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Stable Conical Regularization by Constructible Dilating Cones with an

Application to LP-constrained Optimization Problems

Baasansuren Jadamba, Akhtar A. Khan and Miguel Sama*

Abstract. We study a convex constrained optimization problem that suffers from the
lack of Slater-type constraint qualification. By employing a constructible represen-
tation of the constraint cone, we devise a new family of dilating cones and use it
to introduce a family of regularized problems. We establish novel stability estimates
for the regularized problems in terms of the regularization parameter. To show the
feasibility and efficiency of the proposed framework, we present applications to some

LP-constrained least-squares problems.

1. Introduction

Let U and V be real Hilbert spaces, let Y be a real Banach space, and let || - ||, || - [|v,
and || - ||y be their norms. Let K C Y be a closed, convex, and pointed cone that induces
a partial ordering <y on Y. Denoting by Y* the dual space of Y, by K* = {y* € Y* |
y*(k) > 0 for every k € K}, we represent the positive dual of K.

We focus on the following convex minimization problem:

1
1.1 Minimize J(u) := =||Su — z4||? +E u — ugl|? subject to Gu <g w, u € U.
2 Vo v

Here S: U — V, G: U — Y are linear bounded operators, x > 0 is a given parameter,
and ug € U, zg € V, and w € Y are given elements. Clearly, problem (1.1) has a
unique solution uw. However, there are important examples where the solution cannot
be computed using the Karush-Kuhn-Tucker (KKT) conditions. One remedy then is
to associate (1.1) to a family of regularized optimization problems which can be solved
through the KK'T conditions provided that the regularized solutions enjoy nice properties.
There are multiple ways to construct a family of regularized problems. For example,
the conical regularization, proposed in [17], employs a family of dilating cones of K to
construct the regularized family (see [5,10,22]). Recently, this idea has been applied to
PDE constrained models (see [15,17,19,20]). For € € (0,1), we denote by {K.} C Y, a

Received January 10, 2018; Accepted November 1, 2018.

Communicated by Jein-Shan Chen.

2010 Mathematics Subject Classification. 90C20, 90C31, 90C46.

Key words and phrases. perturbation theory, convex optimization, half-space representation, conical reg-
ularization, dilating cones.

*Corresponding author.



2 Baasansuren Jadamba, Akhtar A. Khan and Miguel Sama

family of dilating cones associated with K. That is, {K.} is a family of closed, convex,
and pointed cones with nonempty interior such that, firstly, K \ {0} C int(K.), for every
e € (0,1), and secondly, K = [, K-.

The regularized family is then obtained by replacing K in (1.1) by K. as follows:

1
(1.2)  Minimize J(u) := §HSu — 2|3 + gHu — ugl|? subject to Gu <. w, u € U.

It was shown in [17] that the regularized solutions u. converge to @ and under an additional
mild condition, see (3.3), the regularized solution u. can be computed using the KKT

system: There is a multiplier uf € KZ such that

(1.3a) DJ(us) + proG =0,
(1.3b) i (Gue —w) =0,
(1.3c) Gue —w <k_ 0,

where o denotes the usual composition operator.

We note that [17] developed the conical regularization scheme assuming that the con-
straint space Y is a real Hilbert space. However, the convergence results [17, Theorems 2.1,
3.2], and the KKT conditions [17, Theorem 3.3] remain valid for the case when the con-
straint space Y is a real Banach space. This is because the convergence results mainly
rely on the continuity of the operator GG and the closedness and convexity of the cone K,
whereas the KKT conditions follow from the fact that the dilating cones K. are solid.

In this work, we construct a new family of dilating cones which is similar to the Henig
dilating cones proposed by Henig [10] in a finite-dimensional setting and then extended by
Borwein and Zhuang [5] to general spaces. We construct this new family using a halfspace
representation of the cone K (see [4,14,16]) and show that it enjoys the same set of nice
properties as the Henig dilating cones but is more tractable from a computational stand
point. Using this constructible family of dilating cones, we propose a new regularization
scheme. We estimate the regularization error for (1.1) for the new regularization scheme
and for the Henig regularization scheme studied in [17]. More precisely, for the two cases,
we establish an upper bound of the regularization error for the optimal values of (1.1)
and (1.2), the norms of the regularized multipliers and the regularization parameter (see
Theorems 3.2 and 3.6). Apart from its theoretical interest, this bound is particularly useful
for problems where a bound on the optimal value of the original problem is available.
Furthermore, for the Henig regularization, we establish an a priori regularization error
estimate of order O(y/¢) when the problem is regular (see Theorem 3.3). The same result
is given for the new constructible regularization scheme (Theorem 3.8), assuming that a
Slater condition is verified. For this, we employ an equivalent £*° reformulation of the

abstract optimization problem (1.1) and apply a known stability result of Alt [1]. As a
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consequence, in both cases, when Y is in addition a reflexive Banach space, we characterize
the regular problems as those which have norm bounded associated regularized multipliers.
We note that these estimates are general and hold for every cone K in the Banach space
Y.

The computable form of the new family of dilating cones allows us to construct a
family of approximate problems in a natural way. We apply this scheme to an important
case when the constraint space is an LP function space with 1 < p < oco. For this case,
we provide an explicit construction of the dilating cones for each exponent p € [1, ).
We conduct a numerical experiment for a known example of nonregular problem with L?
constraints and perform a systematic study of the new constructible regularization and
give a full comparison with the known Henig regularization.

Finally, we describe the notions adopted in this paper. For a Banach space X, we
denote its dual by X* and its norm by || - ||x. The inner product of a Hilbert space
H will be denoted by (-,-)m. For each z* € X* by Hy» = {x € X : z*(z) > 0}, we
denote its associated halfspace. By (£°°, ||||¢= ), we denote the space of bounded sequences
v = {v; }ien C R with norm ||v||sgee = max{|v;| : i € N}. The cone of positive coordinates
(2 is given by £5° = {v = {v; }sen € €°° : v; > 0 for every i € N}. The space of all bounded
linear operators from U to Y is denoted by L(U,Y). For a linear operator S: U — Y, by
S*:Y* — U* we denote the adjoint operator. For Hilbert spaces, we will follow the usual
convention of defining S*: Y — U by (Su,y)y = (u,S*y)y for every u € U, y € Y. For
J: U =Y, by DJ(u) and D?J(u), we denote the first-order and the second-order Fréchet

derivative at a point w € U. By ¢ > 0, we will denote a generic positive constant.

2. A constructible family of dilating cones

Recall that Y is a Banach space and K C Y is a closed, convex, and pointed cone. We
aim to construct a family of dilating cones {IC.} of K, where ¢ € (0, 1). This construction
is based on a halfspace decoupling of the cone K (see [14]) and the notion of the Henig
dilating cone introduced by Henig in finite-dimensional setting [10] and later extended to
general spaces by Borwein and Zhuang [5]. We assume that the cone K has a closed and
convex base © C K such that 0 ¢ © and

K=|]J{):0co}
A>0

Without loss of generality (see for [18, Theorem 2.2.12]), we assume that the base © is
given by a strictly positive functional g* € K := {y* € Y* : y*(k) > 0,Vk € K \ {0}},
that is, © = {y € K : *(y) = 1}, where we normalize to ||5*||y+ = 1. Given € > 0, the
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Henig dilating cone is then given by
K. := cl[cone(© + ¢By)],

where By = {v € Y : ||v]]ly < 1} is the closed unit ball. It is known (see [5, Theorem 1.1])
that the Henig cone is a solid, closed, convex, and pointed cone such that K\{0} C int(K;),
for every e € (0,1), and K = (g ooq K-.

Before any advancement, we provide the following characterization of the dual cone K}
which is based on [17, Theorem 4.1]. We emphasize that although this characterization
has initially been given for a Hilbert space, the proof only used the properties of normed

spaces and hence it remains valid for a general Banach space.

Theorem 2.1. Let ¢ € (0,1). The dual of the Henig dilating cone K} is given by
K ={0} U{0# X" € K" : X*(0) > ¢||\*|| for every 6 € ©}.
Given y* € Y™, by yZ € Y* we denote the functional
(2.1) e =eb + (1 -y,
which, for sufficiently small ¢, belongs to K} as shown in the following:

Lemma 2.2. Let y* € K*. Ife € (0,1) and ||y*|

y+ <1, then y} € KZ with ||y}|y- < 1.
Proof. Clearly, for every 6 € ©, we have

(2.2) ye(0) =ef(0) + (1 —e)y"(0) = e + (1 - )y (0) > e.

On the other hand, ||yf|ly+ < €||8*|ly+ + (1 —&)|ly*|ly+ < e+ (1 — &) = 1, which implies
that ||yZ|ly+~ < 1. By using (2.2), we have

v (0) o v (0) > e,

lyzll — ™
which in view of Theorem 2.1 gives y! € K. O

We recall that K = ﬂy* e+ Hy where Hy» is the positive half-space (see for example
[25]). This allows us to give the following definition.

Definition 2.3. Let I be an arbitrary nonempty index set and let {\!}ie; C K*. The

collection { H)+ }ier is said to be a representation of K if K = (),c; Hy:.

In the following, {H Ax }tier is a fixed representation of K, where without loss of gener-

ality, {\!}ics are normalized so that | \f||y+ = 1, for every i € I. Following (2.1) and the
given representation {H, Ar tier of K, for each A} € K*, we define, for any i € I,

(2.3) Ne=eB "+ (1 —¢)A.
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For any i € I and 0 < e < 1, Lemma 2.2 yields [|\]_|

y+ < 1. For 0 < ¢ < 1, we define

(2.4) C. = ﬂ Hy: .

el
The following result shows that for e € (0, 1), {C.} is indeed a family of dilating cones.
Theorem 2.4. For e € (0,1), C. is a solid, closed, convex, and pointed cone such that
(i) K. C C..
(il) K\ {0} C int(C%).
(iii) K =(),50Cs.

Proof. By definition, C;¢ is a closed and convex cone. Furthermore §* € Cg, thus C; is
based and consequently pointed (see [7, Example 1.1.2.]). On the contrary there would
exist 0 # c. € C¢ such that

(2.5) B*(cc) <0.
By definition,
Nieled) = (1=eXi(es) +ef7(e) 20 = Ni(e) = 7 |8%(e2)[ 2 0

for every i € N. Thus c. € (.., Hrr = K, which contradicts (2.5).

Moreover, by Lemma 2.2, A\¥_ € K7 and hence K. C Hy:_, for every ¢ € I. Con-
sequently, K. C (.o Hx:, = Cc. This, in view of K = ﬂ0<’€<1 K., yields K \ {0} C
int(K.) C int(C:). For K = >0 C=» we note that K C (. C:. For the converse, let
w € (), Ce be arbitrary. Then,

g
S >
’L(w)—g_]-

B*(w) foreveryie I, e>0.
Since it is true for any € € (0,1), we get A7 (w) > 0 for each i € I, implying that w € K. [
We conclude this section by showing that K. C C. is in general strict.

Example 2.5. We set Y = R? equipped with its Euclidean norm and the ordering K =
R4 x {0}. By identifying elements of the dual space with vectors, we consider the strictly
positive functional 8* = (1,0) and the representation {H: }ic(1,2,3) given by vectors A\] =
(0,1), A5 = (0,—1), A\ = (1,0). Then,
K.={(z,y) eR?:e(1 -0 >y >—(1—e?) V22,02 >0},
C.={(z,y) eR*:e(l—e) la>y>—c(1—¢) o,z >0},

which confirms that K. C C; for € € (0,1).



6 Baasansuren Jadamba, Akhtar A. Khan and Miguel Sama

3. Stability estimates

Regularized family (1.2) covers two cases of interest. For the choice {K.} = {K.}, we
obtain the Henig conical regularization embedded in
K

5 |u — ugl|? subject to Gu <g. w, u € U.

1
(3.1) Minimize J(u) := §||Su — 24|} +
Moreover, for {K.} = {C.}, we get the constructible regularized problems

1
(3.2) Minimize J(u) := iHSu — 2|3 + gHu — ugl|? subject to Gu <¢, w, u € U.

We now aim to establish stability estimates for the regularization error in both of
and u¢, the solutions to (1.2), (3.1), and (3.2),

respectively. We will use the notation § = Gu — w, and ¢. = Gu, — w, qf = Guf —w,

the cases. We will denote by wu,, uf ,

and ¢ = Guac — w for £ > 0 sufficiently small. In the rest of the paper, we impose the

following mild assumption

(3.3) q 7§ 07

which essentially prevents problem (1.1) from being a pure equality constraint problem.
Indeed, if § = Gu — w = 0, then w is also feasible, and hence a solution, of the simpler

equality problem:

K

5 |u — ugl|? subject to Gu = w, u € U.

1
Minimize §HSU — Zd”%/ +

Furthermore, (3.3) provides a nontrivial feasible point such that the regularized optimality
system is solvable (see [17]). Therefore, under this assumption conical regularization
scheme give in [17] holds, in particular u. converge to w. Another important property is
that the regularized solutions {u.} are uniformly bounded. Indeed, by the optimality and

the fact @ is feasible for regularized problems (1.2), we get
lue — uallty < J(ue) < J(@),
and consequently,
(34) lucllo < lluallo + /I (@).
We begin with the following technical result.
Lemma 3.1. Let pf € K* be a multiplier associated to (1.2). Then, pi(q) — 0 ase — 0.

Proof. By the Taylor expansion of J at u = u., we have

T0) = J0ie) + DI () (7~ ) + 5 DT () (0 — e — ),
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where ug = u. + 6(u — u.) with 6 € (0,1). By a direct computation of the derivatives, we
get
K 1
J(@) = J(us) — DJ (ue) (@ — ue) = §Hﬂ - uaH%] + iHSH - SUSH%/'
Applying KKT conditions (1.3a) and (1.3b), we obtain
DJ(ue)(t = ug) = —(pg 0 G)(U — ue) = —p(GU — Gue) = —p(GU — w) = —pz(q),
and consequently
K, _ 2 1 — 2 _ % /—
(3-5) 5@ = uelly + 157 = Suelly = J(@) = J(ue) + p: (@)
Equation (3.5) holds for every family of dilating cones {K.}. Furthermore, since u. — T,
the left-hand side term in (3.5) converges to 0 and we also have J(u.) — J(u), conse-
quently, p(g) — 0 as e — 0. O

3.1. Stability for the Henig conical regularization

Let pij; . € Y™ be a multiplier associated with Henig regularized problem (3.1) for e small
enough. Without loss of generality, we assume # 0. Otherwise, it follows from the
KKT condition (1.3a) that we have the trivial case uX! = %. Indeed, if i = 0, then by
KKT condition (1.3a), we have

(3.6) DJ(ufl) =o0.
Since uf — @ for £ — 0, by the continuity of D.J, we have
DJ(u) = 0.

On the other hand, @ is trivially a feasible point of problem (3.1), that is,

(3.7) Gu —w <k. 0.
Conditions (3.6) and (3.7) imply that w verifies KKT conditions (1.3) with uj . = 0.
Hence, @ is a minimal point of problem (3.1). By the uniqueness of solution uff = 7.

Now, using the notation 67 := el|i cllv+, we have the following estimate.
Theorem 3.2. The sequence {(55} — 0 as € — 0, and the following estimate holds:
K, 1, _ .
(3.8) Sl =l |G + 51157 = Sul|fy, < J(@) = J(u) - 6|8 (@)]
Proof. By definition ¢ € —K, and g # 0 by assumption (3.3). Therefore, —q/5*(—q) is
well defined and satisfies —q/8*(—¢q) € ©. By Theorem 2.1, we get

w ( 1 >=/f;{ ( 4 >>€Ilu7q|
\Fg) = gy ) = e

_ sH
o
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By Lemma 3.1, we have uj; _(g) — 0, which due to the above inequality, implies that
§H = ellugclly — 0 as e — 0. Furthermore, we also have uj (q) < —6H|8%(g)|, which
when combined with (3.5), yields (3.8). O

We can establish an a priori estimate in term of the regularization parameter when
problem (1.1) is regular, that is, when KKT conditions for problem (1.1) are solvable:
There is a multiplier g* € K* such that

(3.9) DJ@)+u*oG=0, u"(Gu—w)=0, Gu-—w<ghd.

Theorem 3.3. Assume that (1.1) is reqular. Then, for e small enough there is a constant
¢ > 0, independent of €, such that

K 1
Bl + 1157 - Sull |} < e=.
Proof. By using the Taylor expansion (centered at u = u), we have
K 1
@) = It = @) = (@ + D@ ) + 5w o+ g lsu - Sul)

_ _ K_ 1,
= D@t —u) — Fl[u— | - 5157~ Sul |}

IN

us —u
—DJ@)(ul —7).
Since (1.1) is regular, by applying KKT conditions (3.9), we have
J(@ - J(ull) < ~DI@) ! —7) = (7 o G) (ull —7) = " (Gull — w) = 7*(q!").

On the other hand, since ¢! € —K. = —clcone(© + £By)], we can take a sequence
{qn,e fnen C —cone(O + eBy) such that

(3.10) gt = li}@n On,e-

By definition, there exist oy, > 0, 0, € ©, b, . € By such that

(3.11) Gne = —0ne(Onc + by ).

Applying linearity and positiviness of multiplier z*, we have

(312) T (gne) = B (nebne) — el (nebne) < com el (bne)| < ean el ||y

Let us prove now that {a;, .} is uniformly bounded with respect to regularization param-

eter £. By applying 8* to expression (3.11), we have

B*(Qn,s) = _an,s(ﬁ*(en,s) + 5B*(bn,s)) = _an,s(l + Eﬁ*(bn,e))
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and dividing this expression by 1+ 8% (by ), we obtain

6*(%15) 1 " 1
« - - : < * = —
" 1+eB*(bne) = 1—ellB*|ly~ 18%y=llgn.clly 1—¢ 19n.c

vy < 2||gnelly,

where in the last step, we assumed, without loss of generality that ¢ < 1/2. Consequently

Qn e < 2”%,5”%

and by substituting this expression in (3.12), we have

1 (gne) < 2llgnelly 7"y

Now taking limit, by (3.10), we have

—%

A (q2") = im 7 (gn.e) < €2l v 7|y~

Since ¢ = Gul — w, by the continuity of G' and bound (3.4), we can take ||¢’||y < c,
for some positive constant ¢ > 0, independent of . Using this in the previous inequality,
we get

i () < ce.

Consequently, we have
J(@) = J(l') < 7 (g') < ce.

Now substituting this expression in (3.8), we get
K, _ H 1 — H * * (=
(3.13) 5l —u 1%+ 15T = Sue I3 < ele = luirelly=18" @)D
From (3.13), we can take another positive constant ¢ > 0, independent of ¢, such that
K= H)2 Lo H 2
5”“ —u |l + §||SU = Sug |y < s,
and [|uj; [[y+ < c. The proof is complete. O

In the above proof, we showed that for a regular problem, the set of regularized La-

grange multipliers {||u}; [[y+} is uniformly bounded for ¢ sufficiently small. On the other
hand, in [17, Theorem 3.4], assuming that Y is a Hilbert constraint space, we proved that
the norm boundedness of multipliers {||u}; [ly+} implies the the regularity of the original
problem (1.1). Noting that the proof essentially used the reflexivity of the space Y and
the fact that from the norm-bounded multipliers, we can extract a weakly convergent
subsequence whose weak limit is a Lagrange multiplier of the KKT system of (1.1), and
hence proving that the problem (1.1) is regular. Following this idea, we can prove the

following generalization relevant to the present setting.
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Proposition 3.4. Assume that Y is reflexive. If the set of multipliers {/UL*Hys} s morm

bounded for e small enough, then problem (1.1) is regular.

Therefore, from Theorem 3.3 and Proposition 3.4, we get the following characterization

of regularity for problem (1.1).

Corollary 3.5. Assume Y is reflexive. Problem (1.1) is reqular, if and only if, the set of

multipliers {py; .} is norm bounded for e small enough.

3.2. Stability for the constructible dilating regularization

We now return to (3.2). We recall that C; = [);c; Hyr_, where A7 are defined by (2.3).
We also recall that {H AX }ier C Y™ corresponds to a r’epresentation of K where {\!}icr
are of unit norm and B* € K* is a strictly positive functional of unit norm. We continue
to assume that the cone K is given by a numerable representation. This condition is quite
general and covers separable Banach spaces (see for example [2, Theorem 1]). Therefore,
we will assume I = N.

As before, for any multiplier associated with (3.2), we take pee 7 0, and define the
quantity 6¢ = ellue v+ By construction, K. C C.. Therefore C C K7 and the dual
of constructible dilating cone is contained on the dual of Henig dilating cones for each
e € (0,1). As a consequence, the characterization given in Theorem 2.1 also holds and we
have

,u*cﬁ(e) > ellpelly=  for every 6 € ©.

Therefore the following result, which is an analogue of Theorem 3.2 holds.

Theorem 3.6. For e — 0, we have 550 — 0. Furthermore,
K. 1, _ %/
Sl = uCl + G157 - SullE < J@) — J(uC) - €18 @)

To obtain an analogue of Theorem 3.3, we require int K # () and that the Slater

constraint qualification holds: There exist @ € U such that
(3.14) Ga—we —int K.
For any y € Y, let us define the real sequence {\}_(y)}ien. By Lemma 2.2, we have

Ae@)] <IN

v-[lylly <llylly

and hence {A]_(y)}ien C £°°. We define the perturbed map Goo: X x Ry — £ by

Goo(,€) = {Aj (G (2) — w) }ien
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and for € > 0 an associated family of the perturbed problems:
1
(3.15) J(w) = 3| Su - zal} + gHu — g} subject to Goo(u,€) <ge 0, u € U.

Due to the representation of a cone, (3.15) and (3.2) are equivalent. That is, they have
the same feasible set and hence the same solution set. In the same way, problems (3.15)

with ¢ = 0 and (1.1) are equivalent and their unique solutions coincide.

C

c -

Theorem 3.7. For e > 0, problem (3.15) has a unique solution u

For ¢z := Ga — w, by (3.14) there exists k > 0 such that gz + kBy C —K, and hence
A (gz) < —ksup |\ (By)| = —k||A] ||y« = —k for every i € I,

which is equivalent to {)](ga)}ien € —int £5°, and hence confirming the Slater constraint

qualification
(3.16) Ja € U such that G (@,0) € —int £°.

Theorem 3.8. If (3.14) holds, then for sufficiently small e, there exists a positive constant

¢ which is independent of €, and we have
luf —al|y < eve.

Proof. We apply [1, Theorem 2.5] by identifying X = U, Y = (>, K =/, W = R4,
f =J,and ¢ = —G&. Note that our setting is simpler than in [1] as the objective
J is parameter independent. Clearly (3.16) implies that @ is a regular point (see [1,
Definition 2.1]). Moreover, the maps J and G are continuously differentiable and we

have
(3.17) ) DJ(u)(u) = <S*(5;U — 2d), ?v + k(T — ug, wy,
D27 (@) (u, u) = | Sull} + sl

Therefore, conditions (Al) and (A3) in [1] hold automatically. Note that J and D.J(u) are
Lipschitz continuous on any neighborhood of u. The map G is also Lipschitz. Indeed,
let By and By be two neighborhoods of @ and 0, respectively. Then, for every u;,us € By

and for every €1,e2 € By, we have
1Goo(u1, €1) = Gooluz, e2)llee = max [Ai ., 0 Glur) — Aj, 0 G(uz)l
= max|(Aie, = Aje,)G(u1) + Ai, G(ur — ua)l

= max|(e1 = £2)B7(G(w)) + (22 = )N (G (w1)) + A, Glur — ua)|

< (161w mge Bl + 161) s = eal + s = walle]
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by using ||A}]

y= = L [|B%ly= = 1 and [|A7_,]

1,62

y+ < 1 (see Lemma 2.2). Hence, condi-
tion (A2) in [1] also holds. To verify (2.4) in [1], we use the Taylor expansion. For any
feasible u of (3.15), by the Taylor expansion of J at u = U, we have

J(u) = J@)+ DJ(u)(uv—1u) + %DQJ(ZL@)(U — U, u — 1)

where ug =u+ 0(u —u), # € (0,1). Problem (3.15) is convex, therefore by minimality of
u we have DJ(u)(u —uw) > 0. Consequently, by applying (3.17), we get

1
I () = T(@) 2 5D (ug) (u — 0 =) 2 3 Ju — 3
Therefore all the conditions of [1, Theorem 2.5] hold and as a result, there is a constant

¢, independent of ¢, such that |[ul — @y < ¢y/z, for e sufficiently small. O

As a consequence of Theorems 3.6 and 3.8, by using the same arguments as in the
Henig conical regularization, we can prove an analogous of Corollary 3.5. In this case, the

following analogue of Proposition 3.4 holds.

Proposition 3.9. Assume Y is reflexive. If the set of multipliers {,u*c’g} s norm bounded

for e small enough, then problem (1.1) is regular.
And the corresponding characterization of regularity for problem (1.1).
Corollary 3.10. Assume Y is reflexive, and (3.14) holds. Problem (3.2) is regular, if

and only if, the set of multipliers {u¢, .} is norm bounded.

4. Application to LP-constrained optimization problems

Let © C R™ be a bounded convex domain, and let 1 < p < co. We set Y = LP(Q), the
space of integrable functions on €2 and choose the cone K to be the cone of its positive

functions given by
K=I8(Q)={feLP(Q): f(z) >0 a.e. in Q}.
Denoting y,, = Gu for every u € U, problem (1.1) takes the following form:

1 K
Minimize J(u) := =||Su — zq||> + = ||u — ug||?
) () = g l1Su— zally + Sl — wally

subject to y,(z) < w(zx) a.e. in Q, u € U.

In the following by %, we denote the unique solution of (4.1). We will now develop the
constructible dilating regularization scheme studied in previous sections for problem (4.1).

Note that (4.1) is an abstract optimization problem with LP(£2) constraints; such problems



Regularization by Constructible Dilating Cones 13

are ubiquitous in many models, particularly in PDE constrained optimization models (see
for example [9,12,13,21]). Another critical field where our results are applicable is of
Mathematical Economics where a vast amount of real-world models lead to general LP
constrained optimization problems, see for example [24]. In particular, we note [23] which
offers a thoughtful discussion of LP constrained models in the economics context and is
akin to the present research. In practical applications that lead to (4.1) for varying values
of p, the central question is of the optimality of p, which is influenced by issues such
as numerical efficiency, regularity, stability, existence, and optimality conditions. Here we
present a detailed study of all the above-stated aspects for the constructible regularization.

The primary difficulty in such studies is the emptiness of the interior of the cone
C =L (Q) for 1 <p < oo when Y = LP(Q2). Hence the Slater constraint qualification
fails to hold. For the case p = oo, where the cone C' = L(2) has a nonempty interior,
and a Slater constraint qualification holds, the space Y = L>°(Q) is neither reflexive nor
separable. Fortunately, in both of these cases, we will show that the conical regularization
offers a satisfactory framework. In the following, we will differentiate these two cases.

First we need to give a representation of the cone of positive functions Lﬁ(Q). For
this, we consider a family of convex partitions {A5}5>0 of 2, where ¢ is a real parameter,
see [6,14]. Each partition {A%} consists of a finite number of closed and convex sets
{A2} CQ (i=1,...,T(5)) such that > ascps |A?] = |Qf, where T = T(6) = #A° is the
cardinality of {A%}, and || is the Lebesglue measure of (2. We assume that diameter of
the family tends to zero, that is,

diam(A’) = max diam(A2) -0 asd — 0,
i=1,...,T(8)

where without any loss of generality, in the sequel we set § = diam(A?%).

The family of half-spaces
{H,\é*}i=1,...,T(6);6>o = {f €yY: /5 f(s)ds >0 for every i = 1,...,T(5),0 > 0}
7 AZ
is a constructible! representation of the cone of positive functions.

4.1. Case 1 <p < o0

For a given p, we denote by ¢ the conjugate exponent satisfying ¢! +p~! = 1. For § > 0,
we define A% € LP(Q)* by

% o1—(p—
Api(f) = |A7] (r=1)/p /A‘5 f(s)ds for every f e LP(2).

We can always consider a numerable representation by taking a sequence §, — 0.
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By Holder’s inequality, we get H>‘2
functional g, € K 7 is defined by

e < 1, in fact [|A9%]| ey« = 1. The strictly

N2

Bo(f) = |Q|_(p_1)/p/9fds for every f € LP(Q).

Therefore, for each £, > 0, the functionals /\f{z,i are given by

M) = (L= N + <857) = (1= A0 [ paseloo= [ fas

for every f € LP(Q2). The family {\’* }iz1,..,7(5):5>0 18 a representation of C.. Therefore,

D,E,1
the regularized problems are defined as follows:

1
Minimize J(u) := §||Su — 2| + gHu — ugl|? subject to

(@2) =AY [ (g wyds el 0P [ (g, w)ds <0
A Q

K3

for every i =1,...,7(5),0 >0, u e U.

To derive an explicit KKT system, we need to give a characterization of the dual of C7.
We will also give an explicit characterization of the Henig dilating cone K. which is based
on [17, Theorem 4.2]. Since C} C KZ, we can apply this result to the elements of C?.
Noting that the dual of LP(2)* can be isometrically identified with LI(2), the following
proof uses the same line of arguments as in [17, Theorem 4.2]. In the following, for any
w* € LP(Q)*, the associated Riesz element is denoted by p € LI(2). That is, u € L1(Q)
such that

w*(f) = /Qf(s)u(s) ds for every f e LP(Q).

Proposition 4.1. Assume 1 < p < oo, Y = LP(Q), C = LE(Q), and let K. be the

associated Henig dilating cone. The dual of this cone is given by
(4.3) K; = {,u* e LE ()" : p(x) > 5|Q|—(7’—1)/P||H||Lq(g) a.e. in Q}
Proof. For Y = L?(Q), in [17, Theorem 4.2], it was proven that

ke ={p* € L2(@)" s p(x) > £l /2|l oy e, in 0}

This result was based on [17, Theorem 4.1], and in this case we take into account that the
base is defined by a normalized strictly functional. We have seen that Theorem 2.1 is an
analogue of this result for a general Banach space. Therefore applying Theorem 2.1 and
following the same steps as in the proof of [17, Theorem 4.2], we can easily extend this
result to Y = LP(Q) for every p € [1, 00). O
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We have the following general result.

Theorem 4.2. For each € > 0, there exists unique solution uS_ of problem (4.2). The

p75
solution sequence uga converges to u, as € — 0. Furthermore, for each € > 0, there exists

a Lagrange multiplier pg, , . € LA (Q)* such that

DJ(uS.) + pg e 0 G =0 in U,

D€
/ fepe(yue, —w)ds =0,
0 :
ﬂC’,p,E(S) > 5|Q’_(p_l)/p||MC,p,e

(A=Al [ (g, —wyds @ 0 [ (g —w)ds <0

La(Q) a-e. in 2,

P be
for every i =1,...,7T(5), 6 > 0. Finally, for sufficiently small €, there exists a constant
¢ > 0, independent of €, such that

K- c — c
5””}7 - up,sH2U < J(up) - J(U‘p,s) - CEH:U’C,REHL‘Z(Q)'

Proof. The existence is a standard result. The convergence and the optimality follows by
applying conical regularization scheme, where we also use the dual characterization given

in Proposition 4.1. The final statement is a direct consequence of Theorem 3.6. O

4.2. Case p =00

We now take Y = L>*(Q2) and K = L(2). As noticed before, the cone K now has a
nonempty interior, however, we have lost the reflexivity and the separability of Y. For

this case, the unit normal representation is defined by
AL =180 [ fs)ds,
A;
and the corresponding regularized problems read:
c .. 1 2 R 2 .
Minimize J(u) := §H8u — zallyy + §Hu — uq||{; subject to

(4.4) (1—e)lagl™ / (u—w)ds+el0 / (yu — w)ds <0,

A Q

forevery i =1,...,7(5), 5 >0, u € U.

The Slater condition now reads: There is a constant k& > 0 and an element @ € U such
that

(4.5) ya(x) —w(x) < —k <0 a.e. in .
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Under this condition, the problem is regular and the KKT conditions remain valid. How-
ever, the need of regularization arises to circumvent the difficulties in the discretization
due to the fact that the dual L3°(€2)* is non-separable. As it turns out, the regularized
problems (4.4) provide a natural discretization scheme by fixing the regularization param-
eter and the diameter of the partition. For this, we apply an a priori estimate given in
Theorem 3.8.

Theorem 4.3. Assume that (4.5) holds. Then for each € > 0, there is unique solution
uocq8 to problem (4.4). Furthermore, for sufficiently small €, there exists a constant ¢ > 0,

independent of €, such that

(4.6) o0 — uS, Nl < evE.

5. A numerical experiment

To verify the practical applicability of the proposed scheme, we conduct a numerical
experiment for a known optimization problem (see [3, Example 3.20]) with non-regular L?
multiplier for 1 < p < oo but regular for p = oc.

For 1 <p <oo, weset U =V =R, Q=1[0,1], Y = LP[0,1], and K = L1 [0,1]
the cone of positive functions. Let G: R — LP[0, 1] be a linear bounded map defined by
yu = —up for every u € R, where up denotes the constant map given by up(t) = u for
every t € [0,1]. Similarly, we define w € LP|0, 1] by w(t) = —t for every t € [0, 1].

Given the above data set, we consider the following optimization problem
1
(5.1) Minimize J(u) = §u2 subject to y,(t) < w(t) a.e. in [0,1], u € R.

Evidently, problem is of kind (5.1) by setting S = z4 = ug = 0, and £ = 1. The unique

solution of (5.1) for every 1 < p < oo are uw = U, = 1. We will consider the strictly

functional(s)
1
B*(f) = Bi(f) = /0 f(s)ds for every f € L2[0,1].
For each n € N, we consider the convex partitions A% of Q = [0,1], with diameter
8, = n~!, given by subintervals Af“ = [(¢ — 1)/n,i/n] for every i = 1,...,n. The family

of partitions {A%},,~¢ verify the condition {5,} — 0 for n — co. For the case p < oo, the

corresponding family of constructible regularized problems is given by

1
Minimize J(u) = §u2

(5.2) (1 —e)pP~D/p /Z/n
(i-1)/n

foreveryi=1,...,n,n e N, u € R.

subject to

1
(—uF+s)ds—|—5/ (—up +s)ds <0
0
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For the case p = 0o, corresponding family of constructible regularized problems is given
by

1
Minimize J(u) = §u2 subject to

i/n 1
(5.3) (1—s)n/ (—up +s) ds+a/ (—up+s)ds <0
(i—1)/n 0

foreveryi=1,...,n,n e N, u € R.

Condition (4.5) is verified, for example by taking @ = 2. This is a Slater condition for the
case p = 00, so (5.3) admit KKT conditions. In general, if p < oo, problem (5.1) is not

regular since KKT conditions are unsolvable (see [3, Example 3.20]).

For p < 0o, by a direct computation, for every i =1,...,n, n € N, u € R, we have
i/n 1
)\gfai(yu —w) = (1- 5)n(”_1)/7’/ (—u+s)ds+ 5/ (—u+s)ds
(i-1)/n 0
L o-1/p : 1
= 53" (I—e)(—2nu+2i—1)+e¢ —u+§ ,

and, in particular

(r-1)/p(1 _ i — 2
5 B n (1—¢)(2i —1)+en
/\p,s,i(y“ w)<0 = uz nP=1/p(1 — £)2n + 2en?

Therefore,
. 1n@=V/P(1 —)(2n — 1) + en?
2 pe-D/P(1 —e)n +en?

for every n € N, u € R. Since we are minimizing 1u?, the solution to (5.2) is the maximum

of the right-hand side of previous inequality, that is,

Upe = 12 P ()

n(P=1/P(1—¢)(2n—1)4en?
n(P=1/P(1—)n+en?
For the case p = 0o, we can compute explicitly the solution. Indeed

where SB,.(n) := %

1n(1—€)(2n—1)+5n2 1€ e—1

2 n(l-gn+en? 2 2n

for every n € N. From this, it follows easily that

Therefore

(5.4) WS —a =S
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verifying (4.6). In fact, bound (4.6) is conservative, since
ES(e) = uS . — 1| = O(e).
In general, we will denote the error functional

C C —
E;(e) = |u, . — 1l

For the case p < oo, we approximate numerically these quantities by using Geogebra
[11]. To check numerically the convergence rates, we consider the Experimental Order
of Convergence (EOC). Given a finite list of decreasing steps {e1,...,en}, we define the

EOC at level ¢ for error functional Eg by the following expression

~In Eg(&i) —1In Epc(e,;_l)

C
EOC(EP ) In E; — In Ei—1

for every i =2,..., N.

In our computation we take ¢; = le-Ole;_1. In numerical experiments, EOC(EI? ) re-
mained constant for small ¢;, providing a meaningful approximation of the real order of
convergence (’)(Eg ). In Table 5.1 we show these values for several values of p, while in
Figure 5.1 we plot the Experimental Order of Convergence for p € (1,500). These results

confirm

lim O(ES) =1=0O(ES),

pP—00
as predicted by (5.4). From this we note that is possible to find an LP approximation, for

a small value of p, such that the accuracy is similar to the one obtained for L°°.

p | EOC(ES) | p | EOC(EY)
1 0.5 20 0.952
2 0.667 40 0.976
3 0.75 50 0.98
4 0.8 60 0.984
5 0.833 80 0.988
6 0.857 | 100 | 0.990
7 0.875 | 200 | 0.995
8 0.889 | 300 | 0.997
9 0.9 400 | 0.998
10| 0.909 | 500 | 0.998

Table 5.1: Experimental Order of Convergence for Constructible Regularization.
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Figure 5.1: EOC(EY) for p € (1,500).

In the second part of the experiment, restricting only to the case p < oo, we compare
the constructible dilating cone regularization and the Henig regularization. For a fixed
p € [1,00), let {K.} be the Henig dilating cones of L% [0, 1] associated with the basis

1
O = {fELﬁ_[O,l] :/0 f(s)ds:l}.
We consider the regularized problems
1
(5.5) Minimize J(u) = §u2 subject to y,(t) <k, w(t) a.e. in [0,1], u € R.

Due to the lack of an analytic solution, we rely on a numerical approximation by using
the Lagrange dual problem which can be computed explicitly. The Lagrangian reads
1 1 ! !
L(u,p*) = §u2 +u* o (Gu —w) = §u2 u/ de+/ px dx  for every u* € K7,
0 0

and the associated Lagrangian dual function is given by

ueR 2

1 1 1
:/ pxdr — = / wdz
0 2 \Jo

for every pu* € K}. By applying the characterization of K established in (4.3), the dual

1 1 1 1
g9(p") = max L(u, p*) :L</ ,udx,,u*) :u2—u/ udaz—{—/ px dx
0 0 0

2

Lagrange problem is given by

1 1 1 2
Maximize g(u) = / prdr — = (/ ,u,dac>
(5.6) ( 0 2 \Jo

subject to pu(z) > €l|pl|Lap,1) a-e. in [0, 1].
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In this case strong duality holds, (5.6) is uniquely solvable, and the solution W pe 18
a regular multiplier of problem (5.5). Furthermore, optimal values of (5.5) and (5.6)

coincide, and we can recover solution ufa by formula
k)

1
H
up,s :/ HH,p,e dz.
0

To compute numerically the solution to (5.6), we consider a fixed partition {A%} of
n = 1000 points. Each integral is approximated by using a Simpson’s rule. In this case,
we have solved numerically these problems by using CVX (see [8]).

As in constructible regularization case, the regularization error decrease for bigger
p, and the blow up rate {||ugpellra)} is slower. In this case, we must also consider
the influence of the discretization error. We have experienced that for the larger values
of p, the regularization error soon stagnates below some threshold as the discretization
error start dominating. This is a known effect in this kind of regularization methods, for
example in optimal control. Below this threshold, see Figure 5.2, one can observe that
the convergence rate of the regularization error and the blow-up rate of the multiplier are

nearly of the same order for the two regularization methods.

I,

[l

Figure 5.2: The first figure compare the blow-up rates for the Henig regularized multipliers

and the second figure compares the convergent rates for the Henig regularized solutions.
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