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ABSTRACT

We study the inverse problem of identifying a variable param-
eter in variational and quasi-variational inequalities. We con-
sider a quasi-variational inequality involving a multi-valued
monotone map and give a new existence result. We then for-
mulate the inverse problem as an optimization problem and
prove its solvability. We also conduct a thorough study of the
inverse problem of parameter identification in noncoercive
variational inequalities which appear commonly in applied
models. We study the inverse problem by posing optimiza-
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tion problems using the output least-squares and the modified
output least-squares. Using regularization, penalization, and
smoothing, we obtain a single-valued parameter-to-selection
map and study its differentiability. We consider optimiza-
tion problems using the output least-squares and the mod-
ified output least-squares for the regularized, penalized and
smoothened variational inequality. We give existence results,
convergence analysis, and optimality conditions. We provide
applications and numerical examples to justify the proposed
framework.

35R30; 49N45; 65J20; 65J22;
65M30

1. Introduction

An inverse problem commonly refers to the process of estimating intrinsic fea-
tures of a physical model from a measured output of the model. For example,
when a partial differential equation is characterizing the model, a measurement
of its solution can be used to estimate the force term, the involved material
parameters, the boundary conditions and the initial conditions, giving rise to a
spectrum of inverse problems. The field of inverse problems has attracted a great
deal of attention in the recent years because of the ever-growing list of essen-
tial applications in domains such as biomedical sciences, finance, engineering,
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social sciences, and related areas. Although most of the research in inverse prob-
lems is in the context of partial differential equations, there are studies which
deal with inverse problems in variational inequalities, and much recently in
quasi-variational inequalities.

The primary objective of this work is twofold. Firstly, we develop a general
framework for the identification of a variable parameter in multi-valued quasi-
variational inequalities. This generality is motivated by some recent applications
which lead to quasi-variational inequalities with multi-valued maps. Secondly,
confining to a variational inequality, we study the impact of data contamination
on the identification process. Since variational and quasi-variational inequalities
model numerous applied phenomenon, the developed identification process is
expected to have wide applicability. For instance, applications of variational and
quasi-variational inequalities can be found in elastohydrodynamic [1], energy
production management [2], equilibrium problems [3-5], frictional elastostatic
contact [6], frictionless quasistatic contact with history-dependent stiffness [7],
image processing [8], Nash game equilibrium [9], multiobjective elliptic control
[10], reaction-diffusion [11], sandpiles formation [12], shape optimization [13],
superconductivity models [14], and numerous others.

To give a brief overview of the related research, we begin by recalling that an
inverse problem in variational inequalities appears in the elastohydrodynamic
lubrication problem (EHL). The EHL problem results in a variational inequality
in which the unknown is the pressure u, and the coeflicient a is known. How-
ever, due to the significant theoretical and computational obstacles in solving the
EHL problem, an efficient two-step procedure is typically designed. In this pro-
cedure, the first step comprised of an inverse problem of parameter identification
in a variational inequality where the sought parameter is in the primary opera-
tor and on the right-hand side of the inequality, see [15]. Inspired by the EHL
problem, Hintermiiller [16] studied the inverse problem of parameter identifica-
tion for a variational inequality and besides a rigorous treatment of the analytical
aspects, also presented a detailed computational framework. In the same vein,
Gonzalez [17] explored the inverse problem of identifying multiple parameters
in an elliptic variational inequality and provided an existence result, see also [18].
In earlier work, Hasanov [19] presented useful results for the boundary inverse
problem for elliptic variational inequalities. In another contribution [20], the
authors gave a detailed numerical treatment of the inverse elasticity problem with
Signorini’s condition. In [21], the authors focussed on the theoretical aspects of
the identification inverse problem in a nonlinear variational inequality. Recently,
Kupenko and Manzo [22] investigated the inverse problem of parameter identifi-
cation for a variational inequality with anisotropic p-Laplacian. Barabasz, Gajda-
Zagorska, and Migorski [23] presented a hybrid algorithm for solving inverse
problems in elasticity. Migo6rski and Ochal [24] studied an inverse problem of
parameter identification for a non-linear parabolic boundary hemi-variational
inequality. We also note that Hoffmann and Sprekels [25] were among the first
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ones to study parameter identification in variational inequalities. However, in
[25], in contrast to the most papers on inverse problems where an optimization
framework is a preferred choice, the authors developed an iterative scheme that
is based on the construction of regularized time-dependent problems contain-
ing the original problem as the asymptotic steady state. We note that in [26-28],
the authors studied identification in simplified quasi-variational inequalities and
coercive variational inequalities. Recently inverse problems have been also stud-
ied in [29, 30] for variational-hemivariational inequalities modelling frictional
contact problems in solid mechanics.
The main contributions of this work are as follows:

(1) By relaxing the coercivity condition, we give a new existence result for a
quasi-variational inequality with a multi-valued monotone map. The exis-
tence theory for multi-valued quasi-variational inequalities is quite chal-
lenging and is still in a developmental stage. Among other technical diffi-
culties, solving a quasi-variational inequality requires solving a variational
inequality and a fixed point problem simultaneously.

(2) We formulate the inverse problem of parameter identification in a quasi-
variational inequality as an equivalent optimization problem. We develop an
abstract regularization framework for the inverse problem which is suitable
for identifying discontinuous coefficients.

(3) Restricting to the case of noncoercive variational inequalities (see [31]), we
thoroughly investigate the impact of data perturbation on the identifica-
tion process. We study the inverse problem by posing optimization prob-
lems using the output least-squares and the modified output least-squares.
Using regularization, penalization, and smoothing, we obtain a single-valued
parameter-to-selection map and explore its differentiability. We then con-
sider optimization problems using the output least-squares and the modified
output least-squares for the regularized, penalized and smoothened varia-
tional inequality. We give existence results, convergence analysis, and opti-
mality conditions. We present applications and some preliminary numerical
examples to justify the proposed framework.

2. Problem formulation

Assume that B is a real Banach space and A is a nonempty, closed, and convex
subset of B. Here the space B is the parameter space whereas the set A imposes
feasibility restriction on the sought parameters. Assume that V' is a real Hilbert
space with the inner product (-, -) and let V* be the dual of V. We will pose the
variational and quasi-variational inequalities in the space V. Assume that Z is
another real Hilbert space such that V is continuously imbedded in Z. We will
take the measured data in the space Z. Assume that C is a nonempty, closed,
and convex subset of V and assume that K : C = C is a set-valued map such
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that for every u € C, the set K(u) is a closed, and convex subset of C. Assume
that F: V =3 V* is a set-valued map and m € V*. We define a trilinear form T :
B x V x V — R with T(a,u,v) symmetric in u, v, and assume the following
continuity and positivity conditions:

T(a,u,v) < Bllalsllulvivly, forallu,veV,aeB, >0, (1a)
T(a,u,u) >0, forallueV, acA. (1b)

We consider the quasi-variational inequality where as usual (T(:,-),-) =
T(:,,-) for notational simplicity: Given a € A, find u € K(u) such that for some
w € F(u), we have

(T(a,u) +w—m,v—u) >0, foreveryv e K(u). (2)

Given a € A, quasi-variational inequality (2) of finding u = u(a) constitutes the
direct problem in this study. Our focus, however, is on the inverse problem of
identifying the variable coeflicient a from a measurement z of a solution u of the
quasi-variational inequality.

Quasi variational inequality (2) is quite general and conveniently subsumes
many variational and quasi-variational inequalities appearing in several applica-
tions of interest as special cases. In particular, the involvement of the multi-valued
map F serves at least two purposes. Firstly, Kano, Kenmochi, and Murase [32]
showed recently that an elasto-plasto model leads to a multi-valued quasi vari-
ational inequality. The general results of this paper can be applied to study the
inverse problem of identifying material parameters in a simplified elasto-plastic
model. Secondly, our results can be applied to study inverse problems for quasi
hemi-variational inequalities where the multi-valued map F corresponds to the
sum of a monotone map and a generalized derivative. We emphasize that the
constraint set K(u) in (2) depends on the unknown u. This makes the study
of quasi variational inequalities quite challenging and is one of the reasons
that a majority of theoretical and numerical techniques which are readily avail-
able for variational inequalities have not yet been extended to quasi variational
inequalities.

Note that in the absence of F and m, (2) reduces to the following quasi
variational inequality: find u € K(u) such that

(T(a,u),v —u) >0, foreveryv e K(u). (3)

Quasi variational inequality (3) is one of the most commonly studied problems
of this class and is convenient for many applications such as implicit obstacle
problem, dam problems, and others. Bensoussan and Lions [33] introduced (3)
in connection with an impulse control problem. A general treatment of (3) was
given by Mosco [34].
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If additionally K(u) = C, for every u € C, then (3) recovers the following
variational inequality: find 4 € C such that

(T(a,u),v—u) >0, foreveryv e C.

The above variational inequality has been extensively studied in the literature and
has found numerous applications (see [35-37]). The inverse problem of parame-
ter identification in simpler variational and quasi variational inequalities has also
been studied by many authors, see [16, 26] and the references therein.

3. Essential tools

We now gather the essential background material which includes notions of set-
valued maps and existence results for variational inequalities. In the following,
we specify the strong convergence and the weak convergence by — and —,
respectively. We begin with the following two definitions:

Definition 3.1: Given a real reflexive Banach space X with X* as its dual, let A :
X =2 X* beaset-valued map. The domain and the graph of the map A are denoted
by D(A) := {u € X| A(u) # ¥}, and G(A) := {(u,w)| u € D(A), w € A(u)}. The
map A is called monotone, if (u — v,x — y) > 0, for all (x, u), (y,v) € G(A). Fur-
thermore, A is called maximal monotone, if the graph of the monotone map A
is not included in the graph of any other monotone map with the same domain.
The map A is called strongly-weakly demiclosed, if for any sequence {(x,, wy)}
with w, € A(x,), and x, — x and w,, — w, we have w € A(x).

Definition 3.2: The map K : C = C is called M-continuous, if the following
conditions hold:

(M1) For any sequence {x,} C C with x, — x, and for each y € K(x), there
exists {y,} such that y, € K(x,) and y, — y.
(M2) For y, € K(x,) with x, = xand y,, — y, we have y € K(x).

The following result (see [38, Lemma 1.5.14]) will play a crucial role:

Lemma 3.3: Let X be a reflexive Banach space with X* as its dual. Let A : X = X*
be a monotone map with x € int(D(A)). Then there is a constantr = r(x) > 0 such
that for any (x,w) € G(A) and ¢ := sup{|w||| ||x' — x| <r, and w' € A(x)} <
00, we have

(w, x —x) = rllwl = (llx = x[| +r)c.

The following fixed point theorem by Kluge [39] will play an important role:
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Theorem 3.4: Let X be a reflexive Banach space and let C C X be nonempty, con-
vex, and closed. Assume that V : C = C is a set-valued map such that for every
u € C, the set W (u) is nonempty, closed, and convex, and the graph of WV is sequen-
tially weakly closed. Suppose that the set W (C) is bounded. Then the map \V has at
least one fixed point in C.

The following interesting result can be found in Alber et al. [40].

Lemma 3.5: Let X be a uniformly convex Banach space with X* as its dual,
let F: X = X* be strongly-weakly demiclosed, convex-valued and monotone, let
C C int(dom(F)) be closed, and convex, and let f € X*. Then x € C solves the
variational inequality of finding x € C so that for some w € F(x), we have

(w—f,z—x) >0, foreveryze C, (4)

if and only if, it solves the following Minty variational inequality: find x € C such
that

(w—f,z—x) >0 foreveryz e C, foreveryw € F(z). (5)

Furthermore, if ] is the normalized duality map, then there exists a unique x. € C
such that for some w. € F(xc), we have

(We +€](xe),y —xc) >0, foreveryye C, € >0. (6)

We conclude this section by the following lemma taken from Browder [41,
Lemma 1].

Lemma 3.6: Let X be a Banach space with X* as its dual and let {x,} C X. Assume
that there is a sequence {s,} C Ry with s, | 0 such that for any h € X* there is a
constant Cy, such that (h,x,) < sp||xs|| + Cn, for every n. Then the sequence {x,}
is bounded.

4. Identification in multi-valued quasi variational inequalities

Inspired by the efficient use of optimization-based identification process in linear
PDEs, and linear variational inequalities, we shall now resort to an optimization
formulation for the inverse problem of parameter estimation in multi-valued
quasi-variational inequalities. The ill-posed nature of the inverse problems is
well-known, and optimization formulations are quite flexible in incorporating
a regularization which is essential for a stable identification process. To develop
a general regularization framework, which is aimed to identify discontinuous or
rapidly-varying parameters (see [42]), we make the following assumptions:

(1) The Banach space B is continuously embedded in a Banach space L. There
is another Banach space B that is compactly embedded in L. The set A is a
subset of BN B, closed and bounded in B and closed in L.
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(2) Forany{b,} C Bwithb, — 0inL,anybounded {u,} C V,andfixedv € V,
we have

T(by, uy, v) — 0. (7)

(3) R:B— Ris positive, convex, and lower-semicontinuous with respect to || -
Iz and satisfies

R(a) > 11|lallg — 72, foreverya € A, forsomet; >0, 72 > 0. (8)

We consider the following output least-squares (OLS) based optimization
problem:

minJ (a) := |[u(a) - z|I* + kR(a). (9)

Here k > 0 is a regularization parameter, R(-) is the regularizer defined above,
z € Zis the data, and u = u(a) is a solution of quasi variational inequality (2) for
the parameter a € A. That is, for a € A, u = u(a) is such that u € K(u) and for
some w € F(u), we have

(T(a,u) +w—m,v—u) >0, foreveryv e K(u). (10)

The following existence result for (10) shows that (9) is well-defined. In the
following, I is the set of all 0 : Ry — R such thato(r) — 0asr — oo.

Theorem 4.1: Assume that F: V = V* is strongly-weakly demiclosed, convex-
valued and monotone with C C int(D(F)), K : C = C is M-continuous, and T :
B x V x V — R satisfies (1). Assume that one of the following two conditions
hold:

(1) For every s € V*, there exists us € NyecK(v) such that for every z € D(F)
with ||z|| sufficiently large, and every w € F(z) and some o € I", we have

(T(a,2) +w—s,z2—ug) = —a([zIDllz]. (11)

(2) There exists a bounded set G such that for each v € C, we have K(v) N G #
and

in <T(a,x)+W>x—g>
weF(x) ||x||

— oo as [lx|| = oo, uniformlying € G. (12)

Then, for each a € A, the quasi variational inequality (10) has a solution.

Proof: Leta € Abeanarbitrarybut fixed element. For the given a € A, we define
the variational selection S, : C = C which assigns to each v € C, the set of all
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solutions of the variational inequality of finding u € K(v) such that for some w €
F(u), we have

(T(a,u) +w—m,z—u) >0, foreveryze K(v). (13)

We will now show that S, satisfies the conditions of Theorem 3.4 imposed on the
map V.

(I) Foranyv € C, theset S,(v) is nonempty. We will verity the claim under (11),
and analogous arguments can be used for (12). Let {€,,} be a sequence of real
positive parameters such that e, — 0asn — oo. Clearly, all the conditions
of Lemma 3.5 are met, and by (6), for each n € N, thereis u, := u,, € K(v)
such that for some w,, € F(u,), we have

(T(a,uy) + wy + €yuuy — m,z — u,) >0, foreveryz e K(v). (14)

We claim that {u,,} is bounded. Indeed, if this is not true, then there is a sub-
sequence {u,} such that ||u,|| — ocoasn — oo. Using the above inequality,
for every z € K(v), we have

(T(a,up) +wn — myup — z) < —€nllunl [luall — lzll].

Now let s € V* be arbitrary and take z = u; given by the coercivity. Taking
Z = u, in the above inequality, and by the coercivity, we get

—o (lunDllunll < (T(a, un) + wy — s, uy — us)
< —(s—m,uy — us) — €nllunll [llunll — llusl]
< —(s —m,u, — uy),
as €xllunll[llunll — llusll] is positive for [|u,| sufficiently large. Conse-
quently,

(s = m,up) < o([lunl)llunll + (s — m, ug),

and hence Lemma 3.6 with h =s —m, s, := o (Jlu,l|) and Cj, := (s —
m, us), confirms that {u,} is bounded. Due to the reflexivity of V, we
can extract a subsequence {u,} converging weakly to some u. The Minty
formulation (see (15) below) of (14) reads

(T(a,2) + w; + €yz — m,z — uy) > 0,

for every w, € F(z), for every z € K(v),
which when passed to the limit n — o0, yields
(T(a,z) +w, —m,z—u) >0, foreveryw, € F(z), for everyz € K(v),

and by using the Minty formulation once again, we obtain (13).
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For every v € C,S,(v) is closed and convex. Clearly, u € K(v) satisfies (13),
if and only if, it solves the following Minty variational inequality: for every
z € K(v) and for every w, € F(z), we have

(T(a,z) + w, —m,z— u) >0, (15)

which at once gives that S, (v) is closed and convex.

The set S,(C) is bounded. This follows from (11) or (12) in a similar way as
in part (I).

The graph of the variational selection S, is sequentially weakly closed. Let
{(vn, yn)} C G(S,) be such that y, — yand v, — v. We claim that (v, y) €
G(Sa). The set C being convex and closed is also weakly closed, and hence
v € C. From the containment (v,, y,) € G(S,), we deduce that y,, € K(v,,)
and that there exists w;,, € F(y,) such that

(T(a,yn) +wp —m,z—y,) >0, foreveryz e K(v,). (16)

We shall first show that {w,} is bounded. From y, € K(v,), by using M-
continuity of K, we get y € K(v). Moreover, there is {z,} converging to y
and such that z, € K(v,,). We set z = z,, in (16), to get

<T(a’yn) +wy—m,zy _)/n> > 0.

By applying Lemma 3.3 to A(-) := F(-) — m, there are constants ¢ > 0 and
r> 0 such that

rliwn —mll < (wnp —m, yn — y) + c(r + llyn = yID
= (T(a,yn) + Wn — m,yn — zn) + (T(@ Yn)>2n — Yn)
+ (Wn —m,zy — y) +c(r + [lyn — yID
< Bllallllznllllyn — zall
+ llwn — mllllzn — yll + cr + llyn — ¥,

and consequently,

[r = llzn = yIlllwn — mll < c(r + llyn — yI) + Bllalllzallllyn — 2zull-

Since z, — y, the term ||z, — y|| can be made arbitrarily small, and since
the right-hand side of the above inequality remains bounded, we prove
the boundedness of {||w,, — m||}. The key observations here is that y,, — y
means that the term ||y, — y|| remains bounded.



10 (& AAKHANETAL

For a fixed z € K(v), there is z, € K(v,) with z, — z, and for any w, € F(z),
we get

(Wz))/n —z) < (Wz,yn —z)+ (T(ay)/n) +wy —m,zy _}’n>

[A

(Wnrzn — 2) + (W — Wy, 2 _)’n> + (T(a,zy) — m, zy _)’n>

IA

(Wi’l’zfl - Z) + (T(ﬂ,zn) —m,zy _y?’l>’

by using the monotonicity of F. By passing the above inequality to limit for n —
00, we get

(W, y —2) < (T(a,2) —m,z —y),

and by using the Minty formulation, we deduce that (y,v) € G(S,).
Summarizing, we have shown that for an arbitrary a € A, the variational selec-
tion S, : C = C is a set-valued map such that for any v € C, the set S,;(v) is
nonempty, closed, and convex and the graph of S, is sequentially weakly closed.
Moreover, S;(C) is bounded. This means that all assumptions of Theorem 3.4
are fulfilled for the set-valued map W = S, : C = C. From Theorem 3.4, we get
that S, has at least one fixed point in C, and this yields that the quasi variational
inequality (2) has at least one solution. |

Remark 4.2: The above result, besides involving the trilinear form, extends the
existence results given in [43], from maximal monotone maps to strongly-weakly
demiclosed, convex-valued and monotone maps. This extension is particularly
useful for an application of this result to quasi-hemi-variational inequalities (see
[44, 45]. We acknowledge that (11) was first introduced in [46] in the context of
operator equations.

We have the following existence theorem for the inverse problem:

Theorem 4.3: Assume that the hypothesis of Theorem 4.1 hold. Then for k > 0,
regularized output least-squares problem (9) has a solution.

Proof: By its definition, the objective functional J, is bounded from below for
every feasiblea € A, and hence there exists a minimizing sequence {a,} C A such
that

Jlim Je(an) = inf{J (0)| b € A}. (17)

Let u, be the solution of quasi variational inequality (10) that corresponds to the
parameter a,. Therefore, u, € K(u,) and for some w,, € F(u,), we have

(T(an, up) +wp — m,v — u,) >0, foreveryv € K(uy,). (18)

Due to (17), J¢(a,) is bounded, and hence by using the inequality kR(a,) <
Ji (ay) and condition (8), we deduce that the sequence {a,} is bounded in the
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Banach space B. By using the compact embedding of B into L, there is a subse-
quence which converges strongly in L, to some element of A. Keeping the same
notation for subsequences as well, let {a,} be the subsequence that converges in
Ltoa e A.

We pick {u,} to be a sequence of solutions of (10) that corresponds to the sub-
sequence of parameters {a,} convergingin L toa € A. We will first show that {u,,}
remains bounded by using (12) (but similar arguments will work for (11)). For
the sake of argument, we suppose that {u,} is unbounded and that there exists
a subsequence such that ||u,| — oo for n — oo. To use the coercivity condi-
tion, we choose an arbitrary g, € K(u,) N G. Since G is taken to be bounded, the
sequence {g,} is bounded. By taking v = g, in (10), we obtain

(T(an, un) + wy — m,gn — uy) >0,
which can be rearranged as follows
(Wn> un — gn) < (T(an, tn) — m, gn — tn) =< |T(an, un) [llgnll + llml lun — gnll

where we used the fact that (T'(a,, uy), u,) > 0. Consequently,

Wy thy — ) Ignll
W En = 8] — Bllag | ligall + llm] (1+ & )

l[unl llunll

which implies that

(Wh> Uy — gn>

b
n>00  lull

and hence contradicting the coercivity condition. This ensures the boundedness
of {uy}.

By the reflexivity of V, there is a subsequence, again denoted by {u,} which
converges weakly to some u € V. Since C is closed and convex, it is also weakly
closed, and hence u € C. Moreover, due to u, € K(u,), we have u € K(u1). Let
{z,} be a sequence that converges strongly to u# and satisfies z, € K(uy). Since

(T(an, up) +wp —m,z — u,) >0, foreveryz e K(uy),
by setting z = z,,, we obtain
(T(an, un) +wy — m,zy — uy) > 0.

We shall now prove the boundedness of {w,}. Applying Lemma 3.3 for F, there
are constants ¢ > 0 and r > 0 such that

rlIiwnll < (Wns 4y — u) + c(r + |lup, — ull)
= (W Up — Zp) + (W, 2 — ) + c(r + [[uy — ul])
< AT(an,2zn) — My 2y — Uy) + (Wy, 2y — u) + c(r + ||u, — ul|)

< llwnllllzn — ull 4 c(r + llup — ul) + Bllanllllzulllizn — unll,
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and consequently,
[r = llzn — wlllllwn — mll < c(r + llun — ull) + Bllanllliznllllzn — unll.

Because of z, — u, the term ||z, — u|| can be made arbitrarily small, and because
the right-hand side of the above inequality remains bounded, we deduce that
{Ilw,, — m||} is bounded.
Now let z € K(x) be arbitrary. Then for some {z,} with z, € K(u,) with z, —
z, and for any w, € F(z), by the definition of u,, we have
(Weo upy — 2) < Wy uy — 2) + (T (an, up) +wyp — m, 2, — uy)
= (Wny2n — 2) + (Wn — Wz, 2 — uy) + (T(an, un) — m, 2y — uy)
< (Wnszn — 2) + (T(an, zn) — M, 2y — uy)
by the monotonicity of F. By passing the above inequality to limit for n — 0o, we
obtain
(T(a,z) + w, —m,u—2z) <O0.

Therefore, we have shown that for every z € K(u) and for every w, € F(z), we
have

(T(a,2) + w, —m,z—u) >0,

and by the Minty formulation, # is a solution that corresponds to g, that is, u =
u(a).
Finally, we have
Je(@) = |lu@) — z|* + kR(a)

< liminf ||u, — z||> + k lim inf R(a,,)
n—o0 n— 00
< liminf J,(a,) = inf{J,(a) : a € A},
n—oo
ensuring that a is a solution. This completes the proof. |

Remark 4.4: Since for each coeflicient a, the quasi-variational inequality has a
multiple solutions, the OLS functional J could be defined as a function of two
variables, namely a and a solution u. However, for simplicity in presentation, we
don’t use that notation.

5. ldentification in variational inequalities under data contamination

We shall now concentrate on understanding the impact on the inverse problem
of any contamination in the variational inequality data. Getting inspiration from
the treatment of ill-posed variational problems, we employ elliptic regularization
(see [47]) for the underlying variational inequality. To make full use of the regu-
larization theory, we further discard the coercivity assumption and work under
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the assumption that the variational inequality is solvable. We continue to work
under the general setting concerning the involved spaces and the continuous and
positive trilinear form T satisfying (7) and (8).

We will focus on the variational inequality: Given a € A, find u = u(a) € K
such that

T(a,u,v —u) > (m,v —u), foreveryv e K. (19)

Additional conditions are necessary to ensure that (19) is solvable. For example,
if K is bounded or some recession conditions hold (see [48, 49]), then (19) is
solvable. However, such conditions don’t guarantee that the solution is unique.
Therefore, to focus on the general case, we assume that for each a € A, the set
of all solutions, which we denote by ¢/ (a), is nonempty. The following lemma
provides additional information:

Lemma 5.1: For any a € A, the set of all solutions U(a) of (19) is closed and
convex.

Proof: Follows by the definition of the set-valued parameter-to-solution map.
|

Remark 5.2: We note that in some applications, in (19), instead of a, we have £(a)
where £ : A — A is a sufficiently smooth map. For simplicity in presentation, in
the forthcoming developments, we don't specify such a map. However all our
results can be appropriately modified to include that generality.

We now consider the following two optimization problems:
Find a € A by solving the output least-squares (OLS) optimization problem

1
minJ(a) == 2 [lu(a) - z||%. (20)

Find a € A by solving the modified output least-squares (MOLS) optimization
problem

mif\l’f(a) = %T(a, u(a) — z,u(a) — 2). (21)

In the above optimization problems, u(a) € U (a) and z € Z is the data. As seen
earlier, the OLS functional (20) minimizes the gap between the computed and
the observed solution in the norm of the observation space Z, whereas the
MOLS functional (21) minimizes the energy associated to the trilinear form. Evi-
dently, (21) requires that z € V. The MOLS objective has been used extensively in
the inverse problem of identifying variable parameters in variational equations,
see [42, 50-53].

We will now approximate (20) and (21) by a sequence of solutions of optimiza-
tion problems where the entire data set is contaminated in the following sense.
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Let {e,}, {tn}, {kn}, {64}, and {v,} be sequences of positive reals. Let £ € V* be a
given element. For eachn € N,letm, € V*and {5, € V*be given elements, and
let z5, € Z be the contaminated data such that the following inequalities hold:

lzs, — zllz < n, (22a)
lmy, —m|lvx < vy, (22b)
145, — Lllv+ < dn. (22¢)

Furthermore, for each n € N, let T, : B x V x V' — R be a trilinear form such
that

Ty, (a,u,u) >0, forallueV,aecA. (23a)
‘T,n(a,u, v) — T(a, u, v)‘ < tyllalsllullvivly, forallu,ve V, aeB.
(23b)
Moreover, as n — 00, the sequences {€,}, {t,}, {kx}, {04}, and {v,} satisty
8
{tn,en,/cn,vn,én,z,—n,ﬁ} — 0. (24)
€n €4 €n

Finally,let S : V x V — R be a symmetric bilinear such that there are constants
ap > 0and By > 0 satistying the following continuity and coercivity conditions

S(u,v) < Bollullvilvlly, forallu,v eV, (25a)
S(u, u) > o¢0||u||%,, forallu e V. (25b)

For each n € N, we now consider the following regularized variational
inequality: Given a € A, find u.,(a) € V such that for every v € K, we have

T, (a,uc,(a),v — uc,(a) + €,5(uc,(a), v — uc,(a))

> (my, + €qls,,v — uc,(a)), (26)

where €, > 0 is the regularization parameter and for simplicity, we set ¢, :=
(€n> Tn> V> ).

Evidently, for a fixed n € N, and for any a € A, (26) has a unique solu-
tion uc,(a). Hence the regularized parameter-to-solution map a — uc,(a) is
well-defined and single-valued.

We will now approximate (20) and (21) by the following families of their
regularized analogues: For n € N, find a., € A by solving

, 1
min Jy., (@) := =|luc, (@) — zs,|I7 + kuR(ac,), (27)
acA 2

o~ 1
min i, (@) := > T(a, ug, (@) — 25, g, (a) — 25,) + knR(ag,), (28)

where uc,(a) is the unique solution of (26), k,, > 0, and R is the regularizer
defined above.
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We begin with the following existence result:

Theorem 5.3: For every n € N, optimization problems (27) and (28) are solvable.

Proof: The proof follows by standard arguments used earlier in this work.
For a fixed n € N, and a € A, the functional J,,(a) is bounded from below
which ensures the existence of a minimizing sequence {a,,} in A such that
limy,— o0 Ji, (am) = inf{Ji, (a), a € A}. Therefore, the sequence {a,,} is bounded
in || - |l as well. Due to the compact embedding of B into L, {a,,} has a sub-
sequence which converges strongly in || - ||r. Preserving the same notation for
subsequences as well, let {a,,} be the subsequence converging to some a € A. We
can show, by using the coercivity of T + €,S, that the sequence of solutions {u7’ }
of (26) remains bounded and converges strongly to u., (a). The optimality of a
then follows by continuity properties of the norm and of the regularizer R. The
proof for (28) is similar. |

The following result shows that (27) approximates (20) and (28) approxi-
mates (21):

Theorem 5.4: Assume that the following two conditions hold:

(1) Theset A is bounded inﬁandfor eacha € A, the solution setU (a) is nonempty,
and the image set U(A) is bounded.

(2) Foranya € A, either U(a) is a singleton, or Z = V, €5 (v) = (z5,, V), £L(v) =
(z,v) and S(u,v) = {u, v).

Then, for every n € N, optimization problem (27) has a solution a,. Fur-
thermore, there is a subsequence {ac,} C A of solutions of (27) converging to a
solution of (20) in || - ||r. The same conclusions hold for (28) and (21) provided
that additionally the following condition holds: For every a € A, and any u,w € V,

lu—zly <lw—zllv=T@au—z,u—z) <T@aw—-zw—2). (29)

Proof: By arguments used in Theorem 5.3, it can be shown that (20) and (21)
have solutions. Moreover, by Theorem 5.3, for each n € N, (27) has a solution
a,. For simplicity, we set a, := a,. Since A is bounded in B, the sequence of
solutions {ay,} is bounded in B. Since B is compactly embedding into L, {a,} has
a strongly convergent subsequence in || - ||1. Let {a,} be such a subsequence con-
verging stronglytoa € Ain || - ||z. Let {u,}, where u, := uc,(a,), be the sequence
of the solutions of (26). That is, we have

Trn(ana Up, V — Up) + €,8(Un, v — Uy)
> (my, + €als,,v — uy), foreveryv e K.

We claim that {u,} is bounded. By assumption, for every a € A, the solution set
U(a) is nonempty. Let 1, € U(a,) be chosen arbitrarily. Since /(A) is bounded
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by assumption, the sequence {u,} is bounded. Moreover, we have
T(an, un,v — uy) > (M,v — u,), foreveryv e K.

We combine the above two variational inequalities, by setting v = u, in the first
one and v = u, in the second one, and obtain

Trn (@ns Uns Upn — Up) — T(an, Up, Uy — tp) + €,8(Un, Uy — Uy) + (M, Uy — Uy)
- (mvn> Uy — Up) — Enw&n» Uy — Up) — T‘L'n(an) Uy — Ups Uy — Uy) > 0,
and from the fact that T, (a,, ity — tp, Uy — uy) > 0, deduce
€nS(Un, tn) < €,8(tp, Uy) + Tt,, (@ns Uns Uy — Up)
— T(an, Uns Uy — Up) — En(ﬁé,,a Uy — Unp).
+ (m, iy — uy) — <mvn> Uy — Up)
< enBollunllvlltnllv + tullanllsltnllvtn — uallv

+ €nlls, lv+llitn — unlly + valltin — unllv,
which implies

Tn

lanlBlltnllv + +
o€y Qp€p Qo

u
. [n nuvﬂ]
luallv

confirming that the sequence {u,} is bounded.
Now let {u,} be a subsequence converging weakly to some u € K. We will
prove that u € U(a). Since a, is a minimizer of (27), for every v € K, we have

Bo, . R N 14 e
lunllv < == liinllv + “ &
0

Trn (> Un> U — Up) + €4Sy, v — uy) > <mvn + enE(Sna v — Uy),

which due to the positivity of T + €,S, further implies that for every v € K, we
have

Tt (an, U,V — Uy) + €,S(0, v — uy) = T, (Ay, Un, v — Uy) + €,5(Un, v — uy)
> (my, + €nls,, v — un),
and consequently,
Tr,(an, 0,V — up) + €,5(V, v — uy) > (My, €, + Ls,, v — uy),
which, by the rearrangement

Tt (an, v, v — uy) = T(an, v, v — uy) + Ty, (an, v, v — uy) — T(an, v, v — uy)
=T(a, —a,v,v—uy) + T(@a,v,v—u)+ T(a,v,u— uy,)

+ Tr,(an, v, v — uy) — T(an, v, v — uy),
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leads to the following inequality

T(ay —a,v,v—uy) +T@v,v—u)+T@v,u—u,) + T (anv,v — uy,)

— T(an, 0,V — Up) + €,.5Up, v — uy) > (M, + €485,V — Uy),

which due to the imposed conditions when passed to the limit n — oo, implies
that

T(a,v,v —u) > (m,v —u), foreveryv € K.

We now insert u + t(v — u) € K with t € (0,1) in place of v in the above
inequality to get

T(a,u,v—u)+tT(a,v—u,v—u) > (mv—u,
and pass the above inequality to limit t — 0 obtaining
T(a,u,v—u) > (m,v—u), foreveryveKk,
which proves that u € U(a).

For a fixed n € N, the optimality of a,, € A for (27) means that for each a € A,
we have

Jen(an) = %lluc,(an) — 25,13 + kuR(an) < tlug, (@) — 25,17 + knR(a), (30)

where u, (a) is the solution of regularized optimization problem (26) for param-
etera € A.
Let (&, &) be a solution of (20). Then, (30) confirms that

Jen(@n) = %luc,(an) — zs, I + kaR(an) < 3luc, @) — 25,115 + €uR(@),

where uc, (a) is the solution of regularized optimization problem (26) for param-
etera € A.

We first study the behaviour of u,(@). By the definition of uc,(a), for any
v € K, we have

Tr, (@, uc, (@), v — uc, (@) + €,S(uc, (@), v — uc,(a))

= <mvn + 61165,,; v — ugn(a»' (31)

By arguments similar to those used at the beginning of this proof, we can show
that the sequence {uc,(a)} is bounded, and there is a subsequence {uc, (@)}
converging weakly to some u € U(a).
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Let us now consider the following variational inequality of finding @ € U/(a)
such that

S, w—1u) > ({,w—1u), foreveryw e U(a), (32)

which, due to the coercivity of S(-, ), has a unique solution #%, and since & € U (a),
we have

T(a,u,v —u) > (m,v —u), foreveryv € K. (33)
By combining (31) and (33), we obtain
T(@, ug, (8) — it, it — ug, (3))
+ Tr, (@, uc,(a), it — uc, (@) — T(a,uc, (@), u — uc,(a))
+ €,S(uc, (@), 4t — uc,(a)) = (m,, —m+ €,ls,, i — uc,(a))
and by using the positivity of T, we get

Tn ~ Vn ~ ~ ~ ~
E—||61||B||ug,,(61)||v + - + 6| llu—ug,(@|v — €(u—ug,(a))
n

> S(ug, (a), ug, (a) — i)

> S(it, ug, (a) — i) (34)
which, when passed to the limit n — o0, yields
S, u—u) = L(u—u). (35)

We use (32), (35), and the positivity of the bilinear form, to obtain 0 > S(u —
u,u—u) > ogllu— ﬁll%, and hence u = #. Since u is uniquely defined, the whole
sequence u, (@) converges weakly to u. The convergence is in fact strong because
of (34). Indeed, using (34), we can prove that
limsup |ug, @) — @3, < 0
n—>oo

and hence the strong convergence of {u, (a)} to u = u(a) follows.

Let us now assume that {/(a) is a singleton for each a € A. Then, by using
the weak lower-semicontinuity of the norm and the regularizer R, and (30) (with
a = a), we have

L. 2 g o] 2
= 21, < liminf — lug, @) — 2,13
< limi fl 2 R
< limin E{””gn(an)_ZSnnz'i‘Kn (an)}
L1 R 2 R
< liminf > {lug, @ — 25, 1% + K:R(@)|

. 1 n 2 Lo 2
< lim sup > g, @) — 23 = 5 8@ — I},
n— 00
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and since U(-) is a singleton, we have u(a) = & which proves that ||u — zllé <

lla(a) — zllé, and hence (a, u) € graph(Uf), where u = u(a), is a solution of (27).
For the case when U/(-) is set-valued map, for any v € V, we take £5,(v) =

(2s,>v) and S(u,v) = (u, v). Then, it follows from (32) that for an arbitrary # €

U(a), we have (i — z, 1 — u1) > 0 which implies that |# — z||y < ||t — z||v, and

hence & = u(a) is the element closest to z among all the elements i € U(a).
Using this observation, we have

(@) — 2II%, < liminf {|lug, @) — 25, I + kaR@},

. ~ 2
< lim sup [lug, @) — I3
n—o0

—n 2 oo 2
= [u(a) —zllz < llu(a) — zly,

where 1(a) € U(a) is arbitrary. In other words, the above inequality confirms
the existence of an element (a, u(a)) € graph({/) such that for every (a,u) €
graph({/), we have

= 2 2
lu(a@) —zlly, < llu —zlly

and hence a € A is a minimizer of (20). The proof is complete. |

Remark 5.5: Because it can happen that || — z|| > |1 — z||, the optimality
of (a,u) € graph(U) is shown by establishing that || — z|| < ||t — || as by
assumption, we have ||t — z|| < ||lu — z|| for all (a,u) € graph(if) with a € A.
Evidently, if U/ (a) is singleton for each a € A, then the supplied arguments remain
valid for any S and £.

Remark 5.6: Note that in Theorem 4.3, the boundedness of the minimizing
sequence was proved by the aid of the regularizer R. On the other hand, the lack
of any regularizer in (20) or (21), prompted the additional condition that A is
bounded in B. Indeed, analogs of all of our results can be proved for a fix regu-
larization parameter « in the original and the regularized problems but without
the assumption that A is bounded in B.

Our next step is to replace variational inequality (26), which is a constraint for
the optimization problems (27) and (28) by a variational equation. For this, we
recall that a penalty map for K is a bounded, hemi-continuous, monotone map
P:V — V*such that

K = {v € V| P(v) = 0}. (36)

An example is P = (I — Px), where I is the identity and Pk is the projection
onto K.

For n € N, a given parameter ¢, > 0 and the penalty map P, consider the
penalized-regularized variational equation: Find u,(a) € V such that for every
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v € V, we have
1
Ty, (a, uc,(a), v) + €,S(ug, (a), v) + = (P(uc, (@), v) = (my, + €nls,,v). (37)
n

where for notational simplicity, we set ¢, := (€4, Tn> V> Sn» Ln)-
We have the following existence result for regularized penalized equa-
tions (37).

Theorem 5.7: For each n € N, and for any a € A, (37) has a unique solution
uc,(a).

Proof: The proof follows from the ellipticity of T + €,S and the monotonicity
of P. [

We will now formulate analogues of (27) and (28) where the underlying regu-
larized variational inequality has been replaced by the regularized-penalized vari-
ational equation: For n € N, find a., € A by solving the following optimization
problem:

. 1
min Jy, (@) := = |luc,(a) — 25,11 + kuR(ug,), (38)

acA 2

~ 1
minJy, (@) := > Tr, (a,ug, (@) = 2, ug, (@) = 23,) + nR(ug,), ~ (39)

where u, (a) is the unique solution of (37), k,, > 0, and R is the regularizer given
above.
We give the following existence and convergence result:

Theorem 5.8: Assume that conditions (1) and (2) of Theorem 5.4 hold. For
each n € N, optimization problem (38) has a solution a,. There is a sequence
{(ag,,uc,)}, where u., = uc,(ac,) is a solution of (37) corresponding to a,, such
that for n — oo, we havea., — ainL, uc, — winV, where a is a solution of (20)
and u = u(a) is a solution of (19). The same relationships hold for (39) and (20)
under the condition (29).

Proof: For a fixed n € N, the existence of a solution a., of (38) follows by argu-
ments analogous to those used in the proof of Theorem 5.3. For the convergence,
we note that the sequence {a.,} C A is bounded in | - ||3. Therefore, due to the
compact embedding of B into L, there is a subsequence that converges strongly
in| - |l; tosomea € A. Let u, be the sequence of solutions of (37) correspond-
ing to a,. Clearly, the sequence {u,} is bounded as well. Consequently, there is
a subsequence {u,} which converges weakly to some u € V. We will show that
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u € K. By (37), for every v € V, we have

(P(i1g, (), v) = 1y [(my,, + €nls,, v) — Tr, (g, g, (@), v) — €,8(ug, (@), V)],
(40)
proving || P(uc,(a))|lv — Oast, — 0.Bythe monotonicity of P, foreveryv € V,
we have

0< nli)n;O(P(v) — P(ug,),v — ug,) = (P(v),v — u). (41)

For an arbitrary z € V, we set v = u + tz where t > 0, and obtain (P(u +
tz),z) > 0, which due to the hemicontinuity of P, when passed to limit t — 0
gives (P(u1),z) > 0, confirming P(1) = 0 or equivalently # € K.

By rearranging (37), for every v € K, we have

_ _ _ 1 _ _
Ty, (ac,,uc,(a),v —ug,) + €,S(uc,(a),v — uc,) — L— <P(v) — P(uc,),v — ”gn)
n

1 _ _
+ t— (P(v),v — u§n> = (m,, + €xls,, v — ucg,),
n
and the monotonicity of P and the fact that P(v) = 0, for any v € K, imply that
for every v € K, we have

Ty, (ac,>uc,(a),v — uc,) + €,S(uc,(a),v — uc,) > (m,, + €xls,, v — Uc,),
(42)
which when passed to the limit # — oo, confirms that

T(a,v,v—u) > (m,v—u), foreveryve K.

Setting v = u + t(v — u), with t € (0, 1], we obtain T'(a,u,v — u) + tT(a,v —
u,v —u) > (m,v — u), and by taking t — 0, we get

T(a,u,v—u) > (mv—u), foreveryvelKk, (43)

verifying that u = u(a).

We know that {u.,} converges weakly to #. However, the fact that {u.,} con-
verges strongly to # can be proved by following the arguments used in the proof
of Theorem 5.3.

Now let ayp € A be a solution of (20) and let 1 be the corresponding solution
of (19). For ay, let ¢, (ap) be the unique solution of the penalized equation: Find
u € V such that

1

Ty, (ao, 4, v) 4+ €,5(u, v) + - (P(u),v) = (my, +€,45,,v), veV
n

Then, in view of the above discussion, firstly, i, (a9) — ug as n — 00, and sec-

ondly, (a, ii¢,(ao)) is a feasible point for optimization problem (38). The proof

of the optimality is then quite similar to the one given in Theorem 20. |



22 (&) AAKHANETAL

The key advantage of replacing the variational inequality by the penalized
equation is that for the latter, the parameter-to-solution map is smooth, provided
that the penalty map enjoys smoothness. For this, we replace P by its smooth
approximation. For simplicity, we take P(u) = (I — Pg)(u), and for parameters
0n > 0, define a family of its smooth approximation Py, : V — V, satisfying the
following conditions (partly motivated by [15]):

(PC1) For any gy, P,, is monotone, Null(P,,) = K, and for v € V, P,,(v) —
P(v) as g, — 0.

(PC2) For any g, the derivative Pén of P,, exists at every point and satisfies the
following:

<Pén (w)v, v) >0, foreveryu,velV, (44)

<P;n (u)v,PK(u)) =0, foreveryu,velV. (45)

For n € N, the given penalty parameter ¢, > 0, and the corresponding smooth
approximation of the penalty map P,,, we now consider the smooth penalized-
regularized variational equation: Find u., € V such that for everyv € V, we have

1
Ty, (a,uc,(a),v) + €,S8(uc,(a),v) + = (PQn (ug,(a)), v> = (my, + €4l5,,v),

(46)
where we continue to use the short-hand notation ¢, := (€5, Tn, Vii> 8115 Lns On)-
The following ensures the smoothness of the parameter-to-solution map:

Theorem 5.9: Forafixedn € N, themap a — uc,(a) is differentiable at any point
a in the interior of A (assumed to be nonempty). For any direction §a € B, the
derivative Suc, = Duc,(a)(8a) is the unique solution of the following variational
equation

1
Ty, (@, 81, ) + €nS(Butc, V) + — <P’Q (ug, ), v>
ln "

= —T.,(8a,uc,,v), YvelV. (47)

Proof: For a fixed n € N, the differentiability follows from the implicit function
theorem applied to the map G: A x V — V given by

1
(a,uc, (@) — Tr,(a,ug,(a),-) + €,5(ug,(a),-) + = (Po, (g, (a)), ")

where Ty, (a,uc,(a),-), S(ug,(a), ), and (P,, (uc,(a)),-) are the dual element
given by the Riesz representation theorem. The derivative D,G(a, uc,(a)) : A x
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V — Vs given by
DuG(a, ug,)(8u) = T, (@811, -) + €xS(S11, ) + i(Pén(u) (8u§n)-).
For any w € V, the following equation
Try @ 30) o €5(G) + = (P (g, )00, ) = (o,

is uniquely solvable. Therefore D, G(a, -)(uc,) : V — V is surjective and the dif-
ferentiability follows from the implicit function theorem. Finally, from (37), for
every v € V, we have

Ty, (a,duc,,v) + Ty, (8a, uc,,v) + €,5(8uc,, v)
1
+ - (P; (ugn)c‘Iugn,v> =0, VYveV,
8 n
and (47) follows. The proof is complete. |

Remark 5.10: As customary, we will redefine the role of A by assuming that there
is a slightly larger open set on which the parameter-to-solution map is defined
and differentiable. This simplification will allow to use optimality conditions on
the closed set A.

We now consider analogues of (38) and (39) where the constraint regularized
variational equation has been replaced by the smooth regularized-penalized vari-
ational equation: For n € N, find a, € A by solving the following optimization
problems:

. 1
min J,(a) := =|luc, (@) — 25, |% + kuR(ug,), (48)
acA 2

o~ 1
r;lglgh(d) = ETfn (a,ug,(a) — zs,, Uc, (@) — z5,) + knR(uc,), (49)

where u, (a) is the unique solution of (46), k, > 0, and R is the regularizer
defined above.

In the following optimality condition for (48), Pén (ug,)* is the adjoint of
P/Qn(ugn):

Theorem 5.11: Assume that conditions (1) and (2) of Theorem 5.4 hold. For each
n € N, optimization problem (48) has a minimizer a., € A. Moreover, for any such
minimizer ac, of (48), there exists p., € V such that

1
Tfn (a’pgn’ U) =+ Ens(pgn’ U) + L_ (P/Qn (ugn)*pgn’ U>
n

= (uc, —zs5,,v)z, Yvev, (50)
Ty, (ag, — a,uc,, pe,) — kn (R(ag,) — R(@)) >0, VaeA. (51)
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Proof: For a fixed n € N, the existence of a solution a., € A of (48) follows by
the standard arguments. Moreover, such a solution a., satisfies the following
variational inequality as a necessary optimality condition

Dju(ac,)(a —ag,) > ky (R(agn) — R(a)) , foreveryaeA, (52)
where J,,(a) := %H uc,(a) — zllé, and hence for any a € A, we have
D]”(a§n)(a - agn) = (Dugn (agn) (a— as‘n)’ Ug, — Z>Z :

Let us now consider the adjoint variational equation: Find p, € V such that

1
Ttn (agn’pgn’ U) + Ens(pgn’ v) + L_ <P/Qn (ugn)pgn’ U>
n
= (ug, — 25,,V)z, YveV. (53)

Let p., be the unique solution of (53). Setting §u., := Duc,(ac,)(a — ac,), we
have

(uc, — zs,,8uc,)z = Ty, (ac,, pc,»0uc,) + €xS(pc,,duc,)
1 / *
+ L_ <PQn(u§n) Psu> 8M§n>
n
= Tfn (agn’ Sugn’pgn) + Ens(gugn’pgn)
1
+ L_ <P/Qn(u§n)8u§n’p§n>
n
= Tfn (agn - a4 ugn’pgn)’
where we used derivative formula (47). Consequently,

D]n(agn)(a - ag,,) = TTn (agn -4 ugn’pgn)’

and (51) follows by substituting this expression in (52). The proof is complete.
[ |

Under additional ellipticity condition on T, we now give the following opti-
mality conditions for the original problem (20):

Theorem 5.12: Assume that conditions (1) and (2) of Theorem 5.4 hold. Assume

that the adjoint solutions {p.,} remain bounded. Then, there exists a minimizer a
of (20)andu € V,p € V, 1 € V* with () = 0 and

T(a,u,v—u) > (mv—1u), foreveryv ek, (54a)

T(a,p,v) + X(v) = (ﬁ —z, v)Z , foreveryv eV, (54b)

T(a—a,u,p) >0, foreveryac€ A. (54c¢)
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Proof: Forn € N, let {a.,} be asequence of solutions of (48), let u, be the corre-
sponding solutions of the penalized equation (46), and let p, be the solutions of
the adjoint equation (53). By arguments similar to those used in Theorem 5.8, we
can show that there is a subsequence that converges in || - || to some a € A. We
point out that u., solve the smooth penalized equations and therefore the argu-
ments need to be slightly modified. The crucial observation is that (40) holds
for P,,, however, due to the assumption P,, (1) — P(u) for n — oo, the conclu-
sion of (41) holds and the rest. Other arguments go through without any change.
Moreover, the proof of the strong convergence of u, to # = u(a) holds without
any change and hence (54a) holds.

By assumption, the adjoint solutions are bounded, and hence there is a
weakly convergent subsequence {p.,} C V such that p., — p € V. Define two
functionals A, A:V—>R by

1
)\’gn(v) = L_ <P/§n (ugn)*pgn’ U> = <u§n - an’ U> - Tfn (agn’pgn’ U) - ens(p§n’ U),
n

(55)
A) = (it — z,v) — T(@,p,v). (56)
Clearly, A,, A € V*, and the convergence a., — ain | - || and uc, — uin | -

|V yields

)\'S‘n(v) = (ugn - Z(Sn’ U) - Tfn(agn’pgn’ U)
— €,8(pc, V) — (ft — 2z, v> —T(@,p,v) = A (v)

as n — oo. Since this convergence is true for each v € V, we deduce that the
sequence {A.,} converges weakly to 1. We take v = P (u,) in (55) and obtain
- 1 / %=
)\’S'n(PK(uS'n)) = g_ (Pgn(u§n) pgn’PK(ugn)> = 0.
n

By the continuity of the projection map, we get 0 = A, (Pk(uc,)) — X (@) for
n — 00, and consequently, X (@) = 0. For (54c), it suffices to take limits in (51).
In fact, since a., — a, u,, — i, and p., — p, by using the properties of T, and
by taking the limit # — oo in

Tfn(agn - a ugn’pgn) Z Kn (R(ag‘n) - R(a))

we get T(a — a, i1, p) > 0, which completes the proof. [ |

We now give an optimality condition for the MOLS based optimization
problem (49):

Theorem 5.13: Assume that conditions (1) and (2) of Theorem 5.4 hold. For each
n € N, optimization problem (49) has a minimizer a., € A. Moreover, for any such
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solution ac, of (49), there is q., € V such that for each a € A and eachv € V, we
have

T+, (ag,, 4¢, V) + €:5(qq,, v) + & (Pén (ug,) g, U>

= Tr, (ac,» e, — Z5,, V), (57)
ETTn (@ —ag,, ug, — zs,,Ug, — 2s,,)

+ T(a—acg,uc,qc,) = Kn (R(agn) — R(a)) . (58)

Proof: We will follow the scheme of Theorem 5.11. For a fixed, n € N, leta., €
A be a solution of (49), and u,, be the corresponding solution of the penalized
regularized variational equation. Then

DTn(agn)(a —ag,) = Ky (R(agn) — R(a)) , foreverya € A,

¥ 1
where J,(a) := 5T¢,(ag,, Ug, — 25, Ug, — 2s,,)-
By using the notation duc, := Duc,(ac,)(a — ac,), we have

~ 1
D]n(agn)(a - agn) = ETfn(a - agn’ ugn - an’ ugn - Z‘Sn)
+ Ty, (ac,, Suc,, uc, — zs,). (59)

We now consider the adjoint equation of finding q., € V such that

Tt (ag,, 4c,» V) + €,5(qg,> v) + é (P,Qn (ug,) " qg,» v>
= Ty, (ac,»zs, — Uc,,v), YveEV. (60)
Clearly, (59) is uniquely solvable, and let g, be its unique solution. Then,
Ty, (ag,, ug, — 2s,,8ug,)

1
= —Tr,(ag,> g, Su¢,) — €,8(qg,,Sug,) — o (P/Qn (”gn)*Q§n’5“§n>
n

1
= —Tr,(ag,,dug,»qc,) — €nS(8alic,>qg,) — . (Pén(”gn)fsugn’ Q§n>
n
= T'[n ({Z - agn’ ugn’ qgn)
by using the derivative characterization Theorem 5.9. Using this in (59), yields

T 1
D]”(agn)(a - agn) = ijn(a - agn’ ugn - Zén’ ugn - 28”)

+ Tfn(a - agn’ ugn’q§n)’

which at once gives the desired inequality. |
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Under additional ellipticity condition on T, finally, we have the following
optimality conditions for the original MOLS:

Theorem 5.14: Assume that conditions (1) and (2) of Theorem 5.4 hold. Assume
that the adjoint solutions {p.,} remain bounded. There exists a solution a of (21)
andu e V,qe V,x € V* with A(u) = 0 and

T(a,g,v) + r(v) = T(a,z — &, v) foreachv €V, (61a)
T(a,u,v—u) > (m,v—u), foreachv ek, (61b)

1
ET(a —a,u—z,u—z)>T(a—a,uq), foreacha e A. (61c)

Proof: The proof follows from the arguments used in the proof of Theorem 54.
[ |

Remark 5.15: The adjoint equations (53) and and (59) are entirely comparable
with the regularized-penalized equation (37). We note that although the adjoint
solutions are uniquely defined (due to the elliptic regularization by S), their
boundedness would require additional information. For example, milder coerciv-
ity, or the existence of p or g satisfying the corresponding equations would suffice.
This approach is akin to the elliptic regularization of the variational inequalities
where we proved that the regularized solutions are bounded provided that the
original variational inequality is solvable.

6. Identification in a simplified elastic-plastic torsion model

We consider an elastic-plastic torsion problem for visco-elastic material studied
by Kano, Kenmochi, and Murase [32]: find u € Hé(Q) and w € B(u) such that
|Vu| < ko(u), a.e on Q with

/aVu-V(v—u)+/w(v—u)sz(v—w),
Q Q Q

forallv € Hé () with |Vv| < k.(v) a.e. on Q. Here © is suitable domain in R?,
f € L*(), a is the materail material and B(-) is a maximal monotone graph in
R x R with linear growth at £00. Contrary to [32], a does not explicitly depend
on u or its gradient.

In the above model, our objective is to identify the parameter a from a mea-
surement of its u. To reformulate the above problem in the framework supplied
above, we set V = Hé () and B = L*°(2). Let «* be a constant, and let . be
a Lipschitz continuous real function on R such that 0 < «.(r) < «*, for every
r € R. Define a convex set Cand K : C = Cby

C={weV||Vw| <% ae onQ},
K@) ={we V| |Vw| < k:(v), a.e.on R},
which satisfy conditions (M1) and (M2) of Theorem 4.3 (see [32]).
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We focus on identifying a in the quasi-variational inequality: Find u € K(u)
such that

T(a,u,v —u) + (Fu,v — u) > (m,v — u), foreveryv e K(u),

where T(a, u,v) = f o @VuVvand F = B. It can be shown that the trilinear form
T(a,u,v) = fQ aVuVv is indeed, elliptic, continuous, and satisfies (7).
For the regularizer, we recall that the total variation of f € L}(2) is given by

TV(f) = sup{/f(v g):g€ (Cl(Q))N, lg(x)] < 1forallx € sz}
Q

where | - | represents the Euclidean norm. Clearly, if f € W'!(Q), then TV(f) =
Jo IVFl.

If f € L1(Q) satisfies TV(f) < oo, then f is said to have bounded variation,
and the Banach space BV () is defined by BV(Q) = {f € L}(R) : TV(f) < oo}
being endowed with the norm ||f|lsv(2) = IIfllL1(@) + TV(f). The functional
TV(-) is a seminorm on BV(R2) and is often called the BV-seminorm.

We set L = L'($2), B = BV(R2), and R(a) = TV (a), and define two sets

Al ={aecLl®(Q)|c1 <alx) <c, aein,},

Ay ={acLl®Q)|c <alx) <c, aeinQ, TV(a) < c3},

where ¢;,c; and c3 are positive constants. Clearly, both sets are compact in
L, whereas A, is bounded in || - |3 It is known that L°°(2) is continuously
embedded in L' (), BV(Q) is compactly embedded in L!(£2), and TV(-) is con-
vex and lower-semicontinuous in L!(£2)-norm. Summarizing, all the imposed
conditions are satisfied and consequently the developed framework ensures the
identification of a discontinuous parameter in the above model.

7. Numerical results

We now report the outcome of two preliminary experiments to show the numeri-
cal feasibility of the identification in variational inequalities. The first experiment
shows, for the coercive case, a slightly better reconstruction by the MOLS objec-
tive. In the second experiment, we look at the impact of data contamination.
In both of the experiments, we use piecewise linear finite element discretiza-
tion for numerically solving the discrete analogs of the optimality systems for
the OLS and the MOLS objectives. We solve the discrete optimality systems
by a Damped Gauss-Newton iteration with an Armijo rule line search. For the
numerical experiments, we choose 2 = [0, 1] x [0, 1].
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7.1. A coercive example

In this experiment, we identify a in the following variational inequality of finding
ueK:={ue Hé(SZ)| u(x) >0, ae.Q CV:= Hé (£2) such that

/ (a+0.01)’VuV(v — u) > / m(a)(v —u), foreveryv €K, (62)
Q Q

where © C R? is a suitable domain. We choose B = L*°(2) and for ag > 0,a; >
0, define

A:={aecl™®(Q)|0<ay<ac<a ae inQ}.

The exact solution in this setting is given by: a(x;, x2) = 1 + 0.25(sin?(27x1) +
cos(2mx;)). Note that (62) is slightly more general than (19) where instead of
a we have £(a) = (a+ 0.01)? and the functional m(a) = a — 7 cosQmx;) +
0.5 sin(2x;) depends on the coefficient. Therefore, our results needs to be
slightly modified to take into account these generalities.

Tables 1 and 2 show that the MOLS functional yields slightly better recon-
struction than the OLS functional. The reconstruction error in the OLS is about
8% in the discrete L2-norm whereas for the MOLS it is between 3% and 5%, see
Figures 1-4.

7.2. A non-coercive example

We now consider the inverse problem of identifying a variable parameter a in the
variational inequality of finding u € K C V := H} () such that

/ aVuV(v — u) > /f(v —u)dx, foreveryv €K, (63)
Q Q

Table 1. Example 7.1: Reconstruction error for the OLS.

) la" — Ihdoll;2 (g u" = ubll 2 lla" — Ih@ollioo g luh — Ul ()
”IhaOHLZ(Q) HUS”LZ(Q) ||IhaO||L°°(Q) HUS”L%(Q)
0.0707107 0.087 0.110 0.154 0.105
0.0565685 0.085 0.087 0.154 0.085
0.0471405 0.086 0.061 0.191 0.061
0.0404061 0.084 0.052 0.198 0.054
0.0353553 0.081 0.059 0.164 0.071

Table 2. Example 7.1: Reconstruction error for the MOLS.

h la" — Ihdoll;2 () U — ufll 2 lla" — Ihao oo (o) lluh — ufllee (e
lllnaoll 2 () lufll2q [llhdollLee () l[ublio0 ()
0.0707107 0.031 0.016 0.069 0.017
0.0565685 0.030 0.015 0.070 0.015
0.0471405 0.030 0.015 0.080 0.020
0.0404061 0.032 0.016 0.096 0.027

0.0353553 0.051 0.023 0.145 0.049
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Figure 1. Reconstruction for h =0.0353553. The left figure shows the exact coefficient, the mid-
dle figure shows the coefficient by the MOLS approach, and the right figure shows the coefficient
by the OLS approach.
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Figure 2. Reconstruction for h =0.0353553. The left figure shows the exact coefficient, the mid-
dle figure shows the coefficient by the MOLS approach, and the right figure shows the coefficient
by the OLS approach.

Figure 3. Reconstruction for h =0.0353553. The left figure shows the exact solution, the middle
figure shows the solution by the MOLS approach, and the right figure shows the solution by the
OLS approach.
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Figure 4. Reconstruction for h =0.0353553. The left figure shows the exact solution, the middle
figure shows the solution by the MOLS approach, and the right figure shows the solution by the
OLS approach.

where Q@ C R? is a suitable domain and K = {u € Hé ()] u(x) = 0, a.e. 2}. We
choose B = L (2), and for a given positive constant a;, define

A:={aecl™®(Q)|0<a<aae inQ}.

The exact data to be u(xy,x2) = x1(1 — x)x2(1 — x3) and a(xy, x3) = x1x3.
Since a vanishes at 0, the ellipticity fails for the associated trilinear form. We solve
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the optimality conditions for (27). In numerical computations, we consider H'
norm as regularizer and data z is obtained by directly interpolating u.

We take 1 =0.0707107 and a keep a regularization parameter . Numerical
experiments show that reconstruction is quite indifferent for &, € [0,0.0001], see
Table 3 for ¢, = 0.0001.

To study the influence of the noise, we consider the contaminated data zs, =
z 4 §,n(t) with n(t) uniformly distributed in [0, 1]. We consider two noise lev-
els, 8, € {0.0001,0.001}. The reconstruction rate is stable for these noise levels,
see Table 3 and Figures 5 and 6. For bigger noise levels, the proposed algorithm
becomes unstable and the reconstruction rate is quite poor. We can check this
fact for the particular case 8, = 0.01 in Figure 7.

Table 3. Reconstruction Error for the OLS for e = 0.0001, h =0.0707107 for different noise levels.

Nolse lla" — Ihall 2 lu" — @20 lla" — Ihalli= o) llu? — @l )
! lhall2(e) G912 llhallzee () 3100 )

0 0.013 0.009 0.019 0.024

le—04 0.014 0.010 0.021 0.026

1e—03 0.027 0.008 0.033 0.037

SERRREEREREINERIERNE

Figure 5. h=0.0707107, x = € = 0.0001. Reconstruction with noise level §, = 0.001.

Figure 7. h=0.0707107. Reconstruction for noise level , = 0.01.
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8. Concluding remarks

We presented identification results for multi-valued quasi-variational inequali-
ties defined on general constraint sets depending on the unknown solution. On
the other hand, for noncoercive variational inequalities, we combined elliptic
regularization with a penalization and smoothing which permitted us to derive
new optimality conditions. A comparison between the two approaches sheds
some light onto to difficulties associated with an adequate treatment of quasi-
variational inequalities. For the general constraints, as considered in this work,
the parameter-to-solution map is typically multi-valued. Therefore, its smooth-
ness needs to be studied by tools from variational and set-valued optimization.
On the other hand, although non-coercive variational inequalities also have
a set-valued parameter-to-solution map, the elliptic regularization results in a
single-valued parameter-to-regularized solution map. Furthermore, a penaliza-
tion, coupled with smoothing, permits to study its differentiability and eventually
leads to optimality conditions. We emphasize that it is expected that for smaller
regularization parameters, the numerical solution will show some instability
because, for the unregularized problem, the parameter-to-solution map is in gen-
eral nonsmooth. Moreover, the developed techniques are not readily available for
quasi-variational inequalities, the elliptic regularization does not render a single-
valued parameter to solution map, and a general penalization approach is not
available. A possible way is to restrict to the so-called general solution and apply
the developed tools through that. Some of these possibilities will be addressed in
future research.

Acknowledgements

We are grateful to the reviewers for the careful reading that brought substantial improvements
to our manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research of Akhtar Khan is supported by the National Science Foundation under
Award No. 1720067. The research of Stanislaw Migorski is supported by the Euro-
pean Unions Horizon 2020 Research and Innovation Programme under the Marie
Sktodowska-Curie grant agreement No. 823731 CONMECH, and National Science Cen-
ter of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262. The research
of Miguel Sama is partially supported by Ministerio de Economia y Competitividad
(Spain), project MTM2015-68103-P and [grant number 2019-MAT12] (ETSI Industriales,
UNED).



OPTIMIZATION (&) 33

References

1]
2]

[16]

(17]
(18]
(19]
(20]

(21]

Hu B. A quasi-variational inequality arising in elastohydrodynamics. SIAM ] Math Anal.
1990;21(1):18-36.

Boulaaras S, Bencheikh le Hocine MA, Haiour M. The finite element approximation
in a system of parabolic quasi-variational inequalities related to management of energy
production with mixed boundary condition. Comput Math Model. 2014;25(4):530-543.
Barbagallo A. Regularity results for evolutionary nonlinear variational and quasi-
variational inequalities with applications to dynamic equilibrium problems. ] Global
Optim. 2008;40(1-3):29-39.

Daniele P. A remark on a dynamic model of a quasi-variational inequality. Rend Circ
Mat Palermo. 1997;2(Suppl. 48):91-100. Equilibrium problems with side constraints.
Lagrangean theory and duality, II (Scilla, 1996).

Maugeri A. Variational and quasi-variational inequalities in network flow models.
Recent developments in theory and algorithms. In: Variational inequalities and network
equilibrium problems (Erice, 1994). New York: Plenum; 1995. p. 195-211.

Motreanu D, Sofonea M. Quasivariational inequalities and applications in frictional
contact problems with normal compliance. Adv Math Sci Appl. 2000;10(1):103-118.
Sofonea M, Matei A. History-dependent quasi-variational inequalities arising in contact
mechanics. European ] Appl Math. 2011;22(5):471-491.

Lenzen F, Becker E, Lellmann J, et al. A class of quasi-variational inequalities for adaptive
image denoising and decomposition. Comput Optim Appl. 2013;54(2):371-398.

Ton BA. Time-dependent quasi-variational inequalities and the Nash equilibrium. Non-
linear Anal Ser A Theory Methods. 2000;41(7-8):1057-1081.

Borzi A, Kanzow C. Formulation and numerical solution of Nash equilibrium multiob-
jective elliptic control problems. SIAM ] Control Optim. 2013;51(1):718-744.

Naito K. A system of quasivariational inequalities and its application to reaction diffusion
equations. Publ Res Inst Math Sci. 1985;21(4):677-698.

Barrett JW, Prigozhin L. A quasi-variational inequality problem arising in the modeling
of growing sandpiles. ESAIM Math Model Numer Anal. 2013;47(4):1133-1165.
Abouchabaka J, Aboulaich R, Nachaoui A, et al. Quasi-variational inequality and shape
optimization for solution of a free boundary problem. COMPEL. 1999;18(2):143-164.
Barrett JW, Prigozhin L. A quasi-variational inequality problem in superconductivity.
Math Models Methods Appl Sci. 2010;20(5):679-706.

Bayada G, El Alaoui Talibi M. An application of the control by coefficients in a vari-
ational inequality for hydrodynamic lubrication. Nonlinear Anal Real World Appl.
2000;1(2):315-328.

Hintermiiller M. Inverse coefficient problems for variational inequalities: opti-
mality conditions and numerical realization. M2AN Math Model Numer Anal.
2001;35(1):129-152.

Gonzalez GA. Theoretical framework of an identification problem for an elliptic varia-
tional inequality with bilateral restrictions. ] Comput Appl Math. 2006;197(1):245-252.
Adly S, Bergounioux M, Ait Mansour M. Optimal control of a quasi-variational obstacle
problem. J Global Optim. 2010;47(3):421-435.

Hasanov A. Inverse coefficient problems for elliptic variational inequalities with a
nonlinear monotone operator. Inverse Probl. 1998;14(5):1151-1169.

Zheng C, Cheng X, Liang K. Numerical analysis of inverse elasticity problem with
Signorini’s condition. Commun Comput Phys. 2016;20(4):1045-1070.

Yang R, Ou YH. Inverse coeflicient problems for nonlinear elliptic variational inequali-
ties. Acta Math Appl Sin Engl Ser. 2011;27(1):85-92.



34 A.A.KHAN ET AL.

(22]

(23]
(24]
[25]
[26]
[27]

(28]

[29]

(30]
[31]

(32]

(33]

(34]

(35]
(36]

(371

(38]

(39]

(40]
(41]

(42]

Kupenko OP, Manzo R. Approximation of an optimal control problem in coefficient
for variational inequality with anisotropic p-Laplacian. Nonlinear Differ Equ Appl.
2016;23(3):Art. 35, 18.

Barabasz B, Gajda-Zagodrska E, Migorski S, et al. A hybrid algorithm for solving inverse
problems in elasticity. Int ] Appl Math Comput Sci. 2014;24(4):865-886.

Migérski S, Ochal A. An inverse coefficient problem for a parabolic hemivariational
inequality. Appl Anal. 2010;89(2):243-256.

Hoftmann KH, Sprekels J. On the identification of parameters in general variational
inequalities by asymptotic regularization. STAM ] Math Anal. 1986;17(5):1198-1217.
Gwinner J, Jadamba B, Khan AA, et al. Identification in variational and quasi-variational
inequalities. ] Convex Anal. 2018;25(2):545-569.

Khan AA, Motreanu D. Inverse problems for quasi-variational inequalities. ] Global
Optim. 2018;70:401-411.

Migorski S, Khan AA, Zheng S. Inverse problems for nonlinear quasi-variational
inequalities with an application to implicit obstacle problems of p-Laplacian type. Inverse
Probl. 2019;35(3):035004.

Migérski S, Zeng B. Convergence of solutions to inverse problems for a class of
variational-hemivariational inequalities. Discrete Contin Dyn Syst B. 2018; 22 pages.
DOI:10.3934/dcdsb.2018172

Zeng B, Migorski S. Variational-hemivariational inverse problems for unilateral fric-
tional contact. Appl. Anal. 2018; 21 pages. DOI1:10.1080/00036-811.2018.1491037

Shi P, Shillor M. Noncoercive variational inequalities with application to friction prob-
lems. Proc Roy Soc Edinburgh Sect A. 1991;117(3-4):275-293.

Kano R, Kenmochi N, Murase Y. Existence theorems for elliptic quasi-variational
inequalities in Banach spaces. In: Recent advances in nonlinear analysis. Hackensack
(NJ): World Sci. Publ.; 2008. p. 149-169.

Bensoussan A, Lions J-L. Nouvelle formulation de problémes de contrdle impulsionnel
et applications. C R Acad Sci Paris Sér A-B. 1973;276:A1189-A1192.

Mosco U. Implicit variational problems and quasi variational inequalities. In: Nonlinear
operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels,
1975). Berlin: Springer; 1976. p. 83-156. (Lecture notes in math.; vol. 543).
Kovtunenko VA, Leugering G. A shape-topological control of variational inequalities.
Eurasian Math J. 2016;7(3):41-52.

Maugeri A, Raciti F. On existence theorems for monotone and nonmonotone variational
inequalities. ] Convex Anal. 2009;16(3-4):899-911.

Myslinski A. Structural optimization of variational inequalities using piecewise constant
level set method. In: System modeling and optimization. Heidelberg: Springer; 2013.
p. 407-416. (vol. 391 of IFIP adv. inf. commun. technol.).

Alber Y, Ryazantseva I. Nonlinear ill-posed problems of monotone type. Dordrecht:
Springer; 2006.

Kluge R. On some parameter determination problems and quasi-variational inequalities.
In: Theory of nonlinear operators (Proc. Fifth Internat. Summer School, Central Inst.
Math. Mech. Acad. Sci. GDR, Berlin, 1977). vol. 6 of Abh. Akad. Wiss. DDR, Abt. Math.
Naturwiss. Tech., 1978. Berlin: Akademie-Verlag; 1978. p. 129-139.

Alber Y, Butnariu D, Ryazantseva I. Regularization of monotone variational inequalities
with Mosco approximations of the constraint sets. Set-Valued Anal. 2005;13(3):265-290.
Browder FE. On a principle of H. Brézis and its applications. J Funct Anal.
1977;25(4):356-365.

Gockenbach MS, Khan AA. An abstract framework for elliptic inverse problems. I. An
output least-squares approach. Math Mech Solids. 2007;12(3):259-276.


http://https://doi.org/10.3934/dcdsb.2018172
http://https://doi.org/10.1080/00036-811.2018.1491037

(43]
(44]
(45]
(46]
(47]
[48]
[49]
[50]

[51]

(52]

(53]

OPTIMIZATION (&) 35

Khan AA, Tammer C, Zalinescu C. Regularization of quasi-variational inequalities.
Optimization. 2015;64(8):1703-1724.

Liu Z. Generalized quasi-variational hemi-variational inequalities. Appl Math Lett.
2004;17(6):741-745.

Liu Z, Zeng B. Optimal control of generalized quasi-variational hemivariational inequal-
ities and its applications. Appl Math Optim. 2015;72(2):305-323.

Guan Z, Kartsatos AG, Skrypnik I'V. Ranges of densely defined generalized pseudomono-
tone perturbations of maximal monotone operators. ] Differ Equ. 2003;188(1):332-351.
Han W. A regularization procedure for a simplified friction problem. Math Comput
Model. 1991;15(8):65-70.

Adly S, Goeleven D, Théra M. Recession mappings and noncoercive variational inequal-
ities. Nonlinear Anal. 1996;26(9):1573-1603.

Tomarelli F. Noncoercive variational inequalities for pseudomonotone operators. Rend
Sem Mat Fis Milano. 1991;61:141-183. (1994).

Clason C, Khan AA, Sama M, et al. Contingent derivatives and regularization for non-
coercive inverse problems. Optimization. 2018. DOI:10.1080/02331934.2018.1442448
Gibali A, Jadamba B, Khan AA, et al. Gradient and extragradient methods for the
elasticity imaging inverse problem using an equation error formulation: a comparative
numerical study. In: Nonlinear analysis and optimization. Providence (RI): Amer. Math.
Soc.; 2016. p. 65-89. (vol. 659 of Contemp. math.).

Jadamba B, Khan AA, Oberai A, et al. First-order and second-order adjoint methods for
parameter identification problems with an application to the elasticity imaging inverse
problem. Inverse Probl Sci Eng. 2017;25(12):1768-1787.

Jadamba B, Khan AA, Rus G, et al. A new convex inversion framework for param-
eter identification in saddle point problems with an application to the elastic-
ity imaging inverse problem of predicting tumor location. SIAM ] Appl Math.
2014;74(5):1486-1510.


http://https://doi.org/10.1080/02331934.2018.1442448

	1. Introduction
	2. Problem formulation
	3. Essential tools
	4. Identification in multi-valued quasi variational inequalities
	5. Identification in variational inequalities under data contamination
	6. Identification in a simplified elastic-plastic torsion model
	7. Numerical results
	7.1. A coercive example
	7.2. A non-coercive example

	8. Concluding remarks
	Acknowledgements
	Disclosure statement
	Funding
	References

