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Stable Conical Regularization by Constructible Dilating Cones with an

Application to Lp-constrained Optimization Problems

Baasansuren Jadamba, Akhtar A. Khan and Miguel Sama*

Abstract. We study a convex constrained optimization problem that suffers from the

lack of Slater-type constraint qualification. By employing a constructible represen-

tation of the constraint cone, we devise a new family of dilating cones and use it

to introduce a family of regularized problems. We establish novel stability estimates

for the regularized problems in terms of the regularization parameter. To show the

feasibility and efficiency of the proposed framework, we present applications to some

Lp-constrained least-squares problems.

1. Introduction

Let U and V be real Hilbert spaces, let Y be a real Banach space, and let ‖ · ‖U , ‖ · ‖V ,

and ‖ · ‖Y be their norms. Let K ⊂ Y be a closed, convex, and pointed cone that induces

a partial ordering ≤K on Y . Denoting by Y ∗ the dual space of Y , by K∗ = {y∗ ∈ Y ∗ |
y∗(k) ≥ 0 for every k ∈ K}, we represent the positive dual of K.

We focus on the following convex minimization problem:

(1.1) Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to Gu ≤K w, u ∈ U.

Here S : U → V , G : U → Y are linear bounded operators, κ > 0 is a given parameter,

and ud ∈ U , zd ∈ V , and w ∈ Y are given elements. Clearly, problem (1.1) has a

unique solution u. However, there are important examples where the solution cannot

be computed using the Karush-Kuhn-Tucker (KKT) conditions. One remedy then is

to associate (1.1) to a family of regularized optimization problems which can be solved

through the KKT conditions provided that the regularized solutions enjoy nice properties.

There are multiple ways to construct a family of regularized problems. For example,

the conical regularization, proposed in [17], employs a family of dilating cones of K to

construct the regularized family (see [5, 10, 22]). Recently, this idea has been applied to

PDE constrained models (see [15, 17, 19, 20]). For ε ∈ (0, 1), we denote by {Kε} ⊂ Y , a
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family of dilating cones associated with K. That is, {Kε} is a family of closed, convex,

and pointed cones with nonempty interior such that, firstly, K \ {0} ⊂ int(Kε), for every

ε ∈ (0, 1), and secondly, K =
⋂
ε>0Kε.

The regularized family is then obtained by replacing K in (1.1) by Kε as follows:

(1.2) Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to Gu ≤Kε w, u ∈ U.

It was shown in [17] that the regularized solutions uε converge to u and under an additional

mild condition, see (3.3), the regularized solution uε can be computed using the KKT

system: There is a multiplier µ∗ε ∈ K∗ε such that

DJ(uε) + µ∗ε ◦G = 0,(1.3a)

µ∗ε(Guε − w) = 0,(1.3b)

Guε − w ≤Kε 0,(1.3c)

where ◦ denotes the usual composition operator.

We note that [17] developed the conical regularization scheme assuming that the con-

straint space Y is a real Hilbert space. However, the convergence results [17, Theorems 2.1,

3.2], and the KKT conditions [17, Theorem 3.3] remain valid for the case when the con-

straint space Y is a real Banach space. This is because the convergence results mainly

rely on the continuity of the operator G and the closedness and convexity of the cone K,

whereas the KKT conditions follow from the fact that the dilating cones Kε are solid.

In this work, we construct a new family of dilating cones which is similar to the Henig

dilating cones proposed by Henig [10] in a finite-dimensional setting and then extended by

Borwein and Zhuang [5] to general spaces. We construct this new family using a halfspace

representation of the cone K (see [4, 14, 16]) and show that it enjoys the same set of nice

properties as the Henig dilating cones but is more tractable from a computational stand

point. Using this constructible family of dilating cones, we propose a new regularization

scheme. We estimate the regularization error for (1.1) for the new regularization scheme

and for the Henig regularization scheme studied in [17]. More precisely, for the two cases,

we establish an upper bound of the regularization error for the optimal values of (1.1)

and (1.2), the norms of the regularized multipliers and the regularization parameter (see

Theorems 3.2 and 3.6). Apart from its theoretical interest, this bound is particularly useful

for problems where a bound on the optimal value of the original problem is available.

Furthermore, for the Henig regularization, we establish an a priori regularization error

estimate of order O(
√
ε) when the problem is regular (see Theorem 3.3). The same result

is given for the new constructible regularization scheme (Theorem 3.8), assuming that a

Slater condition is verified. For this, we employ an equivalent `∞ reformulation of the

abstract optimization problem (1.1) and apply a known stability result of Alt [1]. As a
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consequence, in both cases, when Y is in addition a reflexive Banach space, we characterize

the regular problems as those which have norm bounded associated regularized multipliers.

We note that these estimates are general and hold for every cone K in the Banach space

Y .

The computable form of the new family of dilating cones allows us to construct a

family of approximate problems in a natural way. We apply this scheme to an important

case when the constraint space is an Lp function space with 1 ≤ p ≤ ∞. For this case,

we provide an explicit construction of the dilating cones for each exponent p ∈ [1,∞].

We conduct a numerical experiment for a known example of nonregular problem with Lp

constraints and perform a systematic study of the new constructible regularization and

give a full comparison with the known Henig regularization.

Finally, we describe the notions adopted in this paper. For a Banach space X, we

denote its dual by X∗ and its norm by ‖ · ‖X . The inner product of a Hilbert space

H will be denoted by 〈 · , · 〉H . For each x∗ ∈ X∗, by Hx∗ = {x ∈ X : x∗(x) ≥ 0}, we

denote its associated halfspace. By (`∞, ‖·‖`∞), we denote the space of bounded sequences

v = {vi}i∈N ⊂ R with norm ‖v‖`∞ = max{|vi| : i ∈ N}. The cone of positive coordinates

`∞+ is given by `∞+ = {v = {vi}i∈N ∈ `∞ : vi ≥ 0 for every i ∈ N}. The space of all bounded

linear operators from U to Y is denoted by L(U, Y ). For a linear operator S : U → Y , by

S∗ : Y ∗ → U∗ we denote the adjoint operator. For Hilbert spaces, we will follow the usual

convention of defining S∗ : Y → U by 〈Su, y〉Y = 〈u, S∗y〉U for every u ∈ U , y ∈ Y . For

J : U → Y , by DJ(u) and D2J(u), we denote the first-order and the second-order Fréchet

derivative at a point u ∈ U . By c > 0, we will denote a generic positive constant.

2. A constructible family of dilating cones

Recall that Y is a Banach space and K ⊂ Y is a closed, convex, and pointed cone. We

aim to construct a family of dilating cones {Kε} of K, where ε ∈ (0, 1). This construction

is based on a halfspace decoupling of the cone K (see [14]) and the notion of the Henig

dilating cone introduced by Henig in finite-dimensional setting [10] and later extended to

general spaces by Borwein and Zhuang [5]. We assume that the cone K has a closed and

convex base Θ ⊂ K such that 0 /∈ Θ and

K =
⋃
λ≥0

{λθ : θ ∈ Θ}.

Without loss of generality (see for [18, Theorem 2.2.12]), we assume that the base Θ is

given by a strictly positive functional β∗ ∈ K\ := {y∗ ∈ Y ∗ : y∗(k) > 0, ∀ k ∈ K \ {0}},
that is, Θ = {y ∈ K : β∗(y) = 1}, where we normalize to ‖β∗‖Y ∗ = 1. Given ε > 0, the
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Henig dilating cone is then given by

Kε := cl[cone(Θ + εBY )],

where BY = {v ∈ Y : ‖v‖Y ≤ 1} is the closed unit ball. It is known (see [5, Theorem 1.1])

that the Henig cone is a solid, closed, convex, and pointed cone such that K\{0} ⊂ int(Kε),

for every ε ∈ (0, 1), and K =
⋂

0<ε<1Kε.

Before any advancement, we provide the following characterization of the dual cone K∗ε
which is based on [17, Theorem 4.1]. We emphasize that although this characterization

has initially been given for a Hilbert space, the proof only used the properties of normed

spaces and hence it remains valid for a general Banach space.

Theorem 2.1. Let ε ∈ (0, 1). The dual of the Henig dilating cone K∗ε is given by

K∗ε = {0} ∪ {0 6= λ∗ ∈ K∗ : λ∗(θ) ≥ ε‖λ∗‖ for every θ ∈ Θ}.

Given y∗ ∈ Y ∗, by y∗ε ∈ Y ∗ we denote the functional

(2.1) y∗ε := εβ∗ + (1− ε)y∗,

which, for sufficiently small ε, belongs to K∗ε as shown in the following:

Lemma 2.2. Let y∗ ∈ K∗. If ε ∈ (0, 1) and ‖y∗‖Y ∗ ≤ 1, then y∗ε ∈ K∗ε with ‖y∗ε‖Y ∗ ≤ 1.

Proof. Clearly, for every θ ∈ Θ, we have

(2.2) y∗ε(θ) = εβ∗(θ) + (1− ε)y∗(θ) = ε+ (1− ε)y∗(θ) ≥ ε.

On the other hand, ‖y∗ε‖Y ∗ ≤ ε‖β∗‖Y ∗ + (1 − ε)‖y∗‖Y ∗ ≤ ε + (1 − ε) = 1, which implies

that ‖y∗ε‖Y ∗ ≤ 1. By using (2.2), we have

y∗ε(θ)

‖y∗ε‖
≥ y∗ε(θ) ≥ ε,

which in view of Theorem 2.1 gives y∗ε ∈ K∗ε .

We recall that K =
⋂
y∗∈K∗ Hy∗ where Hy∗ is the positive half-space (see for example

[25]). This allows us to give the following definition.

Definition 2.3. Let I be an arbitrary nonempty index set and let {λ∗i }i∈I ⊂ K∗. The

collection {Hλ∗i
}i∈I is said to be a representation of K if K =

⋂
i∈I Hλ∗i

.

In the following, {Hλ∗i
}i∈I is a fixed representation of K, where without loss of gener-

ality, {λ∗i }i∈I are normalized so that ‖λ∗i ‖Y ∗ = 1, for every i ∈ I. Following (2.1) and the

given representation {Hλ∗i
}i∈I of K, for each λ∗i ∈ K∗, we define, for any i ∈ I,

(2.3) λ∗i,ε = εβ∗ + (1− ε)λ∗i .
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For any i ∈ I and 0 < ε < 1, Lemma 2.2 yields ‖λ∗i,ε‖Y ∗ ≤ 1. For 0 < ε < 1, we define

(2.4) Cε :=
⋂
i∈I

Hλ∗i,ε
.

The following result shows that for ε ∈ (0, 1), {Cε} is indeed a family of dilating cones.

Theorem 2.4. For ε ∈ (0, 1), Cε is a solid, closed, convex, and pointed cone such that

(i) Kε ⊂ Cε.

(ii) K \ {0} ⊂ int(Cε).

(iii) K =
⋂
ε>0Cε.

Proof. By definition, Cε is a closed and convex cone. Furthermore β∗ ∈ C\ε, thus Cε is

based and consequently pointed (see [7, Example 1.1.2.]). On the contrary there would

exist 0 6= cε ∈ Cε such that

(2.5) β∗(cε) ≤ 0.

By definition,

λ∗i,ε(cε) = (1− ε)λ∗i (cε) + εβ∗(cε) ≥ 0 =⇒ λ∗i (cε) ≥
ε

1− ε
|β∗(cε)| ≥ 0

for every i ∈ N. Thus cε ∈
⋂
ε>0Hλ∗i

= K, which contradicts (2.5).

Moreover, by Lemma 2.2, λ∗i,ε ∈ K∗ε and hence Kε ⊂ Hλ∗i,ε
, for every i ∈ I. Con-

sequently, Kε ⊂
⋂
ε>0Hλ∗i,ε

= Cε. This, in view of K =
⋂

0<ε<1Kε, yields K \ {0} ⊂
int(Kε) ⊂ int(Cε). For K =

⋂
ε>0Cε, we note that K ⊂

⋂
ε>0Cε. For the converse, let

w ∈
⋂
ε>0Cε be arbitrary. Then,

λ∗i (w) ≥ ε

ε− 1
β∗(w) for every i ∈ I, ε > 0.

Since it is true for any ε ∈ (0, 1), we get λ∗i (w) ≥ 0 for each i ∈ I, implying that w ∈ K.

We conclude this section by showing that Kε ⊂ Cε is in general strict.

Example 2.5. We set Y = R2 equipped with its Euclidean norm and the ordering K =

R+×{0}. By identifying elements of the dual space with vectors, we consider the strictly

positive functional β∗ ≡ (1, 0) and the representation {Hλ∗i
}i∈{1,2,3} given by vectors λ∗1 ≡

(0, 1), λ∗2 ≡ (0,−1), λ∗3 ≡ (1, 0). Then,

Kε = {(x, y) ∈ R2 : ε(1− ε2)−1/2x ≥ y ≥ −ε(1− ε2)−1/2x, x ≥ 0},

Cε = {(x, y) ∈ R2 : ε(1− ε)−1x ≥ y ≥ −ε(1− ε)−1x, x ≥ 0},

which confirms that Kε ( Cε for ε ∈ (0, 1).
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3. Stability estimates

Regularized family (1.2) covers two cases of interest. For the choice {Kε} = {Kε}, we

obtain the Henig conical regularization embedded in

(3.1) Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to Gu ≤Kε w, u ∈ U.

Moreover, for {Kε} = {Cε}, we get the constructible regularized problems

(3.2) Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to Gu ≤Cε w, u ∈ U.

We now aim to establish stability estimates for the regularization error in both of

the cases. We will denote by uε, u
H
ε , and uCε , the solutions to (1.2), (3.1), and (3.2),

respectively. We will use the notation q = Gu − w, and qε = Guε − w, qHε = GuHε − w,

and qCε = GuCε − w for ε > 0 sufficiently small. In the rest of the paper, we impose the

following mild assumption

(3.3) q 6= 0,

which essentially prevents problem (1.1) from being a pure equality constraint problem.

Indeed, if q = Gu − w = 0, then u is also feasible, and hence a solution, of the simpler

equality problem:

Minimize
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to Gu = w, u ∈ U.

Furthermore, (3.3) provides a nontrivial feasible point such that the regularized optimality

system is solvable (see [17]). Therefore, under this assumption conical regularization

scheme give in [17] holds, in particular uε converge to u. Another important property is

that the regularized solutions {uε} are uniformly bounded. Indeed, by the optimality and

the fact u is feasible for regularized problems (1.2), we get

‖uε − ud‖2U ≤ J(uε) ≤ J(u),

and consequently,

(3.4) ‖uε‖U ≤ ‖ud‖U +
√
J(u).

We begin with the following technical result.

Lemma 3.1. Let µ∗ε ∈ K∗ be a multiplier associated to (1.2). Then, µ∗ε(q)→ 0 as ε→ 0.

Proof. By the Taylor expansion of J at u = uε, we have

J(u) = J(uε) +DJ(uε)(u− uε) +
1

2
D2J(uθ)(u− uε, u− uε),



Regularization by Constructible Dilating Cones 7

where uθ = uε + θ(u− uε) with θ ∈ (0, 1). By a direct computation of the derivatives, we

get

J(u)− J(uε)−DJ(uε)(u− uε) =
κ

2
‖u− uε‖2U +

1

2
‖Su− Suε‖2V .

Applying KKT conditions (1.3a) and (1.3b), we obtain

DJ(uε)(u− uε) = −(µ∗ε ◦G)(u− uε) = −µ∗ε(Gu−Guε) = −µ∗ε(Gu− w) = −µ∗ε(q),

and consequently

(3.5)
κ

2
‖u− uε‖2U +

1

2
‖Su− Suε‖2V = J(u)− J(uε) + µ∗ε(q).

Equation (3.5) holds for every family of dilating cones {Kε}. Furthermore, since uε → u,

the left-hand side term in (3.5) converges to 0 and we also have J(uε) → J(u), conse-

quently, µ∗ε(q)→ 0 as ε→ 0.

3.1. Stability for the Henig conical regularization

Let µ∗H,ε ∈ Y ∗ be a multiplier associated with Henig regularized problem (3.1) for ε small

enough. Without loss of generality, we assume µ∗H,ε 6= 0. Otherwise, it follows from the

KKT condition (1.3a) that we have the trivial case uHε = u. Indeed, if µ∗H,ε = 0, then by

KKT condition (1.3a), we have

(3.6) DJ(uHε ) = 0.

Since uHε → u for ε→ 0, by the continuity of DJ , we have

DJ(u) = 0.

On the other hand, u is trivially a feasible point of problem (3.1), that is,

(3.7) Gu− w ≤Kε 0.

Conditions (3.6) and (3.7) imply that u verifies KKT conditions (1.3) with µ∗H,ε = 0.

Hence, u is a minimal point of problem (3.1). By the uniqueness of solution uHε = u.

Now, using the notation δHε := ε‖µ∗H,ε‖Y ∗ , we have the following estimate.

Theorem 3.2. The sequence {δHε } → 0 as ε→ 0, and the following estimate holds:

(3.8)
κ

2
‖u− uHε ‖2U +

1

2
‖Su− SuHε ‖2V ≤ J(u)− J(uHε )− δHε |β∗(q)|.

Proof. By definition q ∈ −K, and q 6= 0 by assumption (3.3). Therefore, −q/β∗(−q) is

well defined and satisfies −q/β∗(−q) ∈ Θ. By Theorem 2.1, we get

µ∗H,ε

(
−q

β∗(−q)

)
= µ∗H,ε

(
−q
|β∗(q)|

)
≥ ε‖µ∗H,ε‖Y ∗ = δHε .
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By Lemma 3.1, we have µ∗H,ε(q) → 0, which due to the above inequality, implies that

δHε = ε‖µ∗H,ε‖Y ∗ → 0 as ε → 0. Furthermore, we also have µ∗H,ε(q) ≤ −δHε |β∗(q)|, which

when combined with (3.5), yields (3.8).

We can establish an a priori estimate in term of the regularization parameter when

problem (1.1) is regular, that is, when KKT conditions for problem (1.1) are solvable:

There is a multiplier µ∗ ∈ K∗ such that

(3.9) DJ(u) + µ∗ ◦G = 0, µ∗(Gu− w) = 0, Gu− w ≤K 0.

Theorem 3.3. Assume that (1.1) is regular. Then, for ε small enough there is a constant

c > 0, independent of ε, such that

κ

2
‖u− uHε ‖2U +

1

2
‖Su− SuHε ‖2V ≤ cε.

Proof. By using the Taylor expansion (centered at u = u), we have

J(u)− J(uHε ) = J(u)−
(
J(u) +DJ(u)(uHε − u) +

κ

2
‖u− uHε ‖2U +

1

2
‖Su− SuHε ‖2V

)
= −DJ(u)(uHε − u)− κ

2
‖u− uHε ‖2U −

1

2
‖Su− SuHε ‖2V

≤ −DJ(u)(uHε − u).

Since (1.1) is regular, by applying KKT conditions (3.9), we have

J(u)− J(uHε ) ≤ −DJ(u)(uHε − u) = (µ∗ ◦G)(uHε − u) = µ∗(GuHε − w) = µ∗(qHε ).

On the other hand, since qHε ∈ −Kε = − cl[cone(Θ + εBY )], we can take a sequence

{qn,ε}n∈N ⊂ − cone(Θ + εBY ) such that

(3.10) qHε = lim
n
qn,ε.

By definition, there exist αn,ε ≥ 0, θn,ε ∈ Θ, bn,ε ∈ BY such that

(3.11) qn,ε = −αn,ε(θn,ε + εbn,ε).

Applying linearity and positiviness of multiplier µ∗, we have

(3.12) µ∗(qn,ε) = −µ∗(αn,εθn,ε)− εµ∗(αn,εbn,ε) ≤ εαn,ε|µ∗(bn,ε)| ≤ εαn,ε‖µ∗‖Y ∗ .

Let us prove now that {αn,ε} is uniformly bounded with respect to regularization param-

eter ε. By applying β∗ to expression (3.11), we have

β∗(qn,ε) = −αn,ε(β∗(θn,ε) + εβ∗(bn,ε)) = −αn,ε(1 + εβ∗(bn,ε))
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and dividing this expression by 1 + εβ∗(bn,ε), we obtain

αn,ε = − β∗(qn,ε)

1 + εβ∗(bn,ε)
≤ 1

1− ε‖β∗‖Y ∗
‖β∗‖Y ∗‖qn,ε‖Y =

1

1− ε
‖qn,ε‖Y ≤ 2‖qn,ε‖Y ,

where in the last step, we assumed, without loss of generality that ε < 1/2. Consequently

αn,ε ≤ 2‖qn,ε‖Y ,

and by substituting this expression in (3.12), we have

µ∗(qn,ε) ≤ ε2‖qn,ε‖Y ‖µ∗‖Y ∗ .

Now taking limit, by (3.10), we have

µ∗(qHε ) = lim
n
µ∗(qn,ε) ≤ ε2‖qHε ‖Y ‖µ∗‖Y ∗ .

Since qHε = GuHε − w, by the continuity of G and bound (3.4), we can take ‖qHε ‖Y ≤ c,

for some positive constant c > 0, independent of ε. Using this in the previous inequality,

we get

µ∗(qHε ) ≤ cε.

Consequently, we have

J(u)− J(uHε ) ≤ µ∗(qHε ) ≤ cε.

Now substituting this expression in (3.8), we get

(3.13)
κ

2
‖u− uHε ‖2U +

1

2
‖Su− SuHε ‖2V ≤ ε(c− ‖µ∗H,ε‖Y ∗ |β∗(q)|).

From (3.13), we can take another positive constant c > 0, independent of ε, such that

κ

2
‖u− uHε ‖2U +

1

2
‖Su− SuHε ‖2V ≤ cε,

and ‖µ∗H,ε‖Y ∗ ≤ c. The proof is complete.

In the above proof, we showed that for a regular problem, the set of regularized La-

grange multipliers {‖µ∗H,ε‖Y ∗} is uniformly bounded for ε sufficiently small. On the other

hand, in [17, Theorem 3.4], assuming that Y is a Hilbert constraint space, we proved that

the norm boundedness of multipliers {‖µ∗H,ε‖Y ∗} implies the the regularity of the original

problem (1.1). Noting that the proof essentially used the reflexivity of the space Y and

the fact that from the norm-bounded multipliers, we can extract a weakly convergent

subsequence whose weak limit is a Lagrange multiplier of the KKT system of (1.1), and

hence proving that the problem (1.1) is regular. Following this idea, we can prove the

following generalization relevant to the present setting.
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Proposition 3.4. Assume that Y is reflexive. If the set of multipliers {µ∗H,ε} is norm

bounded for ε small enough, then problem (1.1) is regular.

Therefore, from Theorem 3.3 and Proposition 3.4, we get the following characterization

of regularity for problem (1.1).

Corollary 3.5. Assume Y is reflexive. Problem (1.1) is regular, if and only if, the set of

multipliers {µ∗H,ε} is norm bounded for ε small enough.

3.2. Stability for the constructible dilating regularization

We now return to (3.2). We recall that Cε =
⋂
i∈I Hλ∗i,ε

, where λ∗i,ε are defined by (2.3).

We also recall that {Hλ∗i
}i∈I ⊂ Y ∗ corresponds to a representation of K where {λ∗i }i∈I

are of unit norm and β∗ ∈ K] is a strictly positive functional of unit norm. We continue

to assume that the cone K is given by a numerable representation. This condition is quite

general and covers separable Banach spaces (see for example [2, Theorem 1]). Therefore,

we will assume I = N.

As before, for any multiplier associated with (3.2), we take µ∗C,ε 6= 0, and define the

quantity δCε = ε‖µ∗C,ε‖Y ∗ . By construction, Kε ⊂ Cε. Therefore C∗ε ⊂ K∗ε and the dual

of constructible dilating cone is contained on the dual of Henig dilating cones for each

ε ∈ (0, 1). As a consequence, the characterization given in Theorem 2.1 also holds and we

have

µ∗C,ε(θ) ≥ ε‖µ∗C,ε‖Y ∗ for every θ ∈ Θ.

Therefore the following result, which is an analogue of Theorem 3.2 holds.

Theorem 3.6. For ε→ 0, we have δCε → 0. Furthermore,

κ

2
‖u− uCε ‖2U +

1

2
‖Su− SuCε ‖2V ≤ J(u)− J(uCε )− δCε |β∗(q)|.

To obtain an analogue of Theorem 3.3, we require intK 6= ∅ and that the Slater

constraint qualification holds: There exist a ∈ U such that

(3.14) Ga− w ∈ − intK.

For any y ∈ Y , let us define the real sequence {λ∗i,ε(y)}i∈N. By Lemma 2.2, we have

|λ∗i,ε(y)| ≤ ‖λ∗i,ε‖Y ∗‖y‖Y ≤ ‖y‖Y

and hence {λ∗i,ε(y)}i∈N ⊂ `∞. We define the perturbed map G∞ : X × R+ → `∞ by

G∞(x, ε) := {λ∗i,ε(G(x)− w)}i∈N
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and for ε ≥ 0 an associated family of the perturbed problems:

(3.15) J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to G∞(u, ε) ≤`∞+ 0, u ∈ U.

Due to the representation of a cone, (3.15) and (3.2) are equivalent. That is, they have

the same feasible set and hence the same solution set. In the same way, problems (3.15)

with ε = 0 and (1.1) are equivalent and their unique solutions coincide.

Theorem 3.7. For ε ≥ 0, problem (3.15) has a unique solution uCε .

For qa := Ga− w, by (3.14) there exists k > 0 such that qa + kBY ⊂ −K, and hence

λ∗i (qa) ≤ −k sup |λ∗i (BY )| = −k‖λ∗i ‖Y ∗ = −k for every i ∈ I,

which is equivalent to {λ∗i (qa)}i∈N ∈ − int `∞+ , and hence confirming the Slater constraint

qualification

(3.16) ∃ a ∈ U such that G∞(a, 0) ∈ − int `∞+ .

Theorem 3.8. If (3.14) holds, then for sufficiently small ε, there exists a positive constant

c which is independent of ε, and we have

‖uCε − u‖U ≤ c
√
ε.

Proof. We apply [1, Theorem 2.5] by identifying X ≡ U , Y ≡ `∞, K ≡ `∞+ , W ≡ R+,

f ≡ J , and g ≡ −G∞. Note that our setting is simpler than in [1] as the objective

J is parameter independent. Clearly (3.16) implies that u is a regular point (see [1,

Definition 2.1]). Moreover, the maps J and G∞ are continuously differentiable and we

have

DJ(u)(u) = 〈S∗(Su− zd), u〉V + κ〈u− ud, u〉U ,

D2J(u)(u, u) = ‖Su‖2V + κ‖u‖2U .
(3.17)

Therefore, conditions (A1) and (A3) in [1] hold automatically. Note that J and DJ(u) are

Lipschitz continuous on any neighborhood of u. The map G∞ is also Lipschitz. Indeed,

let Bu and B0 be two neighborhoods of u and 0, respectively. Then, for every u1, u2 ∈ Bu
and for every ε1, ε2 ∈ B0, we have

‖G∞(u1, ε1)−G∞(u2, ε2)‖`∞ = max
i∈N
|λ∗i,ε1 ◦G(u1)− λ∗i,ε2 ◦G(u2)|

= max
i∈N
|(λ∗i,ε1 − λ

∗
i,ε2)G(u1) + λ∗i,ε2G(u1 − u2)|

= max
i∈N
|(ε1 − ε2)β∗(G(u1)) + (ε2 − ε1)λ∗i (G(u1)) + λ∗i,ε2G(u1 − u2)|

≤
(
‖G‖L(U,Y ) max

u∈Bu
‖u‖U + ‖G‖

)
[|ε1 − ε2|+ ‖u1 − u2‖U ]
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by using ‖λ∗i ‖Y ∗ = 1, ‖β∗‖Y ∗ = 1 and ‖λ∗i,ε2‖Y ∗ ≤ 1 (see Lemma 2.2). Hence, condi-

tion (A2) in [1] also holds. To verify (2.4) in [1], we use the Taylor expansion. For any

feasible u of (3.15), by the Taylor expansion of J at u = u, we have

J(u) = J(u) +DJ(u)(u− u) +
1

2
D2J(uθ)(u− u, u− u)

where uθ = u+ θ(u− u), θ ∈ (0, 1). Problem (3.15) is convex, therefore by minimality of

u we have DJ(u)(u− u) ≥ 0. Consequently, by applying (3.17), we get

J(u)− J(u) ≥ 1

2
D2J(uθ)(u− u, u− u) ≥ κ

2
‖u− u‖2U .

Therefore all the conditions of [1, Theorem 2.5] hold and as a result, there is a constant

c, independent of ε, such that ‖uCε − u‖U ≤ c
√
ε, for ε sufficiently small.

As a consequence of Theorems 3.6 and 3.8, by using the same arguments as in the

Henig conical regularization, we can prove an analogous of Corollary 3.5. In this case, the

following analogue of Proposition 3.4 holds.

Proposition 3.9. Assume Y is reflexive. If the set of multipliers {µ∗C,ε} is norm bounded

for ε small enough, then problem (1.1) is regular.

And the corresponding characterization of regularity for problem (1.1).

Corollary 3.10. Assume Y is reflexive, and (3.14) holds. Problem (3.2) is regular, if

and only if, the set of multipliers {µ∗C,ε} is norm bounded.

4. Application to Lp-constrained optimization problems

Let Ω ⊂ Rn be a bounded convex domain, and let 1 ≤ p ≤ ∞. We set Y = Lp(Ω), the

space of integrable functions on Ω and choose the cone K to be the cone of its positive

functions given by

K = Lp+(Ω) = {f ∈ Lp(Ω) : f(x) ≥ 0 a.e. in Ω}.

Denoting yu = Gu for every u ∈ U , problem (1.1) takes the following form:

Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U

subject to yu(x) ≤ w(x) a.e. in Ω, u ∈ U.
(4.1)

In the following by up we denote the unique solution of (4.1). We will now develop the

constructible dilating regularization scheme studied in previous sections for problem (4.1).

Note that (4.1) is an abstract optimization problem with Lp(Ω) constraints; such problems
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are ubiquitous in many models, particularly in PDE constrained optimization models (see

for example [9, 12, 13, 21]). Another critical field where our results are applicable is of

Mathematical Economics where a vast amount of real-world models lead to general Lp

constrained optimization problems, see for example [24]. In particular, we note [23] which

offers a thoughtful discussion of Lp constrained models in the economics context and is

akin to the present research. In practical applications that lead to (4.1) for varying values

of p, the central question is of the optimality of p, which is influenced by issues such

as numerical efficiency, regularity, stability, existence, and optimality conditions. Here we

present a detailed study of all the above-stated aspects for the constructible regularization.

The primary difficulty in such studies is the emptiness of the interior of the cone

C = Lp+(Ω) for 1 ≤ p < ∞ when Y = Lp(Ω). Hence the Slater constraint qualification

fails to hold. For the case p = ∞, where the cone C = L∞+ (Ω) has a nonempty interior,

and a Slater constraint qualification holds, the space Y = L∞(Ω) is neither reflexive nor

separable. Fortunately, in both of these cases, we will show that the conical regularization

offers a satisfactory framework. In the following, we will differentiate these two cases.

First we need to give a representation of the cone of positive functions Lp+(Ω). For

this, we consider a family of convex partitions {∆δ}δ>0 of Ω, where δ is a real parameter,

see [6, 14]. Each partition {∆δ} consists of a finite number of closed and convex sets

{∆δ
i } ⊂ Ω (i = 1, . . . , T (δ)) such that

∑
∆δ
i∈∆δ |∆δ

i | = |Ω|, where T = T (δ) = #∆δ is the

cardinality of {∆δ}, and |Ω| is the Lebesgue measure of Ω. We assume that diameter of

the family tends to zero, that is,

diam(∆δ) = max
i=1,...,T (δ)

diam(∆δ
i )→ 0 as δ → 0,

where without any loss of generality, in the sequel we set δ ≡ diam(∆δ).

The family of half-spaces

{Hλδ∗i
}i=1,...,T (δ);δ>0 =

{
f ∈ Y :

∫
∆δ
i

f(s) ds ≥ 0 for every i = 1, . . . , T (δ), δ > 0

}

is a constructible1 representation of the cone of positive functions.

4.1. Case 1 ≤ p <∞

For a given p, we denote by q the conjugate exponent satisfying q−1 + p−1 = 1. For δ > 0,

we define λδ∗p,i ∈ Lp(Ω)∗ by

λδ∗p,i(f) = |∆δ
i |−(p−1)/p

∫
∆δ
i

f(s) ds for every f ∈ Lp(Ω).

1We can always consider a numerable representation by taking a sequence δn → 0+.
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By Hölder’s inequality, we get ‖λδ∗p,i‖Lp(Ω)∗ ≤ 1, in fact ‖λδ∗p,i‖Lp(Ω)∗ = 1. The strictly

functional β∗p ∈ K\ is defined by

β∗p(f) = |Ω|−(p−1)/p

∫
Ω
f ds for every f ∈ Lp(Ω).

Therefore, for each ε, δ > 0, the functionals λδ∗p,ε,i are given by

λδ∗p,ε,i(f) = (1− ε)λδ∗p,i(f) + εβ∗p(f) = (1− ε)|∆δ
i |−(p−1)/p

∫
∆δ
i

f ds+ ε|Ω|−(p−1)/p

∫
Ω
f ds

for every f ∈ Lp(Ω). The family {λδ∗p,ε,i}i=1,...,T (δ);δ>0 is a representation of Cε. Therefore,

the regularized problems are defined as follows:

Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to

(1− ε)|∆δ
i |−(p−1)/p

∫
∆δ
i

(yu − w) ds+ ε|Ω|−(p−1)/p

∫
Ω

(yu − w) ds ≤ 0

for every i = 1, . . . , T (δ), δ > 0, u ∈ U.

(4.2)

To derive an explicit KKT system, we need to give a characterization of the dual of C∗ε .

We will also give an explicit characterization of the Henig dilating cone Kε which is based

on [17, Theorem 4.2]. Since C∗ε ⊂ K∗ε , we can apply this result to the elements of C∗ε .

Noting that the dual of Lp(Ω)∗ can be isometrically identified with Lq(Ω), the following

proof uses the same line of arguments as in [17, Theorem 4.2]. In the following, for any

µ∗ ∈ Lp(Ω)∗, the associated Riesz element is denoted by µ ∈ Lq(Ω). That is, µ ∈ Lq(Ω)

such that

µ∗(f) =

∫
Ω
f(s)µ(s) ds for every f ∈ Lp(Ω).

Proposition 4.1. Assume 1 ≤ p < ∞, Y = Lp(Ω), C = Lp+(Ω), and let Kε be the

associated Henig dilating cone. The dual of this cone is given by

(4.3) K∗ε =
{
µ∗ ∈ Lp+(Ω)∗ : µ(x) ≥ ε|Ω|−(p−1)/p‖µ‖Lq(Ω) a.e. in Ω

}
.

Proof. For Y = L2(Ω), in [17, Theorem 4.2], it was proven that

K∗ε =
{
µ∗ ∈ L2

+(Ω)∗ : µ(x) ≥ ε|Ω|−1/2‖µ‖L2(Ω) a.e. in Ω
}
.

This result was based on [17, Theorem 4.1], and in this case we take into account that the

base is defined by a normalized strictly functional. We have seen that Theorem 2.1 is an

analogue of this result for a general Banach space. Therefore applying Theorem 2.1 and

following the same steps as in the proof of [17, Theorem 4.2], we can easily extend this

result to Y = Lp(Ω) for every p ∈ [1,∞).
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We have the following general result.

Theorem 4.2. For each ε > 0, there exists unique solution uCp,ε of problem (4.2). The

solution sequence uCp,ε converges to up as ε→ 0. Furthermore, for each ε > 0, there exists

a Lagrange multiplier µ∗C,p,ε ∈ L
p
+(Ω)∗ such that

DJ(uCp,ε) + µ∗C,p,ε ◦G = 0 in U∗,∫
Ω
µC,p,ε(yuCp,ε − w) ds = 0,

µC,p,ε(s) ≥ ε|Ω|−(p−1)/p‖µC,p,ε‖Lq(Ω) a.e. in Ω,

(1− ε)|∆δ
i |−(p−1)/p

∫
∆δ
i

(yuCp,ε − w) ds+ ε|Ω|−(p−1)/p

∫
Ω

(yuCp,ε − w) ds ≤ 0

for every i = 1, . . . , T (δ), δ > 0. Finally, for sufficiently small ε, there exists a constant

c > 0, independent of ε, such that

κ

2
‖up − uCp,ε‖2U ≤ J(up)− J(uCp,ε)− cε‖µC,p,ε‖Lq(Ω).

Proof. The existence is a standard result. The convergence and the optimality follows by

applying conical regularization scheme, where we also use the dual characterization given

in Proposition 4.1. The final statement is a direct consequence of Theorem 3.6.

4.2. Case p =∞

We now take Y = L∞(Ω) and K = L∞+ (Ω). As noticed before, the cone K now has a

nonempty interior, however, we have lost the reflexivity and the separability of Y . For

this case, the unit normal representation is defined by

λδ∗∞,i(f) = |∆δ
i |−1

∫
∆δ
i

f(s) ds,

and the corresponding regularized problems read:

Minimize J(u) :=
1

2
‖Su− zd‖2V +

κ

2
‖u− ud‖2U subject to

(1− ε)|∆δ
i |−1

∫
∆δ
i

(yu − w) ds+ ε|Ω|−1

∫
Ω

(yu − w) ds ≤ 0,

for every i = 1, . . . , T (δ), δ > 0, u ∈ U.

(4.4)

The Slater condition now reads: There is a constant k > 0 and an element a ∈ U such

that

(4.5) ya(x)− w(x) ≤ −k < 0 a.e. in Ω.
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Under this condition, the problem is regular and the KKT conditions remain valid. How-

ever, the need of regularization arises to circumvent the difficulties in the discretization

due to the fact that the dual L∞+ (Ω)∗ is non-separable. As it turns out, the regularized

problems (4.4) provide a natural discretization scheme by fixing the regularization param-

eter and the diameter of the partition. For this, we apply an a priori estimate given in

Theorem 3.8.

Theorem 4.3. Assume that (4.5) holds. Then for each ε > 0, there is unique solution

uC∞,ε to problem (4.4). Furthermore, for sufficiently small ε, there exists a constant c > 0,

independent of ε, such that

(4.6) ‖u∞,0 − uC∞,ε‖U ≤ c
√
ε.

5. A numerical experiment

To verify the practical applicability of the proposed scheme, we conduct a numerical

experiment for a known optimization problem (see [3, Example 3.20]) with non-regular Lp

multiplier for 1 ≤ p <∞ but regular for p =∞.

For 1 ≤ p ≤ ∞, we set U = V = R, Ω = [0, 1], Y = Lp[0, 1], and K = Lp+[0, 1]

the cone of positive functions. Let G : R → Lp[0, 1] be a linear bounded map defined by

yu = −uF for every u ∈ R, where uF denotes the constant map given by uF (t) = u for

every t ∈ [0, 1]. Similarly, we define w ∈ Lp[0, 1] by w(t) = −t for every t ∈ [0, 1].

Given the above data set, we consider the following optimization problem

(5.1) Minimize J(u) =
1

2
u2 subject to yu(t) ≤ w(t) a.e. in [0, 1], u ∈ R.

Evidently, problem is of kind (5.1) by setting S = zd = ud = 0, and κ = 1. The unique

solution of (5.1) for every 1 ≤ p ≤ ∞ are u = up = 1. We will consider the strictly

functional(s)

β∗(f) = β∗p(f) =

∫ 1

0
f(s) ds for every f ∈ Lp+[0, 1].

For each n ∈ N, we consider the convex partitions ∆δn of Ω = [0, 1], with diameter

δn = n−1, given by subintervals ∆δn
i = [(i − 1)/n, i/n] for every i = 1, . . . , n. The family

of partitions {∆δn}n>0 verify the condition {δn} → 0 for n→∞. For the case p <∞, the

corresponding family of constructible regularized problems is given by

Minimize J(u) =
1

2
u2 subject to

(1− ε)n(p−1)/p

∫ i/n

(i−1)/n
(−uF + s) ds+ ε

∫ 1

0
(−uF + s) ds ≤ 0

for every i = 1, . . . , n, n ∈ N, u ∈ R.

(5.2)
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For the case p = ∞, corresponding family of constructible regularized problems is given

by

Minimize J(u) =
1

2
u2 subject to

(1− ε)n
∫ i/n

(i−1)/n
(−uF + s) ds+ ε

∫ 1

0
(−uF + s) ds ≤ 0

for every i = 1, . . . , n, n ∈ N, u ∈ R.

(5.3)

Condition (4.5) is verified, for example by taking a = 2. This is a Slater condition for the

case p = ∞, so (5.3) admit KKT conditions. In general, if p < ∞, problem (5.1) is not

regular since KKT conditions are unsolvable (see [3, Example 3.20]).

For p <∞, by a direct computation, for every i = 1, . . . , n, n ∈ N, u ∈ R, we have

λδ∗p,ε,i(yu − w) = (1− ε)n(p−1)/p

∫ i/n

(i−1)/n
(−u+ s) ds+ ε

∫ 1

0
(−u+ s) ds

=
1

2n2
n(p−1)/p(1− ε)(−2nu+ 2i− 1) + ε

(
−u+

1

2

)
,

and, in particular

λδ∗p,ε,i(yu − w) ≤ 0 ⇐⇒ u ≥ n(p−1)/p(1− ε)(2i− 1) + εn2

n(p−1)/p(1− ε)2n+ 2εn2
.

Therefore,

u ≥ 1

2

n(p−1)/p(1− ε)(2n− 1) + εn2

n(p−1)/p(1− ε)n+ εn2

for every n ∈ N, u ∈ R. Since we are minimizing 1
2u

2, the solution to (5.2) is the maximum

of the right-hand side of previous inequality, that is,

uCp,ε = max
n∈N

βp,ε(n),

where βp,ε(n) := 1
2
n(p−1)/p(1−ε)(2n−1)+εn2

n(p−1)/p(1−ε)n+εn2 .

For the case p =∞, we can compute explicitly the solution. Indeed

u ≥ 1

2

n(1− ε)(2n− 1) + εn2

n(1− ε)n+ εn2
= 1− ε

2
+
ε− 1

2n

for every n ∈ N. From this, it follows easily that

uC∞,ε = max
n∈N

(
1− ε

2
+
ε− 1

2n

)
= 1− ε

2
.

Therefore

(5.4) |uC∞,ε − u| =
ε

2
,
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verifying (4.6). In fact, bound (4.6) is conservative, since

EC∞(ε) := |uC∞,ε − u| = O(ε).

In general, we will denote the error functional

ECp (ε) := |uCp,ε − u|.

For the case p < ∞, we approximate numerically these quantities by using Geogebra

[11]. To check numerically the convergence rates, we consider the Experimental Order

of Convergence (EOC). Given a finite list of decreasing steps {ε1, . . . , εN}, we define the

EOC at level i for error functional ECp by the following expression

EOC(ECp ) =
lnECp (εi)− lnECp (εi−1)

ln εi − ln εi−1
for every i = 2, . . . , N.

In our computation we take εi = 1e-01εi−1. In numerical experiments, EOC(ECp ) re-

mained constant for small εi, providing a meaningful approximation of the real order of

convergence O(EC
p ). In Table 5.1 we show these values for several values of p, while in

Figure 5.1 we plot the Experimental Order of Convergence for p ∈ (1, 500). These results

confirm

lim
p→∞

O(EC
p ) = 1 = O(EC

∞),

as predicted by (5.4). From this we note that is possible to find an Lp approximation, for

a small value of p, such that the accuracy is similar to the one obtained for L∞.

p EOC(ECp ) p EOC(EC
p )

1 0.5 20 0.952

2 0.667 40 0.976

3 0.75 50 0.98

4 0.8 60 0.984

5 0.833 80 0.988

6 0.857 100 0.990

7 0.875 200 0.995

8 0.889 300 0.997

9 0.9 400 0.998

10 0.909 500 0.998

Table 5.1: Experimental Order of Convergence for Constructible Regularization.
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Figure 5.1: EOC(EC
p ) for p ∈ (1, 500).

In the second part of the experiment, restricting only to the case p <∞, we compare

the constructible dilating cone regularization and the Henig regularization. For a fixed

p ∈ [1,∞), let {Kε} be the Henig dilating cones of Lp+[0, 1] associated with the basis

Θ =

{
f ∈ Lp+[0, 1] :

∫ 1

0
f(s) ds = 1

}
.

We consider the regularized problems

(5.5) Minimize J(u) =
1

2
u2 subject to yu(t) ≤Kε w(t) a.e. in [0, 1], u ∈ R.

Due to the lack of an analytic solution, we rely on a numerical approximation by using

the Lagrange dual problem which can be computed explicitly. The Lagrangian reads

L(u, µ∗) =
1

2
u2 + µ∗ ◦ (Gu− w) =

1

2
u2 − u

∫ 1

0
µdx+

∫ 1

0
µx dx for every µ∗ ∈ K∗ε ,

and the associated Lagrangian dual function is given by

g(µ∗) = max
u∈R

L(u, µ∗) = L

(∫ 1

0
µdx, µ∗

)
=

1

2
u2 − u

∫ 1

0
µdx+

∫ 1

0
µx dx

=

∫ 1

0
µx dx− 1

2

(∫ 1

0
µdx

)2

for every µ∗ ∈ K∗ε . By applying the characterization of K∗ε established in (4.3), the dual

Lagrange problem is given by

Maximize g(µ) =

∫ 1

0
µx dx− 1

2

(∫ 1

0
µdx

)2

subject to µ(x) ≥ ε‖µ‖Lq [0,1] a.e. in [0, 1].

(5.6)
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In this case strong duality holds, (5.6) is uniquely solvable, and the solution µ∗H,p,ε is

a regular multiplier of problem (5.5). Furthermore, optimal values of (5.5) and (5.6)

coincide, and we can recover solution uHp,ε by formula

uHp,ε =

∫ 1

0
µH,p,ε dx.

To compute numerically the solution to (5.6), we consider a fixed partition {∆δn} of

n = 1000 points. Each integral is approximated by using a Simpson’s rule. In this case,

we have solved numerically these problems by using CVX (see [8]).

As in constructible regularization case, the regularization error decrease for bigger

p, and the blow up rate {‖µH,p,ε‖Lq(Ω)} is slower. In this case, we must also consider

the influence of the discretization error. We have experienced that for the larger values

of p, the regularization error soon stagnates below some threshold as the discretization

error start dominating. This is a known effect in this kind of regularization methods, for

example in optimal control. Below this threshold, see Figure 5.2, one can observe that

the convergence rate of the regularization error and the blow-up rate of the multiplier are

nearly of the same order for the two regularization methods.
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Figure 5.2: The first figure compare the blow-up rates for the Henig regularized multipliers

and the second figure compares the convergent rates for the Henig regularized solutions.
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