variational inequality
in which the unknown is the pressure u, and the coefficient a is known. How-
ever, due to the significant theoretical and computational obstacles in solving the
EHL problem, an efficient two-step procedure is typically designed. In this pro-
cedure, the first step comprised of an inverse problem of parameter identification
in a variational inequality where the sought parameter is in the primary opera-
tor and on the right-hand side of the inequality, see [15]. Inspired by the EHL
problem, Hintermüller [16] studied the inverse problem of parameter identifica-
tion for a variational inequality and besides a rigorous treatment of the analytical
aspects, also presented a detailed computational framework. In the same vein,
Gonzalez [17] explored the inverse problem of identifying multiple parameters
in an elliptic variational inequality and provided an existence result, see also [18].
In earlier work, Hasanov [19] presented useful results for the boundary inverse
problem for elliptic variational inequalities. In another contribution [20], the
authors gave a detailed numerical treatment of the inverse elasticity problemwith
Signorini’s condition. In [21], the authors focussed on the theoretical aspects of
the identification inverse problem in a nonlinear variational inequality. Recently,
Kupenko andManzo [22] investigated the inverse problem of parameter identifi-
cation for a variational inequality with anisotropic p-Laplacian. Barabasz, Gajda-
Zagórska, and Migórski [23] presented a hybrid algorithm for solving inverse
problems in elasticity. Migórski and Ochal [24] studied an inverse problem of
parameter identification for a non-linear parabolic boundary hemi-variational
inequality. We also note that Hoffmann and Sprekels [25] were among the first
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ones to study parameter identification in variational inequalities. However, in
[25], in contrast to the most papers on inverse problems where an optimization
framework is a preferred choice, the authors developed an iterative scheme that
is based on the construction of regularized time-dependent problems contain-
ing the original problem as the asymptotic steady state. We note that in [26–28],
the authors studied identification in simplified quasi-variational inequalities and
coercive variational inequalities. Recently inverse problems have been also stud-
ied in [29, 30] for variational-hemivariational inequalities modelling frictional
contact problems in solid mechanics.

The main contributions of this work are as follows:

(1) By relaxing the coercivity condition, we give a new existence result for a
quasi-variational inequality with a multi-valued monotone map. The exis-
tence theory for multi-valued quasi-variational inequalities is quite chal-
lenging and is still in a developmental stage. Among other technical diffi-
culties, solving a quasi-variational inequality requires solving a variational
inequality and a fixed point problem simultaneously.

(2) We formulate the inverse problem of parameter identification in a quasi-
variational inequality as an equivalent optimization problem.We develop an
abstract regularization framework for the inverse problem which is suitable
for identifying discontinuous coefficients.

(3) Restricting to the case of noncoercive variational inequalities (see [31]), we
thoroughly investigate the impact of data perturbation on the identifica-
tion process. We study the inverse problem by posing optimization prob-
lems using the output least-squares and the modified output least-squares.
Using regularization, penalization, and smoothing, we obtain a single-valued
parameter-to-selection map and explore its differentiability. We then con-
sider optimization problems using the output least-squares and themodified
output least-squares for the regularized, penalized and smoothened varia-
tional inequality. We give existence results, convergence analysis, and opti-
mality conditions. We present applications and some preliminary numerical
examples to justify the proposed framework.

2. Problem formulation

Assume that B is a real Banach space and A is a nonempty, closed, and convex
subset of B. Here the space B is the parameter space whereas the set A imposes
feasibility restriction on the sought parameters. Assume that V is a real Hilbert
space with the inner product 〈·, ·〉 and let V∗ be the dual of V. We will pose the
variational and quasi-variational inequalities in the space V. Assume that Z is
another real Hilbert space such that V is continuously imbedded in Z. We will
take the measured data in the space Z. Assume that C is a nonempty, closed,
and convex subset of V and assume that K : C ⇒ C is a set-valued map such
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that for every u ∈ C, the set K(u) is a closed, and convex subset of C. Assume
that F : V ⇒ V∗ is a set-valued map andm ∈ V∗. We define a trilinear form T :
B × V × V → R with T(a, u, v) symmetric in u, v, and assume the following
continuity and positivity conditions:

T(a, u, v) ≤ β‖a‖B‖u‖V‖v‖V , for all u, v ∈ V , a ∈ B, β > 0, (1a)

T(a, u, u) ≥ 0, for all u ∈ V , a ∈ A. (1b)

We consider the quasi-variational inequality where as usual 〈T(·, ·), ·〉 =
T(·, ·, ·) for notational simplicity: Given a ∈ A, find u ∈ K(u) such that for some
w ∈ F(u), we have

〈T(a, u) + w − m, v − u〉 ≥ 0, for every v ∈ K(u). (2)

Given a ∈ A, quasi-variational inequality (2) of finding u = u(a) constitutes the
direct problem in this study. Our focus, however, is on the inverse problem of
identifying the variable coefficient a from a measurement z of a solution u of the
quasi-variational inequality.

Quasi variational inequality (2) is quite general and conveniently subsumes
many variational and quasi-variational inequalities appearing in several applica-
tions of interest as special cases. In particular, the involvement of themulti-valued
map F serves at least two purposes. Firstly, Kano, Kenmochi, and Murase [32]
showed recently that an elasto-plasto model leads to a multi-valued quasi vari-
ational inequality. The general results of this paper can be applied to study the
inverse problem of identifying material parameters in a simplified elasto-plastic
model. Secondly, our results can be applied to study inverse problems for quasi
hemi-variational inequalities where the multi-valued map F corresponds to the
sum of a monotone map and a generalized derivative. We emphasize that the
constraint set K(u) in (2) depends on the unknown u. This makes the study
of quasi variational inequalities quite challenging and is one of the reasons
that a majority of theoretical and numerical techniques which are readily avail-
able for variational inequalities have not yet been extended to quasi variational
inequalities.

Note that in the absence of F and m, (2) reduces to the following quasi
variational inequality: find u ∈ K(u) such that

〈T(a, u), v − u〉 ≥ 0, for every v ∈ K(u). (3)

Quasi variational inequality (3) is one of the most commonly studied problems
of this class and is convenient for many applications such as implicit obstacle
problem, dam problems, and others. Bensoussan and Lions [33] introduced (3)
in connection with an impulse control problem. A general treatment of (3) was
given by Mosco [34].
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If additionally K(u) = C, for every u ∈ C, then (3) recovers the following
variational inequality: find u ∈ C such that

〈T(a, u), v − u〉 ≥ 0, for every v ∈ C.

The above variational inequality has been extensively studied in the literature and
has found numerous applications (see [35–37]). The inverse problem of parame-
ter identification in simpler variational and quasi variational inequalities has also
been studied by many authors, see [16, 26] and the references therein.

3. Essential tools

We now gather the essential background material which includes notions of set-
valued maps and existence results for variational inequalities. In the following,
we specify the strong convergence and the weak convergence by → and ⇀,
respectively. We begin with the following two definitions:

Definition 3.1: Given a real reflexive Banach space X with X∗ as its dual, let A :
X ⇒ X∗ be a set-valuedmap. The domain and the graph of themapA are denoted
byD(A) := {u ∈ X|A(u) 
= ∅}, andG(A) := {(u,w)| u ∈ D(A), w ∈ A(u)}. The
map A is calledmonotone, if 〈u − v, x − y〉 ≥ 0, for all (x, u), (y, v) ∈ G(A). Fur-
thermore, A is called maximal monotone, if the graph of the monotone map A
is not included in the graph of any other monotone map with the same domain.
The map A is called strongly-weakly demiclosed, if for any sequence {(xn,wn)}
with wn ∈ A(xn), and xn → x and wn ⇀ w, we have w ∈ A(x).

Definition 3.2: The map K : C ⇒ C is called M-continuous, if the following
conditions hold:

(M1) For any sequence {xn} ⊂ C with xn ⇀ x, and for each y ∈ K(x), there
exists {yn} such that yn ∈ K(xn) and yn → y.

(M2) For yn ∈ K(xn) with xn ⇀ x and yn ⇀ y, we have y ∈ K(x).

The following result (see [38, Lemma 1.5.14]) will play a crucial role:

Lemma 3.3: Let X be a reflexive Banach space with X∗ as its dual. Let A : X ⇒ X∗
be amonotonemapwith x̄ ∈ int(D(A)).Then there is a constant r = r(x̄) > 0 such
that for any (x,w) ∈ G(A) and c := sup{‖w′‖| ‖x′ − x̄‖ ≤ r, and w′ ∈ A(x′)} <

∞, we have

〈w, x − x̄〉 ≥ r‖w‖ − (‖x − x̄‖ + r)c.

The following fixed point theorem by Kluge [39] will play an important role:
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Theorem 3.4: Let X be a reflexive Banach space and let C ⊂ X be nonempty, con-
vex, and closed. Assume that � : C ⇒ C is a set-valued map such that for every
u ∈ C, the set�(u) is nonempty, closed, and convex, and the graph of� is sequen-
tially weakly closed. Suppose that the set �(C) is bounded. Then the map � has at
least one fixed point in C.

The following interesting result can be found in Alber et al. [40].

Lemma 3.5: Let X be a uniformly convex Banach space with X∗ as its dual,
let F : X ⇒ X∗ be strongly-weakly demiclosed, convex-valued and monotone, let
C ⊂ int(dom(F)) be closed, and convex, and let f ∈ X∗. Then x ∈ C solves the
variational inequality of finding x ∈ C so that for some w ∈ F(x), we have

〈w − f , z − x〉 ≥ 0, for every z ∈ C, (4)

if and only if, it solves the following Minty variational inequality: find x ∈ C such
that

〈w − f , z − x〉 ≥ 0 for every z ∈ C, for every w ∈ F(z). (5)

Furthermore, if J is the normalized duality map, then there exists a unique xε ∈ C
such that for some wε ∈ F(xε), we have

〈wε + εJ(xε), y − xε〉 ≥ 0, for every y ∈ C, ε > 0. (6)

We conclude this section by the following lemma taken from Browder [41,
Lemma 1].

Lemma 3.6: Let X be a Banach space with X∗ as its dual and let {xn} ⊂ X.Assume
that there is a sequence {sn} ⊂ R+ with sn ↓ 0 such that for any h ∈ X∗ there is a
constant Ch such that 〈h, xn〉 ≤ sn‖xn‖ + Ch, for every n. Then the sequence {xn}
is bounded.

4. Identification inmulti-valued quasi variational inequalities

Inspired by the efficient use of optimization-based identification process in linear
PDEs, and linear variational inequalities, we shall now resort to an optimization
formulation for the inverse problem of parameter estimation in multi-valued
quasi-variational inequalities. The ill-posed nature of the inverse problems is
well-known, and optimization formulations are quite flexible in incorporating
a regularization which is essential for a stable identification process. To develop
a general regularization framework, which is aimed to identify discontinuous or
rapidly-varying parameters (see [42]), we make the following assumptions:

(1) The Banach space B is continuously embedded in a Banach space L. There
is another Banach space B̂ that is compactly embedded in L. The set A is a
subset of B ∩ B̂, closed and bounded in B and closed in L.
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(2) For any {bn} ⊂ Bwith bn → 0 in L, any bounded {un} ⊂ V , and fixed v ∈ V ,
we have

T(bn, un, v) → 0. (7)

(3) R : B̂ → R is positive, convex, and lower-semicontinuous with respect to ‖ ·
‖L and satisfies

R(a) ≥ τ1‖a‖B̂ − τ2, for every a ∈ A, for some τ1 > 0, τ2 > 0. (8)

We consider the following output least-squares (OLS) based optimization
problem:

min
a∈A

Jκ(a) := ‖u(a) − z‖2 + κR(a). (9)

Here κ > 0 is a regularization parameter, R(·) is the regularizer defined above,
z ∈ Z is the data, and u = u(a) is a solution of quasi variational inequality (2) for
the parameter a ∈ A. That is, for a ∈ A, u = u(a) is such that u ∈ K(u) and for
some w ∈ F(u), we have

〈T(a, u) + w − m, v − u〉 ≥ 0, for every v ∈ K(u). (10)

The following existence result for (10) shows that (9) is well-defined. In the
following, � is the set of all σ : R+ → R+ such that σ(r) → 0 as r → ∞.

Theorem 4.1: Assume that F : V ⇒ V∗ is strongly-weakly demiclosed, convex-
valued and monotone with C ⊂ int(D(F)), K : C ⇒ C is M-continuous, and T :
B × V × V → R satisfies (1). Assume that one of the following two conditions
hold:

(1) For every s ∈ V∗, there exists us ∈ ∩v∈CK(v) such that for every z ∈ D(F)

with ‖z‖ sufficiently large, and every w ∈ F(z) and some σ ∈ �, we have

〈T(a, z) + w − s, z − us〉 ≥ −σ(‖z‖)‖z‖. (11)

(2) There exists a bounded set G such that for each v ∈ C, we have K(v) ∩ G 
= ∅
and

inf
w∈F(x)

〈T(a, x) + w, x − g〉
‖x‖ → ∞ as ‖x‖ → ∞, uniformly in g ∈ G. (12)

Then, for each a ∈ A, the quasi variational inequality (10) has a solution.

Proof: Let a ∈ A be an arbitrary but fixed element. For the given a ∈ A, we define
the variational selection Sa : C ⇒ C which assigns to each v ∈ C, the set of all
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solutions of the variational inequality of finding u ∈ K(v) such that for somew ∈
F(u), we have

〈T(a, u) + w − m, z − u〉 ≥ 0, for every z ∈ K(v). (13)

We will now show that Sa satisfies the conditions of Theorem 3.4 imposed on the
map � .

(I) For any v ∈ C, the set Sa(v) is nonempty.Wewill verify the claimunder (11),
and analogous arguments can be used for (12). Let {εn} be a sequence of real
positive parameters such that εn → 0 as n → ∞. Clearly, all the conditions
of Lemma 3.5 aremet, and by (6), for each n ∈ N, there is un := uεn ∈ K(v)

such that for some wn ∈ F(un), we have

〈T(a, un) + wn + εnun − m, z − un〉 ≥ 0, for every z ∈ K(v). (14)

We claim that {un} is bounded. Indeed, if this is not true, then there is a sub-
sequence {un} such that ‖un‖ → ∞ as n → ∞. Using the above inequality,
for every z ∈ K(v), we have

〈T(a, un) + wn − m, un − z〉 ≤ −εn‖un‖ [‖un‖ − ‖z‖] .
Now let s ∈ V∗ be arbitrary and take z = us given by the coercivity. Taking
z = us in the above inequality, and by the coercivity, we get

−σ(‖un‖)‖un‖ ≤ 〈T(a, un) + wn − s, un − us〉
≤ −〈s − m, un − us〉 − εn‖un‖ [‖un‖ − ‖us‖]
≤ −〈s − m, un − us〉,

as εn‖un‖[‖un‖ − ‖us‖] is positive for ‖un‖ sufficiently large. Conse-
quently,

〈s − m, un〉 ≤ σ(‖un‖)‖un‖ + 〈s − m, us〉,
and hence Lemma 3.6 with h = s − m, sn := σ(‖un‖) and Ch := 〈s −
m, us〉, confirms that {un} is bounded. Due to the reflexivity of V, we
can extract a subsequence {un} converging weakly to some u. The Minty
formulation (see (15) below) of (14) reads

〈T(a, z) + wz + εnz − m, z − un〉 ≥ 0,

for every wz ∈ F(z), for every z ∈ K(v),

which when passed to the limit n → ∞, yields

〈T(a, z) + wz − m, z − u〉 ≥ 0, for everywz ∈ F(z), for every z ∈ K(v),

and by using the Minty formulation once again, we obtain (13).
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(II) For every v ∈ C,Sa(v) is closed and convex. Clearly, u ∈ K(v) satisfies (13),
if and only if, it solves the following Minty variational inequality: for every
z ∈ K(v) and for every wz ∈ F(z), we have

〈T(a, z) + wz − m, z − u〉 ≥ 0, (15)

which at once gives that Sa(v) is closed and convex.
(III) The set Sa(C) is bounded. This follows from (11) or (12) in a similar way as

in part (I).
(IV) The graph of the variational selection Sa is sequentially weakly closed. Let

{(vn, yn)} ⊂ G(Sa) be such that yn ⇀ y and vn ⇀ v. We claim that (v, y) ∈
G(Sa). The set C being convex and closed is also weakly closed, and hence
v ∈ C. From the containment (vn, yn) ∈ G(Sa), we deduce that yn ∈ K(vn)

and that there exists wn ∈ F(yn) such that

〈T(a, yn) + wn − m, z − yn〉 ≥ 0, for every z ∈ K(vn). (16)

We shall first show that {wn} is bounded. From yn ∈ K(vn), by using M-
continuity of K, we get y ∈ K(v). Moreover, there is {zn} converging to y
and such that zn ∈ K(vn). We set z = zn in (16), to get

〈T(a, yn) + wn − m, zn − yn〉 ≥ 0.

By applying Lemma 3.3 to A(·) := F(·) − m, there are constants c>0 and
r>0 such that

r‖wn − m‖ ≤ 〈wn − m, yn − y〉 + c(r + ‖yn − y‖)
= 〈T(a, yn) + wn − m, yn − zn〉 + 〈T(a, yn), zn − yn〉

+ 〈wn − m, zn − y〉 + c(r + ‖yn − y‖)
≤ β‖a‖‖zn‖‖yn − zn‖

+ ‖wn − m‖‖zn − y‖ + c(r + ‖yn − y‖),

and consequently,

[r − ‖zn − y‖]‖wn − m‖ ≤ c(r + ‖yn − y‖) + β‖a‖‖zn‖‖yn − zn‖.

Since zn → y, the term ‖zn − y‖ can be made arbitrarily small, and since
the right-hand side of the above inequality remains bounded, we prove
the boundedness of {‖wn − m‖}. The key observations here is that yn ⇀ y
means that the term ‖yn − y‖ remains bounded.
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For a fixed z ∈ K(v), there is zn ∈ K(vn) with zn → z, and for any wz ∈ F(z),
we get

〈wz, yn − z〉 ≤ 〈wz, yn − z〉 + 〈T(a, yn) + wn − m, zn − yn〉
≤ 〈wn, zn − z〉 + 〈wn − wz, z − yn〉 + 〈T(a, zn) − m, zn − yn〉
≤ 〈wn, zn − z〉 + 〈T(a, zn) − m, zn − yn〉,

by using the monotonicity of F. By passing the above inequality to limit for n →
∞, we get

〈wz, y − z〉 ≤ 〈T(a, z) − m, z − y〉,
and by using the Minty formulation, we deduce that (y, v) ∈ G(Sa).

Summarizing, we have shown that for an arbitrary a ∈ A, the variational selec-
tion Sa : C ⇒ C is a set-valued map such that for any v ∈ C, the set Sa(v) is
nonempty, closed, and convex and the graph of Sa is sequentially weakly closed.
Moreover, Sa(C) is bounded. This means that all assumptions of Theorem 3.4
are fulfilled for the set-valued map � = Sa : C ⇒ C. From Theorem 3.4, we get
that Sa has at least one fixed point in C, and this yields that the quasi variational
inequality (2) has at least one solution. �

Remark 4.2: The above result, besides involving the trilinear form, extends the
existence results given in [43], frommaximalmonotonemaps to strongly-weakly
demiclosed, convex-valued and monotone maps. This extension is particularly
useful for an application of this result to quasi-hemi-variational inequalities (see
[44, 45]. We acknowledge that (11) was first introduced in [46] in the context of
operator equations.

We have the following existence theorem for the inverse problem:

Theorem 4.3: Assume that the hypothesis of Theorem 4.1 hold. Then for κ > 0,
regularized output least-squares problem (9) has a solution.

Proof: By its definition, the objective functional Jκ is bounded from below for
every feasible a ∈ A, and hence there exists aminimizing sequence {an} ⊂ A such
that

lim
n→∞ Jκ(an) = inf{Jκ(b)| b ∈ A}. (17)

Let un be the solution of quasi variational inequality (10) that corresponds to the
parameter an. Therefore, un ∈ K(un) and for some wn ∈ F(un), we have

〈T(an, un) + wn − m, v − un〉 ≥ 0, for every v ∈ K(un). (18)

Due to (17), Jκ(an) is bounded, and hence by using the inequality κR(an) ≤
Jκ(an) and condition (8), we deduce that the sequence {an} is bounded in the
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Banach space B̂. By using the compact embedding of B̂ into L, there is a subse-
quence which converges strongly in L, to some element of A. Keeping the same
notation for subsequences as well, let {an} be the subsequence that converges in
L to ā ∈ A.

We pick {un} to be a sequence of solutions of (10) that corresponds to the sub-
sequence of parameters {an} converging in L to ā ∈ A.Wewill first show that {un}
remains bounded by using (12) (but similar arguments will work for (11)). For
the sake of argument, we suppose that {un} is unbounded and that there exists
a subsequence such that ‖un‖ → ∞ for n → ∞. To use the coercivity condi-
tion, we choose an arbitrary gn ∈ K(un) ∩ G. SinceG is taken to be bounded, the
sequence {gn} is bounded. By taking v = gn in (10), we obtain

〈T(an, un) + wn − m, gn − un〉 ≥ 0,

which can be rearranged as follows

〈wn, un − gn〉 ≤ 〈T(an, un) − m, gn − un〉 ≤ ‖T(an, un)‖‖gn‖ + ‖m‖ ‖un − gn‖
where we used the fact that 〈T(an, un), un〉 ≥ 0. Consequently,

〈wn, un − gn〉
‖un‖ ≤ β‖an‖‖gn‖ + ‖m‖

(
1 + ‖gn‖

‖un‖
)
,

which implies that

lim
n→∞

〈wn, un − gn〉
‖un‖ < ∞,

and hence contradicting the coercivity condition. This ensures the boundedness
of {un}.

By the reflexivity of V, there is a subsequence, again denoted by {un} which
converges weakly to some ū ∈ V . Since C is closed and convex, it is also weakly
closed, and hence ū ∈ C. Moreover, due to un ∈ K(un), we have ū ∈ K(ū). Let
{zn} be a sequence that converges strongly to ū and satisfies zn ∈ K(un). Since

〈T(an, un) + wn − m, z − un〉 ≥ 0, for every z ∈ K(un),

by setting z = zn, we obtain

〈T(an, un) + wn − m, zn − un〉 ≥ 0.

We shall now prove the boundedness of {wn}. Applying Lemma 3.3 for F, there
are constants c>0 and r>0 such that

r‖wn‖ ≤ 〈wn, un − ū〉 + c(r + ‖un − ū‖)
= 〈wn, un − zn〉 + 〈wn, zn − ū〉 + c(r + ‖un − ū‖)
≤ 〈T(an, zn) − m, zn − un〉 + 〈wn, zn − ū〉 + c(r + ‖un − ū‖)
≤ ‖wn‖‖zn − ū‖ + c(r + ‖un − ū‖) + β‖an‖‖zn‖‖zn − un‖,
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and consequently,

[r − ‖zn − ū‖]‖wn − m‖ ≤ c(r + ‖un − ū‖) + β‖an‖‖zn‖‖zn − un‖.
Because of zn → ū, the term ‖zn − ū‖ can bemade arbitrarily small, and because
the right-hand side of the above inequality remains bounded, we deduce that
{‖wn − m‖} is bounded.

Now let z ∈ K(x) be arbitrary. Then for some {zn}with zn ∈ K(un)with zn →
z, and for any wz ∈ F(z), by the definition of un, we have

〈wz, un − z〉 ≤ 〈wz, un − z〉 + 〈T(an, un) + wn − m, zn − un〉
= 〈wn, zn − z〉 + 〈wn − wz, z − un〉 + 〈T(an, un) − m, zn − un〉
≤ 〈wn, zn − z〉 + 〈T(an, zn) − m, zn − un〉

by themonotonicity of F. By passing the above inequality to limit for n → ∞, we
obtain

〈T(a, z) + wz − m, ū − z〉 ≤ 0.

Therefore, we have shown that for every z ∈ K(ū) and for every wz ∈ F(z), we
have

〈T(a, z) + wz − m, z − ū〉 ≥ 0,

and by the Minty formulation, ū is a solution that corresponds to ā, that is, ū =
u(ā).

Finally, we have

Jκ(ā) = ‖u(ā) − z‖2 + κR(ā)

≤ lim inf
n→∞ ‖un − z‖2 + κ lim inf

n→∞ R(an)

≤ lim inf
n→∞ Jκ(an) = inf{Jκ(a) : a ∈ A},

ensuring that ā is a solution. This completes the proof. �

Remark 4.4: Since for each coefficient a, the quasi-variational inequality has a
multiple solutions, the OLS functional J could be defined as a function of two
variables, namely a and a solution u. However, for simplicity in presentation, we
don’t use that notation.

5. Identification in variational inequalities under data contamination

We shall now concentrate on understanding the impact on the inverse problem
of any contamination in the variational inequality data. Getting inspiration from
the treatment of ill-posed variational problems, we employ elliptic regularization
(see [47]) for the underlying variational inequality. To make full use of the regu-
larization theory, we further discard the coercivity assumption and work under
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the assumption that the variational inequality is solvable. We continue to work
under the general setting concerning the involved spaces and the continuous and
positive trilinear form T satisfying (7) and (8).

We will focus on the variational inequality: Given a ∈ A, find u = u(a) ∈ K
such that

T(a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ K. (19)

Additional conditions are necessary to ensure that (19) is solvable. For example,
if K is bounded or some recession conditions hold (see [48, 49]), then (19) is
solvable. However, such conditions don’t guarantee that the solution is unique.
Therefore, to focus on the general case, we assume that for each a ∈ A, the set
of all solutions, which we denote by U(a), is nonempty. The following lemma
provides additional information:

Lemma 5.1: For any a ∈ A, the set of all solutions U(a) of (19) is closed and
convex.

Proof: Follows by the definition of the set-valued parameter-to-solution map.
�

Remark 5.2: Wenote that in some applications, in (19), instead of a, we have �(a)
where � : A �→ A is a sufficiently smooth map. For simplicity in presentation, in
the forthcoming developments, we don’t specify such a map. However all our
results can be appropriately modified to include that generality.

We now consider the following two optimization problems:
Find a ∈ A by solving the output least-squares (OLS) optimization problem

min
a∈A

J(a) := 1
2
‖u(a) − z‖2Z. (20)

Find a ∈ A by solving the modified output least-squares (MOLS) optimization
problem

min
a∈A

J̃(a) := 1
2
T(a, u(a) − z, u(a) − z). (21)

In the above optimization problems, u(a) ∈ U(a) and z ∈ Z is the data. As seen
earlier, the OLS functional (20) minimizes the gap between the computed and
the observed solution in the norm of the observation space Z, whereas the
MOLS functional (21)minimizes the energy associated to the trilinear form. Evi-
dently, (21) requires that z ∈ V . TheMOLS objective has been used extensively in
the inverse problem of identifying variable parameters in variational equations,
see [42, 50–53].

Wewill now approximate (20) and (21) by a sequence of solutions of optimiza-
tion problems where the entire data set is contaminated in the following sense.
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Let {εn}, {τn}, {κn}, {δn}, and {νn} be sequences of positive reals. Let � ∈ V∗ be a
given element. For each n ∈ N, letmνn ∈ V∗ and �δn ∈ V∗ be given elements, and
let zδn ∈ Z be the contaminated data such that the following inequalities hold:

‖zδn − z‖Z ≤ δn, (22a)

‖mνn − m‖V∗ ≤ νn, (22b)

‖�δn − �‖V∗ ≤ δn. (22c)

Furthermore, for each n ∈ N, let Tτn : B × V × V → R be a trilinear form such
that

Tτn(a, u, u) ≥ 0, for all u ∈ V , a ∈ A. (23a)∣∣Tτn(a, u, v) − T(a, u, v)
∣∣ ≤ τn‖a‖B‖u‖V‖v‖V , for all u, v ∈ V , a ∈ B.

(23b)

Moreover, as n → ∞, the sequences {εn}, {τn}, {κn}, {δn}, and {νn} satisfy{
τn, εn, κn, νn, δn,

τn

εn
,
δn

εn
,
νn

εn

}
→ 0. (24)

Finally, let S : V × V → R be a symmetric bilinear such that there are constants
α0 > 0 and β0 > 0 satisfying the following continuity and coercivity conditions

S(u, v) ≤ β0‖u‖V‖v‖V , for all u, v ∈ V , (25a)

S(u, u) ≥ α0‖u‖2V , for all u ∈ V . (25b)

For each n ∈ N, we now consider the following regularized variational
inequality: Given a ∈ A, find uςn(a) ∈ V such that for every v ∈ K, we have

Tτn(a, uςn(a), v − uςn(a)) + εnS(uςn(a), v − uςn(a))

≥ 〈mνn + εn�δn , v − uςn(a)〉, (26)

where εn > 0 is the regularization parameter and for simplicity, we set ςn :=
(εn, τn, νn, δn).

Evidently, for a fixed n ∈ N, and for any a ∈ A, (26) has a unique solu-
tion uςn(a). Hence the regularized parameter-to-solution map a → uςn(a) is
well-defined and single-valued.

We will now approximate (20) and (21) by the following families of their
regularized analogues: For n ∈ N, find aςn ∈ A by solving

min
a∈A

Jκn(a) :=
1
2
‖uςn(a) − zδn‖2Z + κnR(aςn), (27)

min
a∈A

J̃κn(a) :=
1
2
T(a, uςn(a) − zδn , uςn(a) − zδn) + κnR(aςn), (28)

where uςn(a) is the unique solution of (26), κn > 0, and R is the regularizer
defined above.
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We begin with the following existence result:

Theorem 5.3: For every n ∈ N, optimization problems (27) and (28) are solvable.

Proof: The proof follows by standard arguments used earlier in this work.
For a fixed n ∈ N, and a ∈ A, the functional Jκn(a) is bounded from below
which ensures the existence of a minimizing sequence {am} in A such that
limm→∞ Jκn(am) = inf{Jκn(a), a ∈ A}. Therefore, the sequence {am} is bounded
in ‖ · ‖B̂ as well. Due to the compact embedding of B̂ into L, {am} has a sub-
sequence which converges strongly in ‖ · ‖L. Preserving the same notation for
subsequences as well, let {am} be the subsequence converging to some ā ∈ A. We
can show, by using the coercivity of T + εnS, that the sequence of solutions {umςn}
of (26) remains bounded and converges strongly to uςn(ā). The optimality of ā
then follows by continuity properties of the norm and of the regularizer R. The
proof for (28) is similar. �

The following result shows that (27) approximates (20) and (28) approxi-
mates (21):

Theorem 5.4: Assume that the following two conditions hold:

(1) The set A is bounded in B̂ and for each a ∈ A, the solution setU(a) is nonempty,
and the image set U(A) is bounded.

(2) For any a ∈ A, either U(a) is a singleton, or Z = V , �δn(v) = 〈zδn , v〉, �(v) =
〈z, v〉 and S(u, v) = 〈u, v〉.

Then, for every n ∈ N, optimization problem (27) has a solution aςn . Fur-
thermore, there is a subsequence {aςn} ⊂ A of solutions of (27) converging to a
solution of (20) in ‖ · ‖L. The same conclusions hold for (28) and (21) provided
that additionally the following condition holds: For every a ∈ A, and any u,w ∈ V ,

‖u − z‖V ≤ ‖w − z‖V ⇒ T(a, u − z, u − z) ≤ T(a,w − z,w − z). (29)

Proof: By arguments used in Theorem 5.3, it can be shown that (20) and (21)
have solutions. Moreover, by Theorem 5.3, for each n ∈ N, (27) has a solution
aςn . For simplicity, we set an := aςn . Since A is bounded in B̂, the sequence of
solutions {an} is bounded in B̂. Since B̂ is compactly embedding into L, {an} has
a strongly convergent subsequence in ‖ · ‖L. Let {an} be such a subsequence con-
verging strongly to ā ∈ A in ‖ · ‖L. Let {un}, whereun := uςn(an), be the sequence
of the solutions of (26). That is, we have

Tτn(an, un, v − un) + εnS(un, v − un)

≥ 〈mνn + εn�δn , v − un〉, for every v ∈ K.

We claim that {un} is bounded. By assumption, for every a ∈ A, the solution set
U(a) is nonempty. Let ũn ∈ U(an) be chosen arbitrarily. Since U(A) is bounded
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by assumption, the sequence {ũn} is bounded. Moreover, we have

T(an, ũn, v − ũn) ≥ 〈m, v − ũn〉, for every v ∈ K.

We combine the above two variational inequalities, by setting v = ũn in the first
one and v = un in the second one, and obtain

Tτn(an, ũn, ũn − un) − T(an, ũn, ũn − un) + εnS(un, ũn − un) + 〈m, ũn − un〉
− 〈mνn , ũn − un〉 − εn〈�δn , ũn − un〉 − Tτn(an, ũn − un, ũn − un) ≥ 0,

and from the fact that Tτn(an, ũn − un, ũn − un) ≥ 0, deduce

εnS(un, un) ≤ εnS(un, ũn〉 + Tτn(an, ũn, ũn − un)

− T(an, ũn, ũn − un) − εn〈�δn , ũn − un〉.
+ 〈m, ũn − un〉 − 〈mνn , ũn − un〉

≤ εnβ0‖un‖V‖ũn‖V + τn‖an‖B‖ũn‖V‖ũn − un‖V
+ εn‖�δn‖V∗‖ũn − un‖V + νn‖ũn − un‖V ,

which implies

‖un‖V ≤ β0

α0
‖ũn‖V +

[
τn

α0εn
‖an‖B‖ũn‖V + νn

α0εn
+ δn + ‖�‖V∗

α0

]

×
[‖ũn‖V
‖un‖V + 1

]
,

confirming that the sequence {un} is bounded.
Now let {un} be a subsequence converging weakly to some ū ∈ K. We will

prove that ū ∈ U(ā). Since an is a minimizer of (27), for every v ∈ K, we have

Tτn(an, un, v − un) + εnS(un, v − un) ≥ 〈mνn + εn�δn , v − un〉,
which due to the positivity of T + εnS, further implies that for every v ∈ K, we
have

Tτn(an, v, v − un) + εnS(v, v − un) ≥ Tτn(an, un, v − un) + εnS(un, v − un)

≥ 〈mνn + εn�δn , v − un〉,
and consequently,

Tτn(an, v, v − un) + εnS(v, v − un) ≥ 〈mνnεn + �δn , v − un〉,
which, by the rearrangement

Tτn(an, v, v − un) = T(an, v, v − un) + Tτn(an, v, v − un) − T(an, v, v − un)

= T(an − ā, v, v − un) + T(ā, v, v − ū) + T(ā, v, ū − un)

+ Tτn(an, v, v − un) − T(an, v, v − un),
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leads to the following inequality

T(an − ā, v, v − un) + T(ā, v, v − ū) + T(ā, v, ū − un) + Tτn(an, v, v − un)

− T(an, v, v − un) + εnS(un, v − un) ≥ 〈mνn + εn�δn , v − un〉,

which due to the imposed conditions when passed to the limit n → ∞, implies
that

T(ā, v, v − ū) ≥ 〈m, v − ū〉, for every v ∈ K.

We now insert ū + t(v − ū) ∈ K with t ∈ (0, 1) in place of v in the above
inequality to get

T(ā, ū, v − ū) + tT(ā, v − ū, v − ū) ≥ 〈m, v − ū〉,

and pass the above inequality to limit t → 0 obtaining

T(ā, ū, v − ū) ≥ 〈m, v − ū〉, for every v ∈ K,

which proves that ū ∈ U(ā).
For a fixed n ∈ N, the optimality of an ∈ A for (27) means that for each a ∈ A,

we have

Jκn(an) := 1
2‖uςn(an) − zδn‖2Z + κnR(an) ≤ 1

2‖uςn(a) − zδn‖2Z + κnR(a), (30)

where uςn(a) is the solution of regularized optimization problem (26) for param-
eter a ∈ A.

Let (â, û) be a solution of (20). Then, (30) confirms that

Jκn(an) := 1
2‖uςn(an) − zδn‖2Z + κnR(an) ≤ 1

2‖uςn(â) − zδn‖2Z + κnR(â),

where uςn(â) is the solution of regularized optimization problem (26) for param-
eter â ∈ A.

We first study the behaviour of uςn(â). By the definition of uςn(â), for any
v ∈ K, we have

Tτn(â, uςn(â), v − uςn(â)) + εnS(uςn(â), v − uςn(â))

≥ 〈mνn + εn�δn , v − uςn(â)〉. (31)

By arguments similar to those used at the beginning of this proof, we can show
that the sequence {uςn(â)} is bounded, and there is a subsequence {uςn(â)}
converging weakly to some ū ∈ U(â).
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Let us now consider the following variational inequality of finding ũ ∈ U(â)
such that

S(ũ,w − ũ) ≥ 〈�,w − ũ〉, for every w ∈ U(â), (32)

which, due to the coercivity of S(·, ·), has a unique solution ũ, and since ũ ∈ U(â),
we have

T(â, ũ, v − ũ) ≥ 〈m, v − ũ〉, for every v ∈ K. (33)

By combining (31) and (33), we obtain

T(â, uςn(â) − ũ, ũ − uςn(â))

+ Tτn(â, uςn(â), ũ − uςn(â)) − T(â, uςn(â), ũ − uςn(â))

+ εnS(uςn(â), ũ − uςn(â)) ≥ 〈mνn − m + εn�δn , ũ − uςn(â)〉
and by using the positivity of T, we get[

τn

εn
‖â‖B‖uςn(â)‖V + νn

εn
+ δn

]
‖ũ − uςn(â)‖V − �(ũ − uςn(â))

≥ S(uςn(â), uςn(â) − ũ)

≥ S(ũ, uςn(â) − ũ) (34)

which, when passed to the limit n → ∞, yields

S(ũ, ũ − ū) ≥ �(ũ − ū). (35)

We use (32), (35), and the positivity of the bilinear form, to obtain 0 ≥ S(ū −
ũ, ū − ũ) ≥ α0‖ū − ũ‖2V and hence ū = ũ. Since ū is uniquely defined, the whole
sequence uςn(â) converges weakly to ū. The convergence is in fact strong because
of (34). Indeed, using (34), we can prove that

lim sup
n→∞

‖uςn(â) − ũ‖2V ≤ 0

and hence the strong convergence of {uςn(â)} to ū = ū(â) follows.
Let us now assume that U(a) is a singleton for each a ∈ A. Then, by using

the weak lower-semicontinuity of the norm and the regularizer R, and (30) (with
a = â), we have

1
2
‖ū − z‖2Z ≤ lim inf

n→∞
1
2
‖uςn(an) − zδn‖2Z

≤ lim inf
n→∞

1
2

{‖uςn(an) − zδn‖2Z + κnR(an)
}

≤ lim inf
n→∞

1
2

{‖uςn(â) − zδn‖2Z + κnR(â)
}

≤ lim sup
n→∞

1
2
‖uςn(â) − z‖2Z = 1

2
‖ū(â) − z‖2Z,



OPTIMIZATION 19

and since U(·) is a singleton, we have ū(â) = û which proves that ‖ū − z‖2Z ≤
‖ū(â) − z‖2Z, and hence (ā, ū) ∈ graph(U), where ū = u(ā), is a solution of (27).

For the case when U(·) is set-valued map, for any v ∈ V , we take �δn(v) =
〈zδn , v〉 and S(u, v) = 〈u, v〉. Then, it follows from (32) that for an arbitrary ŭ ∈
U(â), we have 〈ū − z, ŭ − ū〉 ≥ 0 which implies that ‖ū − z‖V ≤ ‖ŭ − z‖V , and
hence ū = u(ā) is the element closest to z among all the elements ŭ ∈ U(â).

Using this observation, we have

‖u(ā) − z‖2V ≤ lim inf
n→∞

{‖uςn(â) − zδn‖2V + κnR(â)
}
,

≤ lim sup
n→∞

‖uςn(â) − z‖2V
= ‖ū(â) − z‖2Z ≤ ‖ŭ(â) − z‖2V ,

where ŭ(â) ∈ U(â) is arbitrary. In other words, the above inequality confirms
the existence of an element (ā, u(ā)) ∈ graph(U) such that for every (a, u) ∈
graph(U), we have

‖u(ā) − z‖2V ≤ ‖u − z‖2V
and hence ā ∈ A is a minimizer of (20). The proof is complete. �

Remark 5.5: Because it can happen that ‖ū − z‖ ≥ ‖û − z‖, the optimality
of (ā, ū) ∈ graph(U) is shown by establishing that ‖ū − z‖ ≤ ‖û − z‖ as by
assumption, we have ‖û − z‖ ≤ ‖u − z‖ for all (a, u) ∈ graph(U) with a ∈ A.
Evidently, ifU(a) is singleton for each a ∈ A, then the supplied arguments remain
valid for any S and �.

Remark 5.6: Note that in Theorem 4.3, the boundedness of the minimizing
sequence was proved by the aid of the regularizer R. On the other hand, the lack
of any regularizer in (20) or (21), prompted the additional condition that A is
bounded in B̂. Indeed, analogs of all of our results can be proved for a fix regu-
larization parameter κ in the original and the regularized problems but without
the assumption that A is bounded in B̂.

Our next step is to replace variational inequality (26), which is a constraint for
the optimization problems (27) and (28) by a variational equation. For this, we
recall that a penalty map for K is a bounded, hemi-continuous, monotone map
P : V → V∗ such that

K = {v ∈ V| P(v) = 0}. (36)

An example is P = (I − PK), where I is the identity and PK is the projection
onto K.

For n ∈ N, a given parameter ιn > 0 and the penalty map P, consider the
penalized-regularized variational equation: Find uςn(a) ∈ V such that for every
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v ∈ V , we have

Tτn(a, uςn(a), v) + εnS(uςn(a), v) + 1
ιn

〈
P(uςn(a)), v

〉 = 〈mνn + εn�δn , v〉. (37)

where for notational simplicity, we set ςn := (εn, τn, νn, δn, ιn).
We have the following existence result for regularized penalized equa-

tions (37).

Theorem 5.7: For each n ∈ N, and for any a ∈ A, (37) has a unique solution
uςn(a).

Proof: The proof follows from the ellipticity of T + εnS and the monotonicity
of P. �

We will now formulate analogues of (27) and (28) where the underlying regu-
larized variational inequality has been replaced by the regularized-penalized vari-
ational equation: For n ∈ N, find aςn ∈ A by solving the following optimization
problem:

min
a∈A

Jκn(a) :=
1
2
‖uςn(a) − zδn‖2Z + κnR(uςn), (38)

min
a∈A

J̃κn(a) :=
1
2
Tτn(a, uςn(a) − zδn , uςn(a) − zδn) + κnR(uςn), (39)

where uςn(a) is the unique solution of (37), κn > 0, and R is the regularizer given
above.

We give the following existence and convergence result:

Theorem 5.8: Assume that conditions (1) and (2) of Theorem 5.4 hold. For
each n ∈ N, optimization problem (38) has a solution āςn . There is a sequence
{(āςn , ūςn)}, where ūςn = ūςn(āςn) is a solution of (37) corresponding to āςn , such
that for n → ∞,we have āςn → ã in L, ūςn ⇀ ũ in V, where ã is a solution of (20)
and ũ = u(ã) is a solution of (19). The same relationships hold for (39) and (20)
under the condition (29).

Proof: For a fixed n ∈ N, the existence of a solution āςn of (38) follows by argu-
ments analogous to those used in the proof of Theorem 5.3. For the convergence,
we note that the sequence {āςn} ⊂ A is bounded in ‖ · ‖B̂. Therefore, due to the
compact embedding of B̂ into L, there is a subsequence that converges strongly
in ‖ · ‖L to some ã ∈ A. Let ūςn be the sequence of solutions of (37) correspond-
ing to āςn . Clearly, the sequence {ūςn} is bounded as well. Consequently, there is
a subsequence {ūςn} which converges weakly to some ũ ∈ V . We will show that
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ũ ∈ K. By (37), for every v ∈ V , we have〈
P(ūςn(a)), v

〉 = ιn
[〈mνn + εn�δn , v〉 − Tτn(āςn , uςn(a), v) − εnS(uςn(a), v)

]
,

(40)
proving ‖P(ūςn(a))‖V → 0 as ιn → 0. By themonotonicity of P, for every v ∈ V ,
we have

0 ≤ lim
n→∞〈P(v) − P(ūςn), v − ūςn〉 = 〈P(v), v − ũ〉. (41)

For an arbitrary z ∈ V , we set v = ũ + tz where t > 0, and obtain 〈P(ũ +
tz), z〉 ≥ 0, which due to the hemicontinuity of P, when passed to limit t → 0
gives 〈P(ũ), z〉 ≥ 0, confirming P(ũ) = 0 or equivalently ũ ∈ K.

By rearranging (37), for every v ∈ K, we have

Tτn(āςn , uςn(a), v − ūςn) + εnS(uςn(a), v − ūςn) − 1
ιn

〈
P(v) − P(ūςn), v − ūςn

〉
+ 1

ιn

〈
P(v), v − ūςn

〉 = 〈mνn + εn�δn , v − ūςn〉,

and the monotonicity of P and the fact that P(v) = 0, for any v ∈ K, imply that
for every v ∈ K, we have

Tτn(āςn , uςn(a), v − ūςn) + εnS(uςn(a), v − ūςn) ≥ 〈mνn + εn�δn , v − ūςn〉,
(42)

which when passed to the limit n → ∞, confirms that

T(ã, v, v − ũ) ≥ 〈m, v − ũ〉, for every v ∈ K.

Setting v = ũ + t(v − ũ), with t ∈ (0, 1], we obtain T(ã, ũ, v − ũ) + tT(ã, v −
ũ, v − ũ) ≥ 〈m, v − ũ〉, and by taking t → 0, we get

T(ã, ũ, v − ũ) ≥ 〈m, v − ũ〉, for every v ∈ K, (43)

verifying that ũ = u(ã).
We know that {ūςn} converges weakly to ũ. However, the fact that {ūςn} con-

verges strongly to ũ can be proved by following the arguments used in the proof
of Theorem 5.3.

Now let a0 ∈ A be a solution of (20) and let u0 be the corresponding solution
of (19). For a0, let ūςn(a0) be the unique solution of the penalized equation: Find
u ∈ V such that

Tτn(a0, u, v) + εnS(u, v) + 1
ιn

〈P(u), v〉 = 〈mνn + εn�δn , v〉, v ∈ V

Then, in view of the above discussion, firstly, ūςn(a0) → u0 as n → ∞, and sec-
ondly, (a0, ūςn(a0)) is a feasible point for optimization problem (38). The proof
of the optimality is then quite similar to the one given in Theorem 20. �
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The key advantage of replacing the variational inequality by the penalized
equation is that for the latter, the parameter-to-solutionmap is smooth, provided
that the penalty map enjoys smoothness. For this, we replace P by its smooth
approximation. For simplicity, we take P(u) = (I − PK)(u), and for parameters
�n ≥ 0, define a family of its smooth approximation P�n : V → V , satisfying the
following conditions (partly motivated by [15]):

(PC1) For any �n, P�n is monotone, Null(P�n) = K, and for v ∈ V , P�n(v) →
P(v) as �n → 0.

(PC2) For any �n, the derivative P′
�n of P�n exists at every point and satisfies the

following:

〈
P′

�n(u)v, v
〉
≥ 0, for every u, v ∈ V , (44)〈

P′
�n(u)v, PK(u)

〉
= 0, for every u, v ∈ V . (45)

For n ∈ N, the given penalty parameter ιn > 0, and the corresponding smooth
approximation of the penalty map P�n , we now consider the smooth penalized-
regularized variational equation: Finduςn ∈ V such that for every v ∈ V , we have

Tτn(a, uςn(a), v) + εnS(uςn(a), v) + 1
ιn

〈
P�n(uςn(a)), v

〉 = 〈mνn + εn�δn , v〉,
(46)

where we continue to use the short-hand notation ςn := (εn, τn, νn, δn, ιn, �n).
The following ensures the smoothness of the parameter-to-solution map:

Theorem5.9: For a fixed n ∈ N, themap a → uςn(a) is differentiable at any point
a in the interior of A (assumed to be nonempty). For any direction δa ∈ B, the
derivative δuςn = Duςn(a)(δa) is the unique solution of the following variational
equation

Tτn(a, δuςn , v) + εnS(δuςn , v) + 1
ιn

〈
P′

�n(uςn)δuςn , v
〉

= −Tτn(δa, uςn , v), ∀ v ∈ V . (47)

Proof: For a fixed n ∈ N, the differentiability follows from the implicit function
theorem applied to the map G : A × V → V given by

(a, uςn(a)) → Tτn(a, uςn(a), ·) + εnS(uςn(a), ·) + 1
ιn

〈
P�n(uςn(a)), ·

〉
where Tτn(a, uςn(a), ·), S(uςn(a), ·), and 〈P�n(uςn(a)), ·〉 are the dual element
given by the Riesz representation theorem. The derivative DuG(a, uςn(a)) : A ×
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V → V is given by

DuG(a, uςn)(δu) = Tτn(a, δu, ·) + εnS(δu, ·) + 1
ιn

〈
P′

�n(u)(δuςn)·
〉
.

For any w ∈ V , the following equation

Tτn(a, δu, ·) + εnS(δu, ·) + 1
ιn

〈
P′

�n(uςn)(δu), ·
〉
= 〈w, ·〉.

is uniquely solvable. ThereforeDuG(a, ·)(uςn) : V → V is surjective and the dif-
ferentiability follows from the implicit function theorem. Finally, from (37), for
every v ∈ V , we have

Tτn(a, δuςn , v) + Tτn(δa, uςn , v) + εnS(δuςn , v)

+ 1
ε

〈
P′

�n(uςn)δuςn , v
〉
= 0, ∀ v ∈ V ,

and (47) follows. The proof is complete. �

Remark 5.10: As customary, wewill redefine the role ofA by assuming that there
is a slightly larger open set on which the parameter-to-solution map is defined
and differentiable. This simplification will allow to use optimality conditions on
the closed set A.

We now consider analogues of (38) and (39) where the constraint regularized
variational equation has been replaced by the smooth regularized-penalized vari-
ational equation: For n ∈ N, find aςn ∈ A by solving the following optimization
problems:

min
a∈A

Jn(a) := 1
2
‖uςn(a) − zδn‖2Z + κnR(uςn), (48)

min
a∈A

J̃n(a) := 1
2
Tτn(a, uςn(a) − zδn , uςn(a) − zδn) + κnR(uςn), (49)

where uςn(a) is the unique solution of (46), κn > 0, and R is the regularizer
defined above.

In the following optimality condition for (48), P′
�n(uςn)

∗ is the adjoint of
P′

�n(uςn):

Theorem 5.11: Assume that conditions (1) and (2) of Theorem 5.4 hold. For each
n ∈ N, optimization problem (48) has aminimizer aςn ∈ A.Moreover, for any such
minimizer aςn of (48), there exists pςn ∈ V such that

Tτn(a, pςn , v) + εnS(pςn , v) + 1
ιn

〈
P′

�n(uςn)
∗pςn , v

〉
= 〈uςn − zδn , v〉Z, ∀ v ∈ V , (50)

Tτn(aςn − a, uςn , pςn) − κn
(
R(aςn) − R(a)

) ≥ 0, ∀ a ∈ A. (51)
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Proof: For a fixed n ∈ N, the existence of a solution aςn ∈ A of (48) follows by
the standard arguments. Moreover, such a solution aςn satisfies the following
variational inequality as a necessary optimality condition

DJn(aςn)(a − aςn) ≥ κn
(
R(aςn) − R(a)

)
, for every a ∈ A, (52)

where Jn(a) := 1
2‖uςn(a) − z‖2Z, and hence for any a ∈ A, we have

DJn(aςn)(a − aςn) = 〈
Duςn

(
aςn

)
(a − aςn), uςn − z

〉
Z .

Let us now consider the adjoint variational equation: Find pςn ∈ V such that

Tτn(aςn , pςn , v) + εnS(pςn , v) + 1
ιn

〈
P′

�n(uςn)pςn , v
〉

= 〈uςn − zδn , v〉Z, ∀ v ∈ V . (53)

Let pςn be the unique solution of (53). Setting δuςn := Duςn(aςn)(a − aςn), we
have

〈uςn − zδn , δuςn〉Z = Tτn(aςn , pςn , δuςn) + εnS(pςn , δuςn)

+ 1
ιn

〈
P′

�n(uςn)
∗pςn , δuςn

〉
= Tτn(aςn , δuςn , pςn) + εnS(δuςn , pςn)

+ 1
ιn

〈
P′

�n(uςn)δuςn , pςn

〉
= Tτn(aςn − a, uςn , pςn),

where we used derivative formula (47). Consequently,

DJn(aςn)(a − aςn) = Tτn(aςn − a, uςn , pςn),

and (51) follows by substituting this expression in (52). The proof is complete.
�

Under additional ellipticity condition on T, we now give the following opti-
mality conditions for the original problem (20):

Theorem 5.12: Assume that conditions (1) and (2) of Theorem 5.4 hold. Assume
that the adjoint solutions {pςn} remain bounded. Then, there exists a minimizer ã
of (20) and ũ ∈ V , p̃ ∈ V , λ̃ ∈ V∗ with λ̃(ũ) = 0 and

T(ã, ũ, v − ũ) ≥ 〈m, v − ũ〉, for every v ∈ K, (54a)

T(ã, p̃, v) + λ̃(v) = 〈
ũ − z, v

〉
Z , for every v ∈ V , (54b)

T(ã − a, ũ, p̃) ≥ 0, for every a ∈ A. (54c)
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Proof: For n ∈ N, let {aςn} be a sequence of solutions of (48), let uςn be the corre-
sponding solutions of the penalized equation (46), and let pςn be the solutions of
the adjoint equation (53). By arguments similar to those used in Theorem 5.8, we
can show that there is a subsequence that converges in ‖ · ‖L to some ã ∈ A. We
point out that uςn solve the smooth penalized equations and therefore the argu-
ments need to be slightly modified. The crucial observation is that (40) holds
for P�n , however, due to the assumption P�n(u) → P(u) for n → ∞, the conclu-
sion of (41) holds and the rest. Other arguments go through without any change.
Moreover, the proof of the strong convergence of uςn to ũ = ũ(ã) holds without
any change and hence (54a) holds.

By assumption, the adjoint solutions are bounded, and hence there is a
weakly convergent subsequence {pςn} ⊂ V such that pςn ⇀ p̃ ∈ V . Define two
functionals λςn , λ̃ : V → R by

λςn(v) := 1
ιn

〈
P′

ςn(uςn)
∗pςn , v

〉 = 〈
uςn − zδn , v

〉 − Tτn(aςn , pςn , v) − εnS(pςn , v),

(55)

λ̃(v) := 〈
ũ − z, v

〉 − T(ã, p̃, v). (56)

Clearly, λςn , λ̃ ∈ V∗, and the convergence aςn → ã in ‖ · ‖L and uςn → ũ in ‖ ·
‖V yields

λςn(v) = 〈
uςn − zδn , v

〉 − Tτn(aςn , pςn , v)

− εnS(pςn , v) → 〈
ũ − z, v

〉 − T(ã, p̃, v) = λ̃(v)

as n → ∞. Since this convergence is true for each v ∈ V , we deduce that the
sequence {λςn} converges weakly to λ̃. We take v = PK(uςn) in (55) and obtain

λςn(PK(ūςn)) = 1
ςn

〈
P′

ςn(uςn)
∗p̄ςn , PK(uςn)

〉 = 0.

By the continuity of the projection map, we get 0 = λςn(PK(uςn)) → λ̃(ũ) for
n → ∞, and consequently, λ̃(ũ) = 0. For (54c), it suffices to take limits in (51).
In fact, since aςn → ã, uςn → ũ, and pςn ⇀ p̃, by using the properties of T, and
by taking the limit n → ∞ in

Tτn(aςn − a, uςn , pςn) ≥ κn
(
R(aςn) − R(a)

)
we get T(ã − a, ũ, p̃) ≥ 0, which completes the proof. �

We now give an optimality condition for the MOLS based optimization
problem (49):

Theorem 5.13: Assume that conditions (1) and (2) of Theorem 5.4 hold. For each
n ∈ N, optimization problem (49) has aminimizer aςn ∈ A.Moreover, for any such
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solution aςn of (49), there is qςn ∈ V such that for each a ∈ A and each v ∈ V , we
have

Tτn(aςn , qςn , v) + εnS(qςn , v) + 1
ιn

〈
P′

�n(uςn)
∗qςn , v

〉
= Tτn(aςn , uςn − zδn , v〉, (57)

1
2
Tτn(a − aςn , uςn − zδn , uςn − zδn)

+ T(a − aςn , uςn , qςn) ≥ κn
(
R(aςn) − R(a)

)
. (58)

Proof: We will follow the scheme of Theorem 5.11. For a fixed, n ∈ N, let aςn ∈
A be a solution of (49), and uςn be the corresponding solution of the penalized
regularized variational equation. Then

D̃Jn(aςn)(a − aςn) ≥ κn
(
R(aςn) − R(a)

)
, for every a ∈ A,

where J̃n(a) := 1
2Tτn(aςn , uςn − zδn , uςn − zδn).

By using the notation δuςn := Duςn(aςn)(a − aςn), we have

D̃Jn(aςn)(a − aςn) = 1
2
Tτn(a − aςn , uςn − zδn , uςn − zδn)

+ Tτn(aςn , δuςn , uςn − zδn). (59)

We now consider the adjoint equation of finding qςn ∈ V such that

Tτn(aςn , qςn , v) + εnS(qςn , v) + 1
ιn

〈
P′

�n(uςn)
∗qςn , v

〉
= Tτn(aςn , zδn − uςn , v), ∀ v ∈ V . (60)

Clearly, (59) is uniquely solvable, and let qςn be its unique solution. Then,

Tτn(aςn , uςn − zδn , δuςn)

= −Tτn(aςn , qςn , δuςn) − εnS(qςn , δuςn) − 1
ιn

〈
P′

�n(uςn)
∗qςn , δuςn

〉
= −Tτn(aςn , δuςn , qςn) − εnS(δauςn , qςn) − 1

ιn

〈
P′

�n(uςn)δuςn , qςn

〉
= Tτn(a − aςn , uςn , qςn)

by using the derivative characterization Theorem 5.9. Using this in (59), yields

D̃Jn(aςn)(a − aςn) = 1
2Tτn(a − aςn , uςn − zδn , uςn − zδn)

+ Tτn(a − aςn , uςn , qςn),

which at once gives the desired inequality. �
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Under additional ellipticity condition on T, finally, we have the following
optimality conditions for the original MOLS:

Theorem 5.14: Assume that conditions (1) and (2) of Theorem 5.4 hold. Assume
that the adjoint solutions {pςn} remain bounded. There exists a solution ā of (21)
and ū ∈ V , q̄ ∈ V , λ̄ ∈ V∗ with λ̄(ū) = 0 and

T(ā, q̄, v) + λ̄(v) = T(ā, z − ū, v) for each v ∈ V , (61a)

T(ā, ū, v − ū) ≥ 〈m, v − ū〉, for each v ∈ K, (61b)
1
2
T(a − ā, ū − z, ū − z) ≥ T(ā − a, ū, q̄), for each a ∈ A. (61c)

Proof: The proof follows from the arguments used in the proof of Theorem 54.
�

Remark 5.15: The adjoint equations (53) and and (59) are entirely comparable
with the regularized-penalized equation (37). We note that although the adjoint
solutions are uniquely defined (due to the elliptic regularization by S), their
boundednesswould require additional information. For example,milder coerciv-
ity, or the existence of p̃ or q̄ satisfying the corresponding equations would suffice.
This approach is akin to the elliptic regularization of the variational inequalities
where we proved that the regularized solutions are bounded provided that the
original variational inequality is solvable.

6. Identification in a simplified elastic-plastic torsionmodel

We consider an elastic-plastic torsion problem for visco-elastic material studied
by Kano, Kenmochi, and Murase [32]: find u ∈ H1

0(�) and w ∈ β(u) such that
|∇u| ≤ k0(u), a.e on � with∫

�

a∇u · ∇(v − u) +
∫

�

w(v − u) ≥
∫

�

f (v − w),

for all v ∈ H1
0(�) with |∇v| ≤ kc(v) a.e. on �. Here � is suitable domain in R

2,
f ∈ L2(�), a is the materail material and β(·) is a maximal monotone graph in
R × R with linear growth at ±∞. Contrary to [32], a does not explicitly depend
on u or its gradient.

In the above model, our objective is to identify the parameter a from a mea-
surement of its u. To reformulate the above problem in the framework supplied
above, we set V = H1

0(�) and B = L∞(�). Let κ∗ be a constant, and let κc be
a Lipschitz continuous real function on R such that 0 < κc(r) ≤ κ∗, for every
r ∈ R. Define a convex set C and K : C ⇒ C by

C = {w ∈ V| |∇w| ≤ κ∗, a.e. on�},
K(v) = {w ∈ V| |∇w| ≤ κc(v), a.e. on�},

which satisfy conditions (M1) and (M2) of Theorem 4.3 (see [32]).
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We focus on identifying a in the quasi-variational inequality: Find u ∈ K(u)
such that

T(a, u, v − u) + 〈Fu, v − u〉 ≥ 〈m, v − u〉, for every v ∈ K(u),

where T(a, u, v) = ∫
�
a∇u∇v and F = β . It can be shown that the trilinear form

T(a, u, v) = ∫
�
a∇u∇v is indeed, elliptic, continuous, and satisfies (7).

For the regularizer, we recall that the total variation of f ∈ L1(�) is given by

TV(f ) = sup
{∫

�

f (∇ · g) : g ∈ (
C1(�)

)N , |g(x)| ≤ 1 for all x ∈ �

}

where | · | represents the Euclidean norm. Clearly, if f ∈ W1,1(�), then TV(f ) =∫
�

|∇f |.
If f ∈ L1(�) satisfies TV(f ) < ∞, then f is said to have bounded variation,

and the Banach space BV(�) is defined by BV(�) = {f ∈ L1(�) : TV(f ) < ∞}
being endowed with the norm ‖f ‖BV(�) = ‖f ‖L1(�) + TV(f ). The functional
TV(·) is a seminorm on BV(�) and is often called the BV-seminorm.

We set L = L1(�), B̂ = BV(�), and R(a) = TV(a), and define two sets

A1 = {a ∈ L∞(�)| c1 ≤ a(x) ≤ c2, a.e. in �, },
A2 = {a ∈ L∞(�)| c1 ≤ a(x) ≤ c2, a.e. in �, TV(a) ≤ c3},

where c1, c2 and c3 are positive constants. Clearly, both sets are compact in
L, whereas A2 is bounded in ‖ · ‖B̂. It is known that L∞(�) is continuously
embedded in L1(�), BV(�) is compactly embedded in L1(�), and TV(·) is con-
vex and lower-semicontinuous in L1(�)-norm. Summarizing, all the imposed
conditions are satisfied and consequently the developed framework ensures the
identification of a discontinuous parameter in the above model.

7. Numerical results

Wenow report the outcome of two preliminary experiments to show the numeri-
cal feasibility of the identification in variational inequalities. The first experiment
shows, for the coercive case, a slightly better reconstruction by the MOLS objec-
tive. In the second experiment, we look at the impact of data contamination.
In both of the experiments, we use piecewise linear finite element discretiza-
tion for numerically solving the discrete analogs of the optimality systems for
the OLS and the MOLS objectives. We solve the discrete optimality systems
by a Damped Gauss-Newton iteration with an Armijo rule line search. For the
numerical experiments, we choose � = [0, 1] × [0, 1].
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7.1. A coercive example

In this experiment, we identify a in the following variational inequality of finding
u ∈ K := {u ∈ H1

0(�)| u(x) ≥ 0, a.e. �} ⊂ V := H1
0(�) such that∫

�

(a + 0.01)2∇u∇(v − u) ≥
∫

�

m(a)(v − u), for every v ∈ K, (62)

where� ⊂ R
2 is a suitable domain.We choose B = L∞(�) and for a0 > 0, a1 >

0, define

A := {a ∈ L∞(�)| 0 < a0 ≤ a ≤ a1 a.e. in �}.
The exact solution in this setting is given by: ā(x1, x2) = 1 + 0.25(sin2(2πx1) +
cos(2πx2)). Note that (62) is slightly more general than (19) where instead of
a we have �(a) = (a + 0.01)2 and the functional m(a) = a − π cos(2πx1) +
0.5π sin(2πx2) depends on the coefficient. Therefore, our results needs to be
slightly modified to take into account these generalities.

Tables 1 and 2 show that the MOLS functional yields slightly better recon-
struction than the OLS functional. The reconstruction error in the OLS is about
8% in the discrete L2-norm whereas for the MOLS it is between 3% and 5%, see
Figures 1–4.

7.2. A non-coercive example

We now consider the inverse problem of identifying a variable parameter a in the
variational inequality of finding u ∈ K ⊂ V := H1

0(�) such that∫
�

a∇u∇(v − u) ≥
∫

�

f (v − u) dx, for every v ∈ K, (63)

Table 1. Example 7.1: Reconstruction error for the OLS.

h
‖ah − Ihā0‖L2(�)

‖Ihā0‖L2(�)

‖uh − uh0‖L2(�)

‖uh0‖L2(�)

‖ah − Ihā0‖L∞(�)

‖Ihā0‖L∞(�)

‖uh − uh0‖L∞(�)

‖uh0‖L∞(�)

0.0707107 0.087 0.110 0.154 0.105
0.0565685 0.085 0.087 0.154 0.085
0.0471405 0.086 0.061 0.191 0.061
0.0404061 0.084 0.052 0.198 0.054
0.0353553 0.081 0.059 0.164 0.071

Table 2. Example 7.1: Reconstruction error for the MOLS.

h
‖ah − Ihā0‖L2(�)

‖Ihā0‖L2(�)

‖uh − uh0‖L2(�)

‖uh0‖L2(�)

‖ah − Ihā0‖L∞(�)

‖Ihā0‖L∞(�)

‖uh − uh0‖L∞(�)

‖uh0‖L∞(�)

0.0707107 0.031 0.016 0.069 0.017
0.0565685 0.030 0.015 0.070 0.015
0.0471405 0.030 0.015 0.080 0.020
0.0404061 0.032 0.016 0.096 0.027
0.0353553 0.051 0.023 0.145 0.049
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Figure 1. Reconstruction for h= 0.0353553. The left figure shows the exact coefficient, the mid-
dle figure shows the coefficient by the MOLS approach, and the right figure shows the coefficient
by the OLS approach.

Figure 2. Reconstruction for h= 0.0353553. The left figure shows the exact coefficient, the mid-
dle figure shows the coefficient by the MOLS approach, and the right figure shows the coefficient
by the OLS approach.

Figure 3. Reconstruction for h= 0.0353553. The left figure shows the exact solution, the middle
figure shows the solution by the MOLS approach, and the right figure shows the solution by the
OLS approach.

Figure 4. Reconstruction for h= 0.0353553. The left figure shows the exact solution, the middle
figure shows the solution by the MOLS approach, and the right figure shows the solution by the
OLS approach.

where � ⊂ R
2 is a suitable domain and K = {u ∈ H1

0(�)| u(x) ≥ 0, a.e. �}. We
choose B = L∞(�), and for a given positive constant a1, define

A := {a ∈ L∞(�)| 0 ≤ a ≤ a1a.e. in �}.

The exact data to be ū(x1, x2) = x1(1 − x2)x2(1 − x2) and ā(x1, x2) = x1x2.
Since a vanishes at 0, the ellipticity fails for the associated trilinear form.We solve
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the optimality conditions for (27). In numerical computations, we consider H1

norm as regularizer and data z is obtained by directly interpolating ū.
We take h=0.0707107 and a keep a regularization parameter κ . Numerical

experiments show that reconstruction is quite indifferent for εn ∈ [0, 0.0001], see
Table 3 for εn = 0.0001.

To study the influence of the noise, we consider the contaminated data zδn =
z + δnη(t) with η(t) uniformly distributed in [0, 1]. We consider two noise lev-
els, δn ∈ {0.0001, 0.001}. The reconstruction rate is stable for these noise levels,
see Table 3 and Figures 5 and 6. For bigger noise levels, the proposed algorithm
becomes unstable and the reconstruction rate is quite poor. We can check this
fact for the particular case δn = 0.01 in Figure 7.

Table 3. Reconstruction Error for theOLS for ε = 0.0001, h= 0.0707107 for different noise levels.

Noise δn
‖ah − Ihā‖L2(�)

‖Ihā‖L2(�)

‖uh − ūh‖L2(�)

‖ūh‖L2(�)

‖ah − Ihā‖L∞(�)

‖Ihā‖L∞(�)

‖uh − ūh‖L∞(�)

‖ūh‖L∞(�)

0 0.013 0.009 0.019 0.024
1e−04 0.014 0.010 0.021 0.026
1e−03 0.027 0.008 0.033 0.037

Figure 5. h= 0.0707107, κ = ε = 0.0001. Reconstruction with noise level δn = 0.001.

Figure 6. h= 0.0707107, ε = 0.0001. Reconstruction with noise level δn = 0.001.

Figure 7. h= 0.0707107. Reconstruction for noise level δn = 0.01.
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8. Concluding remarks

We presented identification results for multi-valued quasi-variational inequali-
ties defined on general constraint sets depending on the unknown solution. On
the other hand, for noncoercive variational inequalities, we combined elliptic
regularization with a penalization and smoothing which permitted us to derive
new optimality conditions. A comparison between the two approaches sheds
some light onto to difficulties associated with an adequate treatment of quasi-
variational inequalities. For the general constraints, as considered in this work,
the parameter-to-solution map is typically multi-valued. Therefore, its smooth-
ness needs to be studied by tools from variational and set-valued optimization.
On the other hand, although non-coercive variational inequalities also have
a set-valued parameter-to-solution map, the elliptic regularization results in a
single-valued parameter-to-regularized solution map. Furthermore, a penaliza-
tion, coupled with smoothing, permits to study its differentiability and eventually
leads to optimality conditions. We emphasize that it is expected that for smaller
regularization parameters, the numerical solution will show some instability
because, for the unregularized problem, the parameter-to-solutionmap is in gen-
eral nonsmooth.Moreover, the developed techniques are not readily available for
quasi-variational inequalities, the elliptic regularization does not render a single-
valued parameter to solution map, and a general penalization approach is not
available. A possible way is to restrict to the so-called general solution and apply
the developed tools through that. Some of these possibilities will be addressed in
future research.
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