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ABSTRACT 

Recent advances in our understanding of RNA folding and functions have facilitated the use of 

regulatory RNAs such as synthetic antisense RNAs (asRNAs) to modulate gene expression. 

However, despite the simple and universal complementarity rule, predictable asRNA-mediated 

repression is still challenging due to the intrinsic complexity of native asRNA-mediated gene 

regulation. To address this issue, we present a multivariate model, based on the change in free 

energy of complex formation (ΔGCF) and percent mismatch of the target binding region, which 

can predict synthetic asRNA-mediated repression efficiency in diverse contexts. First, 69 asRNAs 

that bind to multiple target mRNAs were designed and tested to create the predictive model. 

Second, we showed that the same model is effective predicting repression of target genes in both 

plasmids and chromosomes. Third, using our model, we designed asRNAs that simultaneously 

modulated expression of a toxin and its antitoxin to demonstrate tunable control of cell growth. 

Fourth, we tested and validated the same model in two different biotechnologically-important 

organisms: Escherichia coli Nissle 1917 and Bacillus subtilis 168. Last, multiple parameters, 

including target locations, the presence of an Hfq binding site, GC contents, and gene expression 

levels, were revisited to define the conditions under which the multivariate model should be used 

for accurate prediction. Together, 434 different strain-asRNA combinations were tested, validating 

the predictive model in a variety of contexts, including multiple target genes and organisms. The 

result presented in this study is an important step towards achieving predictable tunability of 

asRNA-mediated repression.  
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 Control of gene expression can be achieved by using versatile and programmable RNA 

regulators1. For example, small guide RNAs (sgRNAs) of the Type II clustered regularly 

interspaced short palindromic repeat (CRISPR) system of Streptococcus pyogenes have been 

repurposed for synthetic gene regulation2, 3, small transcription activating RNAs (STARs) have 

been developed to activate transcription of target genes4, 5, and toehold switches have been 

constructed to regulate translation through toehold-mediated RNA strand displacement6, 7. As 

discussed in a recent review paper8, the synthetic biology community has also witnessed 

significant progress towards predictable gene expression control via RNA regulators. However, to 

potentially address many fundamental biological questions, the research community would need a 

generalizable model that enables quantitatively predictable gene regulation in diverse gene targets 

and organisms, as opposed to a single gene target or one strain only. 

The primary allure of RNA regulators are their relatively simple structures and interaction 

modes. Their folding and interactions with target DNA or RNA molecules often follow 

straightforward base-pairing rules and thermodynamics. This structural and behavioral simplicity 

has enabled the development of computational tools to design diverse RNA regulators. For 

example, the NUPACK software was developed to analyze RNA secondary structure for systems 

involving multiple interacting strands9; the CRISPR-ERA software was developed for automated 

design of sgRNAs for gene activation or repression in nine different model organisms2, 10; nucleic 

acid design algorithms were combined with a simple STAR design motif to construct large 

libraries of STARs5; and a web tool was developed to custom-design toehold switches11. 

Furthermore, a computational algorithm was used to design riboregulators by considering only the 

free energy of complex formation and the activation energy of complex formation12, a biophysical 

model was developed to predict the function of translation-regulating riboswitches13, and both a 
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mechanistic modeling and an RNA folding simulations were used to predict the behavior of 

aptazymes14. These tools and approaches could facilitate the rapid creation of a large library of 

high-performing and orthogonal RNA regulators.  

Efforts to rationally design synthetic antisense RNAs (asRNAs) have also been aided by 

algorithms and models that predict asRNA:mRNA interactions9, 15, 16. asRNAs are a well-studied 

class of RNA regulators that can modulate expression of target genes through asRNA:mRNA 

interaction8, 15-20. Notable models include the inTherAcc biophysical model that describes 

asRNA:RNA hybridization by incorporating a series of thermodynamic terms15, 20, and a 

multivariate model that shows the hybridization energy of both the entire RNA duplex and the 

seed region as key determinants of asRNA specificity in the E. coli strain TOP1016. These models 

can assist in the design of asRNAs by considering the thermodynamics of RNA-RNA interactions. 

Despite these advances in computational modeling of asRNA:mRNA interactions, a 

comprehensive model that accurately predicts the asRNA-mediated repression levels in a variety 

of contexts is yet to be developed. 

 The hybridization of an asRNA to its mRNA target, typically binding to the 5’ untranslated 

region (UTR) or possibly to the coding region of the target mRNA, results in efficient gene 

silencing via mRNA degradation or prevention of ribosomal access to the mRNA21. Furthermore, 

the regulatory impact of an asRNA can be improved by introducing an Hfq binding site on the 3’-

end of the target binding region (TBR) of the asRNA, in which the Hfq binding site provides a 

scaffold for recruiting the Hfq protein18, 22. The Hfq protein is an RNA chaperone protein that is 

proposed to enhance the stability of asRNA by preventing its degradation and to facilitate the 

asRNA:mRNA interaction23-25.  
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Despite the simple universal complementarity rules for asRNA:mRNA hybridization, 

predictably tunable asRNA-mediated repression is still challenging. In our previous work, we 

identified three quantitative design parameters for reliable asRNA-mediated repression: 

thermodynamics, mismatch, and length22. However, a predictive model for asRNA design that can 

be expanded to multiple target genes and organisms has yet to be developed. The aim of this study 

is to develop a data-driven model for the predictable tunability of asRNA-mediated repression by 

considering these parameters. First, the repression efficiencies of asRNAs were evaluated in E. 

coli DH10B26. TBR sequences were altered to modulate the binding affinity between the asRNA 

and target mRNA. Second, we developed a multivariate model and validated it in different genetic 

contexts (e.g., target genes in the genome or plasmids). Third, we expanded the predictive model 

to two different organisms: E. coli Nissle 1917 (EcN) and Bacillus subtilis 168 (B. subtilis 168). 

EcN is a probiotic strain that has been clinically characterized over the past decades27, and B. 

subtilis 168 is a well characterized Gram-positive bacterium notable for its protein production and 

secretion abilities28. Last, multiple parameters, including target locations, the presence of an Hfq 

binding site, GC contents, and gene expression levels, were revisited to define the conditions under 

which the multivariate model should be used for accurate prediction. Together, 271 unique asRNA 

plasmids were built, and 434 different strain-asRNA combinations were tested, validating the 

predictability of the simple multivariate model. This study is an important step towards achieving 

predictable tunability of asRNA-mediated repression by providing the research community with 

the simple and predictive model. 

 

RESULTS 

Development of a multivariate model in E. coli DH10B 
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A two-plasmid system was built to understand and characterize asRNA-mediated 

repression in E. coli DH10B. The first plasmid (p15A origin, medium copy number) constitutively 

expresses red fluorescent protein (RFP) or green fluorescent protein (GFP) as a reporter. The 

second plasmid (ColE1 origin, high copy number) transcribes asRNA using the aTc-inducible PTet 

promoter. A high copy number was used to ensure that asRNA levels are in excess of target mRNA 

levels (i.e., rfp or gfpmut3 mRNAs). These asRNAs consist of two parts: a target binding region 

(TBR) and an Hfq binding site. The TBR contains a sequence that is complementary to the target 

gene, and an Hfq binding site provides a scaffold for native Hfq protein recruitment (Figure 1A). 

In this study, the engineered MicF binding site (MicF M7.4)29 was used because it performed well 

with low off-target effect in our previous studies22, 30. The transcription of asRNAs was terminated 

by both bacteriophage lambda T0 and rrnB T1 terminators to ensure complete transcription 

termination (see Supplementary Table 2 for the sequences).  

We first determined the optimum inducer concentration for asRNA expression to achieve 

the highest repression efficiency. It was found that 250 ng/mL aTc resulted in the highest 

repression efficiency for the two tested asRNAs (69.5% for G4 and 77.2% for G18; Supplementary 

Figure S1A). Unless stated otherwise, cells were induced with 250 ng/mL aTc for subsequent 

experiments. Next, the asRNA-mediated gene repression was characterized by designing 24 

asRNAs that target the 5’ untranslated region (UTR) and seven coding regions of rfp mRNA as 

well as 30 asRNAs that target the 5’ UTR and nine coding regions of gfpmut3 mRNA. For each 

target region, three asRNAs with varied TBR length (16, 28, and 40 nucleotides with 0% mismatch) 

were tested, and the repression efficiencies were measured. Overall, increase in the TBR length 

generally increased repression efficiency (Supplementary Figures S1B and S1C). Different regions 

showed different repression efficiencies, demonstrating an apparent target location effect. All 
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asRNAs targeting the 5’ UTR and the start codon region (referred to as the translation initiation 

region; TIR; -35 to +40 with the ATG start codon’s A as +1) had high repression efficiency (an 

average of 64.4% for rfp mRNA and 62.4% for gfp mRNA; Supplementary Figures S1B and S1C) 

compared to asRNAs targeting the other coding regions (an average of 29.7% for rfp mRNA and 

30.2% for gfp mRNA; Supplementary Figures S1B and S1C). This result is consistent with 

previous findings that asRNAs are most effective when they target the TIR18, 31, 32. Yet, many 

asRNAs targeting the other coding regions had high repression efficiency (in the case of TBR 

length of 28 and 40 nucleotides, but not 16 nucleotides; Supplementary Figures S1B and S1C). 

The difference in the rates of translation initiation and elongation, due to asRNAs binding to coding 

regions, could result in ribosome queuing and inhibition of translation33, 34. Both rfp and gfpmut3 

mRNAs contain an RBS sequence that would support a high translation initiation rate (18142 au 

for rfp and 27867 au for gfpmut3 on the RBS Calculator v2.1 scale)35-37. On the other hand, 

ribosomes might be unable to efficiently move past the asRNA:mRNA duplex in the coding region 

because the mRNA must be in a single-stranded form to be translated38. While the N-terminal 

coding region has been systemically investigated regarding translation inhibition by using 

systematically designed RNA hairpins37 or small noncoding RNA39, we found that the other coding 

regions showed an inconsistent repression pattern and a target location effect when targeted by 

asRNAs (Supplementary Figures S1 and S2; discussed later in detail). To eliminate the target 

location effect on repression and select a region for reliable repression, the target region was 

restricted to the TIR of target mRNAs for the development of the model (Figure 1A). 

Previously, we identified that thermodynamics, mismatch, and double-stranded RNA 

length are important design parameters for reliable asRNA-mediated repression22. Further analysis 

of previous and current data revealed that thermodynamics (change in free energy of complex 
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formation (ΔGCF)) and double-stranded RNA length had a high variance inflation factor 

(VIF=22.63), indicating the presence of strong multicollinearity. To remove the redundant effect, 

the double-stranded RNA length parameter was omitted from further analysis. Both ΔGCF and 

percent mismatch had a low variance inflation factor (VIF=1.76), indicating the absence of 

multicollinearity. In other words, ΔGCF and percent mismatch are not correlated in a regression 

model. Therefore, these two predictors were used for multiple linear regression analysis to create 

a model for predicting asRNA repression efficiency. ΔGCF is the change in ΔG when the TBR 

binds to the mRNA and is calculated using the equation ΔGasRNA:mRNA−ΔGasRNA−ΔGmRNA, with 

free energy changes predicted by NUPACK9 (see Methods). Percent mismatch is the total number 

of mismatch as a percentage of the total TBR length. Mismatches were introduced in a TBR 

sequence through base substitutions (A to T; G to C) as opposed to insertions or deletions. 

A total of 69 asRNAs that target either rfp or gfpmut3 mRNA were designed and tested 

(Figure 1B). TBR sequences were altered by varying ΔGCF and percent mismatch to modulate the 

repression efficiencies. ΔGCF was varied by increasing or decreasing the TBR length (8 to 40 

nucleotides), and percent mismatch was varied by substituting 0 to 9 nucleotides in the TBR 

sequence. A number of studies have demonstrated the seed region or the first 7 nucleotides of 

small RNA is critical for gene silencing2, 40-43. Therefore, nucleotides were randomly substituted 

after the seed region (i.e., starting on the eighth nucleotide from the 5’ end of TBR). From multiple 

linear regression analysis using 69 experimental data points (each in triplicate) and the SPSS 

Statistics package, a multivariate model was found:  

F(X1, X2) = [0.3848−0.0068X1−0.0125X2 + ε] (R2=0.685)    (1) 

where F is the predicted repression efficiency, X1 is ΔGCF (in kcal/mol), X2 is percent mismatch 

(in %), and ε is the standard error (ε=0.123; Figure 1B). All coefficients had p-values less than 
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0.001. Next, 20 additional asRNAs that target either rfp or gfpmut3 mRNA were designed and 

tested to validate the predictive model. The model was to be considered valid if R2 is greater than 

0.5 with respect to the y=x line when measured repression efficiencies are compared to their 

predicted values44. The measured and predicted repression efficiencies were in agreement, 

validating the model (R2=0.749; Figure 1C).  

 

Validation of the model using chromosomal gene targets 

An advantage of synthetic asRNA is its ability to regulate chromosomal gene targets 

without requiring chromosomal modification. Several studies have already utilized asRNAs to 

regulate genes expressed from the chromosome of the host organisms18, 45-47. Once the predictive 

model had been developed, we tested and validated the model in different genetic contexts (e.g., 

target genes in the genome). A cassette consisting of the BBa_J23105 constitutive promoter and 

rfp or a cassette consisting of the BBa_J23110 constitutive promoter and gfpmut3 was 

independently integrated into the E. coli DH10B genome (bglA::rfp and bglA::gfpmut3, 

respectively; see Supplementary Table 2 for sequences) by using λ Red recombinase (see 

Supplementary Table 3 for the primers used)48. The resulting E. coli strain contains a functional 

copy of either rfp or gfpmut3 in the chromosome, and RFP or GFP is constitutively expressed. 

These strains were transformed with the 69 asRNAs that had been tested to develop the 

multivariate model. Each of the asRNAs was expressed by the PTet promoter, and the fluorescence 

levels of induced and uninduced cells were compared to calculate measured repression. The 

measured and predicted repression efficiencies were generally in agreement (R2=0.621 with 

respect to the y=x line; Figure 2A). Importantly, this data demonstrates that our model accurately 
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predicts asRNA-mediated repression of chromosomally-integrated genes as well as plasmid-

encoded genes.  

In addition to targeting chromosomally-integrated reporter genes, asRNAs were designed 

to target TIRs of native chromosomal genes. The first set of asRNAs were designed to repress lysA, 

which encodes for diaminopimelate (DAP) decarboxylase. DAP decarboxylase is the last enzyme 

of the L-lysine biosynthesis pathway, catalyzing decarboxylation of meso-DAP into L-lysine. L-

lysine is one of the essential amino acids required for normal bacterial growth49. Each asRNA was 

expressed, and the absorbance of induced and uninduced cells were compared to calculate 

repression efficiency (see Methods). To determine repression efficiency from growth data, we first 

note that the L-lysine generation rate is linearly proportional to the enzyme concentration. This 

relationship was supported by in vitro and in vivo experiments in previous reports. For example, a 

proportionality relationship between the rate of decarboxylation and the amount of DAP 

decarboxylase was reported from an in vitro experiment50, and a close correlation between 

increases in DAP decarboxylase specific activity and increases in intracellular lysine concentration 

was reported from an in vivo experiment51. Additionally, a linear relationship between lysine 

concentration and growth was reported using an E. coli lysine auxotroph52. Overall, a linear 

relationship among DAP decarboxylase concentration, L-lysine concentration, and growth 

allowed us to estimate repression efficiency of lysA using growth data obtained when cells were 

grown in minimal media lacking L-lysine. The measured and predicted repression efficiencies 

were generally in agreement, further validating the applicability of the model (R2=0.502 with 

respect to the y=x line; Figure 2B). 

The second set of asRNAs was designed to repress uidA, which encodes for β-

glucuronidase. This enzyme hydrolyzes X-gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic 
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acid; colorless) to release glucuronic acid (colorless) and 4-chloro-bromo-indigo (4-CBI; a blue 

precipitate; Supplementary Figure S3). The relative expression level of β-glucuronidase can be 

estimated by measuring the absorbance of 4-CBI at 615 nm (i.e., the 4-CBI generation rate is 

proportional to the enzyme concentration; Supplementary Figure S3C). Thus, the measured 

absorbance can be used to determine repression efficiency. Each of the asRNAs was expressed, 

and the changes in absorbance at 615 nm of induced and uninduced cells were compared to 

calculate repression. Again, the measured and predicted repression efficiencies were generally in 

agreement (R2=0.684 with respect to the y=x line; Figure 2C). The DAP-decarboxylase and β-

glucuronidase repression results validate that the model that was generated using fluorescent 

protein repression data can also predict native gene repression. 

 

Application of the model to control a toxin-antitoxin system 

mazEF is a stress-induced toxin-antitoxin module responsible for programmed cell death 

in E. coli. MazF is a toxic endoribonuclease that cleaves single-stranded mRNAs at ACA 

sequences; MazE is an antitoxin that counteracts the lethal effect of MazF53. Thus, inhibition of 

MazE expression increases the intracellular MazF concentration, which leads to cell death54. The 

mazEF operon consists of two overlapping genes, mazE and mazF (i.e., the stop codon of mazE 

mRNA overlaps with the start codon of mazF; Figure 3A). A set of asRNAs was designed to bind 

to the TIR of mazE mRNA. All asRNAs were designed to bind to the start codon region (+1 to 

+40 with the ATG start codon’s A as +1) or the predicted RBS region (-28 to -1). Any ACA 

sequence was excluded in the TBR of asRNA to avoid cleavage by MazF. For ten mazE mRNA-

targeting asRNAs tested, a correlation analysis was performed, and a strong negative correlation 

between the predicted repression efficiency and absorbance at 600 nm was observed (R2=0.791, 
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p<0.01; Figure 3B). In other words, cells expressing asRNAs with high predicted repression 

efficiencies of mazE had a lower cell density than cells expressing asRNAs with low predicted 

repression efficiencies of mazE.  

After testing mazE-targeting asRNAs, the ME3 and M1 asRNAs that resulted in the largest 

growth defect were selected and expressed constitutively using the BBa_J23119 promoter (see 

Supplementary Table 2 for the sequence). Each mazE-targeting asRNA was co-expressed with a 

mazF-targeting asRNA partner to tunably recover growth. The ME3 asRNA binds to the start 

codon region, and the M1 asRNA binds to the predicted RBS region of the mazE mRNA (Figure 

3C). The RBS calculator was used to predict the RBS region for both mazE and mazF35, 36. The 

second set of asRNAs that binds to the start codon region or the predicted RBS region of the mazF 

mRNA were designed and simultaneously expressed using the aTc-inducible PTet promoter, with 

the constitutively expressed mazE-targeting asRNA (ME3 or M1) (Figure 3C). The co-expression 

of asRNAs resulted in an increase in cell density compared to cells that express the mazE-targeting 

asRNA only (i.e., ME3 or M1 only; Figure 3C). A significant increase in absorbance was 

determined by two-sample t-test (t = 50.56, p < 0.01 for MF1B2 and the “ME3 only” control; t = 

6.21, p < 0.05 for M2B2 and the “M1 only” control). Furthermore, cells expressing mazF-targeting 

asRNAs with higher predicted repression efficiencies had higher cell densities compared to cells 

expressing mazF-targeting asRNAs with lower predicted repression efficiencies (Figure 3C). 

These results show that asRNAs can be designed using the predictive model to modulate MazE 

and MazF expression, and thus to achieve tunable control of cell growth. 

 

Expanding the model to different organisms 
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Experiments were designed to examine the behavior of asRNA in two different organisms. 

The first organism is E. coli Nissle 1917 (EcN), a probiotic strain which has been thoroughly 

analyzed by means of microbiological and molecular genetic methods55, 56. The genome sequence 

is available57, and there have been studies to engineer EcN for therapeutic purposes58, 59. 

Importantly, EcN has an annotated hfq gene with an amino acid sequence identical to that of E. 

coli DH10B60. However, use of synthetic asRNA in EcN has yet to be explored. To this end, we 

first determined the aTc concentration (250 ng/mL) that led to the highest repression efficiency 

(65.5% for G46 and 71.0% for G47; Supplementary Figure S4A). Next, we tested 20 asRNAs that 

target either the rfp or gfpmut3 mRNAs (plasmid-encoded genes) to validate the predictive model 

in EcN. Interestingly, the measured and predicted repression efficiencies were in agreement 

(R2=0.734 with respect to the y=x line; Figure 4A). Lastly, we validated the model in a different 

genetic context by testing six additional asRNAs that target the uidA mRNA in EcN (native 

chromosomal gene). Again, the measured and predicted repression efficiencies were in agreement 

(R2=0.638 with respect to the y=x line; Figure 4B). These results show that the predictive model 

developed in E. coli DH10B can expand to EcN. 

Intrigued by the predictability of the model, we decided to expand it to another species. B. 

subtilis 168 is a well-characterized, Gram-positive bacterium, which has been widely utilized in 

biotechnology for protein production61. Although there have been a number of native asRNAs 

identified in B. subtilis, synthetic asRNA has not been used extensively as a regulator in this 

organism62. We placed asRNA under the control of the IPTG-inducible Pspac promoter and tested 

a range of IPTG concentrations to achieve the highest repression efficiency63. It was found that 1 

mM IPTG resulted in the highest repression efficiency (53.7% for sfG1 and 71.8% for sfG2; 

Supplementary Figure S4B). We also investigated the effects of an Hfq binding site on repression. 
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The B. subtilis Hfq protein is a homolog of E.coli Hfq64. We extracted potential Hfq binding sites 

from the following three small RNAs: the SR4 antitoxin that pairs with the BsrG toxin mRNA; the 

FsrA small RNA, involved in the iron-sparing response; and the CsfG small RNA, highly 

conserved in Bacillaceae64. The Hfq binding sequences predicted from these RNAs were fused to 

the sfG2 TBR to determine whether they can be used as modular B. subtilis-specific Hfq binding 

sites (see Supplementary Table 2 for the sequences). MicC, Spot42, MicF, and MicF M7.4 (E. coli 

Hfq binding sites) were also tested for comparison22. The fusion did not affect the original 

secondary RNA structure of the sfG2 TBR, as predicted by NUPACK9. The pDG148 plasmid (~75 

copies/cell) was used to ensure that asRNA levels are in excess of target mRNA levels65. All 

asRNAs were tested in B. subtilis SG13, which is a derivative of B. subtilis 168 carrying a 

functional copy of the superfolder green fluorescent protein (sfgfp) gene in the chromosome66. The 

inclusion of an Hfq binding site decreased the repression efficiency by 24.8% on average, 

compared to the absence of an Hfq binding site (Supplementary Figure S5). The decrease in the 

repression efficiency might be due to a functional limitation of the Hfq protein in B. subtilis. 

Though B. subtilis Hfq protein is a homolog of E. coli Hfq, it contains 29 fewer amino acids at its 

C-terminus, and this region has been proposed to be critical for Hfq:RNA interaction in bacteria67. 

As the sfG2 asRNA without an Hfq binding site had the highest repression efficiency, subsequently 

designed asRNAs contained no Hfq binding site. A total of 14 asRNAs that target the sfgfp mRNA 

were tested to validate the predictive model in B. subtilis SG13. To our surprise, the measured and 

predicted repression efficiencies were in agreement (R2=0.788 with respect to the y=x line; Figure 

4C). Next, we validated the model in a different genetic context by testing seven additional 

asRNAs that target the lysA mRNA (native chromosomal gene). Again, the measured and predicted 

repression efficiencies were in agreement (R2=0.704 with respect to the y=x line; Figure 4D). 
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These results demonstrate that the model developed in E. coli DH10B can be applied to predict 

synthetic asRNA-mediated gene repression in B. subtilis. 

 

DISCUSSION 

In our previous study, we had identified ΔGCF, percent mismatch, and double-stranded 

RNA length as three design parameters for reliable asRNA-mediated repression by investigating 

and selecting from six categories of parameters: target location, mismatch, length, 

thermodynamics, ribosome interaction, and YUNR motif (total 13 individual parameters including 

asRNA abundance and Hfq binding site)22. In the current work, we created and validated a simple 

two-parameter model (Figure 1B) with an assumption that ΔGCF and percent mismatch are two 

independent variables that are linearly related to the repression efficiency (Supplementary Figure 

S2). The two variables had a low variance inflation factor (VIF=1.76), which is lower than 10, 

indicating that they can be simultaneously used as independent variables. Multiple linear 

regression analysis had been previously used to create a predictive model for asRNA-mediated 

repression in E. coli TOP10, although the two predictors (duplex and seed hybridization free 

energy) showed nonlinear relationship when each was separately plotted against percent 

repression16. Similarly, our two-parameter model was built using multiple linear regression 

analysis within the tested parameter ranges. In contrast, our results demonstrate that ΔGCF and 

percent mismatch are reliable parameters for asRNA design that can predict asRNA-mediated 

repression of multiple target genes in different organisms (Figures 1-5). Because our model is a 

data-driven model, it should be used only within the tested parameter ranges for reliable prediction: 

ΔGCF = -59.88 to -6.58 kcal/mol and percent mismatch = 0 to 32.1%. Additionally, this model 

should be used only for TIR-targeting asRNAs as discussed below.  
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It is worth noting that additional parameters (other than 13 parameters previously 

investigated) may affect asRNA-mediated repression. First, the target accessibility can be an 

important parameter for small regulatory RNAs15, 68-71. Notably, Vazquez-Anderson et al. created 

a biophysical model by deriving the accessibility-based thermodynamic model to describe asRNA-

RNA hybridization in bacteria15. This model considers the overall change of Gibbs free energy 

(ΔGoverall) as a predictor of asRNA binding. In this model, free energies of the local unfolding of 

the target region (ΔGTf; Tf denotes the target RNA folding) were considered when calculating the 

ΔGoverall. Similarly, we considered ΔGCF to be a combination of the accessibility to the target region 

(ΔGmRNA), the penalty for breaking the structure of the asRNA (ΔGasRNA), and the thermodynamic 

driving force for intermolecular base-pairing (ΔGasRNA:mRNA). Thus, our model accounts for the 

target accessibility. Using a cell-free assay, Shao et al. found that structural accessibility 

(ΔGdisruption, which is conceptually same as ΔGmRNA) was an important predictor for antisense 

oligos’ activity71. When we used a fluorescence reporter in bacterial cells, however, there was no 

positive correlation between ΔGmRNA and measured repression efficiency (R2=0.134; 

Supplementary Figure S6), confirming that the combined thermodynamic parameter (ΔGCF) is a 

better predictor for asRNA-mediated repression in bacterial cells. 

Second, mRNA levels or translation initiation rates might affect repression efficiency 

because asRNAs compete with the ribosome for binding to mRNA. To investigate this possibility, 

we tested asRNAs while varying the gfpmut3 mRNA level using the 3OC12-inducible PLas 

promoter. We found that our model accurately predicted the asRNA-mediated repression levels 

regardless of the tested mRNA levels (Supplementary Figure S7). We also found that our model 

was generally accurate regardless of the tested translation initiation rates of the target mRNA (i.e. 

when tested using mRNAs with different RBS sequences; Supplementary Figure S8). As 
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demonstrated in our previous work22, asRNA abundance would not be a determining factor in our 

model because the current experiments were also designed such that asRNA transcripts (expressed 

maximally from a higher copy plasmid) would be in excess of the target mRNAs (expressed from 

a lower copy plasmid or the genome). However, insufficient asRNA transcripts led to lower 

repression (Supplementary Figures S1A and S4), and for accurate prediction, our model should be 

used in a regime where asRNA transcripts would be in excess of the target mRNAs. 

Third, we investigated whether the GC-content of the paired asRNA:mRNA sequence 

affected the predictability. Using 40 asRNAs (with fixed TBR length of 28 nucleotides with 0 – 

32.1 % mismatch) that target either rfp or gfpmut3 mRNA, we found that the two-parameter model 

accurately predicted the measured repression efficiency over the tested GC-content range (25.9 – 

52.4% when only paired nucleotides are considered; Supplementary Figure S9). This is consistent 

with the previous report that GC content is a poor predictor of asRNA affinity72. 

 Fourth, as demonstrated in our previous study22, asRNAs lacking an Hfq binding site 

sequence showed significantly lower measured repression efficiency in E. coli than asRNAs 

containing MicF M7.4. To quantify the extent of this reduction, we performed multiple linear 

regression analysis using 23 experimental data points obtained from asRNAs that do not contain 

an Hfq binding site sequence (Supplementary Figure S10A). For this case, a different multivariate 

model was found: 

F(X1, X2) = [0.1374 – 0.0071X1 – 0.0047X2 + ε] (R2=0.665)    (2) 

where F is the predicted repression efficiency, X1 is ΔGCF (in kcal/mol), X2 is percent mismatch 

(in %), and ε is the standard error (ε=0.092). All coefficients had p-values less than 0.05. From 

Equations 1 and 2, we can obtain ΔF to quantify the extent of repression efficiency reduction. As 
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expected, when Equation 1 was applied to the same 23 asRNAs lacking an Hfq binding site 

sequence, we obtained a low R2 value (R2 = 0.025; Supplementary Figure S10B). Thus, Equation 

1 should be used only for asRNAs containing MicF M7.4 in E. coli, while it should be used only 

for asRNAs lacking an Hfq binding site sequence in B. subtilis SG13. Investigating the effect of 

diverse Hfq binding site sequences and Hfq proteins on the model prediction in different organisms 

would be a great future study. 

For reliable forward engineering, a model should accurately predict experimental outcomes. 

We analyzed the repression efficiencies of 168 asRNAs (including asRNAs tested in Figures 1C, 

2, and 4) and found that those of 117 asRNAs (70%) are within a range of one standard error (1ε), 

those of 159 asRNAs (95%) are within a range of two standard error (2ε), and those of all asRNAs 

(100%) are within a range of three standard error (3ε) of the predicted repression efficiencies 

(Figure 5). To show whether our model can be applied to non-TIR targeting asRNAs, we analyzed 

the repression efficiency of 82 non-TIR targeting asRNAs. As expected, the measured repression 

efficiencies of only 20 asRNAs (24%) were within a range of one standard error (1ε), those of 44 

asRNAs (54%) were within a range of two standard error (2ε), and those of 60 asRNAs (73%) 

were within a range of three standard error (3ε) of the predicted repression efficiencies 

(Supplementary Figure S11). In other words, our model cannot be applied to non-TIR targeting 

asRNAs.  

To show whether we can create a model for non-TIR targeting asRNAs, we performed a 

multiple linear regression analysis using 56 experimental data points (only asRNAs targeting the 

non-TIR of gfpmut3 mRNA). For this case, another multivariate model was found: 

F(X1, X2) = [0.0435 – 0.0128X1 – 0.0066X2 + ε] (R2=0.702)    (3) 
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where F is the predicted repression efficiency, X1 is ΔGCF (in kcal/mol), X2 is percent mismatch 

(in %), and ε is the standard error (ε=0.157). All coefficients had p-values less than 0.001 

(Supplementary Figure S12A). Next, we calculated predicted repression efficiencies of 18 asRNAs 

targeting the non-TIR of rfp mRNA using the model that was created with asRNAs targeting the 

non-TIR of gfpmut3 mRNA (Equation 3). As expected, we observed a weak correlation between 

the measured and predicted repression efficiencies (R2 = 0.187; Supplementary Figure S12B). 

Thus, Equation 3 should be used only for asRNAs targeting the non-TIR of gfpmut3. In other 

words, the model for non-TIR targeting asRNAs is gene-specific.  

In bacteria, small noncoding RNAs generally bind to mRNAs in the 5’ UTR to prevent 

translation initiation73. Bouvier et al. proposed the “five codon window” hypothesis that small 

noncoding RNAs can also inhibit 30S ribosomal subunit:mRNA complex formation by base-

pairing with nucleotides within the first five codons39. Similarly, Espah Borujeni et al. determined 

that the ribosomal footprint, with which mRNA hairpins overlap and cause inhibition of translation 

initiation, extends 13 nucleotides into the coding region37. At the downstream positions past the 

fifth codon, small noncoding RNAs would not inhibit translational initiation, but endonucleolytic 

mRNA destabilization, facilitated by their binding to the coding region, could be an alternative 

gene-repression mechanism73. In our current study, we designed and tested synthetic asRNAs that 

target the mRNA coding sequence at diverse positions (Supplementary Figures S1 and S2). 

Although elongating 70S ribosomes have a strong RNA helicase activity, which can disrupt a 

perfect 27 base-pair helix38, we found that asRNA-mediated repression could be achieved by 

asRNA:mRNA base pairing at most of the coding regions tested in this work. Interestingly, 

asRNAs with TBR length of 28 and 40 nucleotides (with 0% mismatch) repressed gene expression 

quite well in coding regions of mRNAs, while asRNAs with TBR length of 16 nucleotides (with 
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0% mismatch) had lower repression efficiencies compared to those targeting TIR (Supplementary 

Figure S1). Strong asRNA:mRNA binding at the coding region, which could facilitate74 or could 

be assisted by75 Hfq binding to mRNA, may induce ribosome stalling or RNA cleavage73, 76, 

leading to gene repression. However, we found that it is difficult to predict repression efficiencies 

of non-TIR targeting asRNAs in multiple contexts (Supplementary Figure S12). When the non-

TIR is targeted, asRNA-mediated repression might be affected by many factors other than ΔGCF 

and percent mismatch. For example, a lower upstream elongation rate due to rare codons would 

permit asRNA binding more likely at the nearby downstream locations, leading to higher 

repression efficiencies at these regions, compared to the upstream regions occupied by elongating 

ribosomes. Because mRNA stability may play a bigger role in repression by non-TIR targeting 

asRNAs, recognition sites for diverse RNases should be collectively considered. Identifying such 

factors would be a great future study that would require systematically designed mRNAs, along 

with corresponding asRNAs that target different coding regions.  

 

CONCLUSION 

In the present study, we first created a data-driven model using two independent variables, 

ΔGCF and percent mismatch, to predict asRNA-mediated repression levels in E. coli DH10B 

(Figure 1B). Next, we validated that the model can predict repression efficiencies of asRNAs 

targeting genes in the genome (Figure 2) as well as plasmid-encoded genes (Figure 1C). In addition, 

we designed asRNAs using the predictive model to effectively control the cell density by 

simultaneously modulating both MazE and MazF expression (Figure 3). Furthermore, we tested 

the predictive model in EcN and B. subtilis, thus showing its applicability in multiple organisms 

(Figure 4). Lastly, the validity of the multivariate model was challenged to define the conditions 



21 
 

under which it should be used for accurate prediction. We found that the model (Equation 1) should 

be used only for TIR-targeting asRNAs (Supplementary Figure S11) that contain MicF M7.4 in E. 

coli (Supplementary Figure S10) and no Hfq binding site in B. subtilis SG13 (Figures 4C-4D and 

Supplementary Figure S5), while other parameters, including target gene expression levels 

(Figures S7 and S8) and GC-contents of the paired asRNA:mRNA sequence (Supplementary 

Figure S9), did not affect the model predictability within the tested parameter range. Together, this 

work provides the research community with the simple, quantitative model for prediction of 

asRNA-mediated repression levels that was validated in diverse contexts, including multiple target 

genes and organisms (Figure 5). This model, along with our approach to create and validate a 

predictive model for synthetic asRNAs, will contribute to future forward-engineering efforts via 

predictably tunable RNA regulators. 

 

METHODS 

Strains and culture media 

E. coli DH10B was used for developing and validating the predictive model. E. coli Nissle 

1917 (EcN; DSM 6601 from Leibniz Institute DSMZ) and Bacillus subtilis SG13 (B. subtilis SG13; 

Bacillus Genetic Stock Center)66 were used to confirm the applicability of the predictive model in 

different bacteria. B. subtilis SG13 contains a functional copy of superfolder green fluorescent 

protein (sfgfp) gene in the chromosome, and sfGFP is constitutively expressed by the Pveg promoter 

(see Supplementary Table 2 for the sequences). All plasmid constructions were done in E. coli 

DH10B. E. coli DH10B, EcN, and B. subtilis SG13 were grown in LB media (10 g/L tryptone, 10 

g/L NaCl, and 5 g/L yeast extract) supplemented with the appropriate antibiotics: ampicillin (100 
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µg/mL), kanamycin (20 µg/mL), chloramphenicol (34 µg/mL), and spectinomycin (100 µg/mL). 

Minimal M9 medium (6.8 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, and 0.5 g/L NaCl) with 

0.4% glucose and 0.8 mM L-leucine was used for the E. coli DH10B DAP decarboxylase 

repression experiment and toxin-antitoxin repression experiment. Minimal M9 medium with 0.5% 

glucose and 0.3% malate was used for the B. subtilis SG13 DAP decarboxylase repression 

experiment. Inducers were used at the following concentrations: aTc (anhydrotetracycline, 0-250 

ng/mL), IPTG (isopropyl -D-1-thiogalactopyranoside, 0-1 mM), and 3OC12 (N-3-

oxododecanoyl-L-homoserine lactone, 0-1000 nM). All chemical reagents and inducers used in 

this study are from Sigma-Aldrich (St. Louis, MO, USA).  

 

asRNA design and plasmid construction 

TBR sequences were designed to bind to the TIR of the target mRNA sequence unless 

otherwise indicated. ΔGCF was varied by increasing or decreasing the TBR length (8 to 40 

nucleotides; -59.88 to -6.58 kcal/mol kcal/mol). ΔGCF was calculated by using the equation 

ΔGasRNA:mRNA−ΔGasRNA−ΔGmRNA, and the change in free energy is predicted by NUPACK9. The 

change in free energy of asRNA-mRNA complex was estimated by entering the entire asRNA 

sequence (e.g. TBR, Hfq binding site, and terminator) and the target mRNA sequence (only the 

region that was specifically targeted plus one extra nucleotide at the 3’-end to consider stacking 

contributions of neighboring base pairs15), setting the nucleic acid type to RNA, and predicting the 

complex structure and its ΔG. This ΔG value was recorded as ΔGasRNA:mRNA. Instead of the entire 

mRNA sequence, only the target mRNA region was considered with the assumption of local 

folding due to the coupling of transcription and translation in bacteria71. Likewise, ΔGasRNA and 

ΔGmRNA were estimated by entering the entire asRNA sequence and the target mRNA sequence, 
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respectively. Mismatches were introduced in a TBR sequence through base substitutions (A to T; 

G to C) and percent mismatch was varied by randomly substituting 0 to 9 nucleotides in the TBR 

sequence (0 to 32.1% mismatch) starting on the eighth nucleotide from the 5’ end of TBR. Percent 

mismatch is the total number of mismatch as a percentage of the total TBR length. The total 

number of mismatched nucleotides was recorded by counting the total number of unpaired 

nucleotides from the predicted structure, and the length of the TBR was recorded by counting the 

number of nucleotides in the TBR.  

Each TBR sequence was placed under the control of the PTet (for E. coli) or Pspac promoter 

(for B. subtilis SG13) via either blunt end ligation as described previously30 or Gibson assembly77. 

A terminator was included downstream of the Hfq binding site (lambda T0 and rrnB T1 terminators 

for E. coli DH10B and EcN; t1t2t0 terminator for B. subtilis SG13). Hfq binding sites were inserted 

adjacent to the TBR sequence. For Figure 3C, plasmids co-expressing two asRNAs were 

constructed via the Golden Gate assembly method using AarI Type IIS restriction enzymes 

(Thermo Fisher Scientific, St. Peters, MO)78. For Figures 4C and 4D, asRNAs were cloned into B. 

subtilis-E. coli shuttle vector pDG14863. BBa_J23105 and BBa_J23110 constitutive promoters 

expressing rfp and gfpmut3, respectively, were from the Anderson promoter collection 

(http://parts.igem.org/Promoters/Catalog/Anderson; Supplementary Table 2). All plasmid 

sequences were verified by DNA sequencing (GENEWIZ, South Plainfield, NJ). All of the 

oligonucleotides were purchased from Integrated DNA Technologies (IDT, Coralville, IA). All 

DNA amplicons were purified with a DNA Clean and Concentrator Kit or a Zymoclean DNA Gel 

Purification Kit (Zymo Research, Irvine, CA). All plasmid minipreps were performed with a 

Zyppy Plasmid Miniprep Kit (Zymo Research, Irvine, CA). Information of all constructed 

http://parts.igem.org/Promoters/Catalog/Anderson
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plasmids and sequences of genetic parts (i.e., genes, promoters, Hfq binding sites, terminators, and 

TBRs) are summarized in Supplementary Tables 1 and 2, respectively. 

 

Chromosomal RFP or GFPmut3 reporter strain construction 

Integration of genetic parts into the E. coli DH10B genome was done according to the 

reported recombineering strategy with some modification as described previously30, 48. A cassette 

consisting of a constitutive promoter (BBa_J23105 for rfp; BBa_J23110 for gfpmut3), RBS/nearby 

region, reporter gene (rfp or gfpmut3), and the BBa_B0015 terminator was integrated into the E. 

coli DH10B chromosome in the middle of the bglA gene (Supplementary Table 2). The kanamycin 

resistance gene and FLP recognition target (FRT) sites were amplified from pKD13 using the 

bglA-1F/bglA-1R primer set (Supplementary Table 3). The cassettes were amplified from the 

pRFP and pGfpmut3 plasmids using the bglA-2F/bglA-2R primer set (Supplementary Table 3). 

Both PCR-amplified DNA fragments were fused by the overlap extension PCR. The E. coli 

DH10B cells harboring the pKD46 plasmid were grown for 2 h in 5 mL LB media (100 μg/mL 

ampicillin and 10 mM arabinose; arabinose induces the λ Red recombinase) at 30°C, and the cells 

were prepared for electroporation. Cells were transformed with 100 ng of the overlap extension 

PCR product and grown overnight on LB agar plate with 20 µg/mL of kanamycin at 37°C. The 

pKD46 plasmid was cured during the cultivation on the plate. The kanamycin resistance gene in 

the genome was eliminated by expressing FLP recombinase (pCP20). The pCP20 plasmid was 

cured by culturing the cell for 16 h in LB media at 37°C without ampicillin. 

 

Fluorescence and absorbance measurements 
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E. coli DH10B, EcN, and B. subtilis SG13 were transformed with asRNA and reporter 

plasmids, and incubated overnight at 37°C on LB agar plates containing appropriate antibiotics. 

Colonies were picked and grown overnight in 1 mL LB media with appropriate antibiotics at 37°C 

and 250 rpm (New Brunswick Excella E25 shaking incubator). Overnight cultures were 

subcultured (1% v/v) in fresh 1 mL LB media with appropriate antibiotics and grown for 2 h at 

37°C and 250 rpm. The subcultures were transferred to fresh 0.6 mL LB media (1.67% v/v), 

supplemented with appropriate antibiotics and inducers (at concentrations as indicated in figure 

captions), and grown for 8 h at 37°C and 250 rpm. All cultures were grown in deep 96-well plates 

(Eppendorf, Hamburg, Germany). At the end of induction, cells were centrifuged to form a cell 

pellet, and the cell pellets were resuspended in 0.2 mL phosphate-buffered saline (pH 8.0). The 

population fluorescence (Fexperimental) and the absorbance at 600 nm (Absexperimental) were measured 

using a Tecan microplate reader (Infinite M200 Pro). The measured fluorescence was normalized 

by [Fnorm = (Fexperimental/Absexperimental) – (Fnegative control/Absnegative control)], where the negative control 

is E. coli DH10B without a plasmid, EcN without a plasmid, or B. subtilis 168 without a plasmid. 

Repression efficiencies were calculated by [1−(Finducer+/Finducer-)], where Finducer- is the normalized 

fluorescence of the target gene without inducer and Finducer+ is the normalized fluorescence with 

inducer. The GFPmut3 and sfGFP fluorescence was measured with excitation at 483 nm and 

emission at 530 nm. The RFP fluorescence was measured with excitation at 535 nm and emission 

at 620 nm. 

 For the E. coli DH10B DAP decarboxylase repression experiment (Figure 2B), E. coli 

DH10B harboring the asRNA plasmid was grown overnight in 1 mL LB media with ampicillin at 

37°C and 250 rpm. Overnight cultures were pelleted (5 min at 4,000g), resuspended in an 

equivalent volume of minimal M9 medium (with 0.4% glucose, 0.8 mM L-leucine, and ampicillin), 



26 
 

transferred (1% v/v) into 1 mL of fresh minimal M9 medium (with 0.4% glucose, 0.8 mM L-

leucine, and ampicillin), and grown for 2 h at 37°C and 250 rpm. The subcultures were transferred 

(0.5% v/v) to 0.2 mL of fresh minimal M9 medium (with 0.4% glucose, 0.8 mM L-leucine, and 

ampicillin), supplemented with 250 ng/mL aTc in flat bottom 96-well plate to measure their growth 

for 21 h in a Tecan microplate reader. The measured repression efficiency was reported by 

calculating [1−(AbsaTc+/AbsaTc-)], where the AbsaTc+ was the measured absorbance (at 600 nm) of 

the induced cells when the uninduced cells reached the Abs of 0.1 (AbsaTc- = 0.1). For asRNA-

mediated toxin and antitoxin repression experiment (Figure 3), the absorbance was measured after 

cells were induced for 15 h.  

  For the B. subtilis SG13 DAP decarboxylase repression experiment (Figure 4D), B. subtilis 

SG13 harboring the asRNA plasmid was grown overnight in 1 mL LB media with spectinomycin 

and kanamycin at 37°C and 250 rpm. Overnight cultures were pelleted (5 min at 4,000g), re-

suspended in an equivalent volume of minimal M9 medium (with 0.5% glucose, 0.3% malate, 

spectinomycin, and kanamycin), transferred (1% v/v) into 1 mL of fresh minimal M9 medium 

(with 0.5% glucose, 0.3% malate, spectinomycin, and kanamycin), and grown for 8 hours at 37°C 

and 250 rpm. The subcultures were transferred (1% v/v) to 0.2 mL of fresh minimal M9 medium 

(with 0.5% glucose, 0.3% malate, spectinomycin, and kanamycin), supplemented with 1 mM IPTG 

in flat bottom 96-well plate to measure their growth for 21 h in a Tecan microplate reader. The 

measured repression efficiency was reported by calculating [1-(AbsIPTG+/AbsIPTG-)], where the 

AbsIPTG+ was the measured absorbance (at 600 nm) of the induced cells when the uninduced cells 

reached the Abs of 0.1 (AbsIPTG- = 0.1). 

 

Quantification of β-glucuronidase 
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E. coli DH10B or EcN harboring the asRNA plasmid was induced with 250 ng/mL aTc as 

described above. The induced cultures were pelleted (10 min at 2,200g) and resuspended in 0.2 

mL phosphate-buffered saline (pH 8.0 for E. coli DH10B; pH 7.2 for EcN). After measuring 

the absorbance at 600 nm, the resuspended cells were diluted to an absorbance of 0.5 using 

phosphate-buffered saline (pH 8.0), and 0.2 mL of the diluted samples (containing the same 

number of cells) were centrifuged again (10 min at 2,200g). The pelleted cells were resuspended 

in 0.4 mL of 50 mM sodium phosphate monobasic, and 25 μL permeabilization solution (9:1 

acetone to toluene (v/v)) was added into the resuspended cells. After incubation at 37°C for 1 h, 

enzymatic reactions were carried out at room temperature for 200 min by adding 5 μL of 50 mg/mL 

X-gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid; Thermo Fisher Scientific, MA) 

(Supplementary Figure S3). Absorbance was measured at 615 nm to quantify 4-chloro-bromo-

indigo (a blue precipitate). The repression efficiency was reported by calculating 

[1−(ΔAbsaTc+/ΔAbsaTc-)], where the ΔAbs was the absorbance (Abs615) change over 100 min for 

which Abs615 increased linearly (t = 0 - 100 min for E. coli DH10B; t = 100 - 200 min for EcN; 

Supplementary Figure S3). To determine the absorbance wavelength of 4-chloro-bormo-indigo 

(615 nm), the absorbance scanning was performed in the wavelength range between 560 and 710 

nm for 25 min with 5 min interval (Supplementary Figure S3).  

   

SUPPORTING INFORMATION 

Supplementary Figures S1-S13 and Supplementary Tables 1-3 are available. The sequence, 

parameter, and repression data of asRNAs are available in an excel file.  
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Figure 1. Establishing a predictive model for asRNA-mediated gene repression. (A) 

Schematic of translational repression by asRNA composed of a target binding region (TBR) and 

an Hfq binding sequence (MicF M7.4)29. The target region was restricted to 75 nucleotides 

containing the upstream of Shine-Dalgarno sequence (USD), the ribosome binding site (RBS or 

the SD sequence), and the start codon of rfp or gfpmut3 mRNA (-35 to +40 with the ATG start 

codon’s A as +1). asRNAs are transcribed by the aTc-inducible PTet promoter (ColE1 origin, high 

copy number). rfp and gfpmut3 are under the control of the constitutive BBa_J23105 and 

BBa_J23110 promoters, respectively (p15A origin, medium copy number; see Supplementary 

Table 2 for the sequences). (B) Multivariate model results shown as a scatter plot (predicted vs. 

measured repression efficiency). A total of 69 asRNAs targeting either rfp or gfpmut3 mRNA were 

built, their repression efficiency was experimentally measured in E. coli DH10B, and the observed 

data was analyzed by fitting a linear equation using two independent variables (F(X1,X2) = 

[0.3848−0.0068X1−0.0125X2 + ε], R2=0.685, p<0.001). In this equation, F is the predicted 

repression efficiency, X1 is ΔGCF, X2 is percent mismatch, and ε is the standard error. ΔGCF is 

calculated using the equation ΔGasRNA:mRNA−ΔGasRNA−ΔGmRNA (see Methods for details), and the 

change in free energy is estimated by NUPACK9. Percent mismatch is calculated by total number 

of mismatch as a percentage of the total TBR length as described previously22. (C) The model 

created in (B) was further validated by testing 20 newly designed asRNAs that target either rfp or 

gfpmut3 mRNA in E. coli DH10B. For (B) and (C), cells were grown either in the absence or 

presence of 250 ng/mL aTc. The measured repression efficiency is reported by calculating 

[1− (FaTc+/FaTc-)], where the F is the normalized fluorescence (Methods). The dashed line 

represents y=x. The error bars represent the standard deviation of the measured repression from 

three biological replicates performed on different days. 
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Figure 2. Validating the model using asRNAs targeting genes in the genome. (A) Validation 

of the model with asRNAs targeting fluorescent reporter genes integrated into the genome. The 

rfp or gfpmut3 cassette was integrated into the E. coli DH10B genome using the λ Red 

recombination method (bglA::rfp, constitutively expressing RFP; bglA::gfpmut3, constitutively 

expressing GFP)48. A total of 69 asRNAs from Figure 1B were tested, and their repression 

efficiency was calculated by [1− (FaTc+/FaTc-)], where the F is the normalized fluorescence 

(Methods). (B, C) Observed linear correlations between the measured and predicted repression 

efficiencies for 32 asRNAs targeting the lysA (B) or uidA (C) mRNAs. For (B), the measured 

repression efficiency is reported by calculating [1− (AbsaTc+/AbsaTc-)], where the Abs is the 

measured absorbance at 600 nm (Methods). For (C), the measured repression efficiency is reported 

by calculating [1− (ΔAbsaTc+/ΔAbsaTc-)], where the ΔAbs is the difference in the measured 

absorbance (615 nm) at t=100 min and t=0 min. See Supplementary Figure S3A for absorbance 

spectra of 4-chloro-bromo-indigo. All cells were grown either in the absence (aTc-) or presence 

(aTc+) of 250 ng/mL aTc. The dashed line represents y=x. The error bars represent the standard 

deviation of the measured repression from three biological replicates performed on different days. 
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Figure 3. Controlling microbial growth with multiple asRNAs. (A) asRNAs can modulate cell 

growth by targeting mazE and mazF mRNAs. mazEF is a stress-induced toxin-antitoxin module 

(MazF is the toxin protein and MazE is the antitoxin protein), located on the chromosome of E. 

coli. Predicted RBSs are shown by blue boxes. asRNAs are transcribed by the aTc-inducible PTet 

promoter or the constitutive BBa_J23119 promoter on the same plasmid (ColE1 origin, high copy 

number). See Supplementary Table 2 for the sequences. (B) Observed negative correlation 

between the measured absorbance at 600 nm (Abs) and predicted repression efficiency for 10 

mazE-targeting asRNAs. The absorbance was measured after cells were grown for 15 hours. All 

mazE-targeting asRNAs were transcribed by the aTc-inducible PTet promoter (250 ng/mL aTc). (C) 

Co-expression of the mazE- and mazF-targeting asRNAs. asRNAs were designed to bind to the 

start codon/downstream coding region (+1 to +40 with the start codon’s A as +1; left figure) or the 

predicted RBS/nearby region (-28 to -1 with the start codon’s A as +1; right figure). Predicted 

RBSs are shown by blue boxes. “No asRNA” for both graphs are cells with an empty vector. mazF-

targeting asRNAs were expressed (induced by 250 ng/mL aTc), along with ME3 (left graph) or 

M1 (right graph) which was constitutively transcribed. The predicted repression efficiencies of 
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mazF-targeting asRNAs are indicated as % in parenthesis and highlighted in red. The absorbance 

was measured after cells were grown for 15 hours. The error bars represent the standard deviation 

of the measured repression from three biological replicates performed on different days. 

 

 

 

 

Figure 4. Expanding the predictive model to different organisms. (A) A total of 20 asRNAs 

that target TIR of either rfp or gfpmut3 mRNA were tested in EcN. TBR was fused to MicF M7.4, 

and rfp and gfpmut3 were plasmid-encoded genes. The dashed line represents y=x. All cells were 

grown either in the absence or presence of 250 ng/mL aTc. The measured repression efficiency is 

reported by calculating [1−(FaTc+/FaTc-)], where the F is the normalized fluorescence (Methods).  

(B) A linear correlation was observed between the measured and predicted repression efficiencies 

for asRNAs targeting the uidA mRNA in EcN. The dashed line represents y=x. All cells were 
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grown either in the absence or presence of 250 ng/mL aTc. The measured repression efficiency is 

reported by calculating [1−(ΔAbsaTc+/ΔAbsaTc-)], where the ΔAbs is the difference in the measured 

absorbance (615 nm) at t=200 min and t=100 min. See Supplementary Figure S3A for absorbance 

spectra of 4-chloro-bromo-indigo. (C) A total of 14 asRNAs that target the sfgfp mRNA were 

tested in B. subtilis SG13. All TBRs were tested without an Hfq binding site. The dashed line 

represents y=x. All cells were grown either in the absence or presence of 1 mM IPTG. The 

measured repression efficiency is reported by calculating [1−(FIPTG+/FIPTG-)], where the F is the 

normalized fluorescence (Methods). (D) A linear correlation was observed between the measured 

and predicted repression efficiencies for asRNAs targeting the lysA mRNA in B. subtilis SG13. 

All TBRs were tested without an Hfq binding site. The dashed line represents y=x. All cells were 

grown either in the absence or presence of 1 mM IPTG. The measured repression efficiency is 

reported by calculating [1−(AbsIPTG+/AbsIPTG-)], where the Abs is the measured absorbance at 600 

nm (Methods). The error bars represent the standard deviation of the measured repression from 

three biological replicates. 

 

 

 

 

Figure 5. Accuracy of the predictive model. (A) Accuracy of the model was reported by 

calculating the percentage of asRNAs whose measured repression efficiencies were within the 

standard error range of the predicted repression efficiencies. The standard error is from the model 

in Figure 1B (1ε=0.123, 2ε=0.246, and 3ε=0.369). (B) The table summarizes the percentage of 

asRNAs whose measured repression efficiencies were within the standard error range of the 

predicted repression efficiencies for each figure. 
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