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Abstract

Many popular applications, such as collaborative document editing, sentence translation, or citizen science, resort to collabo-
rative crowdsourcing, a special form of human-based computing, where, crowd workers with appropriate skills and expertise
are required to form groups to solve complex tasks. While there has been extensive research on workers’ task assignment
for traditional microtask-based crowdsourcing, they often ignore the critical aspect of collaboration. Central to any collab-
orative crowdsourcing process is the aspect of solving collaborative tasks that requires successful collaboration among the
workers. Our formalism considers two main collaboration-related factors—affinity and upper critical mass—appropriately
adapted from organizational science and social theories. Our contributions are threefold. First, we formalize the notion of
collaboration among crowd workers and propose a comprehensive optimization model for task assignment in a collaborative
crowdsourcing environment. Next, we study the hardness of the task assignment optimization problem and propose a series
of efficient exact and approximation algorithms with provable theoretical guarantees. Finally, we present a detailed set of
experimental results stemming from two real-world collaborative crowdsourcing application using Amazon Mechanical Turk.
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1 Introduction

Crowdsourcing complex tasks Microtask-based crowdsourc-
ing has been applied successfully in a number of domains
such as collecting labeled data, fact checking, and image
recognition [14]. Here, the crowd workers can operate inde-
pendently because of the simplicity of the tasks. However,
such an individualistic approach will not work for many
complex knowledge intensive tasks such as citizen science

B Habibur Rahman
habibur.rahman @mavs.uta.edu

Senjuti Basu Roy
senjutib@njit.edu

Saravanan Thirumuruganathan
sthirumuruganathan @hbku.edu.qa

Sihem Amer-Yahia
sihem.amer-yahia@imag.fr

Gautam Das
gdas@uta.edu
I ur Arlington, Arlington, USA
New Jersey Institute of Technology, Newark, USA
3 QCRI, HBKU, Doha, Qatar
4 CNRS, LIG, Grenoble, France

where crowdsourcing is increasingly being used. Collabo-
rative crowdsourcing is an emerging paradigm where a set
of workers with complementary skills form groups and col-
laborate to perform complex tasks.! The synergistic effect
of collaboration in group-based activities is widely accepted
in socio-psychological research and traditional team-based
activities [5,24,25]. A number of popular applications such as
collaborative document editing, sentence translation, or citi-
zen science could be modeled as collaborative crowdsourcing
tasks. Despite its immense potential, the transformative effect
of “collaboration” remains largely unexplored in crowd-
sourcing [39].

Group formation for solving collaborative tasks The
optimization goals for task assignment is putatively simi-
lar between collaborative task and traditional microtask—
maximize the quality of the completed tasks while mini-
mizing cost by assigning appropriate tasks to appropriate
workers. Task assignment has been extensively studied for
microtask-based crowdsourcing. However, none of those

! This work is the extension of our paper [57]. We extend our previ-
ous work by providing (i) an additional technique for task assignment
referred to as Cons-cost-K-ApprxGrp, (ii) detail proofs of our
algorithms and (iii) additional experiments on both real and synthetic
data

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0516-7&domain=pdf
http://orcid.org/0000-0003-0296-8851

H.Rahman et al.

algorithms are applicable for collaborative crowdsourcing
as they ignore the critical aspect of collaboration. Instead of
working individually, workers collaboratively work on tasks
and build on each others’ contributions.

This collaborative aspect requires that a task assignment
algorithm must take into account both the characteristics of
individual workers and that of the group. Prior work has
identified some key individual characteristics of the worker,
dubbed as human factors [60], such as skill and wages.
From prior work on socio-psychological research[24,25],
we have identified two key factors for group characteristics
that entail successful collaboration. The first factor worker—
worker affinity [40,70] represents the comfort-level between
workers in a group who work on the same task. It has been
noted that successful teams have members with high affinity
with each other. In contrast, teams with low affinity often
suffer from low productivity and take longer to complete the
tasks [41]. Social theories widely underscore the importance
of upper critical mass [35] for group collaboration, which is
a constraint on the size of groups beyond which the collabo-
ration effectiveness diminishes [16,35,53,65].

Overview of technical approach Despite the importance
of collaborative crowdsourcing, there has been a dearth of
work that formalizes the notion of collaboration and the
optimization objectives for task assignment for collabora-
tive crowdsourcing tasks. Additionally, while key factors for
successful collaboration such as worker affinity and upper
critical mass has been identified in psycho-social theories,
there has been no prior effort on formalizing these individ-
ual and group-based human factors in a principled manner
to optimize the outcome of a collaborative crowdsourcing
environment. Hence, our first significant contribution lies in
appropriately incorporating the interplay of these variety of
complex human factors into a set of well-formulated opti-
mization problems.

Intuitively, the objective for task assignment is to choose,
for each task, a group of workers who collectively hold
skills required for the task, collectively cost less than the
task’s budget and collaborate effectively. Using the notions
of affinity and upper critical mass, we formalize the flat
model of work coordination [34] in collaborative crowd-
sourcing as a graph with nodes representing workers and
edges labeled with pairwise affinities. A group of work-
ers is a clique in the graph whose size does not surpass
the upper critical mass imposed by a task. A large clique
(group) may further be partitioned into subgroups (each is a
clique of smaller size satisfying upper critical mass) to com-
plete a task because of the task’s magnitude. Each clique
has an intra- and an inter-affinity to measure, respectively,
the level of cohesion that the clique has internally and with
other cliques. A clique with high intra-affinity implies that
its members collaborate well with one another. Two cliques
with a high inter-affinity between them imply that these two
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groups of workers work well together. Our optimization prob-
lem reduces to finding a clique that maximizes intra-affinity,
satisfies the skill threshold across multiple domains, satisfies
the cost limit, and maximizes inter-affinity when partitioned
into smaller cliques. We note that no existing work on team
formation in social networks [4,44] or collaborative crowd-
sourcing [39,40,70] has attempted similar formulations.

We show that solving the complex optimization prob-
lem explained above is prohibitively expensive and incurs
very high machine latency. Such high latency is unaccept-
able for a real-time crowdsourcing platform. Therefore, we
propose an alternative strategy Grp&Splt that decomposes
the overall problem into two stages and is a natural alterna-
tive to our original problem formulation. Even though this
staged formulation is also computationally intractable in the
worst case, it allows us to design instance optimal exact
algorithms that work well in the average case, as well as
efficient approximation algorithms with provable bounds. In
the first stage (referred to as Grp), we first form a single
group of workers by maximizing intra-affinity while satisfy-
ing the skill and cost thresholds. In the second stage, (referred
to as Splt), we decompose this large group into smaller
subgroups, such that each satisfies the group size constraint
(imposed by upper critical mass) and the inter-affinity across
subgroups is maximized. Despite being NP-hard [20], we
propose an instance optimal exact algorithm OptGrp and a
novel 2-approximation algorithm ApprxGrp for the stage-1
problem. Similarly, we prove the NP-hardness and propose
a 3-approximation algorithm Min-Star-Partition for
a variant of the stage-2 problem.

We conduct a comprehensive experimental study with two
different applications (sentence translation and collabora-
tive document editing) using real-world data from Amazon
Mechanical Turk and present rigorous scalability and qual-
ity analyses using synthetic data. Our experimental results
demonstrate that our formalism is effective in aptly mod-
eling the behavior of collaborative crowdsourcing and our
proposed solutions are scalable.

In summary, this work makes the following contributions:

1. Formalism We investigate the optimization opportunities
in collaborative crowdsourcing. In Sect. 4, we formally
define our problem which incorporates a variety of human
factors.

2. Solutions We propose a comprehensive theoretical anal-
ysis of our problems and approaches. We analyze the
computational complexity of our problems and propose
a principled staged solution. We propose exact instance
optimal algorithms as well as efficient approximation
algorithms with provable approximation bounds.

3. Experiments We present a comprehensive set of experi-
mental results (two real applications as well as synthetic
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experiments) that demonstrate the effectiveness of our
proposed solutions.

The paper is organized as follows. Sections 2, 3, and 4 dis-
cuss a database application of collaborative crowdsourcing,
our data model, problem formalization, and initial solu-
tions. Sections 5 and 6 describe our theoretical analyses and
proposed algorithmic solutions. We describe some of the lim-
itations and possible extensions of our approach in Sect. 7.
Experiments are described in Sect. 8, related work in Sect. 9,
and conclusion is presented in Sect. 10.

2 An application of collaborative task

Sentence translation [11,40,70] is a frequently encountered
application of collaborative task, where the objective is to
use the workers to build a translation database of sentences
in different languages. Such databases, later on, serve as
the “training dataset” for supervised machine learning algo-
rithms for automated sentence translation purposes.

As a running example for this paper, consider a trans-
lation task ¢ designed for translating an English video clip
to French. Typically, such translation tasks follow a 3-step
process [40,70]: English speakers first translate the video in
English, professional editors edit the translation, and finally
workers with proficiency in both English and French translate
English to French. Consequently, such task requires skills in
3 different domains: English comprehension (d;), English
editing (d>), and French Translation ability (d3).

In our optimization setting, each task ¢ has a requirement
of minimum skill per domain and maximum cost budget, and
workers should collaborate with each other (e.g., to correct
each others’ mistakes [70]), and the collaboration effective-
ness is quantified as the affinity of the group. Some aspects
of our formulation have similarities with team formation
problems in social networks [4]. The notion of affinity has
been identified in the related work on sentence translation
tasks [40,70], as well as team formation problems [4].

However, if the group is “too large,” the effectiveness of
collective actions diminishes [16,35,53,65] while undertak-
ing the translation task, as an unwieldy group of workers fails
to find effective assistance from their peers [40,70]. There-
fore, each task ¢ is associated with a corresponding upper
critical mass constraint on the size of an effective group, i.e.,
a large group may need to be further decomposed into mul-
tiple subgroups in order to satisfy that constraint. A study of
the importance of the upper critical mass constraint in the
crowdsourcing context, as well as how to set its (application-
specific) value, are important challenges that are best left to
domain experts; however, we experimentally study this issue
for sentence translation.

3
Table 1 Workers skill and wage table
ul us us Ug us Uue
di 0.66 1.0 0.53 0.0 0.13 0.0
dr 0.0 0.0 0.66 0.73 0.66 0.13
d3 0.0 0.33 0.53 0.0 0.8 0.93
Wage 0.4 0.3 0.7 0.8 0.5 0.8
Table 2 Workers distance matrix
up u u3 U4 us Ue
up 0.0 1.0 0.66 0.66 0.85 0.66
u 1.0 0.0 0.66 0.85 0.66 0.85
u3 0.66 0.66 0.0 0.4 0.66 0.40
u4 0.66 0.85 0.4 0.0 0.4 0.0
us 0.85 0.66 0.66 0.4 0.0 0.4
ueg 0.66 0.85 0.4 0.0 0.4 0.0
Table 3 Task description 0, 0, 0; C K
1.8 1.4 166 30 3

When this task arrives, imagine that there are 6 work-
ers uy, us, ..., ug available on the crowdsourcing platform.
Each worker has a skill value on each of the three skill
domains described above and a wage they expect. Addition-
ally, the workers’ cohesiveness or affinity is also provided.
These human factors of the workers are summarized in
Tables 1 and 2, and the task requirements of ¢ (including
thresholds on aggregated skill for each domain, total cost,
and upper critical mass) are presented in Table 3 and are fur-
ther described in the next section. The objective is to form
a “highly cohesive” group G of workers that satisfies the
lower bound of skill of the task and upper bound of cost
requirements. Due to the upper critical mass constraint, G
may further be decomposed into multiple subgroups. After
that, each subgroup undertakes a subset of sentences to trans-
late. Once all the subgroups finish their respective efforts,
their contributions are merged. Therefore, both the overall
group and its subgroups must be cohesive. Incorporation of
upper critical mass makes our problem significantly different
from the body of prior works [4], as we may have to create a
group further decomposed into multiple subgroups, instead
of a single group.

3 Data model

We introduce our data model and preliminaries that will serve
as a basis for our problem definition.

@ Springer
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3.1 Preliminaries

Domains We are given asetof domains D = {dy, da, ..., dp}
denoting knowledge topics. Using the running example in
Sect. 2, there are 3 different domains—English compre-
hension (d), English editing (d>), and French Translation
ability(ds).

Workers We assume asetUd = {uy, u, ..., u,}of n work-
ers available in the crowdsourcing platform. The example in
Sect. 2 describes a crowdsourcing platform with 6 workers.

Worker group A worker group G consists of a subset of
workers from U, i.e., G CU.

Skills A skill is the knowledge of a particular skill domain
in D, quantified in a continuous [0, 1] scale. It is associated
with workers and tasks. The skill of a worker represents the
worker’s expertise/ability on a topic. The skill of a topic rep-
resents the minimum knowledge requirement/quality for that
task. A value of O for a skill reflects no expertise of a worker
for that skill. For a task, O reflects no requirement for that
skill.

How to learn the skill of the workers is an impor-
tant and independent research problem on its own merit.
Most related work has relied on learning the skill of the
workers from “gold-standard” or benchmark datasets using
pre-qualification tests [15,27]. Itis also possible to use works
such as [58] to learn the skill of workers for team-based tasks.

Collaborative tasks A collaborative task ¢ has the follow-
ing characteristics:

— Skill threshold Each Q; € R represents the minimum
skill requirement that a task needs to achieve for domain
d;. Ataskis deemed complete, if it attains its skill require-
ment over all the domains.

— Cost threshold C € R, the cost budget to hire workers
for a particular task. This gives an upper bound on the
aggregated cost of assigning the workers.

— Upper critical mass K is a positive integer (greater than
0) which denotes the maximum group size for a task.
Tasks that require high skill threshold may need many
workers and may violate the upper critical mass thresh-
old. In that case, the workers should be split in subgroups
(each satisfying the upper critical mass constraint) such
that the workers across all the subgroups satisfy the skill
and cost threshold. We discuss the impact of imposing a
strict upper limit and how to relax it in Sect. 7.

Specifically, ¢ is characterized by a vector, (Q1, Qa, ...,
Om, C, K), of length m 4 2. For the example in Sect. 2, there
are 3 domains (m = 3) and their respective skill require-
ments, its cost C, and upper critical mass K of the task are
described in Table 3. A task is considered complete if it attains
its skill requirement over all domains and satisfies all the
constraints. For the ease of exposition, we assume that the
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domain of worker skills and task requirements are identical
and that the contribution of a group for a given task can be
computed by summing the skills of its workers. We discuss
other aggregation functions in Sect. 7.

3.2 Human factors

A worker is described by a set of human factors. We con-
sider two types of factors—factors that describe individual
worker’s characteristics and factors that characterize an indi-
vidual’s ability to work with fellow workers. Our contribution
is in appropriately adapting these factors in collaborative
crowdsourcing from multi-disciplinary prior works such as
team formation [4,44] and psychology research [16,35,53,
65].

3.2.1 Individual human factors: skill and wage

Individual workers in a crowdsourcing environment are char-
acterized by their skill and wage.

Skill For each knowledge domain d;, ug, € [0, 1] is the
expertise level of worker u in d;. Skill expertise reflects the
quality that the worker’s contribution has on a task accom-
plished by that worker.

Wage w, € [0, 1] is the minimum amount of compen-
sation for which a worker u is willing to complete a task.
We choose a simple model where a worker specifies a single
wage value independent of the task at-hand.

Table 1 presents the respective skill of the 6 workers in 3
different domains and their individual wages for the running
example.

3.2.2 Group-based human factors: affinities

Although related work in collaborative crowdsourcing ack-
nowledges the importance of workers’ affinity to enable
effective collaboration [40,70], there is no attempt to for-
malize the notion any further. A worker’s effectiveness in
collaborating with her fellow workers is measured as affin-
ity. We adopt an affinity model similar to group formation
problems in social networks [4,45], where the atomic unit of
affinity is pairwise, i.e., a measure of cohesiveness between
every pair of workers. After that, we propose different ways
to capture intra-group and inter-group affinities.

Pairwise affinity The affinity between two workers u; and
uj,aff (u;, u;), can be calculated by capturing the similarity
between workers using simple socio-demographic attributes,
such as region, age, gender, as done in previous work [70],
as well as more complex psychological characteristics [54].
For our purpose, we normalize pairwise affinity values to
fit in [0, 1] and use a notion of worker—worker distance
instead, i.e., where dist(u;,u;) = 1 — aff (u;, u;). Thus, a
smaller distance between workers ensures a better collabora-
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tion. Table 2 presents the pairwise distance of all 6 workers
for running example in Sect. 2. As will be clear later, the
notion of distance rather than affinity enables the design of
better algorithms for our purposes.

Intra-group affinity For a group G, its intra-group affinity
measures the collaboration effectiveness among the workers
in G. Here again we use distance and compute intra-group
distance in one of two natural ways: computing the diameter
of G as the largest distance between any two workers in G,
or aggregating all-pair worker distances in G:

DiaDist(G) = Maxvui’ujegdist(ui, uj)
SumDist(G) = v u;egdist(u, uj)

For both definitions, a smaller value is better.

Inter-group affinity When a group violates the upper crit-
ical mass constraint [35], it needs to be decomposed into
multiple smaller ones. The resulting subgroups need to work
together to achieve the task. Given two subgroups G, G2
split from a large group G, their collaboration effectiveness
is captured by computing their inter-group affinities. Here
again, we use distance instead of affinity. More concretely,
the inter-group distance is defined in one of two natural ways:
either the largest distance between any two workers across
the subgroups or the aggregation of all pairwise workers dis-
tances across subgroups:

DialnterDist(G 1, Gp) = Maxvuiecl,uje(;zdist(ui, uj)

SumlinterDist(G 1, Go) = ZvMieGl,u_/erdiSt(Mi, uj)

This can be generalized to more than two subgroups: if there
are x subgroups, overall inter-group affinity is the summation
of inter-group affinity for all possible (3) pairs.

4 Optimized group formation

Problem settings For each collaborative task, we intend
to form the most appropriate group of workers from the
available worker pool. A collaborative crowdsourcing task
has skill requirements in multiple domains and a cost bud-
get, which is similar to the requirements of collaborative
tasks in team formation problems [45]. Then, we adopt the
“flat-coordination” models of worker interactions, which is
considered important in prior works in team formation [4]
as the “coordination cost,” or in collaborative crowdsourc-
ing [70] itself, as the “turker-turker” affinity model. However,
unlike previous work, we attempt to fully explore the poten-
tial of “group synergy” [66] and how it yields the maximum
qualitative effects in group-based efforts by maximizing
affinity among the workers (or minimizing distance). Finally,
we intend to investigate the effect of upper critical mass in

the context of collaborative crowdsourcing as a constraint on
group size, beyond which the group must be decomposed
into multiple subgroups that are cohesive inside and across.
Indeed, our objective function is designed to form a group (or
further decomposed into a set of subgroups) to undertake a
specific task that achieves the highest qualitative effect while
satisfying the cost constraint.

1. Qualitative effect of a group Intuitively, the overall qual-
itative effect of a formed group to undertake a specific
task is a function of the skill of the workers and their col-
laboration effectiveness. Learning this function itself is
challenging, as itrequires access to adequate training data
and domain knowledge. In our initial effort, we, there-
fore, make a reasonable simplification, where we seek to
maximize group affinity and pose quality as a hard con-
straint®. Existing literature (indicatively [66]) informs us
that aggregation is a mechanism that turns private judg-
ments (in our case individual workers’ contributions) into
a collective decision (in our case the final translated sen-
tences), and is one of the four pillars for the wisdom of
the crowds. For complex tasks like sentence translation or
document editing, there is no widely accepted mathemat-
ical function of aggregation. We choose sum to aggregate
the skill of the workers that must satisfy the lower bound
of the quality of the task. This simplest and yet most intu-
itive function for transforming individual contributions
into a collective result has been adopted in many previous
works [4,17,45]. Moreover, this simpler function allows
us to design efficient algorithms. For example, optimiz-
ing an optimization problem with Max in its constraint is
achallenging problem [7,8,58]. Exploring other complex
functions (e.g., max, min, and multiplicative functions)
or learning them is deferred to future work.

2. Upper critical mass Sociological theories widely sup-
port the notion of “upper critical mass”[16,35,53,65] by
reasoning that large groups are less likely to support col-
lective action. However, whether the effect of “upper
critical mass” should be imposed as a hard constraint,
or it should have more of a gradual “diminishing return”
effect, is itself a research question. For simplicity, we
consider upper critical mass as a hard constraint speci-
fied by the domain expert and evaluate its effectiveness
empirically for different values. Exploring more sophisti-
cated functions to capture upper critical mass is deferred
to future work.

Problem 1 AffAware-crowd Given a collaborative task ¢, the
objective is to form a worker group G, further partitioned into
aset of x subgroups G1, G2, ... .G, (if needed) for the task ¢

2 Notice that posing affinity as a constraint does not fully exploit the

effect of “group synergy.”
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that minimizes the aggregated intra-distance of the workers,
as well as the aggregated inter-distance across the subgroups
of G, and G must satisfy the skill and cost thresholds of ¢,
where each subgroup G; must satisfy the upper critical mass
constraint of z. Of course, if the group G itself satisfies the
upper critical mass constraint, no further partitioning in G is
needed, giving rise to a single worker group. As explained
above, quality of a task is defined as an aggregation (sum) of
the skills of the workers [4,45]. Similarly, cost of the task is
the additive wage of all the workers in G.

4.1 Optimization models

Given the definition of AffAware-Crowd above, we propose
multiple optimization objective functions based on different
inter- and intra-distance measures defined in Sect. 3.

For a group G, we calculate intra-distance in one of the
two possible ways: DiaDist, SumDist. If G is further parti-
tioned to satisfy the upper critical mass constraint, then we
also want to enable strong collaboration across the subgroups
by minimizing inter-distance. For the latter, inter-distance
is calculated using one of DialnterDist, SumlInterDist. Even
though there may be many complex formulations to combine
these two factors, in our initial effort our overall objec-
tive function is a simple sum of these two factors that we
wish to minimize. As mentioned previously, exploration of
other aggregation functions such as Max are left to future
work. This gives rise to 4 possible optimization objec-
tives.

DiaDist, DialnterDist:

Minimize {DiaDist(G)
+ Max{¥G;, G; € G DialnterDist(G;, G ;)}}

SumDist, DialnterDist:

Minimize {SumDist(G)
+ Max{¥G;, G; € G DialnterDist(G;, G ;)}}

— DiaDist, SumlInterDist:

Minimize {DiaDist(G) + Y SumlnterDist(G;, G )}
Gi ,G_,‘ Eg

— SumDist, SumlinterDist:

Minimize {SumDist(G) + Z SuminterDist(G;, G )}
G,‘,G_,'Eg

where, each of these objective function has to satisfy the
following three constraints on skill, cost, and upper critical
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mass, respectively, as described below:

Zvuiggudi > Qi vd,'

EVMEQ wy, <C

IGil <K Viel{l,2,... x}

The rest of our discussion only considers DiaDist on intra-
distance and SumlinterDist on inter-distance. We refer to this
variant of the problem as Af fAware-Crowd. We note that
our proposed optimal solution in Sect. 4 could be easily
extended to other combinations as well.

Theorem 1 Problem Af fAware-Crowd is NP-hard [20].

Proof Given a collaborative task ¢ and a set of users I and a
real number value X, the decision version of the problem is,
whether there is a group G (further partitioned into multiple
subgroups) of users (G C U), such that the aggregated inter-
and intra-distance value of G is X and skill, cost, and upper
critical mass constraints of ¢ are satisfied. The membership
verification of the decision version of Af fAware-Crowd
is clearly polynomial.

To prove NP-hardness, we consider a variant of compact
location [29] problem which is known to be NP-complete.
Given a complete graph G with N nodes, an integer n < N
and a real number X', the decision version of the problem
is whether there is a complete subgraph g’ of size n’ € N,
such that the maximum distance between any pair of nodes
in g’ is < X’. This variant of the compact location problem
is known as Min-DIA in [29].

Our NP-hardness proof uses an instance of Min-DIA and
reduces that to an instance of Af fAware-Crowd problem
in polynomial time. The reduction works as follows: each
node in graph G represents a worker u, and the distance
between any two nodes in G is the distance between a pair
of workers for our problem. We assume that the number of
skill domain is 1, i.e., m = 1. Additionally, we consider that
each workers u has same skill value of 1 on that domain, i.e.,
ug = 1, Vu and their cost is 0, i.e., w, = 0, Vu. Next, we
describe the settings of the task ¢. For our problem, the task
also has the quality requirement in only one domain, which
is, Q1. The skill, cost, and upper critical mass of t are, (Q1 =
n’,C =0, K = o). This exactly creates an instance of our
problem in polynomial time. Now, the objective is to form a
group G for task ¢ such that all the constraints are satisfied and
the objective function value of AffAware-Crowd is X',
such that there exists a solution to the Min-DIA problem, if
and only if, a solution to our instance of Af fAware-Crowd
exists. O
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4.2 Algorithms for AffAware-Crowd

Our optimization problem attempts to appropriately capture
the complex interplay among various important factors. The
proof of Theorem 1 shows that the simplest variant of the
optimization problem is NP-hard. Despite the computational
hardness, we attempt to stay as principled as possible in our
technical contributions and algorithms design. Toward this
end, we propose two alternative directions:

(D) ILP We propose a integer linear programming (ILP) [63]
formulation to optimally solve our original overarching opti-
mization problem. We note that even translating the problem
to an ILP is non-trivial because the subgroups inside the large
group are unknown and are determined by the solution.

(II) Staged approach We propose an alternate strategy due
to the fact that ILP is prohibitively expensive. We refer it
as Grp&Splt. As the name suggests, it decomposes the
original problem into two phases:

a. Grp In this phase, a single group is formed that satis-
fies the skill and cost threshold but ignores the upper critical
mass constraint. We briefly summarize the algorithms for
Grp stage below:

— ApprxGrp This is an approximation algorithm with an
approximation factor of 2. It invokes a subroutine, which
uses the branch and bound method, to find a group of
workers who satisfy skill and cost constraint for the task.
For efficiency, we rely on bucketing the cost values. We
refer to this variant as Cons-k-Cost-ApprxGrp.

— OptGrp This is an instance optimal algorithm that also
uses the branch and bound method. However, it iterates
over all the valid solutions to find the optimal one.

b. Splt In this phase, we partition the worker group
(returned from the Grp phase) into smaller collaborative
subgroups. First, we attempt to find the optimal number
of subgroups and then find the assignment of workers into
these subgroups. We propose Min-Star-Parition, an
approximation algorithm for this problem.

Of course, this staged solution may not have any theoretical
guarantees for our original problem formulation. However,
our experimental results demonstrate that this formulation is
efficient, as well as adequately effective.

4.2.1 ILP for AffAware-Crowd

We discuss the ILP next as shown in Eq. 1. Let ¢(; ;) denote
a boolean decision variable of whether a user pair u; and
u; would belong to same subgroup in group G or not. Also,
imagine that a total of x groups (G1, G2, ..., G,) would be
formed for task z, where 1 < x < n (i.e., at least the sub-
group is G itself, or at most n singleton subgroups could be

formed). Then, which subgroup the worker pair should be
assigned must also be determined, where the number of sub-
groups is unknown in the first place. Note that translating
the problem to an ILP is non-trivial and challenging, as the
formulation deliberately makes the problem linear by trans-
lating each worker pair as an atomic decision variable (as
opposed to a single worker) in the formulation, and it also
returns the subgroup where each pair should belong to. Once
the ILP is formalized, we use a general-purpose solver to
solve it. Although the Max operator in the objective func-
tion (expressing DiaDist) must be translated appropriately
further in the actual ILP implementation, in our formalism
below, we preserve that abstraction for simplicity.

minimize D = Max{e; ;» x dist(u;, u;y’)}

Ly 2

VG;,Gng Vu,’EG,',quGj

e; jdist(ui,uj)
subject to

nox
ZZM(LG].) X Mld[ > Q[ Vi e [l,m]
i=1 j=1

n

X
ZZ”U’GJ‘) X w,i <C

i=1 j=1
n
Z“(z‘,Gﬂ =K
i=1

X
Y ugey <1 Vielln]
j=1

()
Vjell, x]

o) — 1 Hj e [l, x] &M(i.G‘,‘) = l&u(,-/,gj) =1
o 0 otherwise

x€{0,1,...,n}

uigy €{0,1}  Vie[l,n],Vj e[l x]

The objective function returns a group of subgroups that
minimizes DiaDist(G)+ EVG:WG/ SuminterDist(G;, G ;). The
first three constraints ensure the skill, cost, and upper critical
mass thresholds, whereas the last four constraints ensure the
disjointedness of the group and the integrality constraints on
different Boolean decision variables.

When run on the example in Sect. 2, the ILP generates the
optimal solution and creates group G = {u1, us, u3, ug, ueg}
with two subgroups, G| = {uy, uz, us}, and Go = {u3, ue}.
The distance value of the optimization objective is 4.23,
which equals to DiaDist(G) + InterDist(G1, G2).

4.2.2 Grp&Splt: a staged approach

Our proposed alternative strategy Grp&Splt works as fol-
lows: in the Grp stage, we attempt to form a single worker
group that minimizes DiaDist(G) while satisfying the skill
and cost constraints (and ignoring the upper critical mass
constraint). Note that this may result in a large group, vio-
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lating the upper critical mass constraints. Therefore, in the
Splt phase, we partition this big group into multiple smaller
subgroups, each satisfying the upper critical mass constraint
in such a way that the aggregated inter-distance between all
pair of groups Xy , SumlinterDist(G;, G ;) is minimized.
Clearly, one could émploy other alternative approaches such
as ignoring the cost and/or skill constraints followed by a
systematic merging procedure. Indeed, we considered such
an approach but settled on the Grp&Splt as it has the fol-
lowing properties:

— Solution feasibility We observed from a number of real-
world and synthetic experiments, it is often feasible to
identify a coherent group of workers that satisfy the task
requirements without exceeding the critical mass crite-
ria. Only in a small fraction of time—such as when the
task is very challenging and/or worker pool is not very
competent—does one need to even employ the second
stage of Splt. Furthermore, if no group could solve the
task, it could be easily identified by our approach whereas
the merging-based approach might evaluate many com-
binations.

— Solution guarantees Grp&Splt allows us to design
efficient approximation algorithms with constant approx-
imation factors as well as instance optimal exact algo-
rithms that work well in practice, as long as the distance
between the workers satisfies the metric property (trian-
gle inequality in particular) [56,59]. On the other hand,
we were unable to derive analogous guarantee for the
merging-based approach. We underscore that the trian-
gle inequality assumption is not an overstretch, rather
many natural distance measures (Euclidean distance,
Jaccard distance) are metric and several other similar-
ity measures, such as Cosine Similarity, Pearson and
Spearman Correlations could be transformed to metric
distance [69]. Furthermore, this assumption has been
extensively used in distance computation in the related
literature [3,4]. Without metric property assumptions, the
problems remain largely inapproximable [59].

— Solution scalability The optimal solution based on ILP
is prohibitively expensive. Our experimental results
demonstrate that the original ILP does not converge in
hours for more than 20 workers, whereas our Grp&Splt
scales well for thousands of workers.

5 Enforcing skill and Cost: GRP

In this section, we first formalize our proposed approach in
Grp phase, discuss hardness results, and propose algorithms
with theoretical guarantees. Recall that our objective is to
form a single group G of workers that are cohesive (the diam-
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eter of that group is minimized), while satisfying the skill and
the cost constraint.

Definition 1 Grp: Given a task ¢, form a single group G
of workers that minimizes DiaDist(G), while satisfying the
skill and cost constraints, i.e., Zyyegitq; = Qi, Vg, &
Evuegwu <C.

Theorem 2 Problem Grp is NP-hard.

Proof Given a collaborative task ¢ with upper critical mass
constraint and a set of users I/ and a real number X, the deci-
sion version of the problem is, whether there is a group G of
users (G C U), such that the diameter is X, and skill and cost
constraints of ¢ are satisfied. The membership verification of
this decision version of Grp is clearly polynomial.

To prove NP-hardness, follow the similar strategy as
above. We use an instance of Min-DTIA [29] and reduce that
to an instance of Grp, as follows: each node in graph G of
Min-DIA represents a worker u, and the distance between
any two nodes in G is the distance between a pair of work-
ers for our problem. We assume that the number of skill
domain is 1, i.e., m = 1. Additionally, we consider that each
workers u has the same skill value of 1 on that domain, i.e.,
ug = 1, Vu and their cost is 0, i.e., w,, = 0, Vu. Task ¢ has
quality requirement on only one domain, which is, Q1. The
skill requirement of ¢ is (Q; = n’ and cost C = 0). Now, the
objective is to form a group G for task ¢ such that the skill and
cost constraints are satisfied with the diameter of Grp as X/,
such that there exists a solution to the Min-DIA problem, if
and only if, a solution to our instance of Grp exists. O

Proposed algorithms for Grp We discuss two algorithms
at length—a) OptGrp is an instance optimal algorithm.
b) ApprxGrp algorithm has a 2-approximation factor, as
long as the distance satisfies the triangle inequality prop-
erty. Of course, an additional optimal algorithm is the ILP
formulation itself (referred to as ILPGrp in experiments),
which could be easily adapted from Sect. 4. Both OptGrp
and ApprxGrp invoke a subroutine inside, referred to as
GrpCandidateSet. We describe a general framework for
this subroutine next.

5.1 Subroutine GrpCandidateSet

Input to this subroutine is a set of n workers and a task ¢ (in
particular the skill and the cost constraints of ¢) and the output
is a worker group that satisfies the skill and cost constraints.
Notice that, if done naively, this computation takes 2" time.
However, Subroutine GrpCandidateSet uses effective
pruning strategy to avoid unnecessary computations that is
likely to terminate much faster. It computes a binary tree
representing the possible search space considering the nodes
in an arbitrary order, each node in the tree is a worker u and
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Fig.1 A partially constructed tree of GrpCandidateSet using the exam-
plein Sect. 2. Atnode u1 = 1, LBc = wy + Wy, + Wy +Wys +wy, =
3.2and .UBd‘ = u?".l + ujl + ”?11 + ”1511 + ”tll] + u(zjl = 2.32. The entire
subtree is pruned, since LBc(3.2) > C

has two possible edges (1/0, respectively, stands for whether
u is included in the group or not). A root-to-leaf path in that
tree represents a worker group.

At a given node u, it makes two estimated bound com-
putation: a) it computes the lower bound of cost (L Bc) of
that path (from the root up to that node), b) it computes the
upper bound of skill of that path (U By, ) for each domain. It
compares L Bc with C and compares U By, with Q;, Vd;. If
LBc > CorUBy;, < Q, forany of the domains, that branch
is fully pruned out. Otherwise, it continues the computation.
Figure 1 shows further details.

ApprxGrp uses this subroutine to find the first valid
answer, whereas, Algorithm OptGrp uses it to return all
valid answers.

5.2 Further search space optimization

When the skill and cost of the workers are arbitrary, a keen
reader may notice that Subroutine GrpCandidateSet
may still have to explore 2" potential groups in the worst
case. Instead, if we have only a constant number of costs
and arbitrary skills, or a constant number of skill values and
any arbitrary number of costs, interestingly, the search space
becomes polynomial. Of course, the search space is polyno-
mial when both are constants.

We describe the constant cost idea further. Instead of any
arbitrary wage of the workers, we now can discretize work-
ers wage a priori and create a constant number of k different
buckets of wages (a worker belongs to one of these buckets)
and build the search tree based on that. When there are m
knowledge domains, this gives rise to a total of mk buckets.
For our running example in Sect. 2, for simplicity, if we con-
sider only one skill (d}), this would mean that we discretize
all 6 different wages in k (let us assume k = 2) buckets.
Of course, depending on the granularity of the buckets this
would introduce some approximation in the algorithm as now
the workers actual wage would be replaced by a number

Fig. 2 Possible search space using the example in Sect. 2, after the
cost of the workers are discretized into k = 2 buckets, considering only
one skill d;. The tree is constructed in descending order of skill of the
workers per bucket. For bucket 1, if the most skilled worker u5 is not
selected, the other two workers (u1, us) will never be selected

which may be lesser or greater than the actual one. However,
such a discretization is realistic, since many crowdsourcing
platforms, such as AMT, allow only one cost per task.

For our running example, let us assume, bucket 1 repre-
sents wage 0.5 and below, bucket 2 represents wage between
0.5 and 0.8. Therefore, now workers u3, us, ue will be part
of bucket 2 and the three remaining workers will be part of
bucket 1. After this, one may notice that the tree will neither
be balanced nor exponential. Now, for a given bucket, the
possible ways of worker selection is polynomial (they will
always be selected from most skilled ones to the least skilled
ones), making the overall search space polynomial for a con-
stant number of buckets. In fact, as opposed to 2 possible
branches, this modified tree can only have (34 1) x (34 1)
possible branches. Figure 2 describes the idea further.

Once this tree is constructed, our previous pruning algo-
rithm GrpCandidateSet could be applied to enable
further efficiency.

5.3 Approximation algorithm ApprxGrp

A popular variant of facility dispersion problem [56,59]
attempts to discover a set of nodes (that host the facili-
ties) that are as far as possible, whereas, compact location
problems [29] attempt to minimize the diameter. For us,
the workers are the nodes, and Grp attempts to find a
worker group that minimizes the diameter, while satisfying
the multiple skills and a single cost constraint. We propose
a 2-approximation algorithm for Grp, that is not studied
before.

Algorithm ApprxGrp works as follows: The main algo-
rithm considers a sorted (ascending) list £ of distance values
(this list represents all unique distances between the available
worker pairs in the platform) and performs a binary search
over that list. First, it calls a subroutine (GrpDia) with a

@ Springer



10

H.Rahman et al.

Fig.3 An instantiation of
GrpDia(0.66) using the
example in Sect. 2. A star graph
centered u is formed

distance value « that can run at the most n times. Inside
the subroutine, it considers worker u; in the i-th iteration to
retrieve a star graph’ centered around u; that satisfies the
distance «. The nodes of the star are the workers, and the
edges are the distances between each worker pair, such that
no edge in that retrieved graph has an edge > «. One such
star graph is shown in Fig. 3.

Next, given a star graph with a set of workers U/,
GrpDia invokes GrpCandidateSet(l’, 1) to select a
subset of workers (if there is one) from U’, who together
satisfy the skill and cost thresholds. GrpCandidateSet
constructs the tree in the best-first-search manner and ter-
minates when the first valid solution is found, or no further
search is possible. If the cost values are further discretized,
then the tree is constructed accordingly, as described in
Sect. 5.2. This variant of ApproxGrp is referred to as
Cons-k-Cost-ApproxGrp.

Upon returning a non-empty subset{” of ', GrpCandi
datesSet terminates. Then, ApprxGrp stores that o and
associated U” and continues its binary search over £ for
a different «. Once the binary search ends, it returns that
U" which has the smallest « associated as the solution with
the diameter upper bounded by 2«, as long as the distance
between the workers satisfy the triangle inequality*. In case
GrpDia returns an empty worker set to the main function,
the binary search continues, until there is no more option in
L. If there is no such " that is returned by GrpDia, then
obviously the attempt to find a worker group for the task ¢
remains unsuccessful.

The pseudo-code of the algorithm ApprxGrp is pre-
sented in Algorithm 1. For the given task ¢ using the example
in Sect. 2, £ is ordered as follows: 0, 0.4, 0.66, 0.85, 1.0.
The binary search process in the first iteration consid-
ers « = 0.66 and calls GrpDia(a, {Q;, Vd;},C). In
the first iteration, GrpDia attempts to find a star graph
(referred to Fig. 3) with u; as the center of the star.
This returned graph is taken as the input along with
the skill threshold of ¢ inside GrpCandidateSetnext.
For our running example, subroutine GrpDia(0.66, 1.8,

3 Star graph is a tree on v nodes with one node having degree v — 1 and
other v — 1 nodes with degree 1.

4 Without triangle inequality assumption, no theoretical guarantee
could be ensured [59].
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Algorithm 1 Approximation Algorithm ApprxGrp

Require: 2/, human factors for ¢/ and task ¢

1: List £ contains all unique distance values in increasing order
2: repeat

3:  Perform binary search over £

4 For a given distance o, Y’ = GrpDia(, {Qi, Vdi}, C)
5. if U’ # (0 then

6 Store worker group U’ with diameter d < 2a.

7:  endif
8:
9:

until the search is complete
return " with the smallest d

Algorithm 2 Subroutine GrpDia
Require: Distance matrix of the worker set U/, distance «, task 7.

1: repeat
2:  for each worker u
3:  form a star graph centered at u, such that for each edge u, u,

dist(uu;j) < o.LetU’ be the set of workers in the star graph.
4 U" =GrpCandidateSet (U, t)
5:  if U” # ¢ then
6: return U”
7:  endif
8: until all n workers have been fully exhausted
9: return U =0

1.66, 1.4, 2.5) returns uy, us, u4, ug. Now notice, these 4
workers do not satisfy the skill threshold of task ¢ (which
are, respectively, 1.8, 1.66, 1.4 for the 3 domains.). There-
fore, GrpCandidateSet(U, t) returns false and GrpDia
continues to check whether a star graph centered around u;
satisfies the distance threshold 0.66. When run on the exam-
ple in Sect. 2, ApprxGrp returns workers uy, uz, uz, us, g
as the results with objective function value upper bounded
by < 2 x 0.66.

Theorem 3 Algorithm ApprxGrp has a 2-approximation
factor, as long as the distance satisfies triangle inequality.

Proof Algorithm ApprxGrp overall works as follows: it
sorts the distance values in ascending fashion to create a
list £ and performs a binary search over it. For a given dis-
tance value «, it makes a call to GrpDia(a). Recall Fig. 3
that forms a star graph centered on «] with GrpDia (0.66)
using the example in Sect. 2. Consider Fig. 4 and notice that
for a given distance value =«, the complete graph induced
by the star graph cannot have any edge that is larger than
2 X «, as long as the distance satisfies the triangle inequality
property. Therefore, when GrpDia(x) returns a non-empty
worker set (that only happens when the skill and cost thresh-
olds are satisfied), then, those workers satisfy the skill and
cost threshold with the optimization objective value of < 2.
Next, notice that algorithm ApprxGrp overall attempts to
return the smallest distance o’ for which GrpDia(a’) returns
anon-empty set, as it performs a binary search over the sorted
list of distance values (where distance is sorted in small-
est to largest). Therefore, any group of workers returned by
ApprxGrp satisfies the skill and cost threshold value and
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1

Fig.4 Aninstantiation of GrpDia(0.66) using the example in Sect. 2.
The clique involving u, u3, u4, ue cannot have an edge with distance
> 2 x (.66, due to the triangle inequality property

DiaDist(G) is at most 2-times worse than the optimal. Hence
the approximation factor holds. O

Lemma 1 Cons-k-Cost-ApproxGrp is polynomial.

Proof Under a constant number of k-costs, subroutine
GrpCandidateSet will accept a polynomial computa-
tion time of O(p + 1) at the worst case, where p is
the maximum number of workers in one of the k£ buckets
(p = O(n)).Subroutine GrpDia runs for all n workers at the
worst case, and there is a maximum number of log,| L] calls
to GrpDia from the main function (|£| = O(n?)). There-
fore, the asymptotic complexity of Cons-k-ApproxGrp
is O(n x logs| L] x (p 4+ 1)), which is polynomial. m|

5.4 Optimal algorithm OptGrp

Subroutine GrpCandidateSet leaves enough intuition
behind to design an instance optimal algorithm that works
well in practice. It calls subroutine GrpCandidateSet
with the actual worker set I/ and the task 7. For OptGrp, the
tree is constructed in depth-first-fashion inside GrpCandi
dateSet and all valid solutions from the subroutine are
returned to the main function. The output of OptGrp is that
candidate set of workers returned by GrpCandidateSet
which has the smallest largest edge. When run on the exam-
ple in Sect. 2, this OptGrp returns G = {uy, uz, us, us, up}
with objective function value 1.0.

Furthermore, when workers wages are discretized into k
buckets, OptGrp could be modified as described in Sect. 5.2
and is referred to as Cons-k-Cost-OptGrp.

Theorem 4 Algorithm OptGrp returns optimal answer.

Proof Algorithm OptGrp invokes the subroutine GrpCan
didateSet. Notice that GrpCandidateSet operates
in the spirit of the branch-and-bound technique [47] to
efficiently explore the search space and avoid unneces-
sary computations. GrpCandidateSet exploits the upper

bound of cost and lower bound of skill to prune out all unnec-
essary branches of the search tree, as shown in Figs. 1 and 2.
However, this subroutine returns all valid worker groups
to OptGrp, and then, the main function selects the group
with the smallest longest edge (i.e., smallest diameter value),
and minimizes the objective function. Therefore, OptGrp is
instance optimal, i.e., it returns the group of workers with
the smallest diameter distance, while satisfying the skill and
cost threshold. Therefore, OptGrp returns optimal answer.

O

Lemma 2 Cons-k-Cost-OptGrp is polynomial.

Proof Under a constant number of k-costs, subroutine
GrpCandidateSet will accept a polynomial computation
time of O(n + 1)"X at the worst case. Once the subroutine
returns all valid answers, the main function will select the
one that has the smallest diameter. Therefore, the computa-
tion time of Cons-k-Cost-OptGrp is dominated by the
computation time of the subroutine GrpCandidateSet.
Therefore, Algorithm Cons — k — OptGrp runs in polyno-
mial time of O((p 4+ 1)k, o

6 Enforcing upper critical mass: SPLT

When Grp results in a large unwieldy group G that may
struggle with collaboration, it needs to be partitioned fur-
ther into a set of subgroups in the Splt phase to satisfy
the upper critical mass (K) constraint. At the same time,
if needed, the workers across the subgroups should still be
able to effectively collaborate. Precisely, these intuitions are
further formalized in the Sp1t phase.

Definition2 Splt: Given a group G, decompose it into
a disjoint set of subgroups (Gi, Ga,...,Gy) such that
VilGil < K, Y ;1G;i| = |G| and the aggregated all pair
inter-group distance EVG,-, G/_EgSumInterDist(G i» Gj)ismin-
imized. '

Theorem 5 Problem Splt is NP-hard.

Proof Given a group G, an upper critical mass constraint
K, and a real number X, the decision version of the Splt
is whether G can be decomposed into a set of subgroups
such that the aggregated distances across the subgroups is
X and the size of each subgroup is < K. The membership
verification of Splt is clearly polynomial.

To prove NP-hardness, we reduce the Minimum
Bisection [33] which is known to be NP-hard to an
instance of Splt problem.

Given a graph G(V, E) with nonnegative edge weights
the goal of Minimum Bisection problem is to create 2 non-
overlapping partitions of equal size, such that the total weight
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of cut is minimized. The hardness of the problem remains,
even when the graph is complete [33].

Given a complete graph with n’ nodes, the decision version
of the Minimum Bisection problem is to see whether
there exists a 2 partitions of equal size, such that the total
weight of the cut is X’. We reduce an instance of Minimum
Bisectiontoaninstanceof Splt asfollows: the complete
graph represents the set of workers with nonnegative edges
as their distance and we wish to decompose this group to
two subgroups, where the upper critical mass is set to be
K = n’/2. Now, the objective is to form the subgroups with
the aggregated inter-distance of X’, such that there exists a
solutiontotheMinimum Bisection problem,ifandonly
if, a solution to our instance of Splt exists. O

Proposed algorithm for splt Since the ILP for Splt can
be very expensive, our primary effort remains in designing an
alternative strategy that is more efficient, that allows provable
bounds on the result quality. We take the following overall
direction: imagine that the output of Grp gives rise to a large
group G with n’ workers, where n’ > K. First, we determine
the number of subgroups x and the number of workers in each
subgroup G;. Then, we attempt to find an optimal partitioning
of the n” workers across these x subgroups that minimizes
the objective function. We refer to this as Sp1tBOpt which
is the optimal balanced partitioning of G. For the running
example in Sect. 2, this would mean creating 2 subgroups,
G1 and G», with 3 workers in one and the remaining 2 in
the second subgroup using the workers up, us, u3, us, ug,
returned by ApprxGrp.

For the remainder of the section, we investigate how to
find Sp1tBOpt. There are intuitive as well as logical reasons
behind taking this direction. Intuitively, lower number of sub-
groups gives rise to overall smaller objective function value
(note that the objective function is, in fact, 0 when x = 1).
More importantly, as Lemma 3 suggests, under certain con-
ditions, Sp1tBOpt gives rise to provable theoretical results
for the Splt problem. Finding the approximation ratio of
SpltBOpt for an arbitrary number of partitions is deferred
to future work.

Lemma 3 SpltBOpt has 2-approximation for the Splt
problem, if the distance satisfies triangle inequality, when
x=[%l=2

Proof Sketch: For the purpose of illustration, imagine that
a graph with n’ nodes is decomposed into two partitions.
Without loss of generality, imagine partition-1 has n1 nodes
and partition-2 has n, nodes, where n| + ny = n’ with total
weight of w’. Let K be the upper critical mass and assume
that K > ny, K > ny. For such a scenario, SpltBOpt
will move one or more nodes from the lighter partition to the
heavier one, until the latter has exactly K nodes. (If both par-
titions have the same number of nodes, then it will choose
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Fig. 5 Balanced partitioning in Sp1tBOpt when the distance satis-
fies triangle inequality for a graph with 6 modes. The left-hand side
figure has two partitions({a, b, c}, {d, e, f}) with 3-nodes in each (red
nodes create one partition and blue nodes create another). The intra-
partition edges are drawn solid, whereas, inter-partition edges are drawn
as dashed. Assuming K = 4, in the right-hand side figure, node d is
moved with a, b, c. This increases the overall inter-partition weights,
but is bounded by a factor of 2 (color figure online)

the one which gives rise to overall lower weight.) Notice,
the worst case happens, when some of the intra-edges with
higher weights now become inter-edges due to this balanc-
ing act. Of course, some inter-edges also get knocked off and
becomes intra-edges. It is easy to notice that the number of
inter-edges that get knocked off is always larger than the num-
ber of inter-edges added (because the move is always from
the lighter partition to the heavier one). The next argument
we make relies heavily on the triangle inequality property.
At the worst case, every edge that gets added due to balanc-
ing could at most be twice the weight of an edge that gets
knocked off. Therefore, an optimal solution of SpltBOpt
has 2-approximation factor for the Sp1lt problem.

An example scenario of such a balancing is illustrated in
Fig. 5, where n1 = np = 3, K = 4. Notice that after this
balancing, three inter-edges get deleted (ad,bd,cd), each of
weight o and two inter-edges get added, where each edge is
of weight 2«.. However, the approximation factor of 2 holds,
due to the triangle inequality property. O

Even though the number of subgroups (aka partitions) is
{%1 with K workers in all but last subgroup, finding an
optimal assignment of the n” workers across those subgroups
that minimize the objective function is NP-hard. The proof
uses an easy reduction from [23]. We start by showing how
the solution to theSpl tBOpt problem could be bounded by
the solution of a slightly different problem variant, known as
Min-Star problem [23].

Definition 3 Min-Star Problem: Given a group G with n’
workers, out of which each of x workers (uy, us, ..., uy),
represents a center of a star subgraph (each subgraph stands
for a subgroup), the objective is to partition the remaining
n’ — x workers into one of these x subgroups G1, G, ..., Gy
suchthathzl kidist(u;,Uj+G;)+ Zi<j kikjdist(u;,u;)
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Algorithm 3 Algorithm Min-Star-Partition

Require: Group G with n’ workers and upper critical mass K
1x =12

2: for all subset {uq,...,u,} C G do

3:  Find optimal subgroups {G1, ..., G} for {uy, ...

mulating it as transportation problem

4:  Evaluate objective function for {G1, ..
5: end for

6: return subgroups {G1, ..

, Uy} by for-
. Gy}

., G} with least objective function

is minimized, where k; is the total number of workers in sub-
group G;.

Intuitively, Min-Star problem seeks to decompose the

worker set into x subgroups, such that u; is the center of a star
graph for subgroup G;, and for a fixed set of such workers
{ur,us, ..., uy}, the contribution of u; to the objective func-
tion is proportional to the sum of distances of a star subgraph
rooted at u;.
Solving Min-Star Algorithm Min-Star-Partition
The pseudo-code is listed in Algorithm 3 and additional
details can be found in [23]. The key insight behind
this algorithm is the fact that for a fixed set of work-
ers {ui,u»,...,uy}, the second term of the objective
function Zi< j kik;jdist(u;,u;) is a constant. Furthermore,
this expression could only take (')’C,) distinct values corre-
sponding to all possible combination of how the workers
{u1,us, ..., u,} are chosen from the group G with n” work-
ers. Hence for a fixed set of workers, the objective now
reduces to finding optimal subgroup G, ..., G, that min-
imizes the first expression. Interestingly, this expression
corresponds exactly to a special case of the popular trans-
portation problem [21] that could be solved optimally with
time complexity O(n") [23]. We refer to [23] for further
details.

Finally, the objective function of the Sp1tBOpt is com-
puted on the optimal partition of each instance of the
transportation problem, and the one with the least value is
returned as output. When run using G = {u1, u2, u3, us, ug}
from ApprxGrp, this algorithm forms subgroups G| =
{u1, uz, us}and Go = {u3, ue} with objective function value
3.89.

Theorem 6 Algorithm for Min-Star-Partition has a
3-approximation for Sp1tBOpt problem.

Proof Sketch: This result is a direct derivation of the previ-
ous work [23]. Previous work [23] shows that Min-Star-
Partition obtains a 3-approximation factor for the
Minimum k-cut problem. Recall that SpltBOpt is
derived from Minimum k-cut by setting each partition
size (possibly except the last one) to be equal with K nodes,
giving rise to a total number of (’%1 partitions. After that, the
result from [23] directly holds. O

Lemma4 Min-Star-Partition is polynomial.

Proof It can be shown that Min-Star-Partition takes
O (n**1) time, as there are O (n’*) distinct transportation
problem instances (corresponding to each one of (';/) combi-
nations), and each instance can be solved in O (n”) [23] time.
Since x is a constant, therefore, the overall running time is

polynomial. O

7 Discussion

Skill aggregation functions A skill aggregation function com-
putes the overall contribution of a group from the skills of
its individual workers. In this paper, we primarily focused
on Sum aggregation function where the contribution of the
group is simply the sum of the skills of its members. While
Sum is one of the most widely used aggregation function,
it is not the only one. Other options include Max, Min, and
many other complex aggregation functions.

Sum is typically used when the contribution of the group
can be approximated by the sum of the contributions of indi-
vidual workers. For example, the score of a team in most
sports is often the sum of the score of individual players
(shoots, blocks, runs, etc.). The number of images labeled by
a group is the sum of images labeled by individual members
and so on. Max is often a good approximation for com-
plex problem-solving tasks. In many creative tasks such as
research, the insight from the most creative person often sets
the overall quality of the task. For example, often it is not pos-
sible for multiple high school students to solve a grad school
level problem. Min is often used for competitive games/tasks.
For example, in a team-based game where the score of the
team is proportional to its slowest member, Min is often a
good aggregation function.

Submodular aggregation functions could be used to model
the diminishing returns property inherent in many real-
world tasks. Often, adding a new team member has a higher
marginal utility when added to a smaller team than to a larger
team. Common examples include inverse and exponential
decay functions. Of course, one could also use many other
arbitrarily complex functions.

Note that our staged approach can be readily extended to
different types of the aggregation function, primarily because
we optimize only on affinity and keep skill and cost as
constraints. In other words, the algorithms and their corre-
sponding theoretical guarantees rely on whether the intra-
and inter-group distances satisfy the metric property. One
could use any mechanism to verify if the skill of a worker
group satisfies a task’s quality constraints.

We describe how our methods can be adapted for
Max aggregation. Consider the instance optimal algorithm
OptGrp. It works by computing the lower bound of cost
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and upper bound of skill for a given path and uses it for sys-
tematic pruning. This does not require any change to handle
Max aggregation. The approximate algorithm ApprxGrp
repeatedly calls subroutine GrpCandidateSet (used for
solving OptGrp) with different bounds on the maximum
intra-group distance, thereby requiring no change. Finally,
consider the Splt algorithm that assumes that the chosen
group already satisfies the skill constraints. The algorithm
operates by only considering the inter-group distances that
are needed for transforming it into a transportation problem.
Once again, no change is necessary for handling Max aggre-
gation.

Task quality and worker skills In this paper, we considered
a simple setting where the relationship is one-to-one and the
Sum aggregation function is used to measure the contribu-
tion of a group. In other words, task quality is computed as
the sum of the workers’ skills. However, there could be a
complex relationship between worker skills and task qual-
ity. One could use arbitrary functions that take into account
other worker/task characteristics. These could be worker cen-
tric (such as motivation, autonomy, etc.), task centric (such as
novelty, diversity, meaningfulness) or group centric (such as
affinity with other workers). One could use graphical models,
such as Bayesian Networks, to represent such relationship.
It is an open problem to study the impact of these factors on
task assignment for collaborative crowdsourcing. Note that
algorithms from the staged approach are oblivious to how
one determines if the skill constraints of a task are satis-
fied.

Critical mass In our paper, we consider upper critical
mass as a hard constraint that must be satisfied. There are
a number of real-world applications where this constraint is
meaningful. For example, citizen science applications, typ-
ically constrain the group size to limit the infrastructure
cost and other resource usages. Group travel applications
would like to limit the group size as the number of avail-
able seats is limited. Finally, in many games (educational
or otherwise), the number of players is usually put as
hard constraints. As we showed in our complexity analysis,
task assignment even for this restricted setting is challeng-
ing.

There are a number of ways to relax this constraint. One
relatively straightforward way is to design a skill aggrega-
tion function that is aware of the group size. Aggregation
functions that exhibit diminishing returns are a natural pos-
sibility where adding a new member to a smaller group
provides higher marginal utility than adding to a larger group.
Under this setting, we can readily remove the size con-
straint from our optimization formulation and simply use
just the Grp stage to identify the group that minimizes
the intra-group distance that also satisfies the task require-
ments.
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8 Experiments

We describe our real and synthetic data experiments to
evaluate our algorithms next. The real-data experiments
are conducted on Amazon Mechanical Turk(AMT). The
synthetic-data experiments are conducted using a parame-
terizable crowd simulator.

8.1 Real-data experiments

Two different collaborative crowdsourcing applications are
evaluated using AMT: i) Collaborative Sentence Translation
(CST), ii) Collaborative Document Writing (CDW).

Workers A pool of 120 workers participate in the sentence
translation study, whereas, a different pool of 135 workers
participate in the second one. Hired workers are directed to
our website where the actual tasks are undertaken.

Pairwise affinity calculation Designing complex person-
ality test [54] to compute affinity is beyond the scope of this
work. We instead choose some simple factors to compute
affinity that has been acknowledged to be indicative factors
in prior works [70]. We calculate affinity in two ways—1)
Affinity-Age: age-based calculation discretizes work-
ers into different age buckets and assigns a value of 1 to a
worker pair if they fall under the same bucket, 0 otherwise.
2) Affinity-Region: assigns a value of 1, when two
workers are from the same country and 0 otherwise.

Evaluation criteria—The overall study is designed to
evaluate: (1) effectiveness of the proposed optimization
model, (2) effectiveness of affinity calculation techniques,
and (3) effect of different upper critical mass values.

Algorithms We compare our proposed solution with other
baselines: (1) To evaluate the first criteria, we use the ILP
described in Sect. 4 against an alternative Af f-Unaware
Algorithm [61]. The latter assigns workers to the tasks con-
sidering skill and cost butignoring affinity. Since, ILP outputs
optimal task assignment, we refer to this as Optimal(2)
Optimal-Affinity-Age and Optimal-Affinity
-Region are two variants of Optimal that use two
different affinity calculation methods (Affinity-Age
and Affinity-Region, respectively) and are compared
against each other to evaluate the second criteria. (3)
CrtMass-Optimal-K assigns workers to tasks based on
the optimization objective and varies different upper critical
mass values K, which are also compared against each other
for different K.

Overall user-study design The overall study is conducted
in 3-stages: (1) Worker Profiling: in stage-1, we hire work-
ers and use pre-qualification tests using “gold-data” to learn
their skills. We also learn other human factors as described
next.(2) Worker-to-task Assignment: in stage-2, a subset of
these hired workers are re-invited to participate, where the
actual collaborative tasks are undertaken by them.(3) Task
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Evaluation: in stage-3, completed tasks are crowdsourced
again to evaluate their quality.

Summary of results There are several key takeaways
from our user-study results. First and foremost, effective
collaboration is central to ensuring high-quality results
for collaborative complex tasks. We evaluated 2 differ-
ent affinity computation models, and the results show that
the people from the same region collaborate more effec-
tively than people in same age-group. Interestingly, upper
critical mass also has a significance in collaboration effec-
tiveness, consequently, in the quality of the completed
tasks. Quality increases from K = 5 to K = 7, but it
decreases with statistical significance when K = 10 for
CrtMass-Optimal-10.

8.1.1 Stage 1: worker profiling

We hire two different sets of workers for sentence translation
and document writing. The workers are informed that a subset
of them will be invited (through email) to participate in the
second stage of the study.

Skill learning for sentence translation We hire 60 workers
and present each worker with a 20 second English video clip,
for which we have the ground truth translation in 4 differ-
ent languages: English, French, Tamil, Bengali. We then ask
them to create a translation in one of the languages (from the
last three) that they are most proficient in. We measure each
worker’s individual skill using Word Error Rate(WER) [42].

Skill learning for document writing For the second study
CDW, we hire a different set of 75 workers. We design a
“gold-data” set that has 8 multiple choice questions per task,
for which the answers are known (e.g., for the MOOCS topic
in Table 4—one question was, “Who founded Coursera?”).
“The first smart phone was manufactured by: with possible
answers: (a) Nokia, (b) Samsung, (c) Ericsson). The skill of
each worker is then calculated as the percentage of her correct
answers. For simplicity, we consider only one skill domain
for both applications.

Wage expectation of the worker We explicitly ask a ques-
tion to each worker on their expected monetary incentive,
by giving them a high-level description of the tasks that are
conducted in the second stage of the study. Those inputs are
recorded and used in the experiments.

Affinity of the workers Hired workers are directed to our
website, where they are asked to provide 4 simple socio-
demographic information: gender, age, region, and highest
education. Workers anonymity is fully preserved. From
there, the affinity between the worker is calculated using,
Affinity-AgeorAffinity-Region.

Figures 6 and 7 contain detailed workers profile distribu-
tion information.

Table 4 Description of different tasks; the default upper critical mass
value is 5

Task name Skill Cost Critical mass
CST1—Destroyer 3.0 $5.0 5,7,10
CST2—German Weapons 4.0 $5.0 5,7, 10
CST3—British Aircraft 3 $4.5 5,7,10
CDWI1—MOOCs 5 $3 5,7, 10
CDW2—Smartphone 5 $3 5,7, 10
CDW3—top-10 places 5 $3 5,7,10

Default affinity calculation is region based

8.1.2 Stage 2: worker-to-task assignment

Once the hired workers are profiled, we conduct the second
and most important stage of this study, where the actual tasks
are conducted collaboratively.

Collaborative Sentence Translation(CST): We carefully cho-
ose three English documentaries of suitable complexity and
length of about 1 minute for creating subtitle in three different
languages—French, Tamil, and Bengali. These videos are
chosen from YouTube with titles: (1) Destroyer, (2) German
Small Weapons, (3)British Aircraft TSR2.

Collaborative Document Writing (CDW): Three different
topics are chosen for this application: 1) MOOCS and its evo-
lution, 2) Smart Phone and its evolution, 3) Top-10 places to
visit in the world.

The skill and cost requirements of each task are described
in Table 4. These values are set by involving domain
experts and discussing the complexity of the tasks with
them.

Collaborative Task Assignment for CST We set up 2

different worker groups per task and compare two algo-
rithms Optimal-CST and Aff-Unaware-CST to eval-
uate the effectiveness of the proposed optimization model.
We set up additional 2 different worker groups for each
task to compare Optimal-Affinity-Region with
Optimal-Affinity-Age. Finally, we set up 3 addi-
tional groups per task to compare the effectiveness of
upper critical mass and compare CrtMass-Optimal-5,
CrtMass-Optimal-7, CrtMass-Optimal-10. This
way, a total of 15 groups are created. We instruct the
workers to work incrementally using other group mem-
bers contribution and also leave comment as they fin-
ish the work. These sets of tasks are kept active for 3
days.
Collaborative Task Assignment for CDW An similar strat-
egy is adopted to collaboratively edit a document within 300
words, using the quality, cost, and upper critical mass values
of the document editing tasks, as described in Table 4.
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8.1.3 Stage 3: task evaluation

Collaborative tasks, such as knowledge synthesis, are often
subjective. An appropriate technique to evaluate their quality
is to leverage the wisdom of the crowds. This way a diverse
and large enough group of individuals can accurately evalu-
ate information to nullify individual biases and the herding
effect. Therefore, in this stage, we crowdsource the task eval-
uation for both of our applications.

For the first study of Sentence Translation (CST), we have
taken 15 final outcomes of the translation tasks as well as the
original video clips and then set up as 3 different HITs in
AMT. The first HIT is designed to evaluate the optimiza-
tion model, the second one to evaluate two different affinity
computation models, and the final one to evaluate the effec-
tiveness of upper critical mass. We assign 20 workers in
each HIT, totaling 60 new workers. We evaluate the com-
pleted tasks in two quality dimensions, as identified by prior
work [70]—1. Correctness of the translation. 2. Complete-
ness of the translation. The workers are asked to rate the
quality on a scale of 1 — 5 (higher is better) without knowing
the underlying task production algorithm. Then, we average
these ratings which are similar to obtaining the viewpoint
of an average reader. The CST results of different evaluation
dimensions computed by human raters are presented in Fig. 8.
We also evaluated our approach using automated measures
such as BLEU score whose results are found in Table 5.

A similar strategy is undertaken for the CDW applica-
tion, but the quality is assessed using 5 key different quality
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aspects, as proposed in prior work [10]. The results are sum-
marized in Table 6. Both these results indicate that, indeed,
our proposed model successfully incorporates different ele-
ments that are essential to ensure high quality in collaborative
crowdsourcing tasks.

8.2 Synthetic data experiments

The purpose of this experiment is to show that our proposed
algorithms perform well both qualitatively and efficiently.
Besides evaluating the algorithms for our staged solution
Grp&Splt, we also evaluate the algorithms for the grp
stage. This will help us illustrate the fact that our algorithms
for Grp create effective collaborative groups. This is also
essential for the performance of Splt stage.

We conduct our synthetic data experiments on an Intel
core I5 with 6 GB RAM. We use IBM CPLEX 12.5.1 for the
ILP. A crowd simulator is implemented in Java to generate
the crowdsourcing environment. All numbers are presented
as the average of three runs.

Simulator parameterization The simulator parameters pre-
sented below are chosen akin to their respective distributions,
observed in our real AMT populations.

1. Simulation Period—We simulate the system for a time
period of 10 days, i.e., 14400 simulation units, with each
simulation unit corresponding to 1 minute. With one task
arriving in every 10 minutes, our default setting runs 1
day and has 144 tasks.
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Fig. 8 Stage 3 results of sentence translation Collected data with sta-
tistical significance (standard error) is presented. These results clearly
corroborate that our affinity-aware optimization model Opt imal-CST
outperforms its affinity-unaware counterpart [42] with statistical signifi-
cance across both quality dimensions. Optimal-Affinity-Region
appears to outperform Optimal-Affinity-Age in “correctness.”

Table 5 BLEU score of sentence translation average BLEU score of
Optimal-Affinity-Age and Optimal-Affinity-Region
considering three different sentence translation tasks in Bengali

Algorithm BLEU score
Optimal-Affinity-Age 0.30
Optimal-Affinity-Region 0.28
Aff-Unaware 0.26

These results are comparable to each other, and the difference is not
statistically significant

2. # of Workers—default is 100, but we vary |U/| up to 5000
workers.
3. Workers skill and wage—The variable ug, in skill d;

receives a random value from a normal distribution with

Average Rating

Translation Language

‘The destroyers are among the fastest and most deadly worships
ever built. Mounting a powerful ? of offensive and defensive

English

4.4 weapons, they can serve equally well as escorts for other vessels
i CrtMass-5 & CrtMass-7 « CrtMass-10 more in form of a ? in their own right.

42 Les destroyers sont parmi les plus rapides et les plus meurtriéres | French

jamais construits. Montage d'un ? puissant offensives et
4 défensives, ils peuvent tout aussi bien servir d'escortes pour les

autres navires. Au début, les navires étais congus exclusivement

38 1 pour détruire les bateaux ?.

36 Les destructeurs sont parmi les plus rapides et les plus meurtriers | French
jamais construits. Montage d'un puissant arsenal d'armes

34 défensives et offensives, ils peuvent tout aussi bien servir
d'escorte aux autres navires, plus sous forme de (formidable

3.2 navire d'attaque?) dans leur propre droit. Au début, les navires
€taient congus exclusivement pour détruire les bateaux Paxon.

Correctness Completeness
(© (d)

The results of CrtMass-Optimal-10 clearly appears to be less effec-
tive than the other two, showing some anecdotal evidence that group
size is important in collaborative crowdsourcing applications. a Opti-
mization model, b affinity calculation, ¢ upper critical mass, d a French
translation sample

the mean set to 0.8 and a variance 0.15. Worker’s wages
are also set using the same normal distribution.
. Task profile—The task quality Q;, as well as cost C, is
generated using normal distribution with specific mean
15 and variance 1 as default. Unless otherwise stated,
each task has a skill.
Distance—Unless otherwise stated, we consider distance
to be metric and generated using Euclidean distance.
Upper Critical Mass—the default value is 7.
Worker Arrival, Task Arrival—By default, both workers
and tasks arrive following a Poisson process, with an
arrival rate of = 5/min 1/10 min, respectively.

Implemented algorithms Here we first describe the algo-
rithms for Grp stage.

Table 6 Stage 3 results of document writing application in Sect. 8.1: quality assessment on the completed tasks of stage-2 is performed by a new

set of 60 AMT workers on a scale of 1-5

Average rating

Task Algorithm Completeness Grammar Neutrality Clarity Timeliness Added-value

MOOCs Optimal-CDW 4.6 4.5 43 43 4.3 3.7
Af f-Unaware-CDW 4.1 4.2 4.2 39 39 3.0
CrtMass-Optimal-10 4.0 4.1 4.2 3.9 3.9 3.5

Smartphone Optimal 4.8 4.6 4.7 4.1 4.2 4.2
Aff-Unaware 4.1 4.1 4.2 4.2 39 33
CrtMass-Optimal-10 4.0 3.9 3.8 4.1 3.9 33

Top-10 places Optimal 4.4 4.2 4.3 4.2 4.3 4.3
Aff-Unaware 39 3.8 3.7 3.6 33 29
CrtMass-Optimal-10 3.9 4.0 4.1 4.0 3.9 3.9

For all three tasks, the results clearly demonstrate that effective collaboration leads to better task quality. Even though all three groups (assigned to
the same task) surpass the skill threshold and satisfy the wage limit, however, our proposed formalism Opt imal enables better team collaboration,

resulting in higher quality of articles
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1. ApprxGrp We implement the algorithm ApprxGrp,
described in Sect. 5.3.

2. Cons-k-AG This is a variant of the algorithm Apprx

Grp referred to as Cons-k-cost-ApprxGrp,

described in Sect. 5.3. We set the number of cost buckets

k to 15.

GrpILP An ILP designed for Grp stage only.

4. OptGrp This is an optimal algorithm that is similar to
GrpILP both in terms of quality and efficiency. Hence,
we decided to omit the results for OptGrp.

5. RandGrp We also design an affinity-unaware algorithm
that finds a set of workers who satisfy skill and cost
threshold, but does not optimize affinity.

»

Here are the list of algorithms for Grp&Splt

1. Overall-ILP AnILP, as described in Sect. 4.

2. Grp&Splt Uses Cons-k- AG for Grp and Min-
Star-Partition for Splt.

3. RandGrp&GrdSplt Analternative implementation. In
phase-1, we use RandGrp. In phase-2, we partition users
greedily into most similar subgroups satisfying upper
critical mass constraint.

6. No implementation of existing related work Due to upper
critical mass constraint, we intend to form a group, fur-
ther partitioned into a set of subgroups, whereas no prior
work has studied the problem of forming a group along
with subgroups, thereby making our problem and solu-
tion unique.

Summary of results Our synthetic experiments also exhibit
many interesting insights. First and foremost, Grp&Splt
is a reasonable alternative formulation to solve AffAware
-Crowd, both qualitatively and efficiency-wise, as Overall
-ILP is not scalable and does not converge for more than 20
workers. Second, our proposed approximation algorithms for
Grp&Splt are both efficient as well as effective, and they
significantly outperform other competitors. Finally, our pro-
posed formulation Af fAware-Crowd is an effective way
to optimize complex collaborative crowdsourcing tasks in a
real-world setting. We first present the overall quality and
scalability of the combined Grp&Splt, followed by that of
Grp individually.

8.2.1 Quality evaluation

We present the quality evaluations next.

Grp&Splt quality The average of overall objective function
value, which is the sum of DiaDist(G) and aggregated all
pair SumInter Dist() across the subgroups, is evaluated and
presented as mean objective function value for 144 tasks.
Overall-ILP does not converge beyond 20 workers.
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Varying # of Workers Figure 9 shows the results, with mean
skill=15 and variance=1, demonstrating that Grp&Sp1 t out-
performs RandGrp&GrdSplt in all the cases, while being
very comparable with Overall-ILP.

Varying tasks mean skill With varying mean skill (cost is
proportional to skill), Fig. 10 demonstrates that the objective
function gets higher (hence worse) for both the algorithms, as
skill/cost requirement increases, while Grp&Splt outper-
forms RandGrp&GrdsSplt. This intuitively is meaningful,
as with increasing skill requirement, the generated group is
large, which decreases the workers cohesiveness further.
Varying critical mass As Fig. 11 shows, with increasing upper
critical mass, quality of both solutions increases, because the
aggregated inter-distance across the partition gets smaller due
to less number of edges across.

Varying simulation period In Fig. 12 simulation period
is varied, where both workers and tasks arrive based
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on Poisson process. Grp&Splt convincingly outperforms
RandGrp&GrdSplt in this experiment.

Grp phase quality The objective function is the average
DiaDist () value.

Varying Task Mean Skill Figure 13 demonstrates that,
although ApprxGrp and Cons-k-AG are 2-times worse
than optimal theoretically, but in practice, it is as good as
optimal. GrpILP.

Varying Simulation Period Figure 14 demonstrates, that, as
more workers are active in the system GrpILP cannot con-
verge. Hence, we cannot get the results for GrpILP beyond
day-2. But, ApprxGrp and Cons-k-AG works fine and
achieves almost optimal result.

8.2.2 Efficiency evaluation

In this section, we demonstrate the scalability aspects of our
proposed algorithms and compare them with other compet-
itive methods by measuring the average completion time
of a task. Like above, we first present the overall time for
Grp&Splt phase, then followed by Grp phase.

Grp&Splt efficiency varying # workers: Figure 15 demon-
strates that our solution Grp&Splt is highly scalable,
whereas, Overall-ILP fails to converge beyond 20 work-
ers. RandGrp&GrdSplt is also scalable (because of the
simple algorithm in it), but clearly does not ensure high qual-
ity.

Varying task mean skill Akin to previous result, Grp&Splt
and RandGrp&GrdSplt are both scalable, Grp&Splt
achieves higher quality. We omit the chart for brevity.
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Varying upper critical mass As before, increasing upper crit-
ical mass leads to better efficiency for the algorithms. We
omit the chart for brevity.

Varying simulation period Figure 16 demonstrates that
Grp&Splt is highly scalable in a real crowdsourcing envi-
ronment, where more and more workers are entering into the
system. The results show that RandGrp&GrdSplit is also
scalable (but significantly worse in quality). But as number of
worker increases, efficiency decreases, for both, as expected.

Grp phase efficiency We evaluate the efficiency of Apprx
Grp by returning mean completion time for 144 tasks.
Varying task mean skill As Fig. 17 demonstrates, ApprxGrp
outperforms GrpILP significantly. As expected, Cons
-k-AG is more efficient than ApprxGrp since it bucketizes
the cost values. With higher skill threshold, the difference
between RandGrp and our algorithms becomes even more
noticeable.

Varying simulation period Figure 18 shows the average task
completion time in each day for ApprxGrp, Cons-k-AG,
GrpILP, RandGrp. Clearly, GrpILP is impractical to use
as more workers arrive in the system.
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9 Related work

We discuss how our work is different from a few existing
works that discuss the challenges in crowdsourcing complex
tasks, as well as traditional team formation problems.

There has been extensive work in the database commu-
nity to tackle many of the data management challenges in
crowdsourcing [48]. Many key tasks in databases such as data
collection, filtering, top-K, skyline and other analytic tasks
have been done through crowdsourcing. For an exhaustive
list, please refer to [48,49,52].

Crowdsourcing complex tasks This type of human-based
computation [2,38,39] handles tasks related to knowledge
production, such as article writing, sentence translation, cit-
izen science, and product design. These tasks are conducted
in groups, are less decomposable compared to microtasks
(such as image tagging) [22,28], and the quality is measured
in a continuous, rather than binary scale.

A number of crowdsourcing tools are designed to solve
application-specific complex tasks. Soylent uses crowdsourc-
ing inside a word processor to improve the quality of a written
article [6]. Legion, a real-time user interface, enables inte-
gration of multiple crowd workers input at the same time
[46]. Turkit provides an interface to a programmer to use
human computation inside their programming model [50]
and avoids redundancy by using a crash and return model
which uses earlier results from the assigned tasks. Jabber-
wocky is another platform which leverages social network
information to assign tasks to workers and provides an easy-
to-use interface for the programmers [1]. CrowdForge divides
complex task into smaller sub-tasks akin to map-reduce
fashion [40]. Turkomatic introduces a framework in which
workers aid requesters to break down the workflow of a com-
plex task and thereby aiding to solve it using systematic steps
[43].

The common aspect of these works is that they study the
problem of decomposing a complex task into simpler tasks,
which can be solved by independent workers. On the con-
trary, we focus on optimization-based task assignment for
a complex task which may not be indivisible. A prelimi-
nary work discusses modular team structures for complex
crowdsourcing tasks, detailing, however, more on the appli-
cation cases, and not on the computational challenges [13].
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One prior work investigates how to assign workers to the
task of knowledge intensive crowdsourcing [61] and its com-
putational challenges. However, this former work neither
investigates the necessity nor the benefit of collaboration.
Consequently, the problem formulation and the proposed
solutions are substantially different from the one studied
here. We initiate the study of task assignment optimization
in collaborative tasks in [57]. Crowd4u, an academic crowd-
sourcing platform, effectively integrate our previous work
in their framework [26]. The effectiveness of collaborative
teams drawn from the online labor marketplaces for solving
innovative tasks is studied in [9]. Estimation of human fac-
tors (such as skill or expertise) in complex tasks is studied
in [55,58]. These works justify our modeling for consider-
ing social interaction variables such as affinity and individual
human factors. Recently, there has been work on important
aspects of collaborative crowdsourcing such as rapidly iden-
tifying workers [68]. There are also a number of works on
designing effective collaborative crowdsourcing approaches
for specific tasks such as prototype design [64], fiction writ-
ing [37], creative tasks [36] and so on. [62] studies the
problem of ensuring repeated and familiar crowd teams using
sophisticated approaches. Note that each of these papers is
orthogonal to our efforts and our algorithms can be used to
improve the task assignment of any of these works.

Automated team formation Although tangentially related
with crowdsourcing, automated team formation is widely
studied in computer-assisted cooperative systems. [45] forms
a team of experts in social networks with the focus on min-
imizing coordination cost among team members. Although
their coordination cost is akin to our affinity, unlike us, the
former does not consider multiple skills. Team formation to
balance workload with multiple skills is studied later on in [3]
and multi-objective optimization on coordination cost and
balancing workload is also proposed [4,51], where coordina-
tion cost is posed as a constraint. Density-based coordination
is introduced in [17], where multiple workers with similar
skill are required in a team, such as ours. Formation of team
with a leader (moderator) is studied in [30]. Minimizing both
communication cost and budget while forming a team is first
considered in [31,32]. The concept of pareto optimal groups
related to the skyline research is studied in [31].

While several elements of our optimization model are
actually adapted from these related work, there are many
stark differences that preclude any easy adaptation of the
team formation research to our problem. Unlike us, none of
these works considers upper critical mass as a group size
constraint, that forms a group of multiple subgroups, which
makes the former algorithms inapplicable in our settings.
Additionally, none of these prior work studies our problem
with the objective to maximize affinity with multiple skills
and cost constraints. In [12], authors demonstrate empirically
that the utility is decreased for larger teams which vali-
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date our approach to divide a group into multiple subgroups
obeying upper critical mass. However, no optimization is
proposed to solve the problem. Recently, there has also been
interesting work in spatial crowdsourcing and team forma-
tion [18,19,67]. [67] uses a microtask scenario where each
worker works independently and does not require collabo-
rative team formation. Furthermore, they seek to adopt an
algorithm based on maximum weighted bipartite matching.
This graph structure cannot handle team centric human fac-
tors such as worker—worker affinity. In contrast, our work
tries to ensure that task assignment objective function is cog-
nizant of the worker—worker affinity through worker affinity
graph to identify cliques that satisfy some minimal distance
constraints. [18,19] consider collaborative teams but in a
much narrower sense. They are interested in teams such that
there exists at least one member who has the necessary skill
to cover the desired requirement. In contrast, we use a SUM
aggregation function that can handle a broader class of tasks.
To see why, if we treat the skill of workers as a boolean
variable, then our method naturally subsumes their method.
Furthermore, they do not take into account the team dynam-
ics.

In summary, principled optimization opportunities for
complex collaborative tasks to maximize collaborative effec-
tiveness under quality and budget constraints is studied for
the first time in this work.

10 Conclusion and future work

In this paper, we borrow our motivation from the fact that
the aspect of collaboration naturally fits into solving many
complex tasks. To that end, we develop a framework which
aims to find the optimal group of workers for collaborative
tasks. We identify both individual and group-based human
factors (i.e., affinity, upper critical mass) that are significant
for successful completion of collaborative tasks. We pro-
pose a set of optimization objectives, which maximize the
collaboration while appropriately considering the complex
interplay of human factors. We show that our overall prob-
lem is NP-complete, and then provide a two-staged solution
to our problem. Furthermore, we show that the problem at
each individual stage is also NP-Complete. This prompts us
to design efficient approximation algorithm for both of the
stages. Our extensive experiments on real data collected from
Amazon Mechanical Turk show the superiority of our algo-
rithms on their respective baseline counterparts.

In future, we plan to explore alternative collaboration
frameworks. An example of such framework can be a
star-shaped framework, where the task assignment module
assigns both managers and the workers for a task. We also
plan to estimate the worker-to-worker affinity more accu-
rately since it plays a very important role in collaborative

task assignment process. We would like to leverage the task
assignment framework and task evaluation score to estimate
the affinity of the workers.
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