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Abstract—Grasp is an integral part of manipulation actions
in activities of daily living and programming by demonstration
is a powerful paradigm for teaching the assistive robots how
to perform a grasp. Since finger configuration and finger force
are the fundamental features that need to be controlled during
a grasp, using these variables is a natural choice for learning
by demonstration. An important question then becomes whether
the existing grasp taxonomies are appropriate when one considers
these modalities. The goal of our paper is to answer this question
by investigating grasp patterns that can be inferred from a
static analysis of the grasp data, as the object is securely
grasped. Human grasp data is measured using a newly developed
data glove. The data includes pressure sensor measurements
from eighteen areas of the hand, and measurements from bend
sensors placed at finger joints. The pressure sensor measurements
are calibrated and mapped into force by employing a novel
data-driven approach. Unsupervised learning is used to identify
patterns for different grasp types. Multiple clustering algorithms
are used to partition the data. When the results are taken in
aggregate, 25 human grasp types are reduced to 9 different
clusters.

Index Terms—Grasp Taxonomy, Programming by Demonstra-
tion, Unsupervised Learning, Ensemble Clustering.

1. INTRODUCTION

Robots that work together with humans need to act in a
way that is predictable and non-threatening to humans [1]].
Programming by demonstration (PbD), where data collected
while humans perform an activity is used to program the
robot, has emerged as a powerful paradigm to achieve this [2]—
[S. Among different actions of interest, object manipulation
actions are particularly challenging since they are difficult to
measure in naturalistic settings. Grasp represents an important
phase in object manipulation actions and is the focus of our
paper.

Grasp has been studied broadly in robotics. Grasp recogni-
tion is studied as part of learning by demonstration framework
in [6]]; grasp planning has been considered in [7]]; design
and control of prosthetic hands are the focus in [8]]. Various
taxonomies have been proposed for human grasps used during
the activities of daily living (ADLs) using different criteria
including kinematics of the hand during the grasp, object shape
and task context [9]-[12]].

Attempts at classifying the grasp type are either dynamic,
where a whole time sequence of data measured during the
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grasp is considered [6], [13]], [14], or static, where measure-
ments at a single point in time once the object is securely
grasped are used [[15]], [[16]]. In [[14]], the recordings of hand mo-
tion during the grasp are transformed to a lower-dimensional
space by Gaussian Process Latent Variable Models. The trans-
formed data is used to identify clusters for a subset of human
grasp types that form the comprehensive grasp taxonomy
presented in [9]. In contrast, [6] considers the grasp types
proposed taxonomy in [10]]. Both finger movements and arm
trajectory are used to train Hidden Markov Models (HMMs)
to recognize the grasp type. In [17], 12 grasp types from
the taxonomy presented in [11] are studied and HMMs are
trained to recognize the sequences of grasp gestures by using
the contact information and sequences of joint angles.

As an example of the static approach, [[16] classifies grasp
types in the taxonomy presented by [10] using a neural
network and angular data collected from a data glove. In [15],
the force patterns are investigated for 25 different grasp types
from the taxonomy in [9].

Most of commonly used grasp taxonomies by researchers
rely on observational cues rather than measured numerical
data. Following that, in most of the human grasp classification
tasks it is assumed that the grasp types in a chosen taxonomy
are distinguishable from the data. However, there is no prior
work on determining which grasp classes are recognizable in
force and posture domains.

In this paper, we extend the approach in [15]] by considering
the multi-modal data, both posture and force information
related to each grasp type selected from the comprehensive
grasp taxonomy in [9]. We employ unsupervised learning to
recognize natural clusters in the data collected in our human
study; each cluster represents grasp types that share similar
patterns. An important insight of our work is that while
different grasp taxonomies in the literature mostly consider
visual appearance and the perceived (subjective) human intent
in proposing different grasp types, grasp types that can be
learned from the measured data are subsets of those. In other
words, some grasp types proposed in existing taxonomies can
simply not be distinguished just based on the measured data.

The contribution of this paper is twofold. As noted above,
we identify a set of grasp types that naturally describe grasps
when considering grasp forces and finger joint angles. Since
grasp forces are difficult to measure directly, pressure sensors
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Fig. 1: The 25 grasp types from [9]] that are investigated in our study.

are used instead. The second contribution of our work is thus
a novel data-driven method that can be used to map pressure
sensor data into grasp forces.

The rest of the paper is organized as follows. Previous
work on grasp classification is reviewed in Sect. [lIl Sect. [ITI|
describes the human study and the data collection process. In
Sect. [TV} our novel data-driven calibration method for mapping
pressure data into grasp forces is introduced. We describe how
clustering of the collected data was implemented in Sect. [V]
and the results are discussed in Sect. [VI] Finally, Sect. [VII]
concludes the paper and outlines possible future work.

II. RELATED WORK

In this Section we briefly discuss the features that are used
to characterize the human grasp types and the taxonomies
proposed by previous researchers. In [12], [18]], the human
prehensile actions are divided into two main categories of
power, and precision grasps. Kamakura et al. introduced an
additional category as intermediate grasp in [11] and accord-
ingly their taxonomy classified the human grasp types into
14 distinct classes. Cutkosky et al. in [10] took advantage of
geometric properties of the manipulated object to classify the
human grasps types.

In addition to the main grasp type, namely power, precision,
and intermediate, the Virtual Finger (VF) and the opposition
type are other features of the grasp. VF is defined as a subset
of the fingers that act against the other part of the hand in terms
of force/torque during the grasp [[19]. VF formation patterns
can be different among different grasp types. Subsequently,
in [20], the opposition type is defined as the direction of
applied forces by the two opposing parts of the hand while
grasping an object. The opposition types are divided into three
main categories: palm, pad, and side [20].

In [9], Feix et al. exploited the thumb position to further
distinguish the human grasp types. They proposed a detailed

grasp classification which incorporates several grasp features
including VF, opposition type, and the thumb position (ab-
ducted or adducted). In their taxonomy, totally 33 different
grasp types are recognized, however these grasp types can fall
into 17 distinct classes if the object properties are disregarded.

We select a subset of 25 grasp types from this recent tax-
onomy [9]. These grasp types are more frequent in ADLs [9]]
and are measurable with our data glove. Fig. [T presents the
list of the studied grasp types in this paper.

III. HUMAN STUDY

To measure applied force by different areas of the hand
and joint angles of fingers, we developed our own data glove.
It is equipped with eighteen pressure sensors (FSR400 — 402
from Interlink Electronics) on the front side of the glove, eight
bend sensors (unidirectional bend sensor from Flexpoint), and
an inertial measurement unit (10 DOF IMU breakout from
Adafruit) on the back side of the glove. The locations of
the pressure sensors are selected based on the active areas
of the hand during the grasp action [|15]. Three force sensitive
resistors (FSR sensors) are located on each segment of the
fingers except for thumb which has one. Furthermore, Five
FSR sensors are mounted on the palm. Two bend sensors
are positioned on each finger, one on metacarpophalangeal
joint and one on proximal interphalangeal joint, except for
the pinkie and thumb which have one. Sampling frequency is
100H z using Arduino board (Atmega 2560). Fig[2| shows the
schematic of the data glove with sensor positions.

Seven participants were recruited to perform the grasps
listed in Fig. [T} They were instructed on how to perform each
grasp type. Each subject performed each grasp type four to
five times. In each trial, he/she started from an arbitrary initial
position and grasped the object securely for a few seconds.
The average of sensor readings in the stabilized grasp mode
is computed for each trial. In order to remove the effect of
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Fig. 2: (a) Schematic of the data glove. (b) FSR sensor
positions. (c) Bend sensor positions.

the mass of the object on the grasp pattern, all of the objects
that were used for this experiment were lightweight (less than
509).

After removing the corrupted signals, in which some sensor
wires got disconnected, a total of 604 trials were recorded.
The recorded data consists of pressure and bend sensors
measurements in the static phase of the grasp. To extract
force pattern, pressure sensors readings are preprocessed and
converted to force using a novel data-driven procedure which
is discussed next.

IV. CALIBRATION PROCEDURE

Here, we introduce a data-driven approach that uses a Neu-
ral Network (NN) and a generalized sensor model to accurately
calibrate all the pressure sensors at once. We compare the
results with Decision Tree (DT) regression [21f], and another
commonly used calibration method, polynomial model [22],
[23]. In particular, we show that NN-based model is able to
compensate for the sensor hysteresis and estimate the force
directly using the output voltage of FSR sensors.

A. Calibration Setup

In addition to FSR sensors, a Force/Torque sensor (Gamma,
ATT Industrial Automation) is used as a ground truth. During
the experiments, a FSR sensor is connected to a pull down re-
sistor (5K (2) and V. (5V) and the output voltage is measured.
The value of the pull down resistor determines the sensitivity
range of the sensor before reaching the saturation. With our
setup, the sensing range is roughly between 1 — 5N. The
FSR sensor is mounted on top of the F/T sensor. Sampling
process is done for both of the sensors simultaneously with
approximate frequency of 110H z. The F/T sensor is factory
calibrated. In all the trials, using a method similar to [22], a
button is glued to the center of the active area of the FSR
sensor to assure consistency of the contact area during the
trials.

In total, eleven FSR sensors were used for data collection.
Each test took five minutes. In each trial, one of the FSR
sensors is placed on the F/T sensor, and a random varying
amplitude and frequency force signal generated by a human
hand is applied to it; the data is captured from both sensors.
Our choice of the force signals is motivated by the fact that
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Fig. 3: The applied force measured by F/T sensor vs. output
voltage measured by FSR sensor.

the target application for the FSR sensors are typically human
interfaces such as data gloves in which the human applies the
force. The applied forces ranged over the whole sensing range
of the FSR sensors, up to the saturation region.

B. Model Description

By analyzing the data it was observed that the sensor
response is not repeatable during a trial due to hysteresis and
nonlinearities. This implies that it is likely insufficient to use a
polynomial function to predict the applied force. Even though
there exist calibration curves with specific features such as an
addition of a moving integral [22]], [23]], time varying behavior
of sensor would require continuous recalibration. Fig. [3|shows
a random trial which demonstrates time dependent behavior of
the sensor.

In order to accurately predict the force in applications where
the contact forces vary dynamically, the nonlinearities and
time-dependent features need to be modeled and compensated.
To achieve that, we propose using a Neural Network (NN). The
advantage of a NN is that it can model nonlinear dynamical
systems with no prior assumptions on the physical model of
the sensor, unlike the traditional resistor or resistor-capacitor
models [24].

We introduce two NNs which we designed and fine-tuned
to model nonlinearities in these sensors: a Convolutional Long
Short-Term-Memory (LSTM) Neural Network (CLNN), and a
deep Distributed Delay Neural Network (DDNN). In CLNN,
we use two convolutional layers in network architecture to
process time-series inputs and extract sample dependencies
in time domain, followed by an LSTM layer, a well-known
Recurrent Neural Network, to process and forecast the time
series by considering the sequence of recent past events within
the network (see [25]]), followed by a fully connected (FC)
layer.

DDNN model is one of the variations of the time series NNs
and is basically a feed-forward NN model which considers
the history of the system in terms of delay within its different
layers. The equation describing the behavior of network can
be written as:

y(t) = fx(t), x(t = 1), . 2(t = d)) (1)
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where f is a nonlinear function which can predict the output
y at time ¢ from the last d; values of input .

In addition to the above models, we have used decision tree
(DT) regression method that also consider the sequence of past
inputs, i.e. using the moving integral as an additional input for
the system. For further comparison, the traditional polynomial
model [22]], [23] with and without the moving integral was
also tested. For these methods, the current output voltage of
the sensor together with a sequence of a predetermined length
of previous inputs are fed to the model.

C. Model Comparison

For evaluation, all the models are trained by a trial collected
from one of the sensors, and the trained models are tested
on the remaining sensors. Before training the models, the
measured signals by both sensors are denoised using a moving
average filter with the window size of 20. In all the models,
the output voltage measured by the FSR sensor and the force
signal measured by the F/T sensor are the input and the desired
output of the models, respectively. For performance evaluation,
mean squared error (mse) is computed for each model.

The DDNN model includes four hidden layers with ten
hidden neurons in each, with delays of 21, 8, 4, 2 respectively,
and one output neuron in output layer. The training algorithm
is Scale Conjugate Gradient Descent and the performance
measure is the mean absolute error (mae). The activation
functions are hyperbolic tangent sigmoid and linear for the
hidden and output layers respectively.

The CLNN model includes two convolutional layers with
rectifier activation, 20 and 10 filters, and 20, 3 window sizes,
respectively, followed by one LSTM layer with 100 hidden
neurons and a FC layer with one neuron with linear activation.
The performance measure is the mae and the optimizer is
Adam [26].

In DT regressor, the current input and the moving integral
(the summation of the data points within 0.5 seconds delay
with linearly increasing coefficients) are used as the inputs of
the model. The mae is selected as the splitting criterion. To
further evaluate the results, the traditional approach, a fourth-
order polynomial curve with and without the moving integral
input [22], [23] was tested using the least-squares fit to predict
the output signal. The mean and the standard deviation for each
model over all the trials are plotted in Fig. ]
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Fig. 5: The completeness score as a function of the number
of the clusters.

The results show that NN-based models outperform the
other methods. The CLNN model with its two convolutional
layers and one LSTM layer can handle calibration and the
hysteresis compensation problem due to its nonlinear memory-
based modeling ability. The DDNN tries to solve the same
issues by applying delay to the network. On the other hand
the polynomial fitting method just fits the best fourth degree
curve to the training data set. If the training data is biased or
very noisy, the curve could be far from the optimal one and
the accuracy drops dramatically.

Our results also show that adding a moving integral to the
polynomial model does not necessarily improve the accuracy.
Further, because of the polynomial form, the error can actually
be multiplied. As an example, consider that the window size
for the moving integral is 0.5 seconds as suggested in [22],
and the frequency of the applied sinusoidal force is 100 Hz.
By adding a moving integral term, no useful information is
added to the model except for the noise. This shows that the
window size needs to be matched to the frequency content
in the applied force. The figure also suggests that although
the physical features of the sensors could be slightly different
from each other, a single trained network seems to be adequate
as a force estimator for all the sensors. The CLNN model is
best, with DDNN being the second. We thus used the CLNN
model to process pressure sensor measurements.

V. DETERMINING TAXONOMY THROUGH CLUSTERING

The dataset collected during the human study has 26 fea-
tures, with 18 corresponding to pressure sensors and 8 to
finger bending angles. The data, the average of sensors reading
in stabilized grasp mode in each trial, is normalized to have
zero mean and unit variance for each feature. Furthermore,
the grasp types are used as the ground truth label of each data
point, e.g. the data points of the Large Diameter grasp have
label 1 (see Fig. [I).

We employ unsupervised learning to partition collected
multi-modal data into meaningful classes. Our goal is to find
common patterns among different grasp types in terms of force
and posture, i.e. to recognize grasp types which share similar
patterns. Generally, majority of data points of a grasp type
should appear in the same cluster since they have similar
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Fig. 6: Two examples of the clustering output resulting from applying GMM with and without SVD transformation.

pattern. Moreover, data points of different grasp types may
appear in the same cluster indicating those grasp types have
similar patterns.

Different clustering methods partition data based on differ-
ent criteria. In addition, the clustering result may depend on the
initialization parameters. With different parameterizations, a
particular clustering algorithm can result in different outcomes.
Thus, one common approach to partitioning data is to combine
the results of multiple clustering instances and generate an
ensemble clustering [27]. Since each clustering algorithm
analyzes data using different criteria, the resulting partitions
can complement each other. Furthermore, there is no need to
determine number of the clusters in consensus clustering [28]].

In this work, we employ different clustering algorithms
and use their results to generate the ensemble clustering.
The first algorithm that is exploited is k-means algorithm,
which partitions the data points by minimizing their distances
from the centroids. The initialization parameters includes the
number of the clusters, i.e. the number of the centroids. Here,
the Euclidean distance is chosen as the distance measure.
The initialization of the centroids is done through k-means++
algorithm [29]. Since our goal is to find the correlation
between different grasp types, majority of the data points that
belongs to a grasp type should be in the same cluster. Hence,
we utilize the completeness score as a heuristic indicator to
choose the optimal parameters of the algorithms, e.g. number
of the clusters in k-means. The completeness score checks
whether data points of one grasp type fall into the same cluster
by comparing the clustering labels with the ground truth labels.
To measure this score, we apply k-means algorithm to data for
different number of clusters from 2 to 25 (the number of total
grasp types). We record two clustering results with the highest
completeness score.

Another clustering algorithm that is used to partition the
data is Gaussian Mixture Model (GMM) algorithm that uses
Expectation Maximization (EM) to find the representative
GMMs to explain data accurately. For this clustering, the same
as for k-means, the number of the clusters need to be deter-
mined a-priori. Similarly as before, the number of the mixture
models is selected based on maximizing completeness score.
The two clusterings which have the highest completeness score
are selected.

Next, we utilize Singular-Value Decomposition (SVD) [30]]
to reduce the dimension of the data and map it to a lower-
dimensional space. We choose the minimum number of the
components which can explain more than 85% of the data.
Accordingly, the data is transformed via SVD to the new space

and partitioned with k-means and GMM. As before, for each
algorithm, the two clusterings with the highest completeness
scores are selected. Furthermore, the data is transformed via
Random Tree Embedding method [31]], [32] to a binary high di-
mensional sparse feature space. Subsequently, the transformed
feature space is used to cluster the data. The hierarchical
clustering is used to cluster the data in the new space. In
this clustering method, each data points is considered as an
individual cluster, and at each iteration similar clusters are
merged. The merging method is complete which links two
clusters based on the maximum distance between the sample
points in those clusters. Again, the top two clusterings are
selected based on the completeness score. Fig. 5] shows the
completeness score with respect to number of clusters for this
method.

The ten resulting clusterings partition the data according
to different criteria, and in different spaces. Fig. [6] depicts
two of them. Due to physical limitations, we represent the
grasp types with their class numbers from Fig. [T] instead
of actual grasp figure. The consensus clustering, which re-
sults from the ensemble of them, can find the commonality
among these different partitions and represent the results with
higher confidence. To find the commonality among different
clusterings, we utilize graph/hyper-graph method which forms
the hyper-graph based on the clustering results and applies
a cut on the graph to get the ensemble clustering. The final
cut is selected based on the mutual information between the
clustering results and the consensus clustering [27]]. To find
the final cut, we employ three different algorithms: Clus-
ter based Similarity Partitioning Algorithm (CSPA), Hyper-
Graphs Partitioning Algorithm (HGPA), and Meta Clustering
Algorithm (MCLA) (refer to [33]] for more details). Among the
resulting consensus clusterings from these three algorithms,
the one which maximizes the normalized mutual information
is selected. We have utilized MATLAB implementation of
the cluster-ensemble algorithms [34]]. The computed mutual
information for CSPA, HGPA, and MCLA are 0.68, 0.67, 0.60
respectively, therefore we select the CSPA result as our final
consensus clustering.

VI. CLUSTERING RESULTS

The consensus clustering partitions data points into 9 dif-
ferent clusters while the original number of grasp types is 25.
This implies that several grasp types are grouped together in
the same cluster. In turn, we conclude that the data of those
grasp types exhibits similar patterns. Fig. [/| shows the results
of the consensus clustering. It is apparent that three main
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Fig. 7: The consensus clustering result.

categories of grasps can be identified within this taxonomy.
The first category only includes the power grasp types, the
second category only includes the precision grasp types, and
the last, mixed, category contains the power, precision, and
intermediate grasp types. Although the identified partitions are
completely data-driven, some common features such as the
opposition type, VF, and thumb position can be recognized
among the grasp types that belong to the same cluster.

The power grasps category itself consists of four different
clusters. The first cluster includes grasp types {1,3,11} (see
Fig.[I) which all have palm opposition and similar VF patterns.
Moreover, in all of them, thumb is abducted. In the next
cluster, grasp types {4,15,30} are classified together. They
share palm opposition, thumb adduction and similar VF. Grasp
types {26, 28} form another cluster and share pad opposition.
The last cluster contains grasp types {2,5} which have similar
opposition and VF.

The mixed category has the grasp types {17,29,32} as
one cluster and grasp types {24,31,33} as the second one.
In the former, although the grasp types belong to power
and intermediate grasps, visually they are very similar. The
only difference between them can be the grasped object,
or task context. In the latter, all three grasp types, power,
precision, and intermediate, can be seen. However, these grasp
types share pad opposition and a similar VF pattern. The last
category, precision grasps, includes three clusters: {6, 7,22},
{8,9}, and {13, 14,20, 27}. These are all precision grasps and
are similar to each other.

Comparing our results with [14]], which only considers the
dynamical hand motion for each grasp type, and [[15], which
only uses force distribution for different grasp types, some
common patterns can be recognized even though they use
different features for clustering. For example, in all three
cases, [[14], [15], and the present paper, grasp types {26, 28},
{29,32}, {24,33}, {6,7}, and {13,14,27} are clustered to-
gether.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied human grasp types that occur
during activities of daily living. We collected multi-modal
data for 25 different human grasp types that have been
identified in existing grasp taxonomies. The data includes
pressure measurements from 18 different active areas on the
hand, and finger joint angles. Our analysis is static and only
considers measurements at a single point in time once object
has been firmly grasped. Our work makes two important
contributions. First, we developed a new data-driven procedure
that uses Neural Networks to map pressure sensor data into

finger grasp forces. The method successfully models sensor
hysteresis and nonlinearities and significantly outperforms
the existing pressure sensor calibration methods. Second,
unsupervised learning was employed to cluster the collected
data and suggests a taxonomy in the force-flexion space. An
ensemble of clustering algorithms was used and the results
were subsequently combined to produce the final consensus
clustering, resulting in 9 identifiable classes. It was observed
that for each grasp type, the majority of the data points belong
to the same cluster. This implies that the grasp types proposed
in the literature share similar force and finger flexion patterns.
However, several clusters combine more than one grasp type
which suggests that they are perhaps not identifiable from
the data. We hypothesize that these grasp types are based on
our perception of the grasp intent which is informed by the
context and not the data alone. Our results are important for
Programming by Demonstration (PbD) of assistive robots that
help with ADLs. Grasping is a major part of these activities,
with finger force and finger flexion representing the natural
setting for PbD. Our clustering results suggest that 9 composite
grasp types may better represent what can be actually learned
from human data. Our future work includes adding visual
information to posture and force and investigate how this
additional modality changes the grasp taxonomy.
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