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Abstract—This paper develops a generalized framework that
allows us to investigate the vulnerability of the power system non-
linear state estimator to false data injection attacks (FDIAs) from
the operator’s perspective and to initiate some countermeasures.
Unlike most existing FDIA methods, which assume a perfect knowl-
edge of the system measurements and topology by a hacker, we de-
rive and analyze the uncertainties for launching successful FDIAs
along with their upper bounds. To effectively defend against an
FDIA, we propose a robust detector that checks the measurement
statistical consistency using a subset of secure PMU measurements.
We first show that if these secure PMU measurements are free of
bad data while making the system observable, the FDIA is de-
tectable. We then show that detectability is also ensured if these
conditions are relaxed while using alternative redundant measure-
ments from short-term nodal synchrophasor predictions together
with the robust Huber M-estimator. Numerical simulation results
on the IEEE 30-bus and 118-bus systems demonstrate the effec-
tiveness and robustness of the proposed method even the secure
measurements contain noise and bad data.

Index Terms—Cyber security, false data injection attacks
(FDIAs), power system nonlinear state estimation, robust estima-
tion, phasor measurement units, Neyman-Pearson detector.

1. INTRODUCTION

UE to a strong reliance of smart grid functions on com-

munication networks, cyber attacks have become a major
concern among power researchers. The analysis of cyber at-
tacks on power system state estimation (SE) was pioneered by
Liu et al. [1], where the so-called false data injection attack
(FDIA) was introduced. Following this work, three types of
FDIAs were pinpointed and investigated, including state attacks
[11, [2], topology attacks [3], [4] and load redistribution attacks
[5]. Their impacts on the electricity markets were also analyzed

(61, [7].
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To safeguard the system operation and control against cy-
ber attacks, various detectors and mitigation methods have
been proposed. They include measurement protection-based ap-
proaches [8]—[11], sparse optimization or game theory-based
approaches [12], [13], innovation-based approaches [14], [15],
robust estimation-based approaches [16], to name a few. How-
ever, with the exception of [17]-[20], the bulk of the literature
focused on the linear DC rather than on the AC state estimator.
In [17], the vulnerability of the nonlinear SE to FDIA was an-
alyzed and discussed. It was shown that a hacker should know
perfectly all the state variables in the attack subgraph to conduct
a successful attack. In other words, she should have exactly the
same information about the power system as the operators of
the control center, including an exact knowledge about the mea-
surements and the system topology. In this paper, this type of
attack will be called the perfect FDIA attack. The work in [17]
was later extended by Rahman et al. [18], Zhao et al. [19], and
Xuan et al. [20] to take into account the uncertainties in the sys-
tem information that may be gathered by a hacker, resulting in
an imperfect FDIA. However, no analytical investigations were
carried out to explain why an imperfect attack may succeed and
under which conditions it will be detected by the operators of
the control center. Furthermore, defense approaches have been
studied extensively for a linear DC model-based FDIA. But lit-
tle work has been done for a nonlinear AC model-based FDIA.
Note that the practical control center uses nonlinear power sys-
tem state estimator for monitoring and control. It is thus of
vital importance to ensure the security and reliability of that
estimator.

In this paper, an analytical framework is proposed to investi-
gate the vulnerability of power system nonlinear state estimator
to an FDIA from the operator’s perspective. In particular, we
propose a generalized FDIA framework against the nonlinear
state estimator. In this framework, the perfect knowledge of
the system information is relaxed to account for measurement,
parameter and topology uncertainties. The latter may be in-
duced by the hacker’s limited real-time knowledge of the status
of various grid elements or restricted access to communica-
tion channels [14]. The upper bounds of these uncertainties for
launching a successful FDIA are quantified and analyzed as
well. To effectively detect an FDIA, we propose a robust detec-
tor by checking the measurement statistical consistency using
a subset of secure PMU measurements. It is shown that these
secure measurements allow us to detect an FDIA if they are free
of gross errors while making the system observable. These con-
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ditions are further relaxed by using a robust Huber M-estimator
together with alternative redundant measurements from short-
term nodal synchrophasor predictions. Interestingly, robust state
estimates provided by Huber M-estimator is shown to follow a
Gaussian distribution, which enables us to derive the analytical
form of the Neyman-Pearson detector.

The remainder of this paper is organized as follows: Section II
introduces the existing FDIAs against nonlinear state estimator
and presents the problem statement. Section III presents the pro-
posed generalized FDIA framework, while Section IV presents
the proposed robust FDIA detector. The simulation results are
analyzed in Section V, and finally Section VI concludes the

paper.

II. PROBLEM FORMULATION

A. Power System Nonlinear State Estimation

As shown in [21], for an N-bus power system using an AC
power flow model, the relationship between the vector of mea-
surements z € R™ obtained from the supervisory control and
data acquisition (SCADA) system and the state vector x € R",
which contains the nodal voltage magnitudes and phase angles,
yielding n = 2N — 1 < m, is given by

)

where h(-) : R” — R™ is a vector-valued nonlinear function;
e € R™ is the measurement error vector that is assumed to
follow a Gaussian distribution with zero mean and covariance
matrix R € R™*™ je., e ~N(0,R). The state estimator
is solved by minimizing the weighted least squares criterion,
yielding

z =h(x) + e,

& =arg minfz —h ()" R [z—h(x)]. 2)

Let us apply the Gauss-Newton iterative algorithm [21] to solve
for the state vector. Formally, we have

" =2 + Ak k=12, ..., 3)
AzF = (H(mk)TR’IH(wk))’lH(mk)TR’l(z — h(z")),
“4)

where H(z") = Oh(z)/0%|4— 5 € R™*" is the Jacobian
matrix. The algorithm converges once the norm of Az" is
smaller than a pre-specified threshold. After estimation, the
{s-norm detector is applied to detect the existence of bad data
by checking if the following inequality holds [6], [21]:

lrll=llz=h @)=, Q)
where T is a detection threshold of the ¢5-norm detector. Note
that || - || is used to represent the ¢>-norm throughout the paper,

where the subscript 2 in (5) has been dropped for simplicity.

B. Attack Model of the Nonlinear State Estimator

To perform an FDIA, we make the same assumptions as that
in [6], [17], that is: i) an attacker could access the real-time
measurements in a small area S bounded by buses, where the
measurement and state indices in S are denoted as M and Zg,
respectively; ii) the hacker could change all the measurements
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in §; iii) the hacker might have an a priori knowledge of the
system topology, including the line parameters of the area S.

Thus, for the 7th measurement, z;, the attack model is
A =1" Tig M. (©)
zi +a; if 1€ M,

where a; is the ith element of the attack vector a.

Lemma 1: Let us now assume that the hacker has obtained
the same z;,7 € M, and Z; as the operators of the control
center. If the original measurement z;,i7 € M, could bypass

the /5-norm detector, the malicious measurement zi(a) could
also pass this detector under the condition a; = h (Z; + ¢;) —
h (z;), where ¢; represents the changes in the ith-attacked state
variable.

Proof: Since we are interested in the area S, the index i
is omitted for simplicity. Because z can bypass the ¢5-norm
detector, ||7]| = ||z — h (Z)|| < 7 holds. The ¢5-norm of the

attacked measurement residual 7, is given by

[rall = [I2" = h(Z.)[| = |z +a—h(Z+c)
=|lz+a—h(@+c)+h(@) —h@)|
=|r+a—h(@+c)+h@)|

=|rl| <, (7)
which means that the attacked measurements could also avoid
the detection. Note that Z, =  + ¢ and r = z — h(Z) is the
measurement residual vector. |

When implementing an FDIA for practical power systems,
Lemma 1 intrinsically assumes that the hacker has enough com-
putational capability to estimate the local state vector Z;, i € Z;
so that the attack vector a = h (Z; 4+ ¢;) — h (Z;) can be con-
structed. This assumption is acceptable given that the SCADA
measurements are non-synchronized while the collection rates
of measurements differ from one region to another one. In ad-
dition, a hacker may intentionally attack the communication
system to delay the SCADA measurements for some parts of
the system so that the local state x; can be estimated by the
hacker [6], [17].

C. Determining the Attack Graph of the Target Buses

Let S = {B, 1} denote the attack graph, where B and 2 are
the sets of buses and transmission lines, respectively; let K de-
note a set of bus indices for power injection buses, including the
load and the generator buses. In [17], a topographical analysis
was proposed to determine the attack graph of a single target
bus. That approach is summarized below:

e Step 1: Leti € K be the ith targeted power injection bus,

the first step is to include bus 7 into the subgraph S;;

e Step 2: Extend S; to include all the buses and branches €);
that are connected to bus ¢, where €); is the set of adjacent
branches connected to bus i;

e Step 3: If there exists any zero injection Bus j not con-
nected to either the load or the generator on the boundary
of §;, extend S; to include 2; and continue Step 4; other-
wise go to Step 5;
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e Step 4: Repeat Step 3 until all buses on the boundary belong
to the set K;
e Step 5: Obtain the final attack subgraph as S = _U’C Si.
1€

The above procedures can be simply summarized by the fol-
lowing lemma:

Lemma 2: For a bus provided with a power injection, its
adjacent buses provided with power injections must be changed
accordingly so that specified state changes can be made by the
hacker. For a zero-injection bus, its adjacent power flows must
sum to zero. This means that the measurements of the power
injection buses adjacent to a zero power injection bus must be
changed accordingly so that the equality constraints are satisfied.
Consequently, buses that belong to S are bounded by buses in .

Using Lemma 2, we are able to determine the attack graph
of multi-buses. The difference is that the size of the set S is
increased with additional buses bounded by power injections.

D. Problem Statement

With the obtained attack graph S and all the assumptions
stated in Section II-B satisfied, a perfect FDIA against a nonlin-
ear state estimator can be achieved. However, because a hacker
has typically a lack of real-time knowledge of the status of grid
elements such as the position of circuit breaker switches and
transformer tap changers, and also because she is restricted to
access partial measurement channels, it is thus impossible for
her to obtain the same state estimates as the operators of the
control center in the attack graph S. In other words, a perfect
FDIA approach proposed in the literature [6], [17] seems to be
impractical for realistic power systems. This is because with
uncertain information of the system, z;,¢ € Z, obtained by the
hacker is different from the state estimate %, i € Z,, and bias (;
exists, i.e., T; = T}’ + (;. Note that T}’ , i € Z; is the i-th state
estimate calculated by the control center without an FDIA. As a
result, when an FDIA occurs, the inequality constraint (7) may
not hold true anymore. Interestingly, simulations carried out
n [18], [20] reveal that even with some uncertain information
about the system, FDIA can be successful without being de-
tected by the control center. Furthermore, the expected changes
on the target state variables are not equal to c. However, no
analytical investigations were carried out to explain why this
imperfect attack can succeed and under which conditions it will
be detected by the operators of the control center.

In this paper, an analytical investigation will be performed to
show how the inequality constraint (7) can be satisfied in pres-
ence of system uncertainties to avoid the detection of an FDIA
by the control center. In addition, we will quantify the maxi-
mum uncertainties a hacker can have so as to perform imperfect
FDIA. The trade-off between attack magnitudes on the target
state variables and the system uncertainties will be analyzed
as well. Finally, to detect this type of FDIA, we will propose a
measurement statistical consistency-based robust detector using
a subset of secure PMU measurements.

Remark: To avoid the confusion between the bias terms ¢
and ¢, we make the following clarifications: Z is the estimated
state vector before an FDIA and it is equal to ¥ obtained by
the control center if the hacker has the same information of the
system as the control center. Otherwise, there is a difference

between Z and Z" caused by information uncertainties, which
is the bias ¢. By contrast, ¢ is the expected bias by the hacker
when performing an FDIA.

III. PROPOSED GENERALIZED FDIA FRAMEWORK AGAINST
THE NONLINEAR STATE ESTIMATOR

An FDIA is in fact a type of perfect interacting and conform-
ing bad data [22]. Therefore, the statistical tests applied to the
weighted or the normalized residuals or the sum of the squared
residuals (/5 detector) are unable to detect them. Without loss of
generality, we consider in the sequel only the ¢, detector when
deriving the generalized FDIA framework.

In the developed generalized FDIA framework, we first pro-
vide a sufficient condition in Section III-A to justify theoretically
how the imperfect FDIA can bypass the detector at the control
center. This allows us to derive the upper bound of the uncertain-
ties the hacker can have so as to launch a successful imperfect
FDIA. Therefore, we are able to analyze the trade-off between
attack magnitudes on the target state variables and the system
uncertainties. To our best knowledge, this is the first attempt
to provide theoretical justification to an imperfect FDIA and to
quantify the tradeoff between the attack magnitude and the state
bias caused by system uncertainties.

A. Sufficient Condition for an Imperfect FDIA

As clarified before, an adversary cannot obtain the same es-
timated state £ (the subscript 7 is dropped for simplicity) as
the operators of the control center. Here, we provide a sufficient
condition for an imperfect FDIA to succeed subject to the state
bias. This is shown in the following Lemma:

Lemma 3: If the true measurement residual ||r| =
lz—h (2")] <7 holds, a sufficient condition for the mea-
surement z subject to attack a to pass ¢, detector is

la=h@" +c)+h@")|<y=7—lrl. ®

Proof: When there are no bad data in the original measure-
ments, ||r| < 7 is always satisfied. The measurement residual
under FDIA can be derived as

7l = l2za —h (@)l = |2 +a—h (@ +c)
=llz+a—h(@" +c)+h(x")—h@")|
= |lr+a—h(@" +¢)+h(@")]

<7l +lla=h(@" +c)+h @) <7, ©)

which means that if the constraint (8) holds, an FDIA can not be
detected by the residual statistical bad data detection test. W

Although Lemma 3 looks straightforward, it provides a suf-
ficient condition that the attack vector a should satisfy to avoid
her detection by the operators. In addition, it serves as the foun-
dation for the derivation of the upper bound of uncertainties
the hacker can have when implementing a successful imper-
fect FDIA. On the other hand, it is easy to verify that a perfect
attack with ¥ = Z mentioned in Lemma 1 is just a special
case here. Finally, since " is unknown to the hacker due to
the limited knowledge of the system, conditions with the con-
sideration of system uncertainties should be derived. That is,
what is the tradeoff between system uncertainties and attack
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magnitude? This question will be investigated and analyzed in
Section III-B.

B. Tradeoff Between System Uncertainties and
Attack Magnitude

Due to the existence of uncertain system information obtained
by an attacker, the initial state vector used to construct an attack
vector has uncertainties as well. This in turn yields biases on
the target state variables. The larger uncertainties the hacker
has, the less possibilities she can change the attack magnitudes,
and vice versa. In other words, there exists a tradeoff between
system uncertainties and attack magnitude. To quantify that, we
definea = h(Z + ¢) — h(z) and = " + ¢. The £5-norm of
the measurement residual becomes

Irall =llz +a—h(@" + )
=|z+a-h@" +c)+h(@")-h(@")]
=|z—h@")+(@a—h(@" +c)+h@"))
<llz=h @) +lla—h(@" +c)+h@")]

=lri+lh(@+c)-h(@" +c) - (h(x) - h(@"))].
(10)

Performing Taylor series expansions of h(Z + ¢) and h(Z) at
Z"” + cand T, respectively, we obtain

h(z+c)—h(Z"+c¢)
=h@"+c¢)+H,(x—Z"—¢c)+01 —h(Z' +¢)

= H1 (C—C) +01
h(Z)—h(@")=h@")+H, @ —2")+ o0, — h(3")
= Hs( + 0, (11

where Hy = Oh/0x |4—zv . and Hy = Oh/Ox |,z are
Jacobian matrices; 0; and o, are the higher order Taylor expan-
sion terms. Since only the first order approximation is used in
the WLS based state estimation algorithm, all the higher order
terms are neglected during the iteration. In other words, o; and
0, tend to O faster than the convergence of state estimation.
Therefore,

|h(Z+c)—h(@" +c)—(h(z)—h(@"))|
=|[(H1 = Hy)¢ = Hic+ (01 — 03|
=~ |(Hy — Ha)¢ — Hi |

< [[Hy — He| [[€I] + [[H |l [e] - (12)
By combining (10) and (12), we get
Irall < llvll + 1Hy — Ho|[ ISl + [ Hyll [[e] . (13)

In order not to be detected by the operators of the control cen-
ter, the right-hand side of (13) must be less than the detection

threshold 7, that is,
0 <|Hy— H:l|l <l + [[Hl el < - (14)

The above equation shows the tradeoff between the attack mag-
nitude and the estimation error ||¢|| of the state variables in the
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attack graph S. Note that ||¢|| is caused by an uncertain infor-
mation about the system state. If the estimation error is fixed,
i.e., [|€]| = B # 0, the attack magnitude is bounded by

0< e < -8+ Y+ H: 8

TH T (15)

If ||¢]| = B = 0, which means that the hacker can get exactly
the same state estimates as the operators of the control center in
the attack graph S, the attack reduces to the perfect FDIA. The
attack magnitude is bounded according to either (14) or (15) by
setting = 0. Formally, we have

0<|lefl <

v
= T (10)

Remark: Note that the main scope of this paper is to inves-
tigate the vulnerability of a nonlinear WLS state estimator to
imperfect FDIAs from the operator’s perspective. To be more
specific, given the current states estimated from the measure-
ments and the assumed attack magnitudes, the operator knows
matrices H | and H». Then he can analyze how large uncertain-
ties the hacker can have so that a success FDIA is launched under
this condition. He may vary the assumed attack magnitudes to
assess how the maximum uncertain information of the hacker
changes if a successful FDIA is initiated. As a result, the vulner-
ability of the estimator can be assessed. On the other hand, due
to the existence of uncertain system information and the limited
access to measurements, the hacker is unable to know the exact
matrices H| and H,. However, as long as the inequality (14)
holds true, he can initiate successful FDIA with inexact H; and
H . This analysis can warn the operator to pay attention to the
potential FDIA as the hacker is able to launch successful FDIA
even with uncertain system information and limited measure-
ments. To this end, corresponding effective countermeasures
can be proposed.

IV. PROPOSED ROBUST FDIA DETECTOR

In this section, we first present the motivations of designing
arobust FDIA detector with a limited number of secure PMUSs.
The challenges and solution methodologies associated with the
detector are discussed thoroughly. Then, the robust FDIA de-
tector using measurement statistical consistency is proposed.
To derive this detector, we enhance the data redundancy of the
PMU measurements by short-term measurement forecasting,
which allows us to handle noise and outliers in secure PMU
measurements. We show through Theorem 1 that our robust
state estimates follow a Gaussian distribution even when the
PMU measurement errors are not normally distributed. This en-
ables us to derive the Neyman-Pearson detector for an FDIA
detection.

A. Motivations and Challenges

Recall that the hacker’s objective is to change the estimated
state vector by injecting malicious measurements. Once some
measurements are compromised, the distribution of the esti-
mated state vector will be perturbed by the attack [2], [14]. If
one can find a set of measurements that will produce close ap-
proximations to the true estimated state vector and its probability
distribution, then this statistical information can be further used
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to double check the estimation results obtained from the remain-
ing measurements. This strategy shares similar characteristics
of the machine learning techniques, where partial data is used
for learning and training while the remaining data is leveraged
for validation. On the other hand, with the increasing deploy-
ment of PMUs in power systems, most of these systems are
expected to be observable by PMUs. Indeed, many real systems
have been observed by PMUs such as the Virginia Dominion
Power [23], the 765/345/230 kV power grid in New York (NY),
and the 345 kV power grid in New England (NE) [24], [25], to
cite a few. In addition, the PMU observability of a given power
system has been widely assumed in the literature, see [24], [29]
for example. Thus, in this paper, we assume as suggested in [9]
that the system is observable by a minimal set of PMUs that are
made secure against cyber attacks. These PMUs that are usually
installed at transmission system substations can be protected
by encryptions, advanced fire walls and data package anomaly
detectors, to name a few [26]-[28]. In addition, limited number
of PMUs are assumed to be secure in the sense that they cannot
be controlled by the hacker. On the other hand, unlike [9], we
propose a robust detector based on an AC power system model
that is able to handle outliers. Indeed, the authors in [9] make
use of a DC not an AC state estimation model. Furthermore, they
suppose that the PMU measurements are free of bad data, which
is unrealistic in practice since impulsive communication noise
and faulty GPS synchronization may corrupt the metered val-
ues. Note that strongly biased state estimates may result, which
will mislead the operators of a control center; consequently, they
may take wrong decisions based on them [30].

Remark: We assume the number of secure PMUs only guar-
antees the observability of the system, yielding no measurement
redundancy. As a result, the PMU-based linear state estimator is
not able to filter out noise as well as bad data. On the other hand,
the state estimation model itself is an approximate model with
uncertainties in the parameters, the topology and the measure-
ments. Thus, a high measurement redundancy is required to re-
liably estimate the system state vector. This motivates us to vali-
date and correct the remaining SCADA measurements, yielding
improved state estimation results and system visualization.

B. Robust Detector Using Measurement Statistical
Consistency

Similarly to the strategy proposed in [9], we assume in the
proposed detector that the system is observed by a minimal set
of secure PMU measurements. On the other hand, we advocate
to enhance the data redundancy of PMUs by short-term mea-
surement forecasting as proposed by Yacine et al. [31]. This
allows our robust estimator to handle outliers in secure PMU
measurements. It should be noted that it is in general chal-
lenging to forecast the future operating conditions due to many
changing factors. However, we focus only on a very short-term
forecast of the PMU metered variables, where the system oper-
ating conditions vary slowly, which is a reasonable assumption
for practical power systems. Furthermore, system loads and re-
newable energy-based distributed generations change continu-
ously from time to time, exhibiting temporal correlations. These
changes in turn affect other generators and loads within the same

geographic area, yielding spatial correlations. As a result, the
nodal voltage and current phasors of the system exhibit similar
statistical properties, which can be easily proved through the
power flow equations. Thanks to these temporal and spatial cor-
relations, we are able to use time series analysis technique to
perform a short-term forecasting of the PMU metered variables.
Interestingly, the temporal and spatial correlations of the nodal
voltage and current phasors have been proved by [31] through
field measurements. In that reference, an effective forecast of
the PMU metered variables using a vector autoregressive model
has been demonstrated as well. Following [31], we consider a
vector autoregressive model of first order and dimension D at
time instant k, i.e.,

Yr = Pryr 1 + &, (17)

where y;. € RP is the vector of secure PMU measurements;
&, € RP*D represents the transition matrix; e, € R” is the
Gaussian noise and e; ~ N(0, S}), where S;, € RP*P is a
non-diagonal error covariance matrix due to temporal and spatial
correlations among PMU measurements. Using the Yule-Walker
method, @k are estimated using historical measurements [31].
Then, the forecasted PMU metered values are obtained through
y{ = &Jk Y1, while its covariance matrix is given by Pj =

&)k P4 ':I;kT + S}, where Pj._; is the error covariance matrix
of the filtered PMUs at time instant k—1. By processing the
metered and the forecasted PMU values simultaneously and
then performing the data prewhitening, we get the following
regression form

z;, = Hrx, + Ny, (18)

7
where z;, = L;! [(y;)T (yé) } € R' is the extended mea-

surement vector that contains the forecasted measurements y£

and received PMU measurements y;; | = 2D; L; is a matrix
for prewhitening that is determined by applying a Cholesky
decomposition to the augmented error covariance matrix I' =
diag[A; Py] = Ly, Lf. Here, A}, denotes the measurement er-
ror covariance matrix; H; = L,;l [AkT AkT]T; Ay, is a con-
stant admittance matrix; 7;, is the normalized error vector; and
nr ~ N(0,I}), where I is an identity matrix. Note that,
only the current phasor measurement on a given line having
an impedance that is very different from the rest of the lines can
induce leverage point in the regression equation (18). By using
the scaling technique proposed in [29], those leverage points
can be eliminated and only vertical outliers are of concern.

Note that there always exists the case that system operation
conditions vary abruptly, yielding unreliable predicted PMU
measurements. In addition, the received PMU measurements
can be corrupted with gross errors as well due to the impulsive
communication noise, loss of communications, etc. To handle
them while achieving good statistical efficiency, we advocate the
use of the robust Huber-estimator [32]. This estimator minimizes
the following objective function:

1
J(@) = plrs,),

i=1

19)
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where p(+) is the Huber convex cost function defined as:

(rs.) Tf /2
rg. ) =
PUSTZ Alrs, | - 22/2

where the parameter X is typically set to be between 1.5 and 3
for achieving high statistical efficiency when the measurement
errors are Gaussian [32]; g, = 7;/sis the standardized residual;
r; = z; — ol T and ! is the ith column vector of the matrix
H!'; s = 1.4826 c,, median |r;| is the robust scale estimate and
¢, 18 a correction factor [33].

To solve (19), the following necessary condition must be

satisfied:

for |rg,| < A

, 20
for|rg,| > A @0

[
OT@) 3 i) =0,

X
0 i=1

21

where ¢ (rg,) = 0p (rg,)/Ors,. Multiplying and dividing rg,
on both sides of (21), we obtain

1
PO CRL ) @)
; rs. S
i=1 '
which can be arranged in a matrix form as
Hi'Q (2 — H, Z) =0, (23)

where ¢ (rg) =1 (rg)/rs and Q = diag (g (rs)). Finally, us-
ing the iteratively re-weighted least square (IRLS) algorithm
[32], the solution can be obtained through

-1
= (M) HQUm, 4

where £ is the iteration counter. The algorithm converges if

H:E;”” . ;E;“H <<, e.q.,1072. (25)
o0
Theorem 1: The state estimation error by the Huber M-
estimator above has an asymptotic normal probability distri-
bution with zero mean and covariance matrix V', given by

]E[g) rs ]
(B[ 5)])°

Proof: Let us define T) = T (F)) as the statistic estimates
of T(F') and consider the e-contaminated distribution F, =
(1 —¢€) F + €d,, where F is the true distribution while §, is
the point mass at = with an unknown distribution for the outliers
or thick-tailed distributions. By virtue of the Glivenko-Cantelli
theorem, T (F.) — T (F) as € — 0. Taking Taylor series ex-
pansion on ¥ (rg, ; ¥) of (21) about &, we obtain

ofign o)
(rsyi }

1!
{ oy
where O, (-) represents the higher order error terms.

1

V) = (HIHe) (26)

+H VI

ta, -0, (1/ﬂ) —o0, 27)
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Using the central limit theorem, we have

\/Z{;iw(rsl;ﬂf)}ﬂdZNN@,EF [%ZJ(TSI;JJ)QD-

(28)
By the weak law of large numbers, we obtain
1<
{l > v (s w)} —y B ¥ (rs52)] . @9)
i=1
Thus, by Slutsky’s theorem, we get
—7
HIVI(Z —2) —g—r7— ~ N (0,77)  (30)
VIE =) g e Y (O)
Er [¢(rs.; ’
where 7 r [,( 5:1%) l . Thus, we can obtain
F [0 (rs, )]
. = lim E M( b x)} —o0, 31)
E [y? -
Vi = lim Var [\/(:’E w)} = [1/11 (7’5)}2 (HEH) g
(E [ (rs)])
(32)
which complete the proof. |

After a state estimation is carried out, the estimated/
interpolated SCADA measurements can be calculated through
z = h(Z), where the subscript k is omitted for simplicity. De-
fine the difference between the interpolated and the received
SCADA measurements as a new residual, i.e., v = 2z — 2, we
have the following theorem:

Theorem 2: With the assumption that the measurement er-
rors of the received SCADA measurements follow a Gaussian
distribution, i.e., e ~ N'(0, R) defined in (1), the new residual
is normally distributed with zero mean and the covariance ma-
trix C = R+ HV H”T, where H is the Jacobian matrix of the
vector-valued function h(-) evaluated at .

Proof: By taking the first order Taylor series expansion of
h(x) at Z, the innovation vector v can be expressed as

v=z—-2z=h(x)+e— h(x)
=h(Z)+H(x—2)+e—h(x)
=H(z—-Z)+e. (33)

Thus, E [v]
trix is E [vov” ]

= HE [z — z] + E [e] = 0 and the covariance ma-
=Hcov(z—2Z)H"+ R=HVH" + R.
|

Note that the asymptotic zero mean of the innovation vector

v is valid under the condition that none of the received SCADA
measurements is attacked. Otherwise, E [v] = a, where a is the
measurement bias injected by the hacker. Therefore, by checking
the zero mean hypothesis of v, we can determine whether an
FDIA has been conducted or not. To this end, a binary hypothesis
test on the measurement consistency can be developed; it is as

follows:
HO DU ./\/'(07 C)
H1 :

v~N(a,C)’ G
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where hypothesis H, and H; represent no FDIA and the occur-
rence of FDIA, respectively. By using the log-likelihood ratio
test, we have
1 E
t=viC'la- iaTC’IaZH,

Ho

(35)

where « is a decision threshold. Since £ is a linear combination
of v, according to (34), it is expressed as

Ho: & N./\f(ug,ag)

(36)
Hi: & NN(MhU?) ;
and where
1
po=—3 a’Cla
1

p=3 a’'C'la

o; =a"C'a. (37)
Therefore, given a false alarm rate Py, the relationship between

the detection threshold ~ and Py, of the Neyman-Pearson de-
tector is given by

Py, =P({>kK[Hy) = %erfc (K\/%:0> ) (38)
£

where erfc(-) represents the complementary error function of
the normal distribution. Thus, the threshold of the detector can

be calculated as
K = V20¢erfc™ (2Py,) + po- (39)

Finally, the detection probability of an FDIA using the hypoth-
esis testing is given by

Pp=PE>rHi)= %erfc (Hﬁ;“) . (40)
¢

Remark: the aim of above analysis is to investigate the the-
oretical tradeoff between detection probability and false alarm
of the proposed detector given the specified attack vector a.
In practice, the operator does not need to know the attack vec-
tor a. Instead, the following equivalent normalized innovation
vector-based statistical test is used:

il g (41)

VC i)

where v; and vy ; are the ith element of the innovation vector v
and its normalized value, respectively; C'(i, 7) is the ith diagonal
element of the derived covariance matrix; © is the detection
threshold that is determined by the given confidence level of
the Gaussian distribution, e.g., 3 for 99.7% confidence level.
Note that we have proved that the innovation vector follows a
Gaussian distribution with zero mean and the covariance matrix
C'. The occurrence of the FDIA violates this fact and will be
detected by our proposed robust detector with 99.7% confidence
level.

UNi

V. NUMERICAL RESULTS

In this section, we use Sections V-A and V-B to demonstrate
the validity of the proposed analytical FDIA framework against
nonlinear state estimator, where the trade-off between attack
magnitudes and information uncertainties is analyzed as well;
by contrast, Sections V-C and V-D demonstrate the effectiveness
of our robust FDIA detector in presence of measurement noise
and bad data.

Specifically, extensive numerical simulations are carried out
on the IEEE 30-bus and the 118-bus test systems. The measure-
ment configurations of two test systems are as follows: 1) the
IEEE 30-bus system is measured by 93 SCADA measurements,
including 18 pairs of active and reactive power injections, 28
of pairs power flows and voltage magnitude of Bus 1; 2) the
118-bus system has 150 pairs of SCADA measurements, in-
cluding 39 pairs of injection measurements and 111 pairs of
flow measurements. The detailed measurement placements and
topology of both test systems can be found in [34]. The meter
errors of SCADA and PMU measurements follow the normal
distribution with zero mean and standard deviations of 102 and
1073, respectively. The detection threshold for the normalized
residual test is set to 3 with 99.7% confidence level. Two types
of AC FDIAs are considered: i) Perfect Attack: the adversary
does not have estimation errors corrupting the state variables
in the attack graph S = {N,Q}; ii) Imperfect Attack: the ad-
versary has estimation errors corrupting the state variables in
the attack graph S. One hundred Monte Carlo simulations are
carried out to estimate the average value of the state estimation
errors. The effectiveness of the proposed method will be first
validated on the IEEE 30-bus system in Sections V-A— V-C, and
then its scalability and robustness for larger-scale system will
be tested using the 118-bus system .

A. Validation of the Imperfect State Variable Attack

A hacker is assumed to change the electricity consumption at
Bus 26 through cyber attacks. To this end, she only needs to com-
promise the measurements Pss_ 97, Q25_27, Pos_24, Q25_27,
Ps5 and Q55 so as to estimate Vo5 and 0y5. After that, the follow-
ing two types of attacks are conducted without being detected
by the operators of the control center.

Case 1: Perfect attack where the phase angle at Bus 26 is
changed from 655 = —0.2990 to —0.0990 radians.

Case 2: Imperfect attack where the phase angle at Bus 26
is changed from 655 = —0.2990 to —0.0990 radians; here, the
estimated state variables in the attack graph S have 5% errors,
which are simulated using 100 Monte Carlo simulations. To be
specific, a random sample taken from the uniform distribution
[—AT; +2; A1; + 7], j € Q; isused to represent the jth state
variable to be estimated by the hacker; the final results are
obtained by taking the average value of the 100 estimation errors.

Fig. 1 displays the results for Case 1 and Case 2. We can
observe from this figure that the perfect attack has successfully
changed the nonlinear SE results to the target value within 4 it-
erations. By contrast, the imperfect attack is not able to change
the compromised state variable to the exact target value due
to the uncertain knowledge of the system by the hacker. How-
ever, the difference between the hacker’s target value and the
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Fig. 1. Performance of perfect and imperfect FDIA over iterations of the
nonlinear state estimator using weighted least squares algorithm.

achieved value is quite small. Therefore, it can be concluded
that although the system information obtained by a hacker is
inaccurate or contains uncertainties, she is capable of perform-
ing an imperfect attack with consequences that are close to her
expectations without being detected by the traditional residual
bad data detection tests.

B. Tradeoff Between Attack Magnitude and Uncertainties

It has been verified in Section V-A that a hacker is able
to launch an imperfect attack to change some state variables
close to her desire subject to system uncertainties. Now, what
is the relationship between system uncertainties and the attack
magnitude? To answer that question, let us first note that the
system uncertainties will lead to estimation errors of the state
variables in graph S, which further affects the construction of
the attack vector. To show this, we first resort to our theoretical
results given by (14). Itis clear that there is a tradeoff between the
attack magnitude and the estimation errors of the state variables
in graph S. To further demonstrate this tradeoff, some simulation
results are conducted and analyzed. To this end, we implement
our imperfect FDIA to attack a single state variable and multiple
state variables with varying errors in graph S. The former case is
similar to Case 2 while the latter one is similar to Case 3, which
are imperfect attacks aimed at changing the phase angles at
Buses 26 and 24 to —0.0990 and —0.1886 radians, respectively.
The traditional normalized residual statistical test is used with
a detection threshold of 3.

The test results are displayed in Fig. 2. It can be seen from
Fig. 2 that with increased estimation errors of the state variables
in the attack graph, the largest normalized residual continues to
increase and finally exceeds the detection threshold. The largest
estimation errors of the state variables in the attack graph when
imperfect attacks are implemented successfully are 18.4% and
16.5% for single and multiple state attacks, respectively. This
means that if a hacker is unable to estimate the state variables
in the attack graph within a certain error tolerance, the attack
will be detected. To show how this error tolerance threshold
is affected by the attack magnitude, we consider changing 4
and 24 to —0.05 and —0.0886 radians, respectively. It is found
that the error tolerance threshold decreases to 9.25% due to the
increase of attack magnitude. Thus, the tradeoff between attack
magnitude and system uncertainties is validated.
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Fig. 3. Performance comparisons of different detectors for imperfect FDIA
in Case 2.

C. Detection of an FDIA on the Nonlinear State Estimator

Asrevealed in Fig. 2, if the estimation errors of the state vari-
ables in the attack graph S are less than 15% for Cases 2 and
3, the largest normalized residual is unable to reveal an FDIA.
By contrast, our proposed detector can detect them with a high
probability. To show this, we implement the proposed detector
for both cases with a limited number of secure PMU measure-
ments, say 10 PMUs, which are assumed to be installed at Buses
1,7,8,10,11, 12, 18, 23, 26 and 30. This is the minimal number
of PMUs to observe the 30-bus system. All the measurements
from these PMUs are assumed to be protected by the control
center. The estimation errors of the state variables in the at-
tack graph S vary randomly between 10% and 20%. 100 Monte
Carlo simulations are carried out to assess the performance of
each detector.

Figs. 3 and 4 show the receiver operating characteristic
(ROC) curves for different detectors, including the generalized
likelihood ratio test (GLRT)-based detector, infinite norm-based
detector, and the largest normalized residual (LNR)-based
detector [2].

Itis observed from these two figures that the proposed detector
outperforms the other three detectors. In particular, the infinite-
norm, the LNR, and the GLRT detectors have more difficulties in
detecting the single state variable attack than the multiple state
variable attack. By contrast, our proposed detector is slightly
affected. These results actually validate the fact that the more
uncertainty the information a hacker obtains, the easier she will
be detected by the operators of the control center. Thus, from
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Fig. 4. Performance comparisons of different detectors for imperfect FDIA
in Case 3.

the hacker’s point of view, attacking a bus with less adjacent
buses needs less information than other buses and therefore,
will increase the probability of successful attack.

Note that a perfect FDIA is less likely to occur in practice,
which represents certainly the worst case for the detectors at the
control center. To evaluate the performance of our detector in
this situation, the perfect attack of Case 1 is used. It is found
that the infinite-norm, the LNR, and the GLRT detectors are
unable to detect this attack. By contrast, the proposed detector
is capable of detecting it with a similar performance as that
of the imperfect attack of Case 2. Upon a closer look, this is
not a surprising result. The reason is that by using the secure
PMU measurements as well as the predicted metered values, a
relative reliable set of system state information can be obtained;
then the robust statistical test of measurement consistency is
able to detect the compromised SCADA measurements with a
high probability. Note that the secure PMU measurements and
the predicted measurements are not from the same source or
devices as the SCADA measurements, and thus are not affected
by the attacks. In addition, as long as the attack magnitude on
SCADA measurements exceed 3 times the standard deviation of
the measurement error, FDIA will be detected by our detector
with a probability of 95%.

D. Scalability and Robustness of the Proposed Method

To evaluate the scalability and the robustness of the proposed
method, numerical tests are performed on the IEEE 118-bus
system. It is assumed that 29 secure PMUs are deployed to
make the system observable [9]; the adversary aims to attack the
state variable 05 with 10 times the standard deviation error; the
estimation errors of the state variables in the attack graph S are
randomly varied between 5% and 15%. Note that only the single
state attack scenario is tested. This is because from the hacker’s
point of view, she must try to launch a successful imperfect FDIA
with as a small uncertainty as possible. In other words, she will
be able to attack a small power system area with high confidence.
The larger area she wants to attack, the more uncertainties about
the system information are, yielding higher probability of being
detected by the operators at the control center. Thus, from the
operator’s point of view, if the attacks on a small area with
small uncertainties can be effectively detected, there is no need
to worry about the risk of attacks on large areas with very high
uncertainties. Fig. 5 displays the detection probability versus the
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Fig. 5. Performance comparisons of different detectors for imperfect FDIA
in IEEE 118-bus system.
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Fig. 6. Performance of the proposed detector for imperfect FDIA with various
percentage of bad PMU measurements in IEEE 118-bus system.

false alarm probability for all the detectors. It can be observed
that the performance of the proposed detector is superior to the
other three methods. In addition, compared with the results on
the 30-bus test system, our detector is slightly affected by the
increased size of the test system.

To further investigate the impact of bad received and fore-
casted PMU measurements on the proposed detector, 1% to 5%
of them are contaminated by adding errors with 10 to 15 times
their standard deviations. The test results are shown in Fig. 6.
Thanks to the robustness of the Huber M-estimator and the en-
hanced measurement redundancy with forecasted metered val-
ues, the influence of gross errors are bounded, yielding a slightly
decreased performance of detecting attacks. However, the least
detection probability of the proposed method is still greater than
90%. Note that for the bus with several adjacent buses, it has
high local redundancy and the proposed detector can suppress
several bad PMU measurements, while for those who have only
one adjacent bus, it can handle fewer bad PMU measurements
associated to that bus.

VI. CONCLUSION

The first contribution of this paper is to extend the existing
perfect FDIA model by developing a generalized FDIA frame-
work against nonlinear SE that accounts for the uncertainties
in the measurements or in system topology. The upper bounds
of these uncertainties for performing successful FDIA are in-
vestigated analytically. They provide the operators with a better
understanding of the vulnerability of a nonlinear SE to FDIAs,
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and thus may facilitate the adoption and implementation of ef-
fective defense methods. The second contribution of this paper
is the development of a robust FDIA detection method that
checks the measurement statistical consistency using a limited
number of secure PMU measurements. Numerical results are
provided to demonstrate the effectiveness and robustness of the
proposed method. Future work will concentrate on the detection
of topology attacks caused by the change of parameter values
in the system. In addition, we will evaluate the sensitivity of
the proposed approach to the accuracy of the forecasted PMU
measurements and the change of system operation conditions
in a short timeframe. Corresponding mitigation methods will be
proposed if needed.
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