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Abstract—This paper develops a generalized framework that5
allows us to investigate the vulnerability of the power system non-6
linear state estimator to false data injection attacks (FDIAs) from7
the operator’s perspective and to initiate some countermeasures.8
Unlike most existing FDIA methods, which assume a perfect knowl-9
edge of the system measurements and topology by a hacker, we de-10
rive and analyze the uncertainties for launching successful FDIAs11
along with their upper bounds. To effectively defend against an12
FDIA, we propose a robust detector that checks the measurement13
statistical consistency using a subset of secure PMU measurements.14
We first show that if these secure PMU measurements are free of15
bad data while making the system observable, the FDIA is de-16
tectable. We then show that detectability is also ensured if these17
conditions are relaxed while using alternative redundant measure-18
ments from short-term nodal synchrophasor predictions together19
with the robust Huber M-estimator. Numerical simulation results20
on the IEEE 30-bus and 118-bus systems demonstrate the effec-21
tiveness and robustness of the proposed method even the secure22
measurements contain noise and bad data.23

Index Terms—Cyber security, false data injection attacks24
(FDIAs), power system nonlinear state estimation, robust estima-25
tion, phasor measurement units, Neyman-Pearson detector.26

I. INTRODUCTION27

DUE to a strong reliance of smart grid functions on com-28

munication networks, cyber attacks have become a major29

concern among power researchers. The analysis of cyber at-30

tacks on power system state estimation (SE) was pioneered by31

Liu et al. [1], where the so-called false data injection attack32

(FDIA) was introduced. Following this work, three types of33

FDIAs were pinpointed and investigated, including state attacks34

[1], [2], topology attacks [3], [4] and load redistribution attacks35

[5]. Their impacts on the electricity markets were also analyzed36

[6], [7].37

Manuscript received April 15, 2017; revised September 2, 2017 and October
25, 2017; accepted January 12, 2018. This work was supported in part by the
U.S. National Science Foundation under Grant ECCS-1711191. Paper no.
TPWRS-00551-2017. (Corresponding author: Junbo Zhao.)

J. Zhao and L. Mili are with the Bradley Department of Electrical Com-
puter Engineering, Virginia Polytechnic Institute and State University, North-
ern Virginia Center, Falls Church, VA 22043 USA (e-mail: zjunbo@vt.edu;
lmili@vt.edu).

M. Wang is with the Department of Electrical, Computer, and Systems En-
gineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
wangm7@rpi.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2018.2794468

To safeguard the system operation and control against cy- 38

ber attacks, various detectors and mitigation methods have 39

been proposed. They include measurement protection-based ap- 40

proaches [8]–[11], sparse optimization or game theory-based 41

approaches [12], [13], innovation-based approaches [14], [15], 42

robust estimation-based approaches [16], to name a few. How- 43

ever, with the exception of [17]–[20], the bulk of the literature 44

focused on the linear DC rather than on the AC state estimator. 45

In [17], the vulnerability of the nonlinear SE to FDIA was an- 46

alyzed and discussed. It was shown that a hacker should know 47

perfectly all the state variables in the attack subgraph to conduct 48

a successful attack. In other words, she should have exactly the 49

same information about the power system as the operators of 50

the control center, including an exact knowledge about the mea- 51

surements and the system topology. In this paper, this type of 52

attack will be called the perfect FDIA attack. The work in [17] 53

was later extended by Rahman et al. [18], Zhao et al. [19], and 54

Xuan et al. [20] to take into account the uncertainties in the sys- 55

tem information that may be gathered by a hacker, resulting in 56

an imperfect FDIA. However, no analytical investigations were 57

carried out to explain why an imperfect attack may succeed and 58

under which conditions it will be detected by the operators of 59

the control center. Furthermore, defense approaches have been 60

studied extensively for a linear DC model-based FDIA. But lit- 61

tle work has been done for a nonlinear AC model-based FDIA. 62

Note that the practical control center uses nonlinear power sys- 63

tem state estimator for monitoring and control. It is thus of 64

vital importance to ensure the security and reliability of that 65

estimator. 66

In this paper, an analytical framework is proposed to investi- 67

gate the vulnerability of power system nonlinear state estimator 68

to an FDIA from the operator’s perspective. In particular, we 69

propose a generalized FDIA framework against the nonlinear 70

state estimator. In this framework, the perfect knowledge of 71

the system information is relaxed to account for measurement, 72

parameter and topology uncertainties. The latter may be in- 73

duced by the hacker’s limited real-time knowledge of the status 74

of various grid elements or restricted access to communica- 75

tion channels [14]. The upper bounds of these uncertainties for 76

launching a successful FDIA are quantified and analyzed as 77

well. To effectively detect an FDIA, we propose a robust detec- 78

tor by checking the measurement statistical consistency using 79

a subset of secure PMU measurements. It is shown that these 80

secure measurements allow us to detect an FDIA if they are free 81

of gross errors while making the system observable. These con- 82
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ditions are further relaxed by using a robust Huber M-estimator83

together with alternative redundant measurements from short-84

term nodal synchrophasor predictions. Interestingly, robust state85

estimates provided by Huber M-estimator is shown to follow a86

Gaussian distribution, which enables us to derive the analytical87

form of the Neyman-Pearson detector.88

The remainder of this paper is organized as follows: Section II89

introduces the existing FDIAs against nonlinear state estimator90

and presents the problem statement. Section III presents the pro-91

posed generalized FDIA framework, while Section IV presents92

the proposed robust FDIA detector. The simulation results are93

analyzed in Section V, and finally Section VI concludes the94

paper.95

II. PROBLEM FORMULATION96

A. Power System Nonlinear State Estimation97

As shown in [21], for an N -bus power system using an AC98

power flow model, the relationship between the vector of mea-99

surements z ∈ Rm obtained from the supervisory control and100

data acquisition (SCADA) system and the state vector x ∈ Rn ,101

which contains the nodal voltage magnitudes and phase angles,102

yielding n = 2N − 1 < m , is given by103

z = h(x) + e, (1)

where h(·) : Rn → Rm is a vector-valued nonlinear function;104

e ∈ Rm is the measurement error vector that is assumed to105

follow a Gaussian distribution with zero mean and covariance106

matrix R ∈ Rm×m , i.e., e ∼ N (0,R). The state estimator107

is solved by minimizing the weighted least squares criterion,108

yielding109

x̂ = arg min
x

[z − h (x)]T R−1 [z − h (x)] . (2)

Let us apply the Gauss-Newton iterative algorithm [21] to solve110

for the state vector. Formally, we have111

xk+1 = xk + Δxk , k = 1, 2, ..., (3)

Δxk = (H(xk )T R−1H(xk ))−1H(xk )T R−1(z − h(xk )),
(4)

where H(xk ) = ∂h(x)/∂x|x=xk ∈ Rm×n is the Jacobian112

matrix. The algorithm converges once the norm of Δxk is113

smaller than a pre-specified threshold. After estimation, the114

�2-norm detector is applied to detect the existence of bad data115

by checking if the following inequality holds [6], [21]:116

‖r‖ = ‖z − h (x̂)‖ ≥ τ, (5)

where τ is a detection threshold of the �2-norm detector. Note117

that ‖ · ‖ is used to represent the �2-norm throughout the paper,118

where the subscript 2 in (5) has been dropped for simplicity.119

B. Attack Model of the Nonlinear State Estimator120

To perform an FDIA, we make the same assumptions as that121

in [6], [17], that is: i) an attacker could access the real-time122

measurements in a small area S bounded by buses, where the123

measurement and state indices in S are denoted as Ms and Is ,124

respectively; ii) the hacker could change all the measurements125

in S; iii) the hacker might have an a priori knowledge of the 126

system topology, including the line parameters of the area S. 127

Thus, for the ith measurement, zi , the attack model is 128

z
(a)
i =

{

zi if i /∈ Ms

zi + ai if i ∈ Ms

, (6)

where ai is the ith element of the attack vector a. 129

Lemma 1: Let us now assume that the hacker has obtained 130

the same zi, i ∈ Ms and x̂i as the operators of the control 131

center. If the original measurement zi, i ∈ Ms , could bypass 132

the �2-norm detector, the malicious measurement z(a)
i could 133

also pass this detector under the condition ai = h (x̂i + ci) − 134

h (x̂i), where ci represents the changes in the ith-attacked state 135

variable. 136

Proof: Since we are interested in the area S, the index i 137

is omitted for simplicity. Because z can bypass the �2-norm 138

detector, ‖r‖ = ‖z − h (x̂)‖ ≤ τ holds. The �2-norm of the 139

attacked measurement residual ra is given by 140

‖ra‖ = ‖za − h (x̂a)‖ = ‖z + a − h (x̂ + c)‖
= ‖z + a − h (x̂ + c) + h (x̂) − h (x̂)‖
= ‖r + a − h (x̂ + c) + h (x̂)‖
= ‖r‖ ≤ τ, (7)

which means that the attacked measurements could also avoid 141

the detection. Note that x̂a = x̂ + c and r = z − h(x̂) is the 142

measurement residual vector. � 143

When implementing an FDIA for practical power systems, 144

Lemma 1 intrinsically assumes that the hacker has enough com- 145

putational capability to estimate the local state vector x̂i , i ∈ Is 146

so that the attack vector a = h (x̂i + ci) − h (x̂i) can be con- 147

structed. This assumption is acceptable given that the SCADA 148

measurements are non-synchronized while the collection rates 149

of measurements differ from one region to another one. In ad- 150

dition, a hacker may intentionally attack the communication 151

system to delay the SCADA measurements for some parts of 152

the system so that the local state xi can be estimated by the 153

hacker [6], [17]. 154

C. Determining the Attack Graph of the Target Buses 155

Let S = {B,Ω} denote the attack graph, where B and Ω are 156

the sets of buses and transmission lines, respectively; let K de- 157

note a set of bus indices for power injection buses, including the 158

load and the generator buses. In [17], a topographical analysis 159

was proposed to determine the attack graph of a single target 160

bus. That approach is summarized below: 161
� Step 1: Let i ∈ K be the ith targeted power injection bus, 162

the first step is to include bus i into the subgraph Si ; 163
� Step 2: Extend Si to include all the buses and branches Ωi 164

that are connected to bus i, where Ωi is the set of adjacent 165

branches connected to bus i; 166
� Step 3: If there exists any zero injection Bus j not con- 167

nected to either the load or the generator on the boundary 168

of Si , extend Si to include Ωj and continue Step 4; other- 169

wise go to Step 5; 170
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� Step 4: Repeat Step 3 until all buses on the boundary belong171

to the set K;172
� Step 5: Obtain the final attack subgraph as S = ∪

i∈K
Si .173

The above procedures can be simply summarized by the fol-174

lowing lemma:175

Lemma 2: For a bus provided with a power injection, its176

adjacent buses provided with power injections must be changed177

accordingly so that specified state changes can be made by the178

hacker. For a zero-injection bus, its adjacent power flows must179

sum to zero. This means that the measurements of the power180

injection buses adjacent to a zero power injection bus must be181

changed accordingly so that the equality constraints are satisfied.182

Consequently, buses that belong toS are bounded by buses inK.183

Using Lemma 2, we are able to determine the attack graph184

of multi-buses. The difference is that the size of the set S is185

increased with additional buses bounded by power injections.186

D. Problem Statement187

With the obtained attack graph S and all the assumptions188

stated in Section II-B satisfied, a perfect FDIA against a nonlin-189

ear state estimator can be achieved. However, because a hacker190

has typically a lack of real-time knowledge of the status of grid191

elements such as the position of circuit breaker switches and192

transformer tap changers, and also because she is restricted to193

access partial measurement channels, it is thus impossible for194

her to obtain the same state estimates as the operators of the195

control center in the attack graph S. In other words, a perfect196

FDIA approach proposed in the literature [6], [17] seems to be197

impractical for realistic power systems. This is because with198

uncertain information of the system, x̂i , i ∈ Is obtained by the199

hacker is different from the state estimate x̂wi , i ∈ Is , and bias ζi200

exists, i.e., x̂i = x̂wi + ζi . Note that x̂wi , i ∈ Is is the i-th state201

estimate calculated by the control center without an FDIA. As a202

result, when an FDIA occurs, the inequality constraint (7) may203

not hold true anymore. Interestingly, simulations carried out204

in [18], [20] reveal that even with some uncertain information205

about the system, FDIA can be successful without being de-206

tected by the control center. Furthermore, the expected changes207

on the target state variables are not equal to c. However, no208

analytical investigations were carried out to explain why this209

imperfect attack can succeed and under which conditions it will210

be detected by the operators of the control center.211

In this paper, an analytical investigation will be performed to212

show how the inequality constraint (7) can be satisfied in pres-213

ence of system uncertainties to avoid the detection of an FDIA214

by the control center. In addition, we will quantify the maxi-215

mum uncertainties a hacker can have so as to perform imperfect216

FDIA. The trade-off between attack magnitudes on the target217

state variables and the system uncertainties will be analyzed218

as well. Finally, to detect this type of FDIA, we will propose a219

measurement statistical consistency-based robust detector using220

a subset of secure PMU measurements.221

Remark: To avoid the confusion between the bias terms ζ222

and c, we make the following clarifications: x̂ is the estimated223

state vector before an FDIA and it is equal to x̂w obtained by224

the control center if the hacker has the same information of the225

system as the control center. Otherwise, there is a difference226

between x̂ and x̂w caused by information uncertainties, which 227

is the bias ζ. By contrast, c is the expected bias by the hacker 228

when performing an FDIA. 229

III. PROPOSED GENERALIZED FDIA FRAMEWORK AGAINST 230

THE NONLINEAR STATE ESTIMATOR 231

An FDIA is in fact a type of perfect interacting and conform- 232

ing bad data [22]. Therefore, the statistical tests applied to the 233

weighted or the normalized residuals or the sum of the squared 234

residuals (�2 detector) are unable to detect them. Without loss of 235

generality, we consider in the sequel only the �2 detector when 236

deriving the generalized FDIA framework. 237

In the developed generalized FDIA framework, we first pro- 238

vide a sufficient condition in Section III-A to justify theoretically 239

how the imperfect FDIA can bypass the detector at the control 240

center. This allows us to derive the upper bound of the uncertain- 241

ties the hacker can have so as to launch a successful imperfect 242

FDIA. Therefore, we are able to analyze the trade-off between 243

attack magnitudes on the target state variables and the system 244

uncertainties. To our best knowledge, this is the first attempt 245

to provide theoretical justification to an imperfect FDIA and to 246

quantify the tradeoff between the attack magnitude and the state 247

bias caused by system uncertainties. 248

A. Sufficient Condition for an Imperfect FDIA 249

As clarified before, an adversary cannot obtain the same es- 250

timated state x̂w (the subscript i is dropped for simplicity) as 251

the operators of the control center. Here, we provide a sufficient 252

condition for an imperfect FDIA to succeed subject to the state 253

bias. This is shown in the following Lemma: 254

Lemma 3: If the true measurement residual ‖r‖ = 255

‖z − h (x̂w )‖ ≤ τ holds, a sufficient condition for the mea- 256

surement z subject to attack a to pass �2 detector is 257

‖a − h (x̂w + c) + h (x̂w )‖ ≤ γ = τ − ‖r‖ . (8)

Proof: When there are no bad data in the original measure- 258

ments, ‖r‖ ≤ τ is always satisfied. The measurement residual 259

under FDIA can be derived as 260

‖ra‖ = ‖za − h (x̂a)‖ = ‖z + a − h (x̂w + c)‖
= ‖z + a − h (x̂w + c) + h (x̂w ) − h (x̂w )‖
= ‖r + a − h (x̂w + c) + h (x̂w )‖
≤ ‖r‖ + ‖a − h (x̂w + c) + h (x̂w )‖ ≤ τ, (9)

which means that if the constraint (8) holds, an FDIA can not be 261

detected by the residual statistical bad data detection test. � 262

Although Lemma 3 looks straightforward, it provides a suf- 263

ficient condition that the attack vector a should satisfy to avoid 264

her detection by the operators. In addition, it serves as the foun- 265

dation for the derivation of the upper bound of uncertainties 266

the hacker can have when implementing a successful imper- 267

fect FDIA. On the other hand, it is easy to verify that a perfect 268

attack with x̂w = x̂ mentioned in Lemma 1 is just a special 269

case here. Finally, since x̂w is unknown to the hacker due to 270

the limited knowledge of the system, conditions with the con- 271

sideration of system uncertainties should be derived. That is, 272

what is the tradeoff between system uncertainties and attack 273
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magnitude? This question will be investigated and analyzed in274

Section III-B.275

B. Tradeoff Between System Uncertainties and276

Attack Magnitude277

Due to the existence of uncertain system information obtained278

by an attacker, the initial state vector used to construct an attack279

vector has uncertainties as well. This in turn yields biases on280

the target state variables. The larger uncertainties the hacker281

has, the less possibilities she can change the attack magnitudes,282

and vice versa. In other words, there exists a tradeoff between283

system uncertainties and attack magnitude. To quantify that, we284

define a = h(x̂ + c) − h(x̂) and x̂ = x̂w + ζ. The �2-norm of285

the measurement residual becomes286

‖ra‖ =‖z + a − h (x̂w + c)‖
=‖z + a − h (x̂w + c) + h (x̂w ) − h (x̂w )‖
=‖z − h (x̂w ) + (a − h (x̂w + c) + h (x̂w ))‖
≤‖z − h (x̂w )‖ + ‖a − h (x̂w + c) + h (x̂w )‖
=‖r‖+‖h (x̂ + c) − h (x̂w + c) − (h (x̂) − h (x̂w ))‖.

(10)

Performing Taylor series expansions of h(x̂ + c) and h(x̂) at287

x̂w + c and x̂w , respectively, we obtain288

h (x̂ + c) − h (x̂w + c)

= h (x̂w + c) + H1 (x̂ − x̂w − c) + o1 − h (x̂w + c)

= H1 (ζ − c) + o1

h (x̂) − h (x̂w ) = h (x̂w ) + H2 (x̂ − x̂w ) + o2 − h (x̂w )

= H2ζ + o2 , (11)

where H1 = ∂h/∂x |x=x̂w +c and H2 = ∂h/∂x |x=x̂w are289

Jacobian matrices; o1 and o2 are the higher order Taylor expan-290

sion terms. Since only the first order approximation is used in291

the WLS based state estimation algorithm, all the higher order292

terms are neglected during the iteration. In other words, o1 and293

o2 tend to 0 faster than the convergence of state estimation.294

Therefore,295

‖h (x̂ + c) − h (x̂w + c) − (h (x̂) − h (x̂w ))‖
= ‖(H1 − H2) ζ − H1c + (o1 − o2)‖
∼= ‖(H1 − H2) ζ − H1c‖
≤ ‖H1 − H2‖ ‖ζ‖ + ‖H1‖ ‖c‖ . (12)

By combining (10) and (12), we get296

‖ra‖ ≤ ‖r‖ + ‖H1 − H2‖ ‖ζ‖ + ‖H1‖ ‖c‖ . (13)

In order not to be detected by the operators of the control cen-297

ter, the right-hand side of (13) must be less than the detection298

threshold τ , that is,299

0 ≤ ‖H1 − H2‖ ‖ζ‖ + ‖H1‖ ‖c‖ ≤ γ. (14)

The above equation shows the tradeoff between the attack mag-300

nitude and the estimation error ‖ζ‖ of the state variables in the301

attack graph S. Note that ‖ζ‖ is caused by an uncertain infor- 302

mation about the system state. If the estimation error is fixed, 303

i.e., ‖ζ‖ = β 	= 0, the attack magnitude is bounded by 304

0 ≤ ‖c‖ ≤ −β + γ+‖H2 ‖β
‖H1 ‖ . (15)

If ‖ζ‖ = β = 0, which means that the hacker can get exactly 305

the same state estimates as the operators of the control center in 306

the attack graph S, the attack reduces to the perfect FDIA. The 307

attack magnitude is bounded according to either (14) or (15) by 308

setting β = 0. Formally, we have 309

0 ≤ ‖c‖ ≤ γ

‖H1‖ . (16)

Remark: Note that the main scope of this paper is to inves- 310

tigate the vulnerability of a nonlinear WLS state estimator to 311

imperfect FDIAs from the operator’s perspective. To be more 312

specific, given the current states estimated from the measure- 313

ments and the assumed attack magnitudes, the operator knows 314

matrices H1 and H2 . Then he can analyze how large uncertain- 315

ties the hacker can have so that a success FDIA is launched under 316

this condition. He may vary the assumed attack magnitudes to 317

assess how the maximum uncertain information of the hacker 318

changes if a successful FDIA is initiated. As a result, the vulner- 319

ability of the estimator can be assessed. On the other hand, due 320

to the existence of uncertain system information and the limited 321

access to measurements, the hacker is unable to know the exact 322

matrices H1 and H2 . However, as long as the inequality (14) 323

holds true, he can initiate successful FDIA with inexact H1 and 324

H2 . This analysis can warn the operator to pay attention to the 325

potential FDIA as the hacker is able to launch successful FDIA 326

even with uncertain system information and limited measure- 327

ments. To this end, corresponding effective countermeasures 328

can be proposed. 329

IV. PROPOSED ROBUST FDIA DETECTOR 330

In this section, we first present the motivations of designing 331

a robust FDIA detector with a limited number of secure PMUs. 332

The challenges and solution methodologies associated with the 333

detector are discussed thoroughly. Then, the robust FDIA de- 334

tector using measurement statistical consistency is proposed. 335

To derive this detector, we enhance the data redundancy of the 336

PMU measurements by short-term measurement forecasting, 337

which allows us to handle noise and outliers in secure PMU 338

measurements. We show through Theorem 1 that our robust 339

state estimates follow a Gaussian distribution even when the 340

PMU measurement errors are not normally distributed. This en- 341

ables us to derive the Neyman-Pearson detector for an FDIA 342

detection. 343

A. Motivations and Challenges 344

Recall that the hacker’s objective is to change the estimated 345

state vector by injecting malicious measurements. Once some 346

measurements are compromised, the distribution of the esti- 347

mated state vector will be perturbed by the attack [2], [14]. If 348

one can find a set of measurements that will produce close ap- 349

proximations to the true estimated state vector and its probability 350

distribution, then this statistical information can be further used 351
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to double check the estimation results obtained from the remain-352

ing measurements. This strategy shares similar characteristics353

of the machine learning techniques, where partial data is used354

for learning and training while the remaining data is leveraged355

for validation. On the other hand, with the increasing deploy-356

ment of PMUs in power systems, most of these systems are357

expected to be observable by PMUs. Indeed, many real systems358

have been observed by PMUs such as the Virginia Dominion359

Power [23], the 765/345/230 kV power grid in New York (NY),360

and the 345 kV power grid in New England (NE) [24], [25], to361

cite a few. In addition, the PMU observability of a given power362

system has been widely assumed in the literature, see [24], [29]363

for example. Thus, in this paper, we assume as suggested in [9]364

that the system is observable by a minimal set of PMUs that are365

made secure against cyber attacks. These PMUs that are usually366

installed at transmission system substations can be protected367

by encryptions, advanced fire walls and data package anomaly368

detectors, to name a few [26]–[28]. In addition, limited number369

of PMUs are assumed to be secure in the sense that they cannot370

be controlled by the hacker. On the other hand, unlike [9], we371

propose a robust detector based on an AC power system model372

that is able to handle outliers. Indeed, the authors in [9] make373

use of a DC not an AC state estimation model. Furthermore, they374

suppose that the PMU measurements are free of bad data, which375

is unrealistic in practice since impulsive communication noise376

and faulty GPS synchronization may corrupt the metered val-377

ues. Note that strongly biased state estimates may result, which378

will mislead the operators of a control center; consequently, they379

may take wrong decisions based on them [30].380

Remark: We assume the number of secure PMUs only guar-381

antees the observability of the system, yielding no measurement382

redundancy. As a result, the PMU-based linear state estimator is383

not able to filter out noise as well as bad data. On the other hand,384

the state estimation model itself is an approximate model with385

uncertainties in the parameters, the topology and the measure-386

ments. Thus, a high measurement redundancy is required to re-387

liably estimate the system state vector. This motivates us to vali-388

date and correct the remaining SCADA measurements, yielding389

improved state estimation results and system visualization.390

B. Robust Detector Using Measurement Statistical391

Consistency392

Similarly to the strategy proposed in [9], we assume in the393

proposed detector that the system is observed by a minimal set394

of secure PMU measurements. On the other hand, we advocate395

to enhance the data redundancy of PMUs by short-term mea-396

surement forecasting as proposed by Yacine et al. [31]. This397

allows our robust estimator to handle outliers in secure PMU398

measurements. It should be noted that it is in general chal-399

lenging to forecast the future operating conditions due to many400

changing factors. However, we focus only on a very short-term401

forecast of the PMU metered variables, where the system oper-402

ating conditions vary slowly, which is a reasonable assumption403

for practical power systems. Furthermore, system loads and re-404

newable energy-based distributed generations change continu-405

ously from time to time, exhibiting temporal correlations. These406

changes in turn affect other generators and loads within the same407

geographic area, yielding spatial correlations. As a result, the 408

nodal voltage and current phasors of the system exhibit similar 409

statistical properties, which can be easily proved through the 410

power flow equations. Thanks to these temporal and spatial cor- 411

relations, we are able to use time series analysis technique to 412

perform a short-term forecasting of the PMU metered variables. 413

Interestingly, the temporal and spatial correlations of the nodal 414

voltage and current phasors have been proved by [31] through 415

field measurements. In that reference, an effective forecast of 416

the PMU metered variables using a vector autoregressive model 417

has been demonstrated as well. Following [31], we consider a 418

vector autoregressive model of first order and dimension D at 419

time instant k, i.e., 420

yk = Φkyk−1 + εk , (17)

where yk ∈ RD is the vector of secure PMU measurements; 421

Φk ∈ RD×D represents the transition matrix; εk ∈ RD is the 422

Gaussian noise and εk ∼ N (0,Sk ), where Sk ∈ RD×D is a 423

non-diagonal error covariance matrix due to temporal and spatial 424

correlations among PMU measurements. Using the Yule-Walker 425

method, ̂Φk are estimated using historical measurements [31]. 426

Then, the forecasted PMU metered values are obtained through 427

yfk = ̂Φkyk−1 , while its covariance matrix is given by P k = 428

̂ΦkP k−1 ̂Φk
T

+ Sk , where P k−1 is the error covariance matrix 429

of the filtered PMUs at time instant k–1. By processing the 430

metered and the forecasted PMU values simultaneously and 431

then performing the data prewhitening, we get the following 432

regression form 433

zk = Hkxk + ηk , (18)

where zk = L−1
k

[

(ysk )
T
(

yfk

)T
]T

∈ Rl is the extended mea- 434

surement vector that contains the forecasted measurements yfk 435

and received PMU measurements ysk ; l = 2D; Lk is a matrix 436

for prewhitening that is determined by applying a Cholesky 437

decomposition to the augmented error covariance matrix Γ = 438

diag[Λk P k ] = LkL
T
k . Here, Λk denotes the measurement er- 439

ror covariance matrix; Hk = L−1
k [Ak

T Ak
T ]T ; Ak is a con- 440

stant admittance matrix; ηk is the normalized error vector; and 441

ηk ∼ N (0, Ik ), where Ik is an identity matrix. Note that, 442

only the current phasor measurement on a given line having 443

an impedance that is very different from the rest of the lines can 444

induce leverage point in the regression equation (18). By using 445

the scaling technique proposed in [29], those leverage points 446

can be eliminated and only vertical outliers are of concern. 447

Note that there always exists the case that system operation 448

conditions vary abruptly, yielding unreliable predicted PMU 449

measurements. In addition, the received PMU measurements 450

can be corrupted with gross errors as well due to the impulsive 451

communication noise, loss of communications, etc. To handle 452

them while achieving good statistical efficiency, we advocate the 453

use of the robust Huber-estimator [32]. This estimator minimizes 454

the following objective function: 455

J (x) =
l
∑

i=1

ρ(rSi ), (19)
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where ρ(·) is the Huber convex cost function defined as:456

ρ (rSi ) =

{

r2
S i
/2 for |rSi | ≤ λ

λ |rSi | − λ2/2 for |rSi | > λ
, (20)

where the parameter λ is typically set to be between 1.5 and 3457

for achieving high statistical efficiency when the measurement458

errors are Gaussian [32]; rSi = ri/s is the standardized residual;459

ri = zi − αT
i x̂ and αT

i is the ith column vector of the matrix460

HT
k ; s = 1.4826 cm median |ri | is the robust scale estimate and461

cm is a correction factor [33].462

To solve (19), the following necessary condition must be463

satisfied:464

∂J (x)
∂x

=
l
∑

i=1

−αi

s
ψ (rSi ) = 0, (21)

where ψ (rSi ) = ∂ρ (rSi )/∂rSi . Multiplying and dividing rSi465

on both sides of (21), we obtain466

l
∑

i=1

αi
ψ (rSi )
rSi

·rSi
s

= 0, (22)

which can be arranged in a matrix form as467

Hk
T Q (zk − H

k
x̂) = 0, (23)

where q (rS ) = ψ (rS )/rS and Q = diag (q (rS )). Finally, us-468

ing the iteratively re-weighted least square (IRLS) algorithm469

[32], the solution can be obtained through470

x̂
(�+1)
k =

(

HT
k
Q(�)Hk

)−1HT
k
Q(�)zk , (24)

where � is the iteration counter. The algorithm converges if471

∥

∥

∥x̂
(�+1)
k − x̂

(�)
k

∥

∥

∥

∞
≤ ς, e.g., 10−2 . (25)

Theorem 1: The state estimation error by the Huber M-472

estimator above has an asymptotic normal probability distri-473

bution with zero mean and covariance matrix V k given by474

V k =
E[ψ 2 (rS )]

(E[ψ ′ (rS )])2

(HT
k Hk

)−1
. (26)

Proof: Let us define Tl = T (Fl) as the statistic estimates475

of T (F ) and consider the ε-contaminated distribution Fε =476

(1 − ε)F + εδx , where F is the true distribution while δx is477

the point mass at x̂with an unknown distribution for the outliers478

or thick-tailed distributions. By virtue of the Glivenko-Cantelli479

theorem, T (Fε) → T (F ) as ε→ 0. Taking Taylor series ex-480

pansion on ψ(rSi ; x̂) of (21) about x, we obtain481

√
l

{

1
l

l
∑

i=1

αi · ψ (rSi ;x)

}

+ HT
k

√
l (x̂ − x)

{

1
l

l
∑

i=1

ψ
′
(rSi ;x)

}

+ αi ·Op

(

1/
√
l
)

= 0, (27)

where Op(·) represents the higher order error terms.482

Using the central limit theorem, we have 483

√
l

{

1
l

l
∑

i=1

ψ (rSi ;x)

}

→dZ ∼ N
(

0, EF

[

ψ(rSi ;x)2
])

.

(28)
By the weak law of large numbers, we obtain 484

{

1
l

l
∑

i=1

ψ
′
(rSi ;x)

}

→pEF

[

ψ
′
(rSi ;x)

]

. (29)

Thus, by Slutsky’s theorem, we get 485

HT
k

√
l (x̂ − x)→d

−Z
EF [ψ′ (rSi ;x)]

∼ N (

0, η2) (30)

where η2 =
EF

[

ψ(rS i ;x)2 ]

EF [ψ ′(rS i ;x)]2
. Thus, we can obtain 486

μk = lim
l→∞

E
[√

l (x̂ − x)
]

= 0, (31)

V k = lim
l→∞

V ar
[√

l (x̂ − x)
]

=
E
[

ψ2 (rS )
]

(E [ψ′ (rS )])2

(HT
k Hk

)−1
,

(32)

which complete the proof. � 487

After a state estimation is carried out, the estimated/ 488

interpolated SCADA measurements can be calculated through 489

ẑ = h(x̂), where the subscript k is omitted for simplicity. De- 490

fine the difference between the interpolated and the received 491

SCADA measurements as a new residual, i.e., υ = z − ẑ, we 492

have the following theorem: 493

Theorem 2: With the assumption that the measurement er- 494

rors of the received SCADA measurements follow a Gaussian 495

distribution, i.e., e ∼ N (0,R) defined in (1), the new residual 496

is normally distributed with zero mean and the covariance ma- 497

trix C = R + HV HT , where H is the Jacobian matrix of the 498

vector-valued function h(·) evaluated at x̂. 499

Proof: By taking the first order Taylor series expansion of 500

h(x) at x̂, the innovation vector υ can be expressed as 501

υ = z − ẑ = h (x) + e − h (x̂)

= h (x̂) + H (x − x̂) + e − h (x̂)

= H (x − x̂) + e. (33)

Thus, E [υ] = HE [x − x̂] + E [e] = 0 and the covariance ma- 502

trix is E
[

υυT
]

= Hcov (x − x̂) HT + R = HV HT + R. 503

� 504

Note that the asymptotic zero mean of the innovation vector 505

υ is valid under the condition that none of the received SCADA 506

measurements is attacked. Otherwise, E [υ] = a, where a is the 507

measurement bias injected by the hacker. Therefore, by checking 508

the zero mean hypothesis of υ, we can determine whether an 509

FDIA has been conducted or not. To this end, a binary hypothesis 510

test on the measurement consistency can be developed; it is as 511

follows: 512
{

H0 : υ ∼ N (0,C)

H1 : υ ∼ N (a,C)
, (34)
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where hypothesis H0 and H1 represent no FDIA and the occur-513

rence of FDIA, respectively. By using the log-likelihood ratio514

test, we have515

ξ = υT C−1a − 1
2
aT C−1a

H1
>

<
H0

κ, (35)

where κ is a decision threshold. Since ξ is a linear combination516

of υ, according to (34), it is expressed as517

⎧

⎨

⎩

H0 : ξ ∼ N
(

μ0 , σ
2
ξ

)

H1 : ξ ∼ N
(

μ1 , σ
2
ξ

)

;
(36)

and where518

μ0 = −1
2
aT C−1a

μ1 =
1
2
aT C−1a

σ2
ξ = aT C−1a. (37)

Therefore, given a false alarm ratePfa , the relationship between519

the detection threshold κ and Pfa of the Neyman-Pearson de-520

tector is given by521

Pfa = P (ξ ≥ κ |H0 ) =
1
2

erfc

(

κ− μ0√
2σξ

)

, (38)

where erfc(·) represents the complementary error function of522

the normal distribution. Thus, the threshold of the detector can523

be calculated as524

κ =
√

2σξerfc−1 (2Pfa) + μ0 . (39)

Finally, the detection probability of an FDIA using the hypoth-525

esis testing is given by526

Pd = P (ξ ≥ κ |H1 ) =
1
2

erfc

(

κ− μ1√
2σξ

)

. (40)

Remark: the aim of above analysis is to investigate the the-527

oretical tradeoff between detection probability and false alarm528

of the proposed detector given the specified attack vector a.529

In practice, the operator does not need to know the attack vec-530

tor a. Instead, the following equivalent normalized innovation531

vector-based statistical test is used:532

υNi =
|υi |

√

C (i, i)
� Θ, (41)

where υi and υN i are the ith element of the innovation vector υ533

and its normalized value, respectively; C(i, i) is the ith diagonal534

element of the derived covariance matrix; Θ is the detection535

threshold that is determined by the given confidence level of536

the Gaussian distribution, e.g., 3 for 99.7% confidence level.537

Note that we have proved that the innovation vector follows a538

Gaussian distribution with zero mean and the covariance matrix539

C. The occurrence of the FDIA violates this fact and will be540

detected by our proposed robust detector with 99.7% confidence541

level.542

V. NUMERICAL RESULTS 543

In this section, we use Sections V-A and V-B to demonstrate 544

the validity of the proposed analytical FDIA framework against 545

nonlinear state estimator, where the trade-off between attack 546

magnitudes and information uncertainties is analyzed as well; 547

by contrast, Sections V-C and V-D demonstrate the effectiveness 548

of our robust FDIA detector in presence of measurement noise 549

and bad data. 550

Specifically, extensive numerical simulations are carried out 551

on the IEEE 30-bus and the 118-bus test systems. The measure- 552

ment configurations of two test systems are as follows: 1) the 553

IEEE 30-bus system is measured by 93 SCADA measurements, 554

including 18 pairs of active and reactive power injections, 28 555

of pairs power flows and voltage magnitude of Bus 1; 2) the 556

118-bus system has 150 pairs of SCADA measurements, in- 557

cluding 39 pairs of injection measurements and 111 pairs of 558

flow measurements. The detailed measurement placements and 559

topology of both test systems can be found in [34]. The meter 560

errors of SCADA and PMU measurements follow the normal 561

distribution with zero mean and standard deviations of 10−2 and 562

10−3 , respectively. The detection threshold for the normalized 563

residual test is set to 3 with 99.7% confidence level. Two types 564

of AC FDIAs are considered: i) Perfect Attack: the adversary 565

does not have estimation errors corrupting the state variables 566

in the attack graph S = {N ,Ω}; ii) Imperfect Attack: the ad- 567

versary has estimation errors corrupting the state variables in 568

the attack graph S. One hundred Monte Carlo simulations are 569

carried out to estimate the average value of the state estimation 570

errors. The effectiveness of the proposed method will be first 571

validated on the IEEE 30-bus system in Sections V-A– V-C, and 572

then its scalability and robustness for larger-scale system will 573

be tested using the 118-bus system . 574

A. Validation of the Imperfect State Variable Attack 575

A hacker is assumed to change the electricity consumption at 576

Bus 26 through cyber attacks. To this end, she only needs to com- 577

promise the measurements P25−27 , Q25−27 , P25−24 , Q25−27 , 578

P25 andQ25 so as to estimate V25 and θ25 . After that, the follow- 579

ing two types of attacks are conducted without being detected 580

by the operators of the control center. 581

Case 1: Perfect attack where the phase angle at Bus 26 is 582

changed from θ26 = −0.2990 to −0.0990 radians. 583

Case 2: Imperfect attack where the phase angle at Bus 26 584

is changed from θ26 = −0.2990 to −0.0990 radians; here, the 585

estimated state variables in the attack graph S have 5% errors, 586

which are simulated using 100 Monte Carlo simulations. To be 587

specific, a random sample taken from the uniform distribution 588

[−Δτj + x̂j Δτj + x̂j ] , j ∈ Ωi is used to represent the jth state 589

variable to be estimated by the hacker; the final results are 590

obtained by taking the average value of the 100 estimation errors. 591

Fig. 1 displays the results for Case 1 and Case 2. We can 592

observe from this figure that the perfect attack has successfully 593

changed the nonlinear SE results to the target value within 4 it- 594

erations. By contrast, the imperfect attack is not able to change 595

the compromised state variable to the exact target value due 596

to the uncertain knowledge of the system by the hacker. How- 597

ever, the difference between the hacker’s target value and the 598
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Fig. 1. Performance of perfect and imperfect FDIA over iterations of the
nonlinear state estimator using weighted least squares algorithm.

achieved value is quite small. Therefore, it can be concluded599

that although the system information obtained by a hacker is600

inaccurate or contains uncertainties, she is capable of perform-601

ing an imperfect attack with consequences that are close to her602

expectations without being detected by the traditional residual603

bad data detection tests.604

B. Tradeoff Between Attack Magnitude and Uncertainties605

It has been verified in Section V-A that a hacker is able606

to launch an imperfect attack to change some state variables607

close to her desire subject to system uncertainties. Now, what608

is the relationship between system uncertainties and the attack609

magnitude? To answer that question, let us first note that the610

system uncertainties will lead to estimation errors of the state611

variables in graph S, which further affects the construction of612

the attack vector. To show this, we first resort to our theoretical613

results given by (14). It is clear that there is a tradeoff between the614

attack magnitude and the estimation errors of the state variables615

in graphS. To further demonstrate this tradeoff, some simulation616

results are conducted and analyzed. To this end, we implement617

our imperfect FDIA to attack a single state variable and multiple618

state variables with varying errors in graph S. The former case is619

similar to Case 2 while the latter one is similar to Case 3, which620

are imperfect attacks aimed at changing the phase angles at621

Buses 26 and 24 to −0.0990 and −0.1886 radians, respectively.622

The traditional normalized residual statistical test is used with623

a detection threshold of 3.624

The test results are displayed in Fig. 2. It can be seen from625

Fig. 2 that with increased estimation errors of the state variables626

in the attack graph, the largest normalized residual continues to627

increase and finally exceeds the detection threshold. The largest628

estimation errors of the state variables in the attack graph when629

imperfect attacks are implemented successfully are 18.4% and630

16.5% for single and multiple state attacks, respectively. This631

means that if a hacker is unable to estimate the state variables632

in the attack graph within a certain error tolerance, the attack633

will be detected. To show how this error tolerance threshold634

is affected by the attack magnitude, we consider changing θ26635

and θ24 to −0.05 and −0.0886 radians, respectively. It is found636

that the error tolerance threshold decreases to 9.25% due to the637

increase of attack magnitude. Thus, the tradeoff between attack638

magnitude and system uncertainties is validated.639

Fig. 2. Largest normalized residue vs. estimation error of the state variables
in the attack graph when implementing imperfect attacks.

Fig. 3. Performance comparisons of different detectors for imperfect FDIA
in Case 2.

C. Detection of an FDIA on the Nonlinear State Estimator 640

As revealed in Fig. 2, if the estimation errors of the state vari- 641

ables in the attack graph S are less than 15% for Cases 2 and 642

3, the largest normalized residual is unable to reveal an FDIA. 643

By contrast, our proposed detector can detect them with a high 644

probability. To show this, we implement the proposed detector 645

for both cases with a limited number of secure PMU measure- 646

ments, say 10 PMUs, which are assumed to be installed at Buses 647

1, 7, 8, 10, 11, 12, 18, 23, 26 and 30. This is the minimal number 648

of PMUs to observe the 30-bus system. All the measurements 649

from these PMUs are assumed to be protected by the control 650

center. The estimation errors of the state variables in the at- 651

tack graph S vary randomly between 10% and 20%. 100 Monte 652

Carlo simulations are carried out to assess the performance of 653

each detector. 654

Figs. 3 and 4 show the receiver operating characteristic 655

(ROC) curves for different detectors, including the generalized 656

likelihood ratio test (GLRT)-based detector, infinite norm-based 657

detector, and the largest normalized residual (LNR)-based 658

detector [2]. 659

It is observed from these two figures that the proposed detector 660

outperforms the other three detectors. In particular, the infinite- 661

norm, the LNR, and the GLRT detectors have more difficulties in 662

detecting the single state variable attack than the multiple state 663

variable attack. By contrast, our proposed detector is slightly 664

affected. These results actually validate the fact that the more 665

uncertainty the information a hacker obtains, the easier she will 666

be detected by the operators of the control center. Thus, from 667
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Fig. 4. Performance comparisons of different detectors for imperfect FDIA
in Case 3.

the hacker’s point of view, attacking a bus with less adjacent668

buses needs less information than other buses and therefore,669

will increase the probability of successful attack.670

Note that a perfect FDIA is less likely to occur in practice,671

which represents certainly the worst case for the detectors at the672

control center. To evaluate the performance of our detector in673

this situation, the perfect attack of Case 1 is used. It is found674

that the infinite-norm, the LNR, and the GLRT detectors are675

unable to detect this attack. By contrast, the proposed detector676

is capable of detecting it with a similar performance as that677

of the imperfect attack of Case 2. Upon a closer look, this is678

not a surprising result. The reason is that by using the secure679

PMU measurements as well as the predicted metered values, a680

relative reliable set of system state information can be obtained;681

then the robust statistical test of measurement consistency is682

able to detect the compromised SCADA measurements with a683

high probability. Note that the secure PMU measurements and684

the predicted measurements are not from the same source or685

devices as the SCADA measurements, and thus are not affected686

by the attacks. In addition, as long as the attack magnitude on687

SCADA measurements exceed 3 times the standard deviation of688

the measurement error, FDIA will be detected by our detector689

with a probability of 95%.690

D. Scalability and Robustness of the Proposed Method691

To evaluate the scalability and the robustness of the proposed692

method, numerical tests are performed on the IEEE 118-bus693

system. It is assumed that 29 secure PMUs are deployed to694

make the system observable [9]; the adversary aims to attack the695

state variable θ5 with 10 times the standard deviation error; the696

estimation errors of the state variables in the attack graph S are697

randomly varied between 5% and 15%. Note that only the single698

state attack scenario is tested. This is because from the hacker’s699

point of view, she must try to launch a successful imperfect FDIA700

with as a small uncertainty as possible. In other words, she will701

be able to attack a small power system area with high confidence.702

The larger area she wants to attack, the more uncertainties about703

the system information are, yielding higher probability of being704

detected by the operators at the control center. Thus, from the705

operator’s point of view, if the attacks on a small area with706

small uncertainties can be effectively detected, there is no need707

to worry about the risk of attacks on large areas with very high708

uncertainties. Fig. 5 displays the detection probability versus the709

Fig. 5. Performance comparisons of different detectors for imperfect FDIA
in IEEE 118-bus system.

Fig. 6. Performance of the proposed detector for imperfect FDIA with various
percentage of bad PMU measurements in IEEE 118-bus system.

false alarm probability for all the detectors. It can be observed 710

that the performance of the proposed detector is superior to the 711

other three methods. In addition, compared with the results on 712

the 30-bus test system, our detector is slightly affected by the 713

increased size of the test system. 714

To further investigate the impact of bad received and fore- 715

casted PMU measurements on the proposed detector, 1% to 5% 716

of them are contaminated by adding errors with 10 to 15 times 717

their standard deviations. The test results are shown in Fig. 6. 718

Thanks to the robustness of the Huber M-estimator and the en- 719

hanced measurement redundancy with forecasted metered val- 720

ues, the influence of gross errors are bounded, yielding a slightly 721

decreased performance of detecting attacks. However, the least 722

detection probability of the proposed method is still greater than 723

90%. Note that for the bus with several adjacent buses, it has 724

high local redundancy and the proposed detector can suppress 725

several bad PMU measurements, while for those who have only 726

one adjacent bus, it can handle fewer bad PMU measurements 727

associated to that bus. 728

VI. CONCLUSION 729

The first contribution of this paper is to extend the existing 730

perfect FDIA model by developing a generalized FDIA frame- 731

work against nonlinear SE that accounts for the uncertainties 732

in the measurements or in system topology. The upper bounds 733

of these uncertainties for performing successful FDIA are in- 734

vestigated analytically. They provide the operators with a better 735

understanding of the vulnerability of a nonlinear SE to FDIAs, 736
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and thus may facilitate the adoption and implementation of ef-737

fective defense methods. The second contribution of this paper738

is the development of a robust FDIA detection method that739

checks the measurement statistical consistency using a limited740

number of secure PMU measurements. Numerical results are741

provided to demonstrate the effectiveness and robustness of the742

proposed method. Future work will concentrate on the detection743

of topology attacks caused by the change of parameter values744

in the system. In addition, we will evaluate the sensitivity of745

the proposed approach to the accuracy of the forecasted PMU746

measurements and the change of system operation conditions747

in a short timeframe. Corresponding mitigation methods will be748

proposed if needed.749
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