

Role of Protein Interactions in Stabilizing Canonical DNA Features in Simulations of DNA in Crowded Environments

4 Asli Yildirim (aslii.yildirim@gmail.com)¹, Nathalie Brenner ([Nathalie.Brenner@uni-duesseldorf.de](mailto:Nathalie.Brenner@uni-
5 duesseldorf.de))^{2,3}, Robert Sutherland (robert83sutherland@gmail.com)³, Michael Feig
6 (mfeiglab@gmail.com)^{3,*}

7 ¹Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

12 Corresponding Author Contact Information

13 *603 Wilson Road

14 Room BCH 218

15 East Lansing, MI 48824

16 USA

17 Phone: 517-432-7439

18

19 **ABSTRACT**

20 **Background**

21 Cellular environments are highly crowded with biological macromolecules resulting in frequent
22 non-specific interactions. While the effect of such crowding on protein structure and dynamics has
23 been studied extensively, very little is known how cellular crowding affects the conformational
24 sampling of nucleic acids.

25 **Results**

26 The effect of protein crowding on the conformational preferences of DNA (deoxyribonucleic acid)
27 is described from fully atomistic molecular dynamics simulations of systems containing a DNA
28 dodecamer surrounded by protein crowders. From the simulations, it was found that DNA
29 structures prefer to stay in B-like conformations in the presence of the crowders. The preference
30 for B-like conformations results from non-specific interactions of crowder proteins with the DNA
31 sugar-phosphate backbone. Moreover, the simulations suggest that the crowder interactions
32 narrow the conformational sampling to canonical regions of the conformational space.

33 **Conclusions**

34 The overall conclusion is that crowding effects may stabilize the canonical features of DNA that
35 are most important for biological function. The results are complementary to a previous study of
36 DNA in reduced dielectric environments where reduced dielectric environments alone led to a
37 conformational shift towards A-DNA. Such a shift was not observed here suggested that the
38 reduced dielectric response of cellular environments is counteracted by non-specific interactions
39 with protein crowders under *in vivo* conditions.

41 **KEYWORDS**

42 Molecular dynamics, protein G, A-DNA, B-DNA, conformational sampling, solvent interactions

43

44 **INTRODUCTION**

45 Biological cells are highly crowded environments due to the presence of various macromolecules.

46 The macromolecular crowding in cells plays a crucial role in biological processes as it may alter

47 the structure and dynamics of biomolecules [1]. A typical biological cell has a concentration of

48 biomolecules in the range of 300 – 400 mg/ml [2], corresponding to a macromolecular volume

49 fraction of 20 – 30 % [3]. Such an environment is substantially different from dilute solutions, the

50 frequently considered environment in most biological experiments. Recent studies have begun to

51 consider the effects of cellular crowding and have shed light on its effects on the structure and

52 function of biomolecules [4-9]. Three essential crowding effects have been reported from

53 experiments [10] and simulations [11]: (1) the volume exclusion effect has been suggested to

54 favor more compact conformations based on entropic arguments, thereby generally stabilizing

55 more compact states[12, 13]; (2) non-specific interactions between biomolecules and surrounding

56 protein crowders have led to the destabilization of native states [14-16] as well as reduced diffusion

57 [17]; and (3) altered solvation properties including reduced dynamic and dielectric properties [18]

58 have implied a reduced hydrophobic effect [19, 20].

59 While much attention so far has been on proteins, nucleic acids are also affected by

60 macromolecular crowding [21, 22]. G-quadruplex DNA structure assumes a parallel-G quadruplex

61 form under crowded environments due to the excluded volume effect as well as alterations in the

62 hydration of DNA [23-25]. Long DNA duplexes undergo a collapsing transition in the presence of

63 polyethylene glycol (PEG) in solution, which can also be explained by the volume exclusion effect

64 favoring states that are more compact [26, 27]. The negatively charged protein bovine serum
65 albumin (BSA) similarly causes a compaction of large DNA molecules due to the volume
66 exclusion effect and repulsive electrostatic interactions [28]. Short DNA duplexes, on the other
67 hand, have been extensively investigated by both experimental techniques and computer
68 simulations in terms of co-solvent, salt effects, and crystallization [29-39]. The DNA duplex is
69 well-known to be most stable in the B-form [40] in aqueous solution and in A-form in
70 environments with depleted water and for certain sequences [41]. Very high concentrations of salt
71 can also induce the B- to A- form transition by bringing the negatively charged phosphate groups
72 of DNA closer [34, 38, 42-44] while the addition of ethanol favors the A-form due to reduced
73 electrostatics [32, 33, 35, 37, 45-47]. More recently, the effect of reduced dielectric environments
74 on DNA as one aspect of cellular crowding was investigated and has also been shown to favor
75 non-canonical A-form structures in implicit solvent simulations [20]. On the other hand, a study
76 based on a coarse-grained model has suggested that even in the presence of significant crowding
77 there may be a solvent-rich region around DNA that is depleted in crowder molecules, which was
78 found to have an impact on the kinetics of proteins diffusing along DNA [48]. However, to the
79 extent that crowder proteins do interact non-specifically with DNA, the effect of explicit protein
80 crowder molecules on DNA duplex structures is not well understood.

81 Here, we describe fully atomistic molecular dynamics (MD) simulations of DNA dodecamers
82 in the presence of explicit protein crowders in order to investigate how DNA structure and stability
83 may be affected under such conditions. We find a general tendency of the DNA to favor the B-
84 form in crowded environments, which is in contrast to the shift towards A-form DNA observed in
85 the simpler reduced dielectric environments [20]. The stabilization of B-DNA appears to be due
86 to non-specific protein-DNA interactions. We also observe, some alterations in the hydration

87 structure and ion distributions around DNA under crowded conditions. The results are described
88 in detail and discussed in the following after outlining the computational methods used in this
89 study.

90 **Table 1. Overview of Simulations**

DNA Sequence	Box Size (Å)	Protein Vol (%)	Protein Conc. (g/L)	Ion Molarity (M)	Ion Molality (mol/kg)	Number of atoms	Simulation Length (μs)	Number of replicates
Drew-Dickerson	54.62	0	0.00	0.45	0.45	16,685-16,720	1	3
Drew-Dickerson	61.02	20	362.49	0.32	0.45	23,958-24,087	1	5
Drew-Dickerson	57.90	30	424.31	0.29	0.45	20,384-20,483	1	5
Drew-Dickerson	53.21	40	546.68	0.24	0.45	15,824-16,019	1	5
GC-rich	56.26	0	0.00	0.43	0.45	18,028-18,059	1	3
GC-rich	61.31	20	357.37	0.32	0.45	24,125-24,445	1	5
GC-rich	57.74	30	427.84	0.29	0.45	20,353-20,377	1	5
GC-rich	53.18	40	547.61	0.24	0.45	15,499-15,904	1	5

91

92 METHODS

93 MD simulations of Drew-Dickerson $((\text{CGCGAATTGCG})_2)$ and GC-rich
94 $(\text{CGCCCCGGCGGCG})_2$ dodecamers in crowded protein environments were carried out using the
95 CHARMM (Chemistry at Harvard Molecular Mechanics) program package (version 41a1) [49]
96 with the CHARMM36 force field [50, 51]. The initial Drew-Dickerson dodecamer structure was
97 obtained from the X-ray structure (PDB: 1BNA) [52], and the initial GC-rich dodecamer structure
98 was obtained by mutating the base sequence in the X-ray structure of the Drew-Dickerson
99 dodecamer using the MMTSB (Molecular Modeling Tools in Structural Biology) Tool Set [53].
100 In experiment, the Drew-Dickerson dodecamer is very stable in B-form, in the crystal as well as

101 in solution [52]. The crystal structure of the GC-rich dodecamer is in A-form [54] but there is less
102 known about the conformation of its conformation in solution. Generally there is little evidence
103 for A-DNA conformations in solution unless the salt concentration is much higher than typical
104 physiological conditions [34, 38, 42-44] and/or when co-solvents such as ethanol are present in
105 significant fractions [32, 33, 35, 37, 45-47]. Therefore, we setup both systems in B-form as the
106 likely conformation of both sequences in dilute aqueous solvent. The choice of sequences and
107 initial structures also allows a direct comparison with our previous continuum dielectric study [20].

108 For each dodecamer, a dilute system without crowders (0% crowder fraction) and three
109 systems with different protein crowder volume fractions (20%, 30%, 40%) were prepared. Protein
110 G (PDB: 1PGB) [55] was selected as the crowder protein due to its small size and stability in
111 computer simulations [15]. We used neutral protein G models molecules introduced in previous
112 work [56], where D36, D40, E19 and E42 are protonated. In the previous study, both, the charged
113 and neutralized variants of protein G were studied under crowded conditions similar to the systems
114 studied here but without DNA and both were found to be stable in simulations [56]. Protein G is
115 not known to specifically interact with DNA and we chose the net-neutral form to reduce
116 electrostatic interactions with the highly charged DNA to focus on more general crowding effects
117 while still maintaining protein-like crowders. The crowded systems (20%, 30%, 40%) consisted
118 of one dodecamer and 8 protein G molecules, whereas the dilute systems only contained one
119 dodecamer. Simulation box sizes were varied between 53.2 – 61.3 Å to obtain the abovementioned
120 crowder volume fractions. The box sizes were varied instead of the number of protein copies to
121 achieve exactly the target crowder fractions and minimize computational costs at the higher
122 concentrations as in previous work [15, 57]. Simulation conditions of the systems are given in
123 Table 1. There is no experimental evidence for a specific DNA-protein G complex that is stable

124 over long time and consequently the system is assumed to be fully dynamic in the liquid state with
125 molecular interactions varying transiently. To avoid biasing towards any specific initial protein G-
126 DNA interaction, the initial crowded systems were set up by randomly rotating and placing the
127 DNA dodecamer and the crowder proteins in the simulation box using a protocol developed
128 previously [58]. Different replicates of each system had different initial orientations and
129 placements of the DNA and the surrounding crowders. All systems were solvated with explicit
130 TIP3P (three-site transferable intermolecular potential) [59] water molecules. To neutralize the
131 DNA dodecamer, 22 sodium ions were added to the systems. In order to keep the ion molality of
132 all systems the same, 6 and 12 additional pairs of sodium and chloride ions were added to 30 %
133 and 0/20 % systems, respectively. Therefore, all systems had 0.45 mol/kg ion molality.

134 The initial systems were minimized for 1,000 steps using the adopted bases Newton Raphson
135 (ABNR) algorithm and were subsequently heated by running simulations without using any
136 restraints at 50K, 100K, 150K, 200K, 250K for 4 ps and at 298K for 10 ps. Productions runs were
137 carried out at 298 K in the NVT ensemble for 1 μ s with a 2 fs time step. The SHAKE algorithm
138 [60] was used to constrain bond lengths involving hydrogen atoms. Temperature control was
139 obtained by a Langevin thermostat with a 0.01 ps^{-1} friction coefficient. Lennard-Jones and direct
140 electrostatic interactions were cut off at 12 \AA with a switching function becoming effective at 10
141 \AA . Electrostatic interactions were calculated from particle-mesh Ewald [61] summation using 1 \AA
142 grid spacing. All simulations were performed using periodic boundary conditions. For the crowded
143 systems, five independent simulations were carried out starting from different initial orientations.
144 For the dilute systems without protein crowders, simulations were replicated three times starting
145 from different initial velocities for the atoms.

146 The analysis of the helicoidal and backbone parameters of the dodecamers (see Figure S1)
147 were performed by using the 3DNA program package [62]. The reported values are averages over
148 snapshots. Radial distribution functions and 3D volume densities were analyzed by using in-house
149 scripts. All the other analysis was carried out using the MMTSB Tool Set [53] in combination with
150 CHARMM [49]. Clustering analysis was performed by applying the k-means clustering algorithm
151 by using the *kclust* program in MMTSB [53]. For each dodecamer, all snapshots from the
152 simulations with different protein concentrations were aggregated and clustered by using a 3 Å
153 clustering radius. Only the last 700 ns of the simulations were analyzed because of larger variations
154 in the helicoidal parameters during the first 300 ns (see Fig. S2). Only the inner eight base-pairs
155 were taken into consideration to ignore structural distortions due to base fraying. VMD (visual
156 molecular dynamics) [63] and PyMOL [64] were used for visualization.

157

158 **RESULTS**

159 Microsecond-scale molecular dynamics simulations of DNA dodecamers with and without protein
160 crowders were carried to study the effect of crowding on DNA structure. We focused our analysis
161 on helical properties including base geometries, groove widths and DNA bending, backbone
162 torsions, interactions with crowder proteins, correlations between protein contacts and helical
163 properties, and water and ion distributions around DNA.

164 ***Helical properties***

165 Snapshots from the simulations were clustered to identify major conformations. Representative
166 structures for each of the major clusters (with more than 5% population) are depicted in Fig. 1.
167 Generally, the helices stayed intact with base fraying at the termini, which is common in

168 simulations of short DNA fragments [65]. The structures generally resemble B-DNA structures
 169 for both sequences. Average root mean square deviation (RMSD) values of different clusters from
 170 the initial canonical B-DNA structures vary between 1.4 and 2.0 Å for the Drew-Dickerson
 171 dodecamer and between 1.6 to 2.6 Å except for one cluster with an RMSD of 3.7 Å for the GC-
 172 rich dodecamer (see Table S1). There is no clear pattern of increasing or decreasing RMSD values
 173 for the clusters most populated at different crowder concentrations.

174 **Table 2. Average Helical Parameters for the Drew-Dickerson Dodecamer**

	X-ray (1BNA)	Canonical		Simulations in crowded environment			
		A-DNA	B-DNA	0 %	20 %	30 %	40 %
Slide (Å)	0.07 (0.20)	-1.62 (0.06)	0.16 (0.08)	0.26 (0.04)	0.25 (0.06)	0.21 (0.04)	0.25 (0.05)
Twist (deg)	34.22 (2.13)	30.34 (0.58)	34.70 (0.70)	33.42 (0.18)	34.06 (0.25)	33.96 (0.38)	33.43 (0.31)
X- displacement (Å)	-0.23 (0.20)	-4.50 (0.18)	-0.20 (0.13)	-0.59 (0.10)	-0.60 (0.14)	-0.72 (0.11)	-0.79 (0.12)
Helical rise (Å)	3.29 (0.05)	2.68 (0.08)	3.25 (0.02)	3.24 (0.00)	3.27 (0.01)	3.25 (0.02)	3.27 (0.02)
Inclination (deg)	4.02 (2.73)	17.78 (1.56)	4.34 (0.77)	10.87 (0.22)	10.62 (0.44)	11.15 (0.59)	12.59 (0.77)
z_p (Å)	-0.23 (0.07)	2.06 (0.07)	-0.33 (0.04)	-0.07 (0.03)	0.12 (0.05)	0.14 (0.05)	0.22 (0.04)
Minor groove (Å)	10.32 (0.46)	15.72 (0.12)	10.77 (0.12)	13.50 (0.05)	13.42 (0.18)	13.08 (0.14)	13.73 (0.19)
Major groove (Å)	17.34 (0.33)	12.94 (0.39)	17.14 (0.12)	16.47 (0.11)	16.54 (0.10)	16.39 (0.15)	16.31 (0.12)

175 Averages over all base-pairs excluding the first and last two terminal base-pairs with errors given
 176 in parentheses based on the variations in the independent simulations. Canonical values were
 177 averaged over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 1ZF1, 1ZF8, 1ZF9,
 178 1ZFA and the B-form structures 2M2C, 4AGZ, 4H0, 4AH1, 3U05, 3U08, 1VTJ, 3U2N, 3OIE,
 179 3BSE.

180 **Table 3. Average Helical Parameters for the GC-rich Dodecamer**

	X-ray (399D)	Canonical		Simulations in crowded environment			
		A-DNA	B-DNA	0 %	20 %	30 %	40 %

Slide (Å)	-1.71 (0.16)	-1.62 (0.06)	0.16 (0.08)	0.32 (0.19)	0.02 (0.10)	0.02 (0.10)	0.00 (0.07)
Twist (deg)	29.59 (1.34)	30.34 (0.58)	34.70 (0.70)	32.47 (0.85)	32.93 (0.42)	33.34 (0.41)	33.11 (0.36)
X- displacement (Å)	-5.01 (0.41)	-4.50 (0.18)	-0.20 (0.13)	-0.46 (0.28)	-1.03 (0.20)	-1.09 (0.22)	-1.10 (0.16)
Helical rise (Å)	2.66 (0.22)	2.68 (0.08)	3.25 (0.02)	3.26 (0.03)	3.23 (0.04)	3.26 (0.02)	3.27 (0.02)
Inclination (deg)	20.71 (4.33)	17.78 (1.56)	4.34 (0.77)	10.01 (0.33)	10.70 (0.38)	11.34 (0.49)	11.34 (1.19)
z_p (Å)	1.56 (0.35)	2.06 (0.07)	-0.33 (0.04)	-0.21 (0.12)	-0.20 (0.09)	-0.23 (0.07)	-0.18 (0.05)
Minor groove (Å)	16.22 (0.47)	15.72 (0.12)	10.77 (0.12)	14.91 (0.23)	14.54 (0.08)	14.52 (0.10)	14.76 (0.21)
Major groove (Å)	13.14 (2.63)	12.94 (0.39)	17.14 (0.12)	16.26 (0.16)	16.53 (0.13)	16.22 (0.14)	16.27 (0.23)

181 see Table 2.

182 Helicoidal parameters for both, Drew-Dickerson and GC-rich dodecamers were averaged from the
 183 simulations. They are summarized in Tables 2 and 3, respectively. Helicoidal parameters for
 184 crystal structures of the respective dodecamers as well as canonical A- and B-forms of DNA,
 185 averaged over ten A- and B-form crystal structures each, are provided for comparison. Average
 186 properties for each of the clusters shown in Fig. 1 are given in Tables S1 and S2. The more detailed
 187 analysis of the base geometries also indicates that both dodecamers remained close to B-DNA.
 188 The Drew-Dickerson dodecamer also remained reasonably close to the respective crystal structure
 189 (1BNA), but there are larger deviations between the simulation results and the crystal structure of
 190 the GC-rich dodecamer. The crystal structure for the GC-rich dodecamer is predominantly in A-
 191 form, presumably as a result of salt concentrations above 1 M and/or the crystal environment [54].
 192 As mentioned above, although the crystal structure of the GC-rich dodecamer has been reported
 193 in A-form, there is no evidence that this sequence (or any other DNA sequence) assumes an A-
 194 DNA conformation in solution at sub-molar salt concentrations and in the absence of co-solvents.
 195 Therefore we expected the GC-dodecamer to remain in B-form. In the presence of the protein

196 crowders, the helical parameters generally did not change much. We found increased X-
197 displacement (p-values: 0.91 (Drew-Dickerson 20%), 0.16 (Drew-Dickerson 30%), 0.05 (Drew-
198 Dickerson 40%), 0.05 (GC-rich 20%), 0.04 (GC-rich 30%), 0.07 (GC-rich 40%) and base
199 inclination (p-values: 0.33 (Drew-Dickerson 20%), 0.38 (Drew-Dickerson 30%), 0.01 (Drew-
200 Dickerson 40%), 0.05 (GC-rich 20%), 0.01 (GC-rich 30%), 0.08 (GC-rich 40%) for both
201 dodecamers as a function of crowding. The increased x-displacement and base inclination point
202 towards A-DNA but the values upon crowding still remained much closer to canonical B-DNA
203 than A-DNA.

204 We further analyzed the displacement of phosphorus atoms relative to the horizontal plane
205 passing between base-pairs in a base-pair step (z_p) and major/minor grooves (Tables 2 & 3). The
206 z_p parameter is very different between the two forms of DNA. While B-DNA has values near -0.3
207 Å, the parameter is mostly larger than 2.0 Å for A-DNA. This parameter does not show a trend
208 upon crowding for the GC-rich dodecamer, while the Drew-Dickerson dodecamer had larger
209 values in crowded environments (p-values: 0.0011 (20%), 0.0007 (30%), 0.0001 (40%)). Again
210 this indicates a slight tendency towards A-DNA geometries while still remaining much closer to
211 canonical B-DNA values. Minor and major groove widths also did not change significantly upon
212 crowding, but we note that minor groove widths were generally overestimated compared to
213 canonical B-DNA values. This is a general feature of the CHARMM force field that was used here
214 [66]. Finally, we analyzed the helical bending angles (see Table S3) which also did not show a
215 significant change upon crowding.

216 ***Sugar conformations and backbone torsions***

217 A key feature of nucleic acid backbone is the ribose pucker conformation. A-form DNA is known
218 to prefer C3'-endo and C2'-exo conformations whereas B-form DNA is characterized by C3'-

219 exo and C2'-endo conformations. As shown in Fig. 2, the sugars of both dodecamers generally
220 remained in C3'-exo and C2'-endo conformations. As expected, C3'-endo and C2'-exo sugar
221 conformations are more prominent for the GC-rich dodecamer (see Fig. 2B). Again, there is no
222 major change upon crowding, but in the GC-rich dodecamer, sugars shift slightly to C3'-exo and
223 C2'-endo sugar conformations up to 30% crowding, but then revert back to more A-form
224 conformations at 40% crowder concentrations.

225 We further analyzed torsion angles along the phosphate backbone. χ and δ angles are the
226 most distinctive backbone angles to distinguish between A- and B- form DNA. We constructed
227 potentials of mean force (PMF) as a function of δ and χ from the simulations (Fig. 3). The
228 separation between A- and B-DNA torsion angles is readily apparent. Consistent with the ribose
229 puckers and helical geometries, there is more sampling of B-DNA torsion angles for both
230 dodecamers. While there is little change in the sampling of the major A- and B-form, the
231 presence of crowders appears to affect the sampling of minor conformations with A-like δ values
232 around 80 degrees and B-like χ values around -100 degrees. Sampling in this region is
233 significantly reduced in both dodecamers upon crowding (see Fig. 3). This region corresponds
234 to a conformation where bases stay in the same orientation relative to the sugar as in B-form, but
235 they are slightly more exposed to the environment, and apparently, this conformation is largely
236 prevented by crowder proteins. The sampling of ε and ζ torsion angles distinguishes between
237 BI/BII forms. A similar trend is observed where crowding reduces the sampling of minor states
238 outside the major BI/BII basins (see Fig. S3). Based on this analysis, it appears that one effect
239 of protein crowders may be to focus the sampling of DNA conformations on the major
240 conformations.

241 ***Protein crowder conformations***

242 In previous simulation studies involving protein G under crowded conditions, the protein G
243 conformations remained close to the experimental structure and were not affected strongly by the
244 concentrated environment [15]. In the systems studied here, protein G also remains highly stable
245 and close to the experimental structure (see Fig. S4). The overall average $\text{C}\alpha$ RMSD value is 0.91
246 Å with a standard deviation of 0.24 Å between individual protein G molecules and the
247 experimental structure (PDB ID: 3GB1 [55, 67]). The average radius of gyration is 10.76 Å with
248 a standard deviation of 0.1 Å, compared to a value of 10.65 Å for the experimental structure. A
249 few conformations deviated slightly further from the native (as much as 2.5 Å $\text{C}\alpha$ RMSD) and
250 with slightly increased radii of gyration, especially at the highest crowder concentration (Fig.
251 S4B). Further analysis via clustering revealed minor substates with slightly increased RMSD
252 values that correlate with closer contacts to the DNA (see Table S4). This suggests that the
253 conformational sampling of protein G may be affected slightly when interacting with the DNA.
254 Almost all of the variations are in the flexible loop involving residues 9 to 13 (see Fig. S4D) where
255 root mean square fluctuations (RMSF) are largest (see Fig. S4C).

256 ***DNA-protein interactions***

257 Protein G is not known to interact specifically with DNA but under highly crowded conditions,
258 interactions are unavoidable. Fig. 4 shows where contacts between protein G and DNA occur based
259 on minimum distances between the major/minor grooves and sugar/phosphate groups of the DNA
260 with different residues of protein G. More detailed contact analysis between individual base-pairs
261 and protein G residues is shown in Figures S5 and S6 for the Drew-Dickerson and GC-rich
262 dodecamers, respectively. Most of the contacts are between the DNA sugar-phosphate backbone
263 and protein residues 15-30, mostly in the α -helix of protein G, as well as residues at the N-terminus
264 and near the C-terminus. Contacts involving the DNA grooves, a typical mode of interaction for

265 DNA-binding proteins were not common with protein G. The interactions partially involve
266 electrostatic attraction between the DNA phosphate and certain lysine residues (K4, K28, K31,
267 and K50), but sugar oxygens O3' and O4' as well as phosphate oxygens also form hydrogen bonds
268 with other polar protein residues. Representative snapshots of protein G-DNA interactions are
269 shown in Fig. 5. As would be expected, the contacts between the proteins and DNA increase with
270 crowder concentration and crowding seems to increase sugar-phosphate-protein contacts more for
271 the Drew-Dickerson dodecamer than for the GC-rich dodecamer.

272 ***Correlations between DNA-protein contacts and DNA helix properties***

273 To investigate in more detail whether the close contacts of the crowder proteins with the DNA
274 have the potential to perturb DNA structure, we analyzed correlations between DNA-protein
275 contacts and helicoidal properties of DNA as well as backbone torsion and pseudorotation phase
276 angles. First, we examined the effect of close contacts on the helicoidal parameters listed in Tables
277 2 and 3. We found that a higher number of close protein contacts corresponded to a more narrow
278 range of sampled values for all of the helicoidal parameters (Figures 6-9, Figures S7-S10). Among
279 these parameters, slide (Fig. 6), x-displacement (Fig. 7), helical rise (Fig. 8) and z_p (Fig. 9) values
280 showed a clear shift towards B-form values with increasing number of contacts. These parameters
281 focus on the displacement of bases along the x- (x-displacement) and y- (slide) axes and of
282 phosphates along the base-pair axis (z_p). All of the values approach zero with crowding. This
283 suggests that DNA bases and phosphates undergo less displacement as a result of crowding. On
284 the other hand, rotations of base-pairs about helical (twist) or base-pair axes (inclination) do not
285 show a distinct shift towards any canonical values (Fig. S7, S8). Major and minor groove widths
286 do not seem to be affected by contacts except for the GC-rich dodecamer, where there appears to

287 be a clear tendency towards larger minor groove values, i.e. values more similar to A-DNA (Fig.
288 S9, S10).

289 Similar to the helicoidal parameters, backbone torsion angles also fluctuate in a more narrow
290 range upon crowding (Fig. S11–S17). This suggests that non-specific protein-DNA interactions
291 may limit the conformational fluctuations of the DNA backbone. Particularly, δ and χ angles shift
292 towards B-form values upon higher number of protein contacts, explaining a decrease in the
293 sampling of non-canonical conformations shown in Fig. 3. Finally, pseudorotation angles move to
294 B-form values with protein contacts which lead to C3'-exo and C2'-endo sugar pucker
295 conformations (Fig. S18).

296 The results discussed here are most pronounced for the Drew-Dickerson dodecamer. In the
297 GC-rich dodecamer, the fluctuations of helicoidal parameters and backbone angles are reduced
298 less and a tendency to sample A-form values further complicates the picture. Overall, our results
299 suggest that the interactions of protein crowders with DNA sugar/phosphate backbone shown in
300 the previous section result in a stiffer DNA backbone. The stiffer backbone also prevents larger
301 base/base-pair displacements and, therefore, restricts the conformational space of DNA. Although
302 it appears that there is not a specific tendency towards one of the major forms of DNA upon
303 crowding, there is a distinct effect of protein crowders on DNA structure by narrowing the
304 conformational sampling to canonical structures.

305 ***Hydration and ion distributions around DNA***

306 Water and ions are integral parts of DNA structures. We analyzed hydration patterns and sodium
307 ion distributions around DNA as a function of crowding. Conditional water radial distribution
308 functions (RDF) were obtained for water oxygen distances to the closest heavy atoms in DNA,
309 normalized by the corresponding accessible volume at each distance and the bulk water density

310 (0.034 Å⁻³) (see Figure 10A). The analysis shows that the first hydration shell is almost unaffected
311 by the level of crowding, but the RDF decreases beyond the hydration shell significantly as a
312 function of crowding. This observation is similar to what has been reported previously for the
313 hydration around proteins under crowded environments [18].

314 Sodium RDFs were calculated in the same way as the water RDFs but normalized by the ion
315 density of the system (0.002 Å⁻³). There are two peaks in the sodium RDFs corresponding to ions
316 in direct contact with the DNA (around 2.5 Å and largely in the minor groove) and ions interacting
317 with the DNA through water (around 4.5 Å) [68-70]. While the direct contact peak is not affected
318 significantly by crowding, the second peak shows a greater dependence on crowding. At the
319 highest crowder fractions, the second peak is significantly reduced in both dodecamers (see Fig.
320 10B) and the ion density is reduced further at larger distances similar to the reduction in hydration
321 upon crowding. The effect of crowding on the ion distributions also impacts the DNA
322 neutralization as a function of distance (Figure 10C). 76 % of the DNA phosphate groups are
323 neutralized as suggested by counterion condensation theory at around 9 Å for the dilute system,
324 however, it takes up to 11 – 12 Å to reach 76 % DNA neutralization under crowding conditions.
325 It is interesting, that despite the impact of crowding on the second peak of the ion distribution, the
326 counterion condensation is affected less for distances less than 6 Å. As this may seem
327 counterintuitive, the reader is reminded that the RDF is normalized by the available volume and
328 the overall ion density, at constant ion molality, whereas Fig. 10C simply describes the net
329 neutralization of the DNA by the ions. The extended distance to reach 76% charge neutralization
330 upon crowding may seem to challenge counterion condensation theory. However, the protein
331 crowders, despite being net neutral, can provide additional charge neutralization by orienting basic

332 lysines near the DNA surface as described above to compensate for the reduced neutralization by
333 the sodium ions.

334 Finally, the 3D distributions of sodium ions around the Drew-Dickerson and GC-rich
335 dodecamers are compared in Fig. 11. The sodium ion networks in the major and minor grooves of
336 DNA are largely preserved for both dodecamers with little changes upon crowding. However,
337 additional densities become apparent further away from the DNA at different locations upon
338 crowding. Additional ordering of ions could be a result of crowder proteins interacting with the
339 DNA and coordinating ions near the DNA. A snapshot showing a crowder protein interacting with
340 the DNA and orienting a sodium ion at the same time is shown in Figure S19.

341

342 **DISCUSSION**

343 In this study, we investigated the effect of protein crowding on the conformational preferences of
344 DNA duplexes. In a previous study, we examined one aspect of cellular crowding, namely a
345 reduced dielectric response of the environment due to the less available water and its slowed
346 dynamics. Using continuum models, we found an overall shift towards A-like conformations for
347 DNA as a result of a reduced dielectric response of its environment [20]. Here, we included protein
348 crowders and solvent explicitly to test whether the same conclusions would be found. In the earlier
349 work, we compared environments with $\epsilon=20$, $\epsilon=40$, and $\epsilon=80$. Past work suggests that water under
350 crowded conditions exhibits a reduced dielectric response of about 40 (with uncertainties) at a
351 protein crowder volume fraction of 0.3 [18]. If one makes the further assumption that proteins have
352 an interior dielectric of around 10, one can estimate an average effective dielectric for the entire
353 medium surrounding the DNA at this crowder fraction as $\epsilon_{eff}=0.3*10+0.7*40=31$ with even lower
354 values at 40% crowder fraction. However, although some of the base parameters moved slightly

355 towards A-like values upon crowding, B-DNA was largely maintained with the explicit crowder
356 environment in contrast to our previous findings. This suggests that a reduced dielectric response
357 of crowded environments and interactions with crowder proteins have different effects on DNA
358 conformational preferences with a net effect of not altering canonical B-DNA structures much.

359 We found that the crowder proteins mostly interact with DNA via its phosphate-sugar
360 backbone as previously observed in non-specific binding of proteins to DNA [71]. These
361 interactions arise from the electrostatic interactions between negatively charged phosphate
362 oxygens and positively charged amino acid residues as well as the polar interactions between
363 phosphate and/or sugar oxygens and side chains of polar amino acid residues. Previous studies
364 have shown that DNA can undergo structural deformations from its B-form towards A-type helix
365 as a result of forming complexes with specific DNA binding proteins [72-76], but we did not see
366 such an effect here. It does appear, however, that for the system studied here, the presence of the
367 protein crowders limits the conformational space of DNA to more canonical structures, mostly in
368 B-form, both for the backbone torsions and the helical parameters. However, the narrowed
369 conformational sampling appears to have little effect on the overall structural averages. Such a
370 crowding effect on DNA structure may be understood in similar ways as protein native state
371 stabilization due to the volume exclusion effect [1, 13, 77, 78], where the reduced space due to
372 crowders limits the ability to widely sample conformational space. This would mean that protein
373 crowding *in vivo* helps stabilize the biologically most relevant forms of DNA.

374 We also studied hydration patterns and ion densities around DNA in protein crowding. The
375 first hydration shell around DNA is largely unaffected by crowding, while the water densities
376 beyond the first solvation shell significantly reduced compared to the bulk water density under
377 crowding effect. This result is very similar to the hydration shell around proteins upon crowding

378 [18]. This further confirms that, protein crowding in cells generally does not alter the first
379 hydration shell around biomolecules. However, sodium densities around DNA are affected already
380 when interacting with DNA through water. Only the direct-contact first peak in the sodium-DNA
381 RDF appears to be unaffected by crowding. Moreover, the charge neutralization by ions is altered
382 upon crowding with the classical counter-ion condensation threshold reached at larger distances
383 from the DNA than under dilute conditions. This suggests that proteins have to play an increasing
384 role in neutralizing DNA under highly crowded conditions.

385

386 CONCLUSION

387 The results obtained here shed light on the effect of protein crowding on DNA structure. We found
388 that the crowder proteins mostly assist DNA to stay in canonical B-like conformations, limiting
389 excursions to non-canonical conformations rather than a clear shift in the overall, average structure
390 as suggested by a simple dielectric model of cellular environments. We hope that this hypothesis
391 will motivate new experimental efforts to characterize DNA structure under crowded conditions.
392 We expect that reduced conformational dynamics upon crowding would be observable via NMR
393 spectroscopy. Another testable hypothesis is the altered ion distribution predicted by our
394 simulations, which could be amenable to the ion-counting experiments recently carried out by the
395 Herschlag group [79-82].

396

397 ABBREVIATIONS

398 ABNR – Adopted-bases Newton-Raphson; BSA – bovine serum albumin; CHARMM –
399 Chemistry at Harvard Molecular Mechanics; DNA – deoxyribonucleic acid; MD – molecular

400 dynamics; MMTSB – Molecular Modeling Tools in Structural Biology; PEG – polyethylene
401 glycol; PMF – potential of mean force; RDF – radial distribution function; RMSD – root mean
402 square deviation; RMSF – root mean square fluctuations; TIP3P – three-site transferable
403 intermolecular potential; VMD – visual molecular dynamics

404

405 **DECLARATIONS**

406 **Ethics approval and consent to participate**

407 Not applicable

408

409 **Consent for publication**

410 Not applicable

411

412 **Availability of data and material**

413 Initial conformations, simulation data, and results are available from the authors upon request.

414

415 **Competing interests**

416 None.

417

418 **Funding**

419 Funding from NSF (MCB 1330560 and MCB 1817307) and NIH (R01 GM092949 and R35
420 GM126948) to carry out all aspects of the research, analysis, and writing is acknowledged. The
421 funding bodies did not play any direct role in the design of the study, the collection, analysis, or
422 interpretation of data, or in writing the manuscript.

423

424 **Author's contributions**

425 AY and MF designed the research. AY, NB, RS, and MF carried out simulations and analysis.
426 AY and MF wrote the manuscript. All authors read and approved the final version of the
427 manuscript.

428

429 **Acknowledgements**

430 We thank Prof. Charles Hoogstraten for discussions and exploratory analyses of the GC-rich
431 dodecamer under different solution conditions.

432

433 **Author's Information**

434 Corresponding author: Michael Feig; 603 Wilson Road, Room BCH 218; East Lansing, MI
435 48824; USA; Phone: 517-432-7439; E-mail: mfeiglab@gmail.com

436

437 **Supporting Information**

438 Definition of backbone torsions and helicoidal parameters (Figure S1). Time series of helicoidal
439 parameters (Figure S2). Potential of mean force (kcal/mol) as a function of backbone angles

440 (Figure S3). Analysis of the protein G crowder conformational sampling (Figure S4). Average
441 minimum distances between the crowder protein residues and DNA (Figure S5-S6). Potentials of
442 mean force as a function of helicoidal parameters and protein contacts (Figure S7-S18). A snapshot
443 for the crowder protein interacting with the DNA and sodium (Figure S19). Helicoidal parameters
444 for the clusters (Table S1 and S2), bending angles for the dodecamers (Table S3), clustering
445 analysis of protein G crowders (Table S4), and PMF error analysis (Table S5).

446

447

448 **REFERENCES**

449 [1] Zhou H-X, Rivas G and Minton A P 2008 Macromolecular Crowding and Confinement:
450 Biochemical, Biophysical, and Potential Physiological Consequences *Annu. Rev. Biophys.* **37** 375-
451 97

452 [2] Zimmerman S B and Trach S O 1991 Estimation of Macromolecule Concentrations and Excluded
453 Volume Effects for the Cytoplasm of *Escherichia coli* *J. Mol. Biol.* **222** 599-620

454 [3] Ellis R J 2001 Macromolecular Crowding: an Important but Neglected Aspect of the Intracellular
455 Environment *Curr. Opin. Struct. Biol.* **11** 114-9

456 [4] Minton A P and Wilf J 1981 Effect of Macromolecular Crowding Upon the Structure and Function
457 of an Enzyme - Glyceraldehyde-3-Phosphate Dehydrogenase *Biochemistry* **20** 4821-6

458 [5] McPhie P, Ni Y S and Minton A P 2006 Macromolecular Crowding Stabilizes the Molten Globule
459 Form of Apomyoglobin with Respect to Both Cold and Heat Unfolding *J. Mol. Biol.* **361** 7-10

460 [6] Dix J A and Verkman A S 2008 Crowding Effects on Diffusion in Solutions and Cells *Annu. Rev.*
461 *Biophys.* **37** 247-63

462 [7] Minton A P 1993 Macromolecular Crowding and Molecular Recognition *J. Mol. Recognit.* **6** 211-4

463 [8] Zimmerman S B and Minton A P 1993 Macromolecular Crowding - Biochemical, Biophysical, and
464 Physiological Consequences *Annu. Rev. Biophys. Biomol. Struct.* **22** 27-65

465 [9] Elcock A H 2010 Models of Macromolecular Crowding Effects and the Need for Quantitative
466 Comparisons with Experiment *Curr. Opin. Struct. Biol.* **20** 196-206

467 [10] Rivas G and Minton A P 2016 Macromolecular Crowding In Vitro, In Vivo, and In Between *Trends*
468 *Biochem. Sci.* **41** 970-81

469 [11] Feig M, Yu I, Wang P-h, Nawrocki G and Sugita Y 2017 Crowding in Cellular Environments at an
470 Atomistic Level from Computer Simulations *J. Phys. Chem. B* **121** 8009-25

471 [12] Zhou H X 2004 Protein Folding and Binding in Confined Spaces and in Crowded Solutions *J. Mol.*
472 *Recognit.* **17** 368-75

473 [13] Cheung M S, Klimov D and Thirumalai D 2005 Molecular Crowding Enhances Native State
474 Stability and Refolding Rates of Globular Proteins *Proc. Natl. Acad. Sci. U.S.A.* **102** 4753-8

475 [14] Senske M, Tork L, Born B, Havenith M, Herrmann C and Ebbinghaus S 2014 Protein Stabilization
476 by Macromolecular Crowding through Enthalpy rather than Entropy *J. Am. Chem. Soc.* **136** 9036-
477 41

478 [15] Harada R, Tochio N, Kigawa T, Sugita Y and Feig M 2013 Reduced Native State Stability in
479 Crowded Cellular Environment Due to Protein-Protein Interactions *J. Am. Chem. Soc.* **135** 3696-
480 701

481 [16] Feig M and Sugita Y 2012 Variable Interactions between Protein Crowders and Biomolecular
482 Solutes are Important in Understanding Cellular Crowding *J. Phys. Chem. B* **116** 599-605

483 [17] Wang Y, Li C and Pielak G J 2010 Effects of Proteins on Protein Diffusion *J. Am. Chem. Soc.* **132**
484 9392-7

485 [18] Harada R, Sugita Y and Feig M 2012 Protein Crowding Affects Hydration Structure and Dynamics
486 *J. Am. Chem. Soc.* **134** 4842-9

487 [19] Tanizaki S, Clifford J, Connelly B D and Feig M 2008 Conformational Sampling of Peptides in
488 Cellular Environments *Biophys. J.* **94** 747-59

489 [20] Yildirim A, Sharma M, Varner B M, Fang L and Feig M 2014 Conformational Preferences of DNA
490 in Reduced Dielectric Environments *J. Phys. Chem. B* **118** 10874-81

491 [21] Nakano S-i, Miyoshi D and Sugimoto N 2014 Effects of Molecular Crowding on the Structures,
492 Interactions, and Functions of Nucleic Acids *Chem. Rev.* **114** 2733-58

493 [22] Nakano S-i and Sugimoto N 2017 Model Studies of the Effects of Intracellular Crowding on
494 Nucleic Acid Interactions *Mol. Biosyst.* **13** 32-41

495 [23] Xue Y, Kan Z Y, Wang Q, Yao Y, Liu J, Hao Y H and Tan Z 2007 Human Telomeric DNA Forms
496 Parallel-Stranded Intramolecular G-Quadruplex in K⁺ Solution Under Molecular Crowding
497 Condition *J. Am. Chem. Soc.* **129** 11185-91

498 [24] Miyoshi D, Nakao A and Sugimoto N 2002 Molecular Crowding Regulates the Structural Switch
499 of the DNA G-Quadruplex *Biochemistry* **41** 15017-24

500 [25] Heddi B and Phan A T 2011 Structure of Human Telomeric DNA in Crowded Solution *J. Am.*
501 *Chem. Soc.* **133** 9824-33

502 [26] Livolant F and Leforestier A 1996 Condensed phases of DNA: Structures and phase transitions
503 *Progr. Polym. Sci.* **21** 1115-64

504 [27] Bloomfield V A 1996 DNA Condensation *Curr. Opin. Struct. Biol.* **6** 334-41

505 [28] Yoshikawa K, Hirota S, Makita N and Yoshikawa Y 2010 Compaction of DNA Induced by Like-
506 Charge Protein: Opposite Salt-Effect against the Polymer-Salt-Induced Condensation with
507 Neutral Polymer *J. Phys. Chem. Lett.* **1** 1763-6

508 [29] Kulkarni M and Mukherjee A 2017 Understanding B-DNA to A-DNA Transition in the Right-
509 Handed DNA Helix: Perspective from a Local to Global Transition *Progr. Biophys. Mol. Biol.* **128**
510 63-73

511 [30] Ivanov V I, Minchenkova L E, Minyat E E, Frank-Kamenetskii M D and Schyolkina A K 1974 The B
512 to A Transition of DNA in Solution *J. Mol. Biol.* **87** 817-33

513 [31] Jose D and Porschke D 2004 Dynamics of the B-A Transition of DNA Double Helices *Nucleic Acids*
514 *Res.* **32** 2251-8

515 [32] Zimmerman S B and Pheiffer B H 1979 A Direct Demonstration that the Ethanol-Induced
516 Transition of DNA is Between the A and B Forms: An X-ray Diffraction Study *J. Mol. Biol.* **135**
517 1023-7

518 [33] Cheatham T E, Crowley M F, Fox T and Kollman P A 1997 A Molecular Level Picture of the
519 Stabilization of A-DNA in Mixed Ethanol-Water Solutions *Proc. Natl. Acad. Sci. U.S.A.* **94** 9626-30

520 [34] Cheatham T E and Kollman P A 1997 Insight into the Stabilization of A-DNA by Specific Ion
521 Association: Spontaneous B-DNA to A-DNA Transitions Observed in Molecular Dynamics
522 Simulations of d(ACCCGCGGGT)₂ in the Presence of Hexaamminecobalt(III) *Structure* **15** 1297-
523 311

524 [35] Noy A, Perez A, Laughton C A and Orozco M 2007 Theoretical Study of Large Conformational
525 Transitions in DNA: The B<-->A Conformational Change in Water and Ethanol/Water *Nucleic*
526 *Acids Res.* **35** 3330-8

527 [36] Pastor N 2005 The B- to A-DNA Transition and the Reorganization of Solvent at the DNA Surface
528 *Biophys. J.* **88** 3262-75

529 [37] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 Solvent-Induced DNA Conformational Transition
530 *Phys. Rev. Lett.* **100** 088104

531 [38] Arscott P G, Ma C, Wenner J R and Bloomfield V A 1995 DNA Condensation by Cobalt
532 Hexaammine (III) in Alcohol-Water Mixtures: Dielectric Constant and Other Solvent Effects
533 *Biopolymers* **36** 345-64

534 [39] Kuzmanic A, Dans P D and Orozco M 2018 An in-depth look at DNA crystals through the prism of
535 molecular dynamics simulations *bioRxiv*

536 [40] Watson J D and Crick F H 1953 The Structure of DNA *Cold Spring Harbor Symp. Quant. Biol.* **18**
537 123-31

538 [41] Franklin R E and Gosling R G 1953 Molecular Configuration in Sodium Thymonucleate *Nature*
539 **171** 740-1

540 [42] Gao Y-G, Robinson H, Boom J H v and Wang A H-J 1995 Influence of Counter-ions on the Crystal
541 Structures of DNA Decamers: Binding of [Co(NH₃)₆]³⁺ and Ba²⁺ to A-DNA *Biophys. J.* **69** 559-68

542 [43] Robinson H and Wang A H 1996 Neomycin, Spermine and Hexaamminecobalt (III) Share
 543 Common Structural Motifs in Converting B- to A-DNA *Nucleic Acids Res.* **24** 676-82
 544 [44] Xu Q W, Shoemaker R K and Braunlin W H 1993 Induction of B-A Transitions of
 545 Deoxyoligonucleotides by Multivalent Cations in Dilute Aqueous-Solution *Biophys. J.* **65** 1039-49
 546 [45] Fang Y, Spisz T S and Hoh J H 1999 Ethanol-Induced Structural Transitions of DNA on Mica
 547 *Nucleic Acids Res.* **27** 1943-9
 548 [46] Young M A and Beveridge D L 1998 Molecular Dynamics Simulations of an Oligonucleotide
 549 Duplex with Adenine Tracts Phased by a Full Helix Turn *J. Mol. Biol.* **281** 675-87
 550 [47] Srinivasan J, Cheatham T E, Cieplak P, Kollman P A and Case D A 1998 Continuum Solvent Studies
 551 of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices *J. Am. Chem. Soc.* **120** 9401-9
 552 [48] Dey P and Bhattacherjee A 2018 Role of Macromolecular Crowding on the Intracellular Diffusion
 553 of DNA Binding Proteins *Sci. Rep.-UK* **8** 844
 554 [49] Brooks B R, Brooks C L, Mackerell A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels
 555 C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W,
 556 Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor
 557 B, Venable R M, Woodcock H L, Wu X, Yang W, York D M and Karplus M 2009 CHARMM: The
 558 Biomolecular Simulation Program *J. Comput. Chem.* **30** 1545-614
 559 [50] Hart K, Foloppe N, Baker C M, Denning E J, Nilsson L and Mackerell A D, Jr. 2012 Optimization of
 560 the CHARMM Additive Force Field for DNA: Improved Treatment of the B1/BII Conformational
 561 Equilibrium *J. Chem. Theory Comput.* **8** 348-62
 562 [51] Best R B, Zhu X, Shim J, Lopes P, Mittal J, Feig M and MacKerell Jr A D 2012 Optimization of the
 563 Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ ,
 564 ψ and Side-Chain χ_1 and χ_2 Dihedral Angles. *J. Chem. Theory Comput.* **8** 3257-73
 565 [52] Drew H R, Wing R M, Takano T, Broka C, Tanaka S, Itakura K and Dickerson R E 1981 Structure of
 566 a B-DNA Dodecamer: Conformation and Dynamics *Proc. Natl. Acad. Sci. U.S.A.* **78** 2179-83
 567 [53] Feig M, Karanicolas J and Brooks III C L 2004 MMTSB Tool Set: Enhanced Sampling and
 568 Multiscale Modeling Methods for Applications in Structural Biology *J. Mol. Graph. Modell.* **22**
 569 377-95
 570 [54] Malinina L, Fernandez L G, Huynh-Dinh T and Subirana J A 1999 Structure of the
 571 d(CGCCCGCGGCG) Dodecamer: A Kinked A-DNA Molecule Showing Some B-DNA Features *J.*
 572 *Mol. Biol.* **285** 1679-90
 573 [55] Gronenborn A M, Filpula D R, Essig N Z, Achari A, Whitlow M, Wingfield P T and Clore G M 1991
 574 A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G
 575 *Science* **253** 657-61
 576 [56] Wang P-H, Yu I, Feig M and Sugita Y 2017 Influence of Protein Crowder Size on Hydration
 577 Structure and Dynamics in Macromolecular Crowding *Chem. Phys. Lett.* **671** 63-70
 578 [57] Nawrocki G, Wang P-h, Yu I, Sugita Y and Feig M 2017 Slow-Down in Crowded Protein Solutions
 579 Correlates with Transient Oligomer Formation *J. Phys. Chem. B* **121** 11072-84
 580 [58] Feig M, Harada R, Mori T, Yu I, Takahashi K and Sugita Y 2015 Complete Atomistic Model of a
 581 Bacterial Cytoplasm Integrates Physics, Biochemistry, and Systems Biology *J. Mol. Graph.*
 582 *Modell.* **58** 1-9
 583 [59] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of
 584 Simple Potential Functions for Simulating Liquid Water *J. Chem. Phys.* **79** 926-35
 585 [60] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 Numerical-Integration of Cartesian Equations
 586 of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes *J. Comput. Phys.* **23**
 587 327-41
 588 [61] Darden T A, York D and Pedersen L G 1993 Particle-Mesh Ewald: An $N \log(N)$ Method for Ewald
 589 Sums in Large Systems *J. Chem. Phys.* **98** 10089-92

590 [62] Lu X J and Olson W K 2003 3DNA: A Software Package for the Analysis, Rebuilding and
591 Visualization of Three-Dimensional Nucleic Acid Structures *Nucleic Acids Res.* **31** 5108-21
592 [63] Humphrey W, Dalke A and Schulten K 1996 VMD: Visual Molecular Dynamics *J. Mol. Graph.* **14**
593 33-8
594 [64] Amadei A, Apol M E F and Berendsen H J C 1998 On the Use of the Quasi-Gaussian Entropy
595 Theory in Noncanonical Ensembles. I. Prediction of Temperature Dependence of
596 Thermodynamic Properties *J. Chem. Phys.* **109** 3004-16
597 [65] Zgarbová M, Otyepka M, Šponer J, Lankaš F and Jurečka P 2014 Base Pair Fraying in Molecular
598 Dynamics Simulations of DNA and RNA *J. Chem. Theory Comput.* **10** 3177-89
599 [66] Cheatham T E and Young M A 2001 Molecular Dynamics Simulation of Nucleic Acids: Successes,
600 Limitations, and Promise *Biopolymers* **56** 232-56
601 [67] Kuszewski J, Gronenborn A M and Clore G M 1999 Improving the Packing and Accuracy of NMR
602 Structures with a Pseudopotential for the Radius of Gyration *J. Am. Chem. Soc.* **121** 2337-8
603 [68] Feig M and Pettitt B M 1999 Sodium and Chlorine Ions as Part of the DNA Solvation Shell
604 *Biophys. J.* **77** 1769-81
605 [69] Korolev N, Lyubartsev A P, Laaksonen A and Nordenskiold L 2002 On the Competition Between
606 Water, Sodium Ions, and Spermine in Binding to DNA: A Molecular Dynamics Computer
607 Simulation Study *Biophys. J.* **82** 2860-75
608 [70] Bonvin A M 2000 Localisation and Dynamics of Sodium Counterions Around DNA in Solution
609 from Molecular Dynamics Simulation *Eur. Biophys. J.* **29** 57-60
610 [71] Kalodimos C G, Biris N, Bonvin A M, Levandoski M M, Guennuegues M, Boelens R and Kaptein R
611 2004 Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes
612 *Science* **305** 386-9
613 [72] Nekludova L and Pabo C O 1994 Distinctive DNA Conformation with Enlarged Major Groove Is
614 Found in Zn-Finger-DNA and Other Protein-DNA Complexes *Proc. Natl. Acad. Sci. U.S.A.* **91** 6948-
615 52
616 [73] Shakked Z, Guzikevich-Guerstein G, Frolov F, Rabinovich D, Joachimiak A and Sigler P B 1994
617 Determinants of Repressor/Operator Recognition from the Structure of the Trp Operator
618 Binding Site *Nature* **368** 469-73
619 [74] Guzikevich-Guerstein G and Shakked Z 1996 A Novel Form of the DNA Double Helix Imposed on
620 the TATA-box by the TATA-binding Protein *Nat. Struct. Biol.* **3** 32-7
621 [75] Olson W K, Gorin A A, Lu X J, Hock L M and Zhurkin V B 1998 DNA Sequence-Dependent
622 Deformability Deduced from Protein-DNA Crystal Complexes *Proc. Natl. Acad. Sci. U.S.A.* **95**
623 11163-8
624 [76] Lu X J, Shakked Z and Olson W K 2000 A-Form Conformational Motifs in Ligand-Bound DNA
625 Structures *J. Mol. Biol.* **300** 819-40
626 [77] Stagg L, Zhang S Q, Cheung M S and Wittung-Stafshede P 2007 Molecular Crowding Enhances
627 Native Structure and Stability of α/β Protein Flavodoxin *Proc. Natl. Acad. Sci. U.S.A.* **104** 18976-
628 81
629 [78] Minton A P 2000 Implications of Macromolecular Crowding for Protein Assembly *Curr. Opin.*
630 *Struct. Biol.* **10** 34-9
631 [79] Gebala M, Bonilla S, Bisaria N and Herschlag D 2016 Does Cation Size Affect Occupancy and
632 Electrostatic Screening of the Nucleic Acid Ion Atmosphere? *J. Am. Chem. Soc.* **138** 10925-34
633 [80] Gebala M, Giambasu G M, Lipfert J, Bisaria N, Bonilla S, Li G, York D M and Herschlag D 2015
634 Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting *J.*
635 *Am. Chem. Soc.* **137** 14705-15
636 [81] Giambasu G M, Luchko T, Herschlag D, York D M and Case D A 2014 Ion Counting from Explicit-
637 Solvent Simulations and 3D-RISM *Biophys. J.* **106** 883-94

638 [82] Allred B E, Gebala M and Herschlag D 2017 Determination of Ion Atmosphere Effects on the
639 Nucleic Acid Electrostatic Potential and Ligand Association Using AH+.C Wobble Formation in
640 Double-Stranded DNA *J. Am. Chem. Soc.* **139** 7540-8

641

642

643 **FIGURE LEGENDS**

644 **Figure 1.** Representative conformations from clustering simulation snapshots for the Drew-
645 Dickerson (A) and GC-rich (B) dodecamers at 0%, 20%, 30% and 40% protein concentrations.
646 The structures are the structures in each cluster closest to the closest center based on RMSD.
647 Cluster populations are given in parentheses.

648 **Figure 2.** Sugar pucker conformations for each base of the Drew-Dickerson dodecamer (A) and
649 the GC-rich dodecamer (B) from simulations at different protein concentrations.

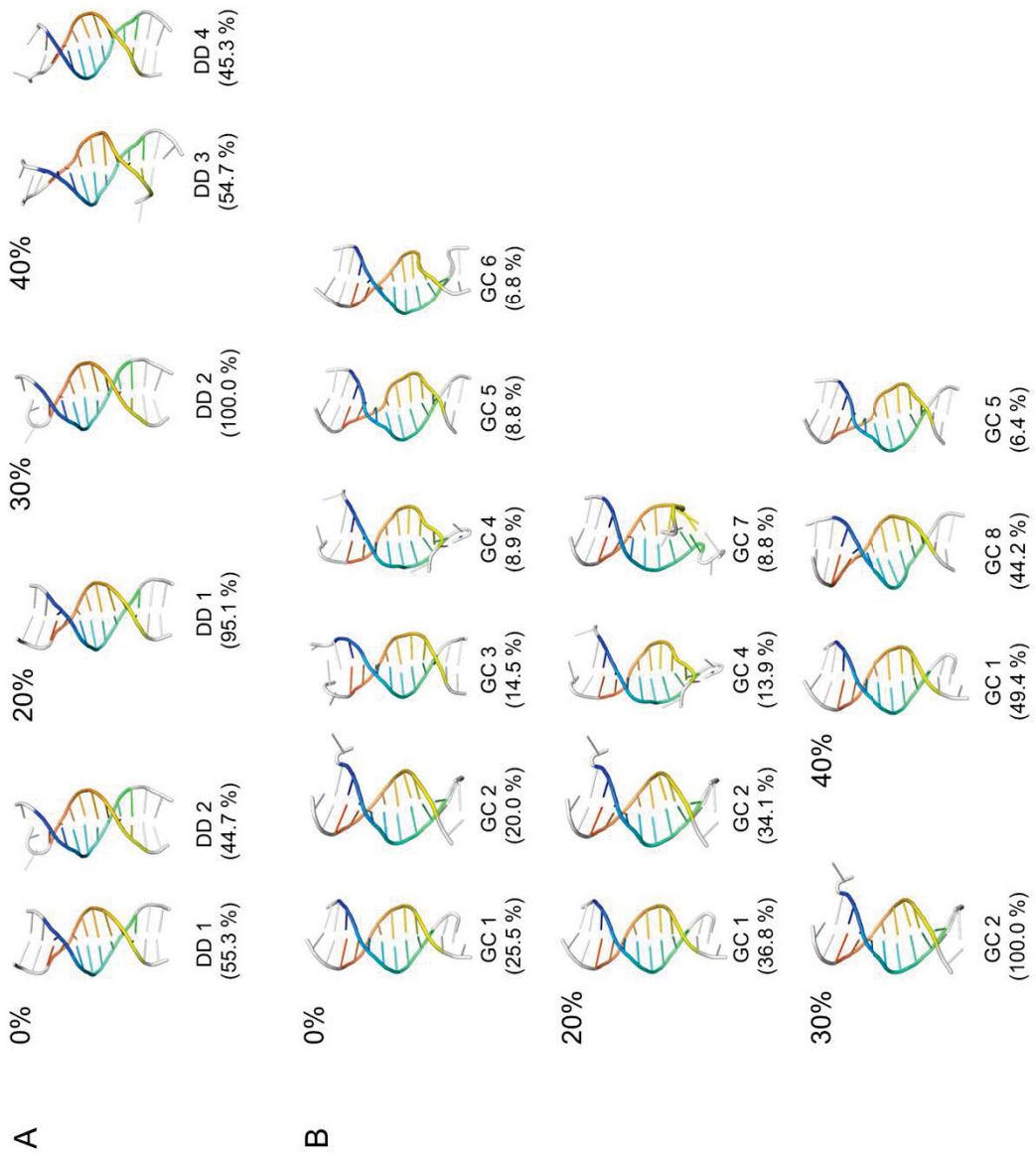
650 **Figure 3.** Potentials of mean force (kcal/mol) as a function of δ and χ backbone angles (see Fig.
651 S1) for the Drew-Dickerson dodecamer at 0% (A), 20% (B), 30 % (C) and 40% (D) protein
652 concentrations, and for the GC-rich dodecamer at 0% (E), 20% (F), 30% (G) and 40% (H) protein
653 concentrations from the simulations. See Table S5 for uncertainties.

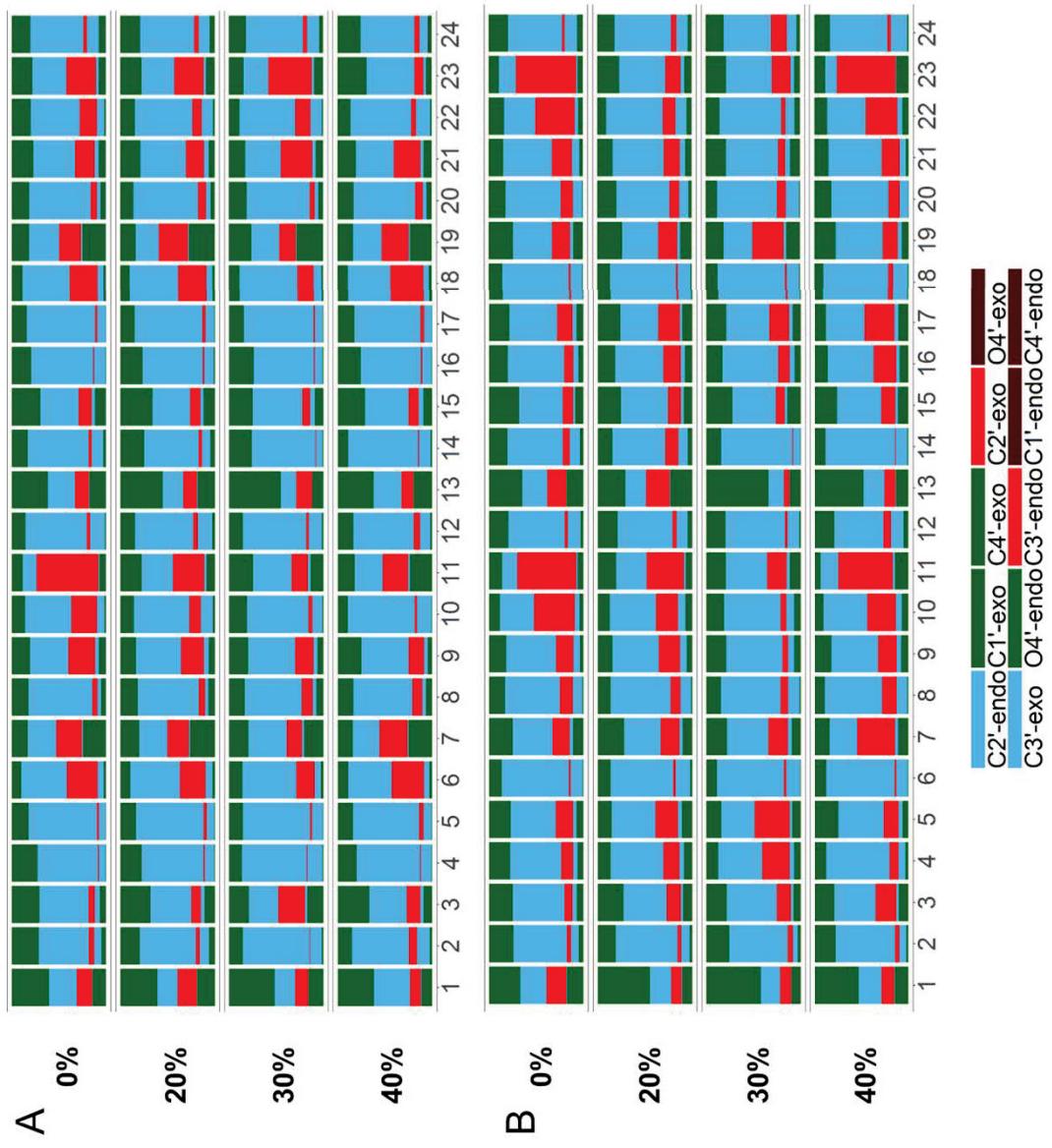
654 **Figure 4.** Average minimum heavy atom distances between crowder protein residues and DNA
655 major groove, minor groove, sugar and phosphate backbone for the Drew-Dickerson dodecamer
656 (left) and the GC-rich dodecamer (right) at different protein concentrations. The secondary
657 structure of protein G is indicated on top for reference.

658 **Figure 5.** Representative structures showing interactions between crowder proteins and the Drew-
659 Dickerson dodecamer (A, B) and the GC-rich DNA (C, D). Specific interactions are shown
660 between lysines and the DNA phosphate groups (A), between a threonine residue and a ribose
661 sugar (B), between protonated glutamate and a phosphate (C), and between asparagine and the
662 phosphate (D). Interacting residues are shown in licorice (DNA) and ball-and-stick (protein)
663 representation. The chosen structures have minimal distances between the DNA and the protein.

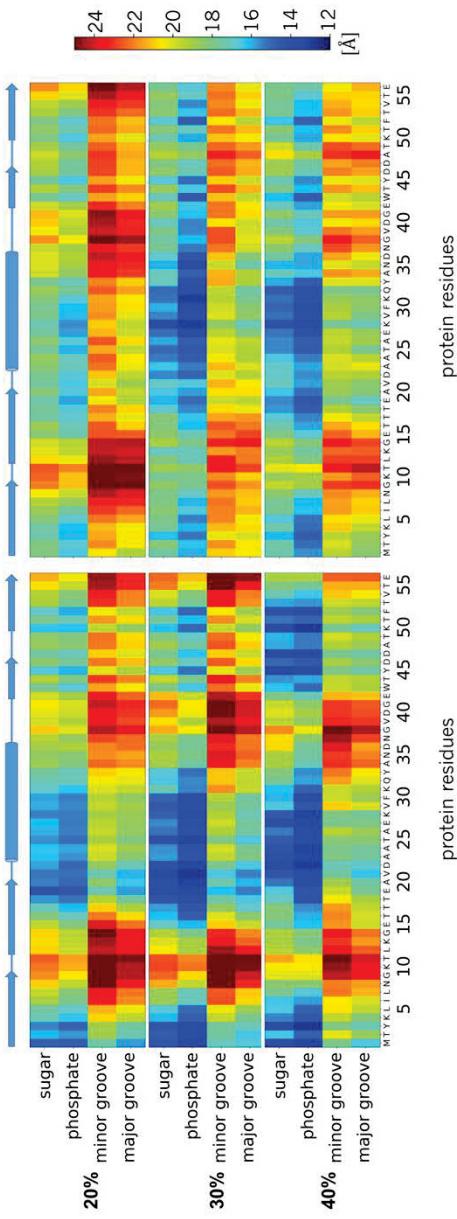
664 **Figure 6.** Potentials of mean force (kcal/mol) as a function of slide (see Fig. S1) and number of
665 protein contacts for the Drew-Dickerson dodecamer at 20% (A), 30% (B), 40% (C) protein
666 concentrations, and for the GC-rich dodecamer at 20% (D), 30% (E), 40% (F) protein
667 concentrations from the simulations. A contact is defined when the minimum distance between the
668 heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed
669 lines indicate the slide and x-displacement values for canonical B- and A-forms, respectively. See
670 Table S5 for uncertainties.

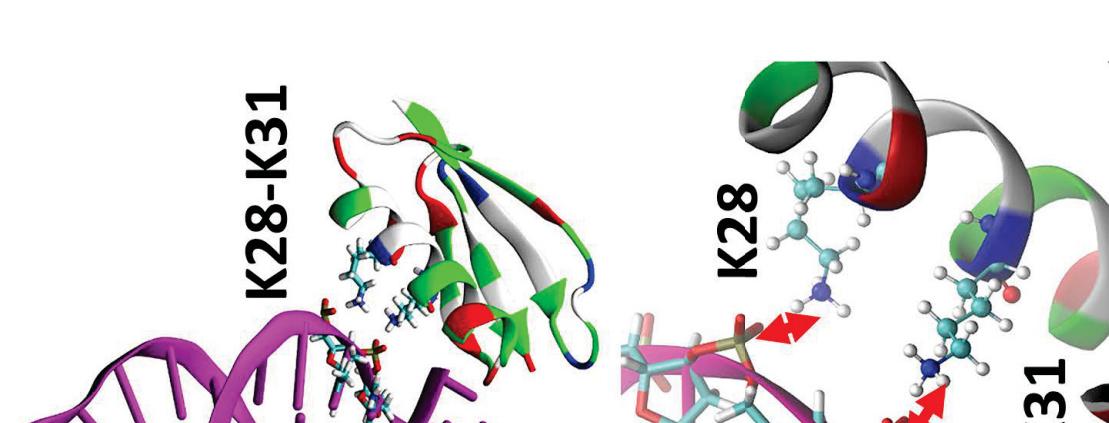
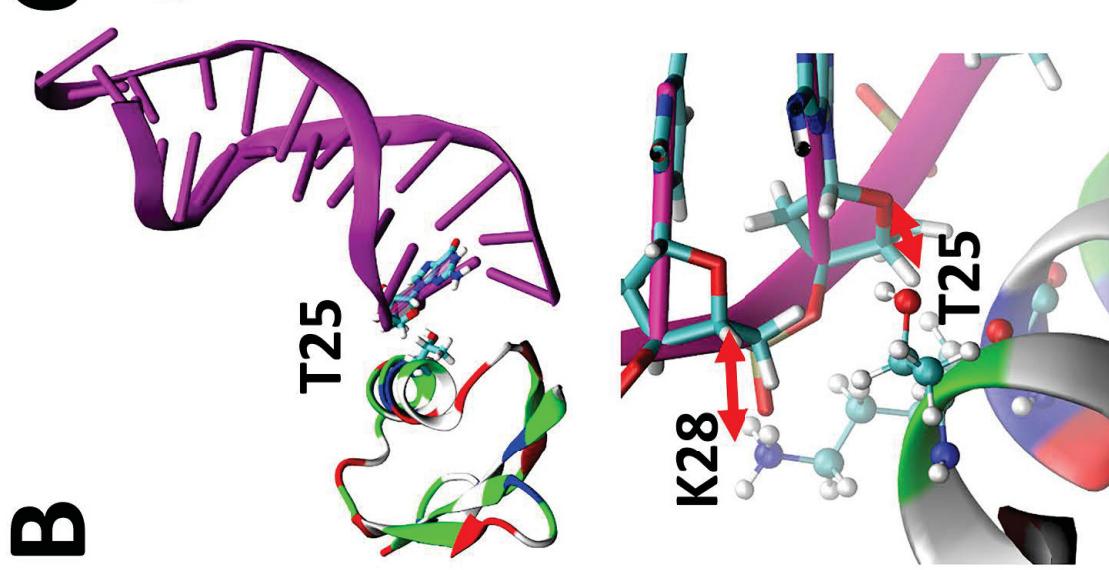
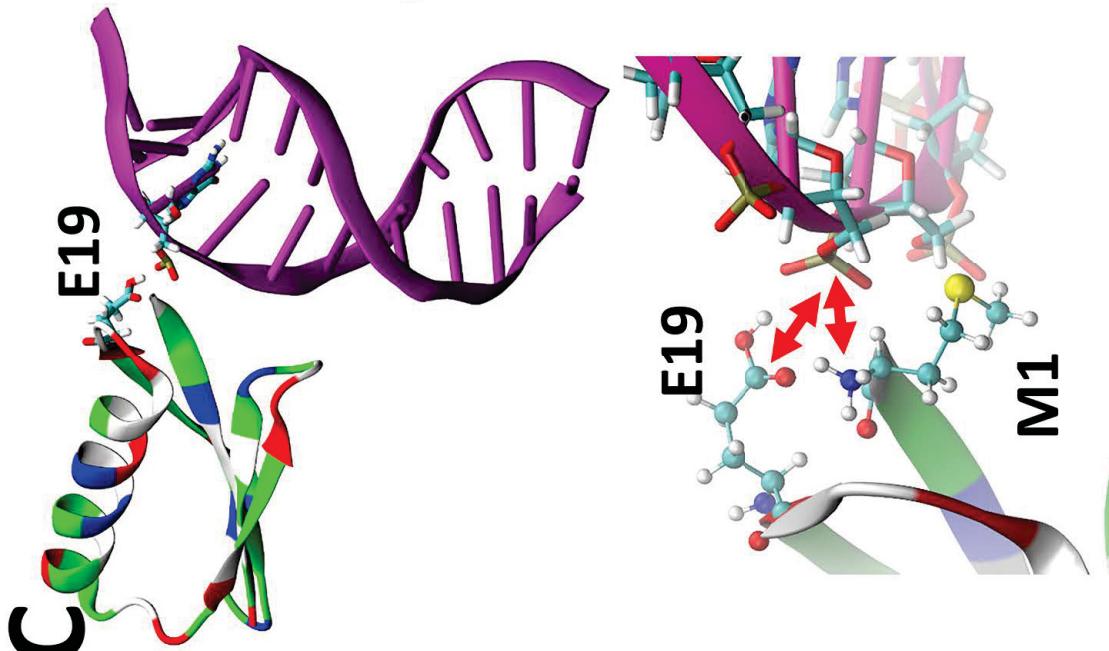
671 **Figure 7.** Potentials of mean force (kcal/mol) as a function of x-displacement (see Fig. S1) and
672 number of protein contacts for the Drew-Dickerson dodecamer at 20% (A), 30% (B), 40% (C)
673 protein concentrations, and for the GC-rich dodecamer at 20% (D), 30% (E), 40% (F) protein
674 concentrations from the simulations. See Table S5 for uncertainties.

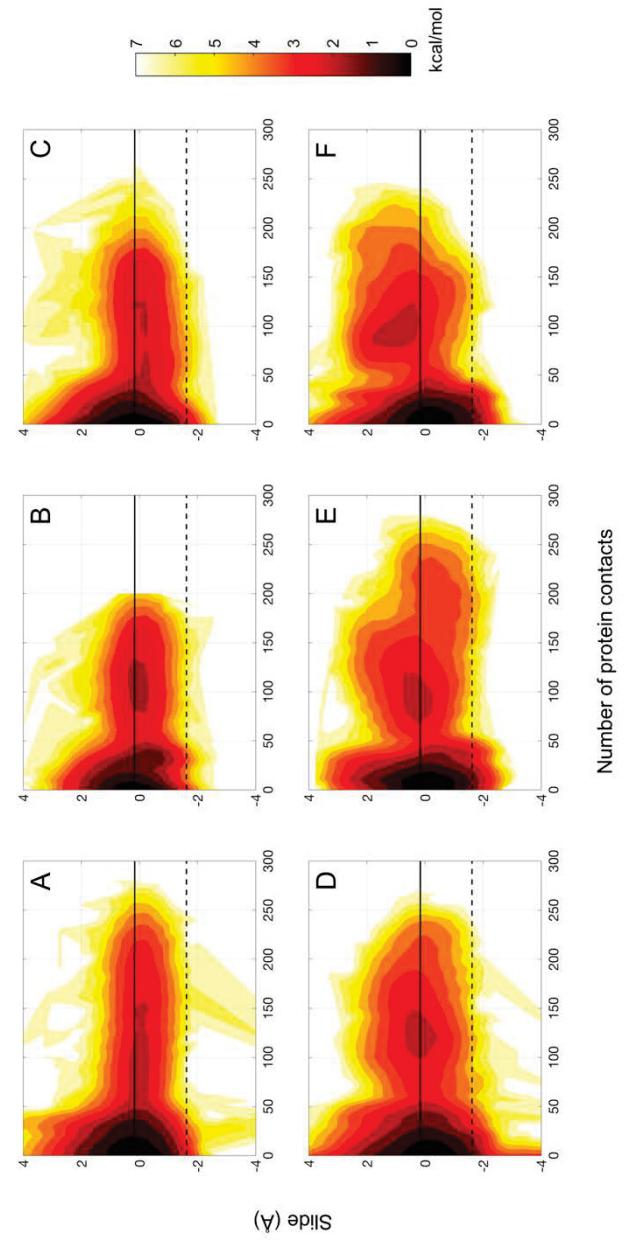

675 **Figure 8.** Potentials of mean force (kcal/mol) as a function of helical rise (see Fig. S1) and number
676 of protein contacts for the Drew-Dickerson dodecamer at 20% (A), 30% (B), 40% (C) protein
677 concentrations, and for the GC-rich dodecamer at 20% (D), 30% (E), 40% (F) protein
678 concentrations from the simulations. See Table S5 for uncertainties.

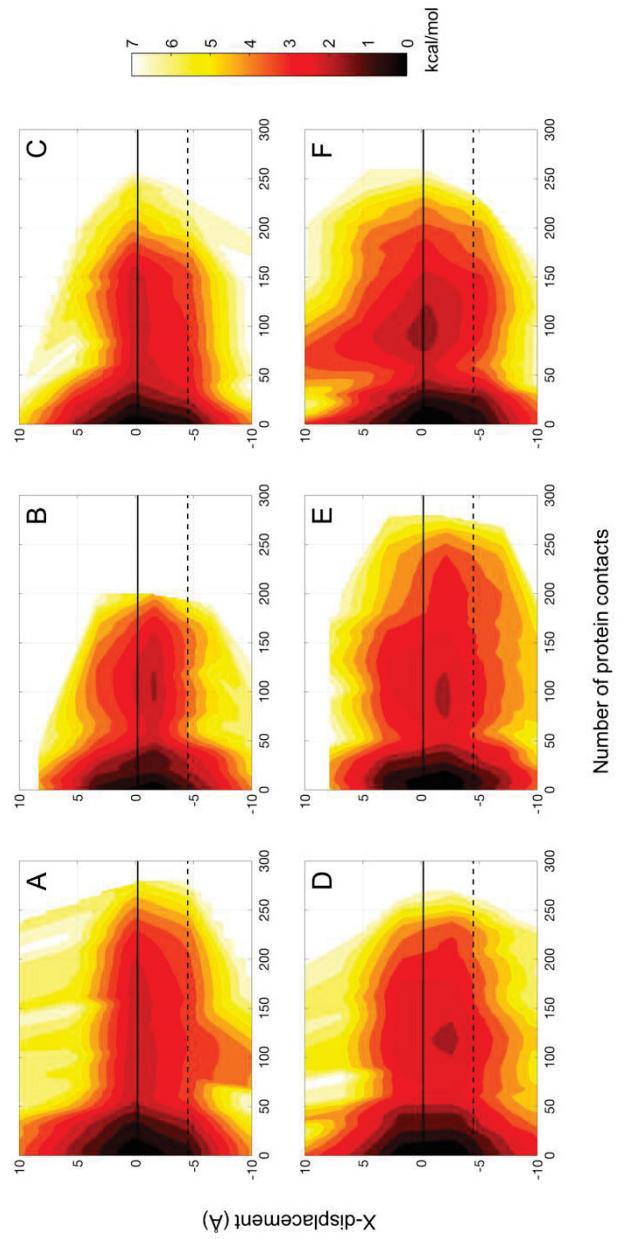

679 **Figure 9.** Potentials of mean force (kcal/mol) as a function of Zp (see Fig. S1) and number of
680 protein contacts for the Drew-Dickerson dodecamer at 20% (A), 30% (B), 40% (C) protein
681 concentrations, and for the GC-rich dodecamer at 20% (D), 30% (E), 40% (F) protein
682 concentrations from the simulations. See Table S5 for uncertainties.

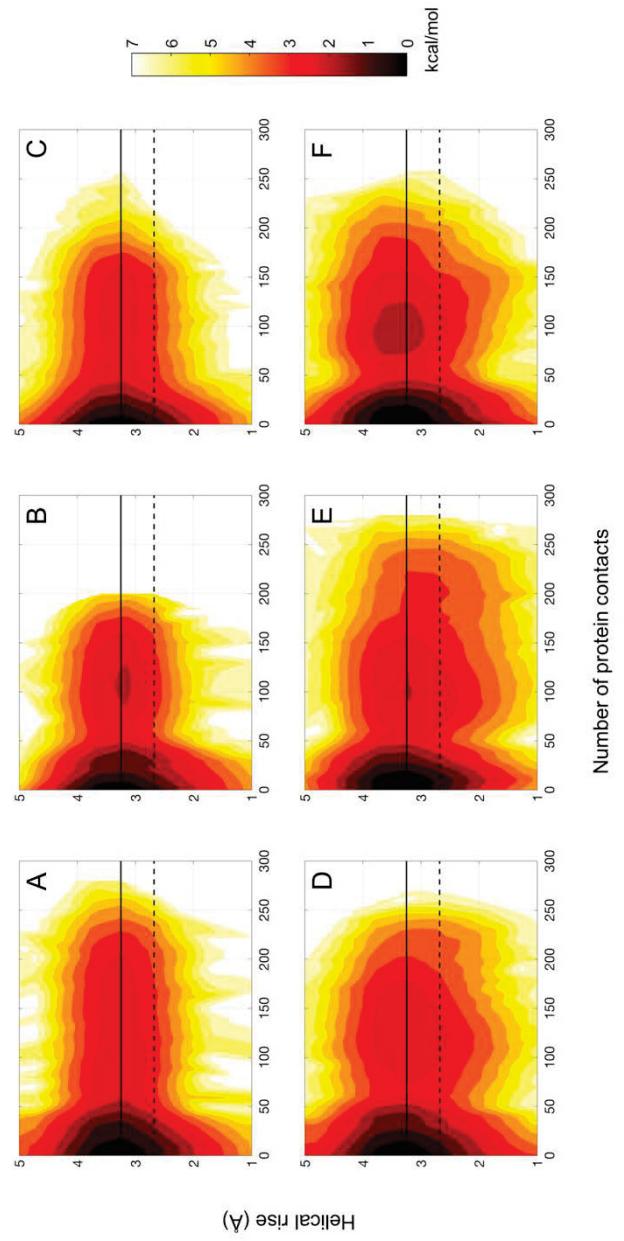
683 **Figure 10.** Radial distribution functions for water (A), sodium ions (B) and DNA neutralization
684 fractions (C) as a function of distance from the closest heavy atoms of the Drew-Dickerson
685 dodecamer (left) and the GC-rich dodecamer (right). Line colors indicate different protein

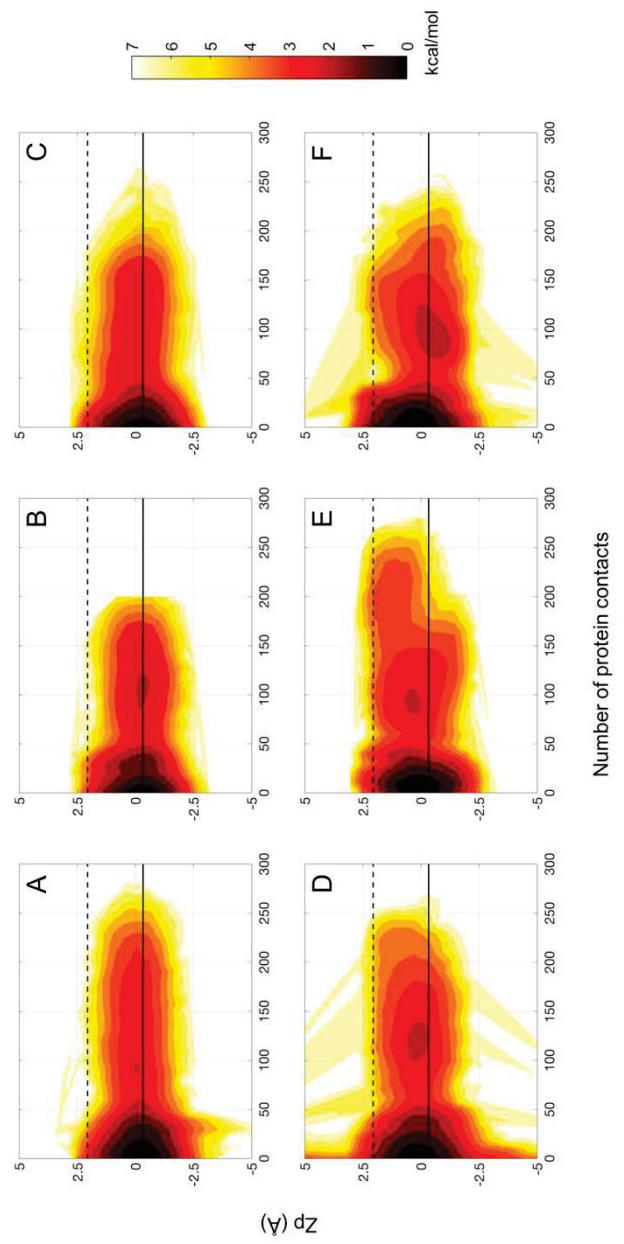

686 concentrations (black: 0%, red: 20%, green: 30%, blue: 40%). The horizontal black line in C
687 indicates the counterion condensation value of 76% of the ions to be condensed on the surface of
688 the DNA. Error bars indicate the calculated standard errors from five independent replicate
689 simulations.

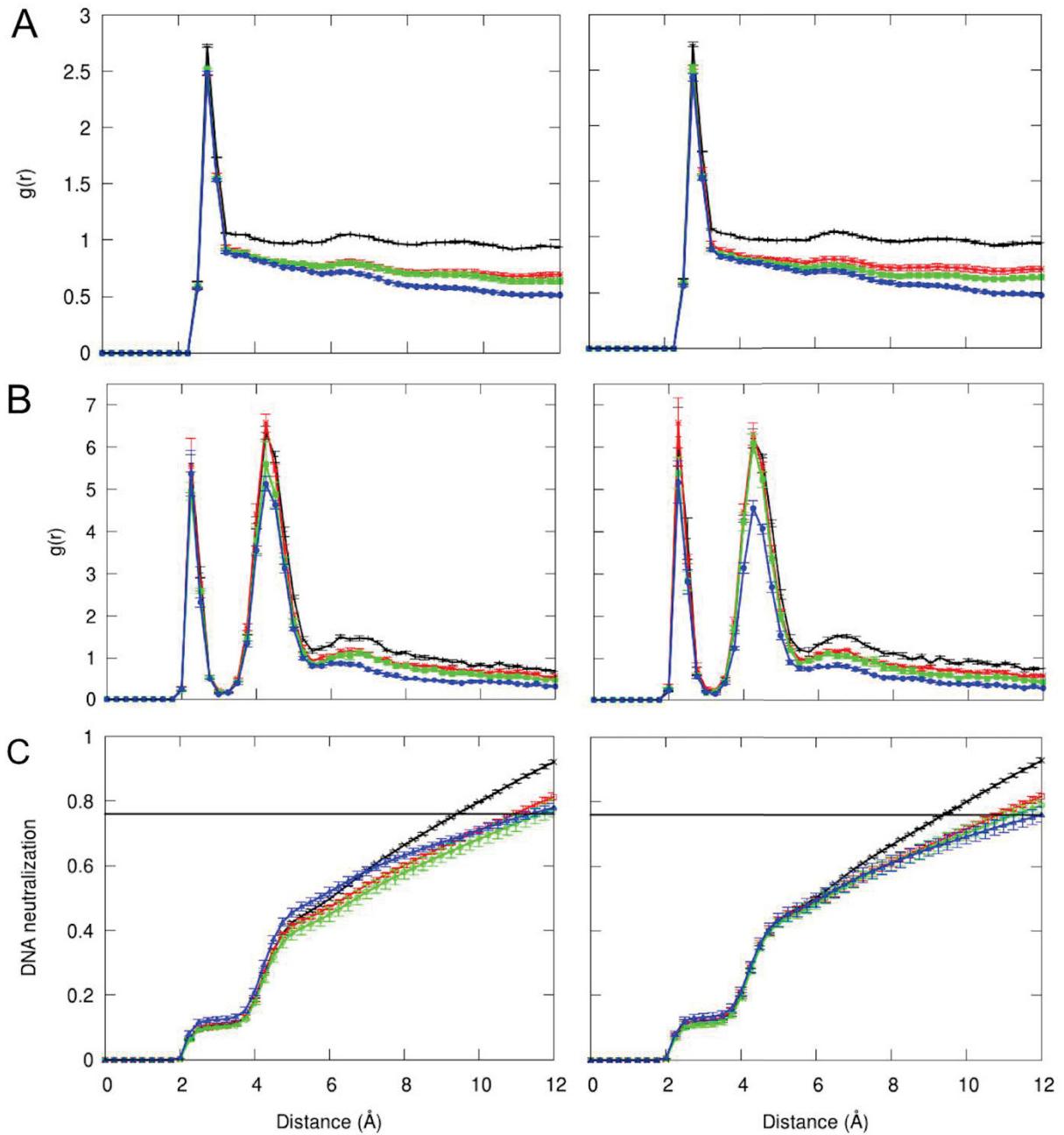



690 **Figure 11.** 3D sodium ion densities around the Drew-Dickerson dodecamer (A) and the GC-rich
691 dodecamer (B) at different protein concentrations. The ion density observed in 0% crowding is
692 shown with a transparent representation for comparison with ion densities (orange) in crowded
693 solutions. Density contours are shown at a level of 0.002 \AA^{-3} . The top and bottom figures represent
694 front and top views of DNA.

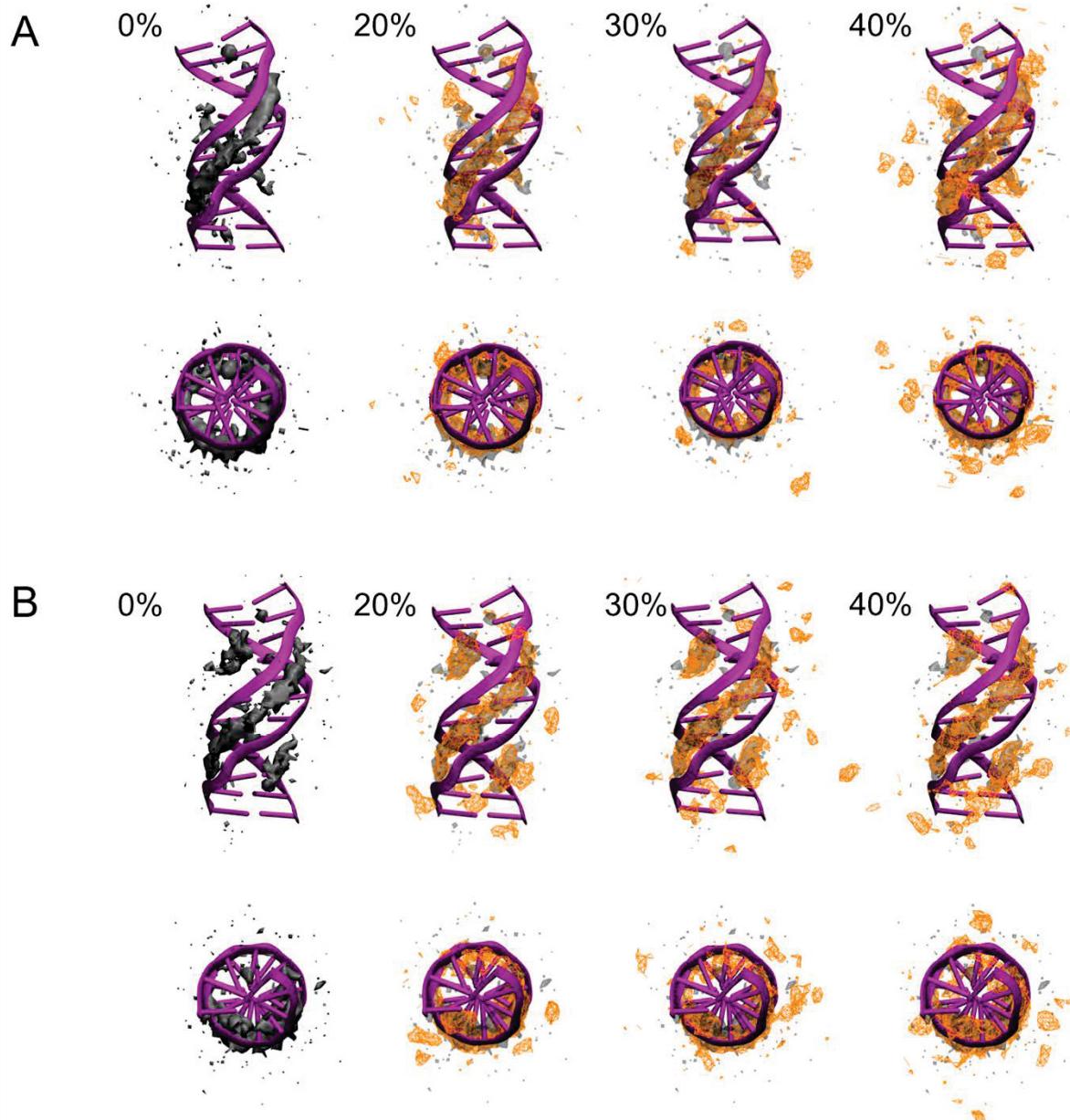












Supplementary Information

Role of Protein Interactions in Stabilizing Canonical DNA Features in Simulations of DNA in Crowded Environments

Asli Yildirim¹, Nathalie Brenner^{2,3}, Robert Sutherland³, Michael Feig^{3,}*

¹Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

²Faculty of Mathematics and Natural Sciences, University of Düsseldorf, 40225 Düsseldorf,
Germany

³Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing,
Michigan 48824, USA

Corresponding Author Contact Information

*603 Wilson Road

Room BCH 218

East Lansing, MI

48824

USA

Phone: 517-432-7439

E-mail: feig@msu.edu

Table S1. Parameters and RMSD values from the canonical B-form structure for the individual clusters of the Drew-Dickerson dodecamer.

	DD1	DD2	DD3	DD4
Slide (Å)	0.07 (0.00)	0.34 (0.00)	0.19 (0.00)	0.38 (0.00)
Twist (deg)	33.67 (0.01)	34.63 (0.01)	33.12 (0.01)	32.73 (0.02)
X-displacement (Å)	-1.09 (0.00)	-0.30 (0.01)	-0.94 (0.01)	-0.42 (0.01)
Helical rise (Å)	3.21 (0.00)	3.30 (0.00)	3.24 (0.00)	3.29 (0.00)
Inclination (deg)	12.89 (0.03)	8.95 (0.03)	13.14 (0.04)	11.07 (0.05)
z_p (Å)	-0.06 (0.00)	-0.32 (0.00)	-0.14 (0.00)	-0.29 (0.00)
Minor groove (Å)	13.63 (0.01)	12.77 (0.01)	13.86 (0.01)	13.69 (0.01)
Major groove (Å)	16.10 (0.01)	16.52 (0.01)	16.27 (0.01)	16.97 (0.01)
RMSD (Å)	1.82 (0.00)	1.37 (0.00)	2.00 (0.00)	1.70 (0.00)

All values are averaged over all base-pairs excluding the first and last two terminal base-pairs with standard errors given in the parentheses.

Table S2. Parameters and RMSD values from the canonical B-form structure for the individual clusters of the GC-rich dodecamer.

	GC1	GC2	GC3	GC4
Slide (Å)	0.12 (0.00)	-0.30 (0.00)	0.69 (0.01)	0.44 (0.01)
Twist (deg)	34.36 (0.01)	33.13 (0.01)	34.63 (0.03)	33.02 (0.03)
X-displacement (Å)	-0.67 (0.01)	-1.69 (0.01)	0.53 (0.01)	-0.20 (0.01)
Helical rise (Å)	3.30 (0.00)	3.20 (0.00)	3.37 (0.00)	3.33 (0.00)
Inclination (deg)	8.80 (0.03)	12.12 (0.03)	5.90 (0.08)	9.42 (0.07)
z_p (Å)	0.05 (0.00)	0.34 (0.00)	-0.21 (0.01)	-0.08 (0.01)
Minor groove (Å)	14.05 (0.01)	14.55 (0.01)	14.00 (0.02)	14.78 (0.01)
Major groove (Å)	16.34 (0.01)	16.13 (0.01)	16.47 (0.01)	16.82 (0.02)
RMSD (Å)	1.62 (0.00)	2.28 (0.00)	1.68 (0.01)	2.05 (0.01)
	GC5	GC6	GC7	GC8
Slide (Å)	0.44 (0.01)	-0.06 (0.01)	-0.11 (0.02)	0.04 (0.00)
Twist (deg)	30.98 (0.06)	31.97 (0.03)	30.90 (0.41)	32.72 (0.02)
X-displacement (Å)	-0.55 (0.02)	-1.41 (0.01)	-0.94 (0.03)	-1.19 (0.01)
Helical rise (Å)	3.36 (0.01)	3.24 (0.00)	3.07 (0.02)	3.25 (0.00)
Inclination (deg)	12.55 (0.14)	13.05 (0.06)	12.00 (0.30)	12.99 (0.04)
z_p (Å)	0.03 (0.01)	0.19 (0.01)	-0.20 (0.03)	0.17 (0.01)
Minor groove (Å)	15.68 (0.02)	15.11 (0.01)	14.94 (0.03)	15.09 (0.01)
Major groove (Å)	16.82 (0.02)	16.69 (0.02)	15.47 (0.05)	16.25 (0.01)
RMSD (Å)	2.58 (0.01)	2.47 (0.01)	3.70 (0.02)	2.25 (0.00)

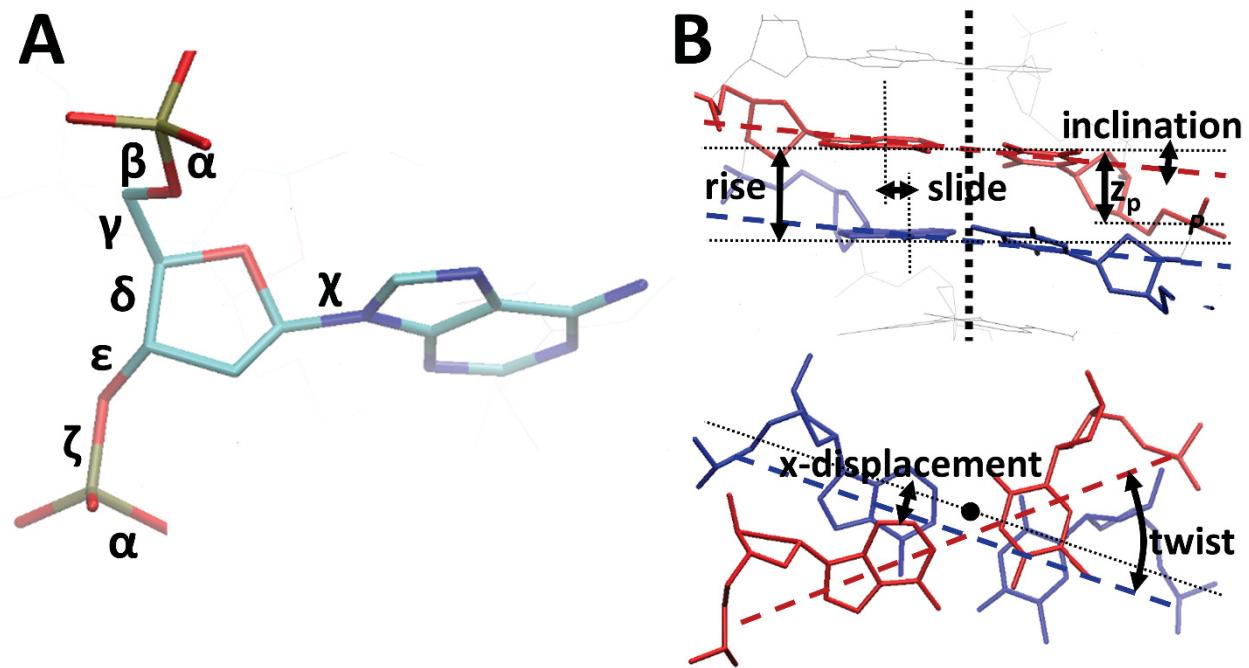
All values are averaged over all base-pairs excluding the first and last two terminal base-pairs with standard errors given in the parentheses.

Table S3. Bending angles for both DNA dodecamers (degrees).

	X-ray	Canonical		Simulations in crowded environment			
		A-DNA	B-DNA	0%	20%	30%	40%
Drew-Dickerson	170.11	122.72 (3.57)	163.05 (5.94)	155.24 (0.47)	155.55 (0.65)	155.50 (0.76)	152.80 (0.87)
GC-rich	100.77	122.72 (3.57)	163.05 (5.94)	156.85 (1.09)	153.00 (1.12)	153.03 (0.91)	152.18 (1.04)

Bending angle is defined as the angle between the center of masses of three sections of base-pairs: Section 1: 3 – 5, Section 2: 6 – 7, and Section 3: 8 – 10. Standard errors given in the parentheses. Statistical errors of the averages over the simulations are estimated from block averaging by comparing results for 100 ns segments from the simulations. Canonical values are averaged over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 1ZF1, 1ZF8, 1ZF9, 1ZFA and the B-form structures 2M2C, 4AGZ, 4H0, 4AH1, 3U05, 3U08, 1VTJ, 3U2N, 3OIE, 3BSE. For X-ray structure values; 1BNA and 399D are used for Drew-Dickerson and GC-rich dodecamers, respectively.

Table S4. Conformational clustering of protein G crowder molecules


Cluster	Population	Cluster center		Avg. minimum DNA distance [Å]
		C α RMSD [Å]	Radius of gyration [Å]	
Drew-Dickerson	20%	1	76.9 %	0.57
		2	21.6 %	0.73
		3	1.2 %	1.18
		4	0.3%	2.32
30%	1	68.8 %	0.57	10.53
	2	28.1 %	0.76	10.67
	3	3.1 %	1.45	10.61
40%	1	63.1 %	0.63	10.49
	2	36.9 %	0.91	7.9
				7.2
GC-rich	20%	1	95.6 %	0.64
		2	4.4 %	2.07
	30%	1	100 %	0.65
	40%	1	94.2 %	0.59
		2	5.8 %	1.14
				10.59
				10.70
				3.7

Clustering analysis of snapshots extracted at 10 ns intervals via the kclust program of the MMTSB Tool Set based on C α atoms using a clustering radius of 2 Å. C α RMSD is with respect to experimental structure (3GB1). Minimum DNA distance is calculated between heavy atoms of protein and DNA.

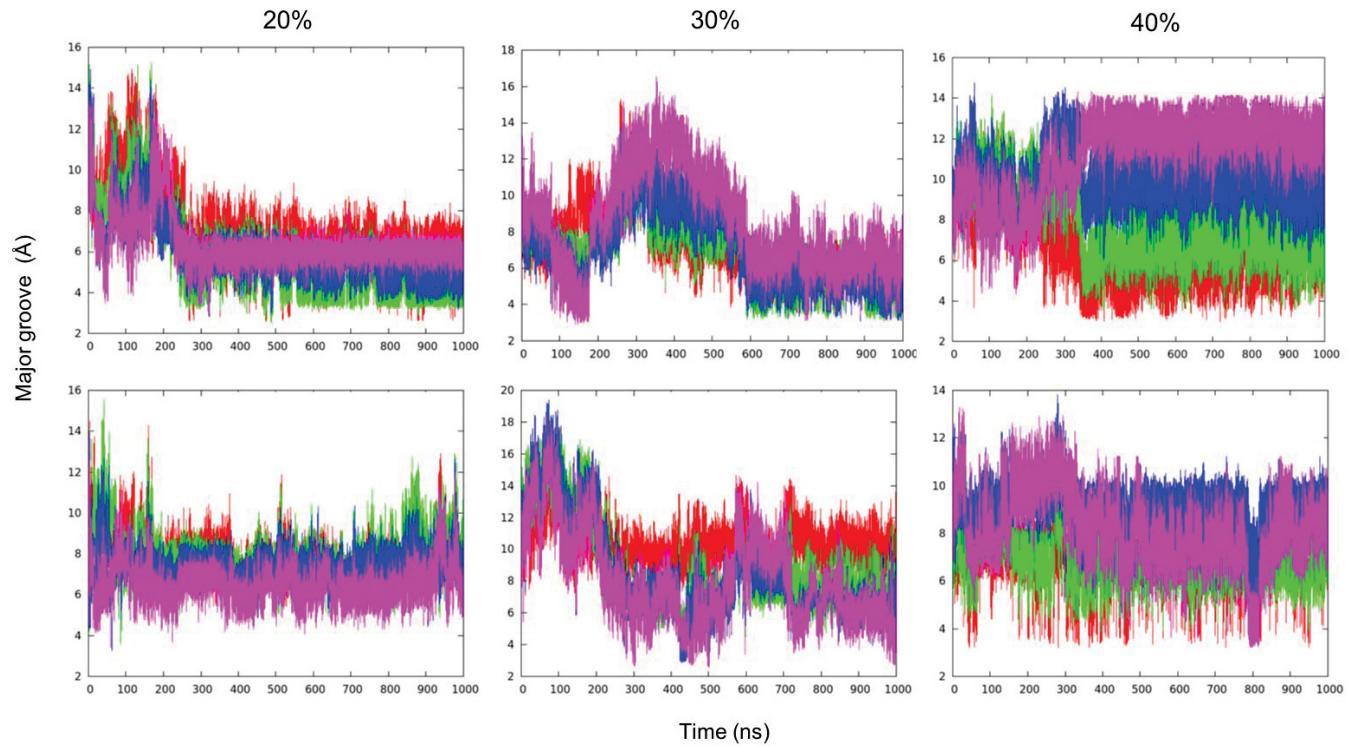
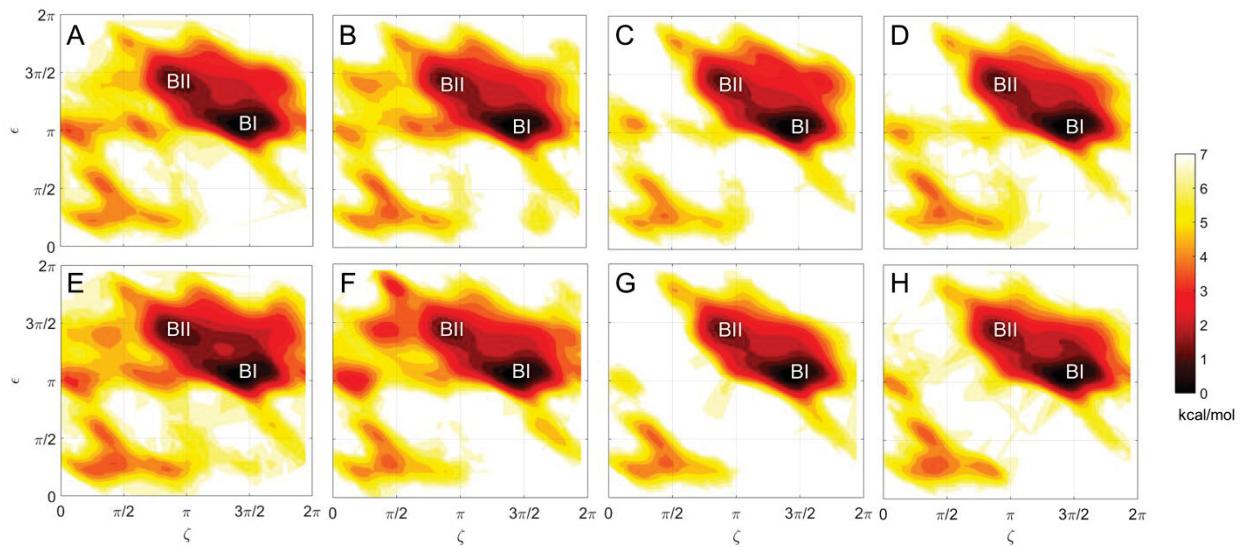
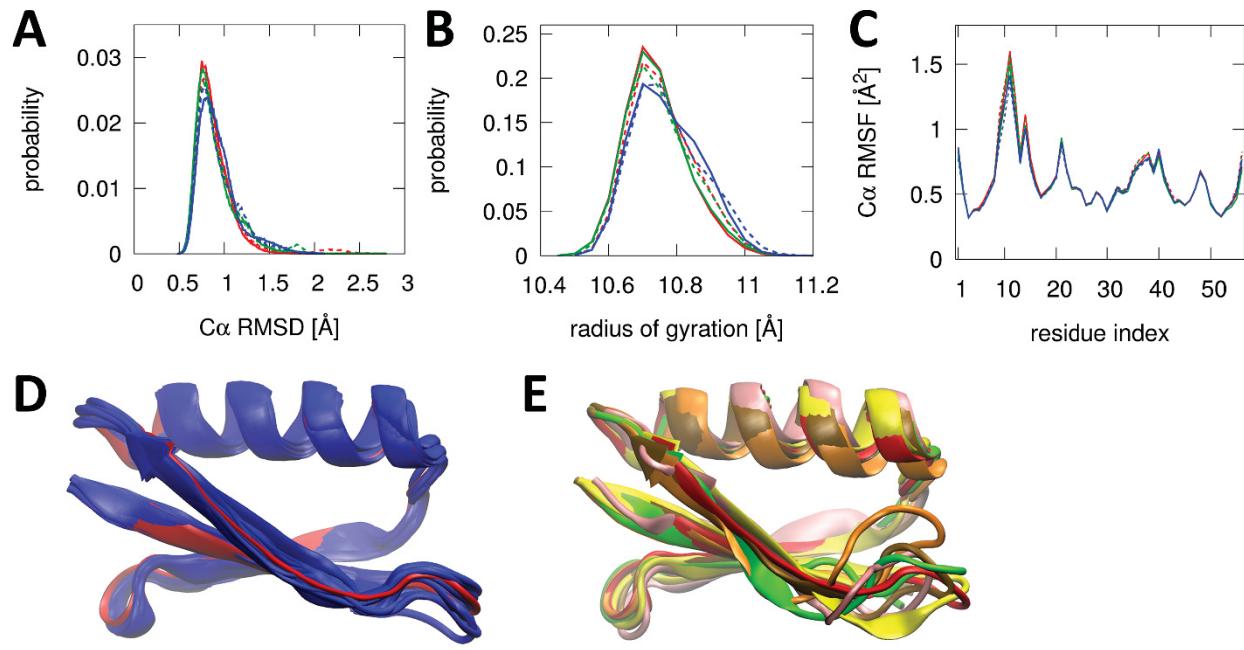
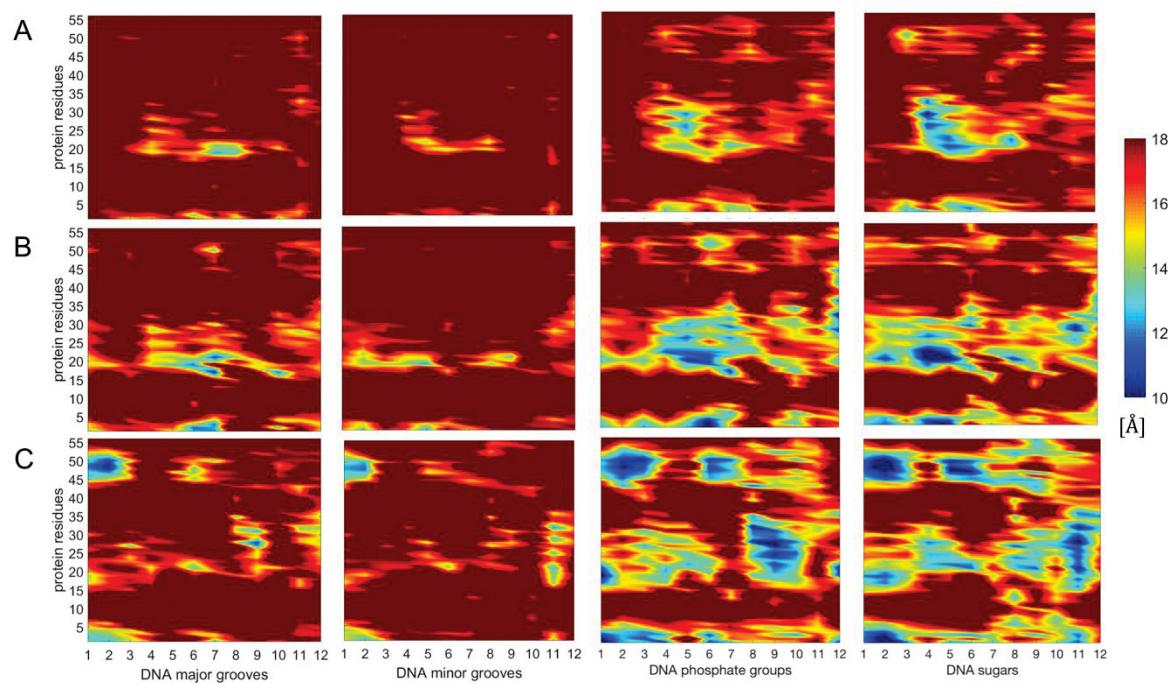
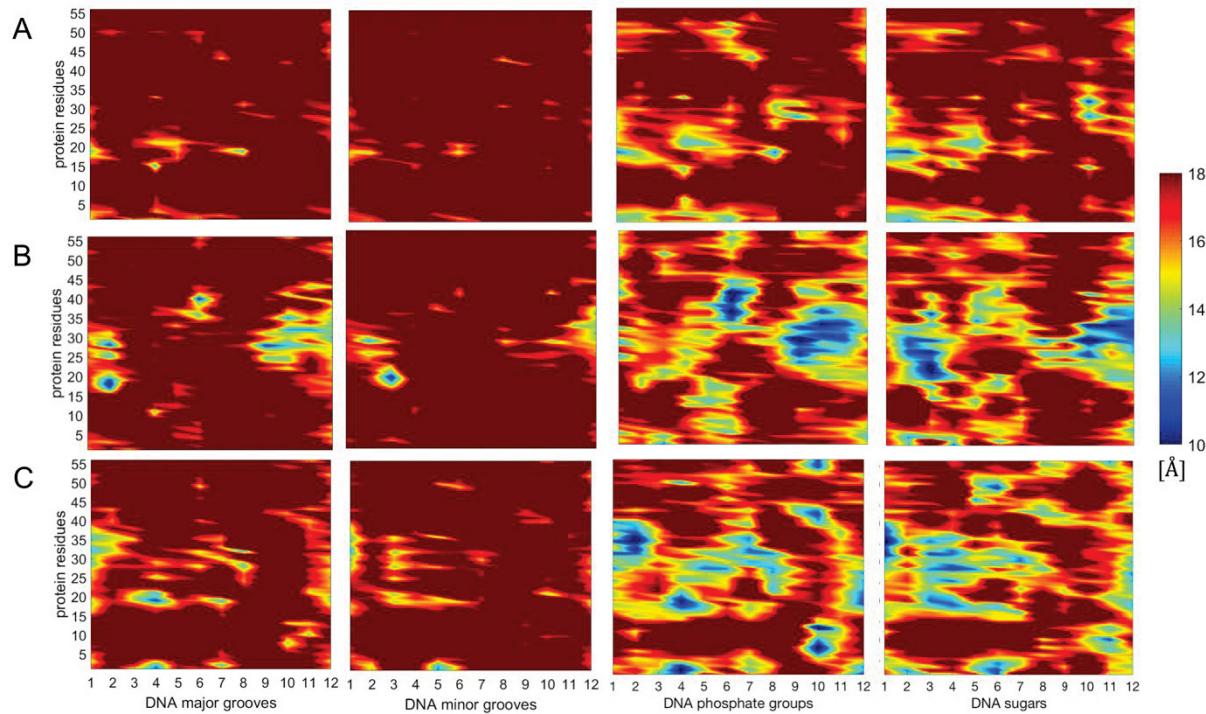

Table S5. PMF error analysis

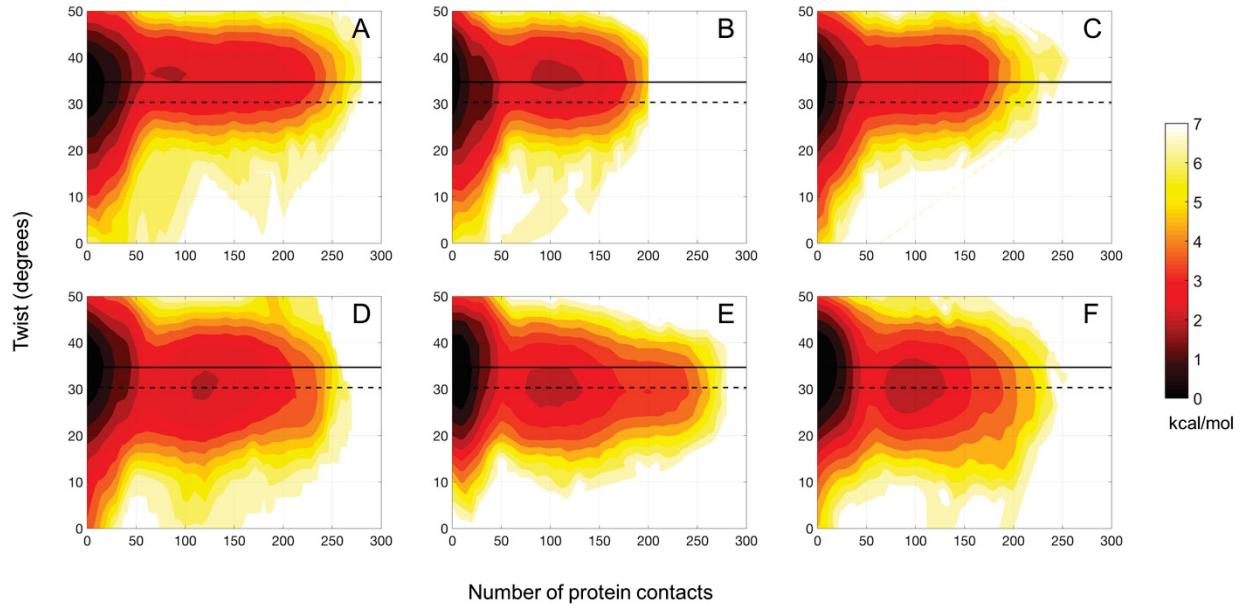
Figure	Drew-Dickerson			GC-rich		
	20%	30%	40%	20%	30%	40%
slide	0.21 [-0.8; 0.5]	0.30 [-0.5; 0.8]	0.34 [-0.8; 0.7]	0.39 [-0.6; 1.3]	0.41 [-1.3; 1.0]	0.41 [-1.3; 1.0]
x-displacement	0.20 [-0.6; 0.3]	0.25 [-0.2; 0.7]	0.32 [-0.6; 0.5]	0.41 [-0.6; 1.2]	0.40 [-1.1; 1.0]	0.39 [-0.7; 1.3]
helical rise	0.20 [-0.4; 0.4]	0.22 [-0.5; 0.6]	0.32 [-0.7; 0.6]	0.35 [-0.7; 1.0]	0.30 [-0.9; 0.9]	0.40 [-0.7; 1.5]
z_p	0.22 [-0.9; 0.6]	0.23 [-0.5; 0.6]	0.31 [-0.8; 0.6]	0.42 [-1.1; 1.2]	0.38 [-1.0; 1.2]	0.41 [-0.8; 1.4]
twist	0.22 [-0.4; 0.8]	0.22 [-0.7; 0.6]	0.32 [-0.7; 0.7]	0.36 [-0.7; 1.0]	0.26 [-0.7; 0.8]	0.39 [-0.3; 1.3]
inclination	0.23 [-0.8; 0.6]	0.29 [-0.8; 0.9]	0.34 [-1.1; 0.8]	0.38 [-0.8; 1.2]	0.34 [-1.2; 1.1]	0.37 [-0.6; 1.4]
minor groove	0.41 [-1.3; 1.3]	0.35 [-0.6; 1.2]	0.42 [-1.0; 1.1]	0.43 [-1.2; 1.6]	0.43 [-1.5; 1.4]	0.45 [-1.2; 1.4]
major groove	0.27 [-0.9; 0.9]	0.38 [-1.3; 1.3]	0.41 [-1.3; 1.1]	0.46 [-1.3; 2.0]	0.41 [-1.1; 1.5]	0.50 [-1.1; 1.6]
α	0.22 [-0.7; 0.8]	0.23 [-0.3; 0.8]	0.31 [-0.7; 0.7]	0.35 [-0.8; 1.2]	0.25 [-0.6; 0.8]	0.55 [-0.5; 2.0]
β	0.22 [-0.5; 0.9]	0.22 [-0.5; 0.7]	0.34 [-0.9; 0.7]	0.42 [-0.8; 1.7]	0.31 [-0.9; 1.0]	0.49 [-0.8; 2.2]
γ	0.20 [-0.2; 0.5]	0.19 [-0.1; 0.5]	0.33 [-0.9; 0.6]	0.36 [-0.7; 1.3]	0.27 [-0.8; 0.7]	0.53 [-0.3; 2.1]
δ	0.22 [-0.3; 0.6]	0.23 [-0.4; 0.8]	0.33 [-0.8; 0.7]	0.37 [-0.7; 1.2]	0.30 [-0.8; 0.7]	0.38 [-0.5; 1.5]
ε	0.21 [-0.6; 0.6]	0.26 [-0.6; 0.8]	0.31 [-0.7; 0.6]	0.33 [-0.8; 1.4]	0.29 [-1.1; 0.6]	0.29 [-0.5; 1.2]
ζ	0.25 [-1.0; 0.8]	0.30 [-0.6; 0.8]	0.29 [-0.9; 0.7]	0.39 [-1.0; 1.3]	0.30 [-0.9; 0.9]	0.35 [-1.0; 1.2]
χ	0.25 [-0.9; 1.0]	0.26 [-0.2; 0.8]	0.32 [-0.7; 0.7]	0.40 [-0.6; 1.6]	0.37 [-1.1; 0.9]	0.39 [-1.0; 1.2]
pucker	0.26 [-0.6; 0.9]	0.29 [-0.6; 1.1]	0.33 [-1.0; 0.6]	0.38 [-1.0; 1.2]	0.31 [-0.9; 0.9]	0.40 [-0.9; 1.5]
δ/χ	0.16 [-0.6; 0.1]	0.14 [-0.2; 0.4]	0.16 [-0.0; 0.4]	0.29 [-0.2; 1.1]	0.24 [-0.6; 0.3]	0.19 [-0.4; 0.5]
ε/ζ	0.19 [-0.9; 0.5]	0.24 [-0.4; 1.4]	0.22 [-0.3; 0.7]	0.20 [-0.7; 0.7]	0.24 [-0.7; 0.2]	0.22 [-0.7; 1.0]

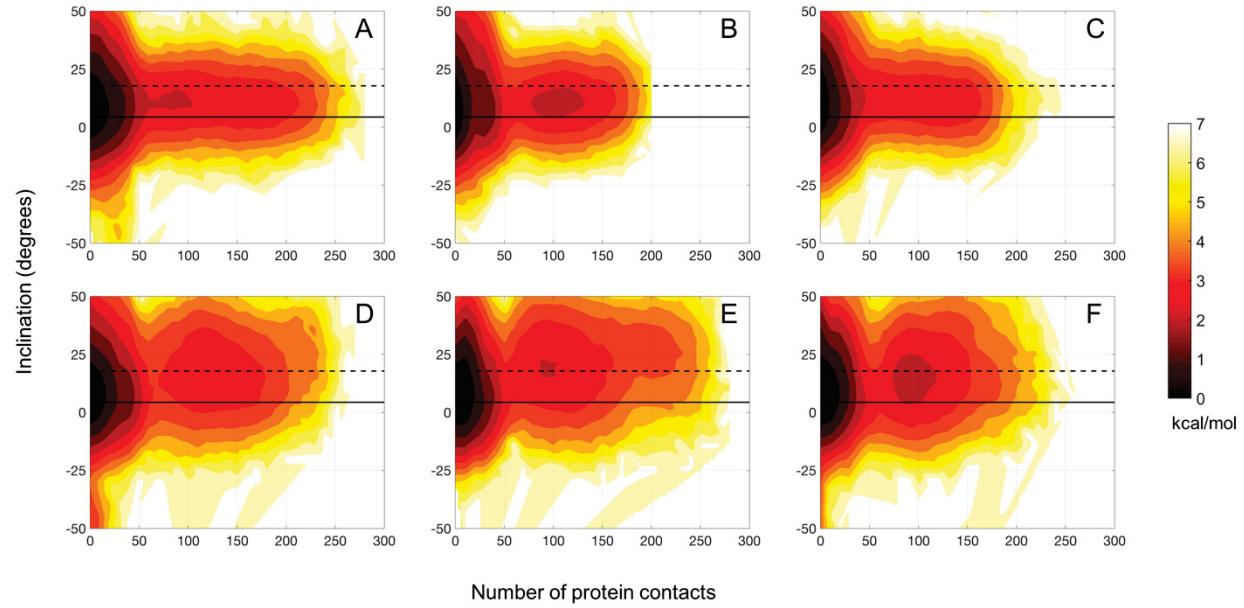

Errors in kcal/mol estimated from comparing PMFs generated from first (300-650 ns) and second (650-1000 ns) halves of production trajectories. The first value corresponds to the root mean square deviation across all PMF grid points where PMF energies are less than 4 kcal/mol. Values in square brackets are minimum and maximum deviations.


Figure S1. Definitions of DNA backbone torsion angles (A) and helical base pair parameters discussed in this study (B).


Figure S2. Time series of major groove widths for inner 5th (red), 6th (green), 7th (blue) and 8th (pink) basepairs for the Drew-Dickerson (top) and GC-rich dodecamers in crowded simulations.


Figure S3. Potential of mean force (kcal/mol) as a function of ψ and ξ backbone angles for the Drew-Dickerson dodecamer at 0 % (A), 20 % (B), 30 % (C) and 40 % (D) protein concentrations, and for the GC-rich dodecamer at 0 % (E), 20 % (F), 30 % (G) and 40 % (H) protein concentrations. See Table S5 for uncertainties.


Figure S4. Conformational analysis of protein G crowders for 20% (red), 30% (green), and 40% (blue) crowder concentrations around the Drew-Dickerson dodecamer (solid lines) and the GC-rich DNA (dashed lines) (A-C). Distribution of $C\alpha$ RMSD with respect to experimental structure (3GB1) (A); distribution of radius of gyration (B); averaged root mean square fluctuations for $C\alpha$ atoms as a function of protein G residue. Representative structures from cluster analysis for highly populated clusters (blue, D) and minor substates (colors, E), compared with experimental structure (red).


Figure S5. Average minimum distances between the crowder protein residues and the major groove, minor groove, sugar and phosphate backbone for the individual base-pairs of Drew-Dickerson dodecamer at 20% (A), 30% (B) and 40% (C) protein concentrations. Distances were calculated from the heavy atoms only.

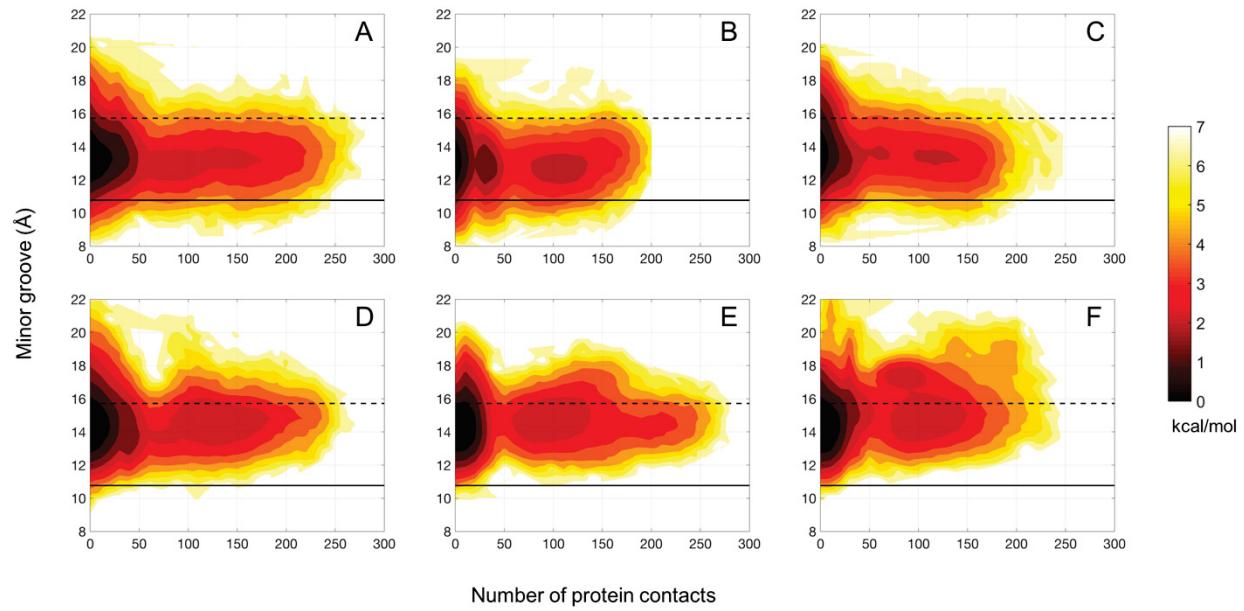
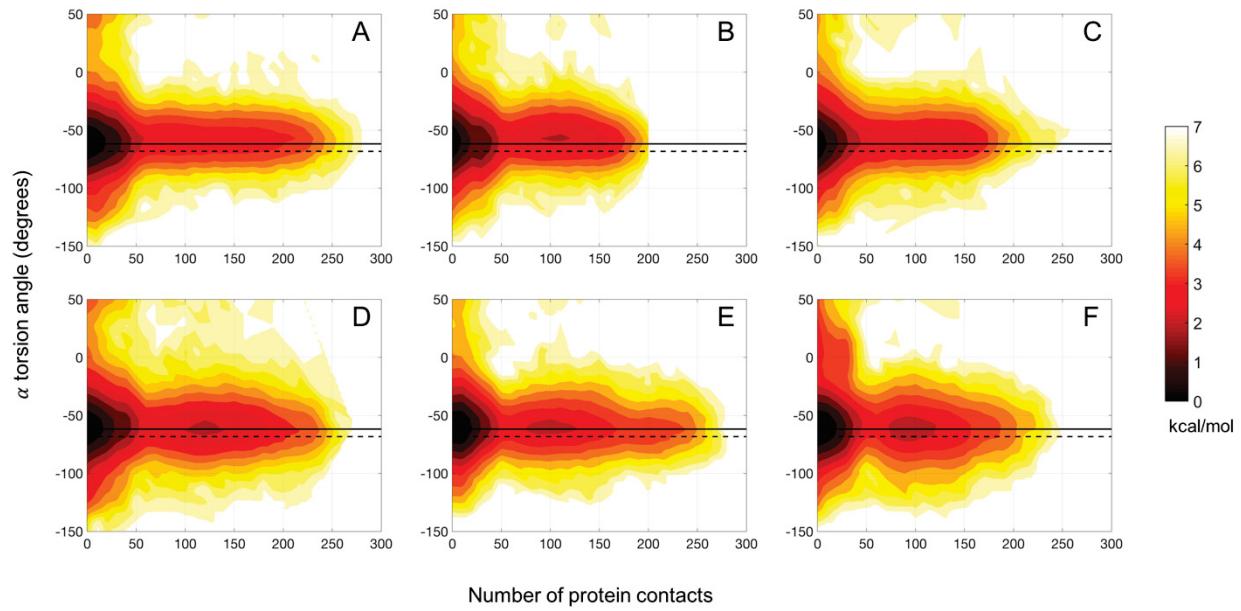
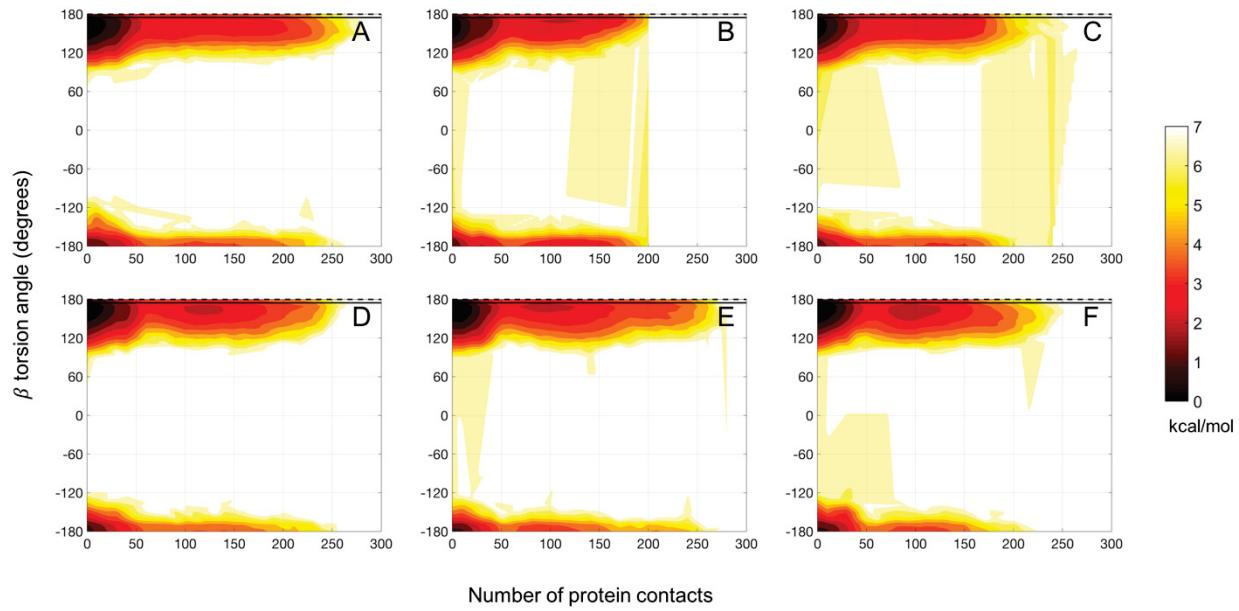
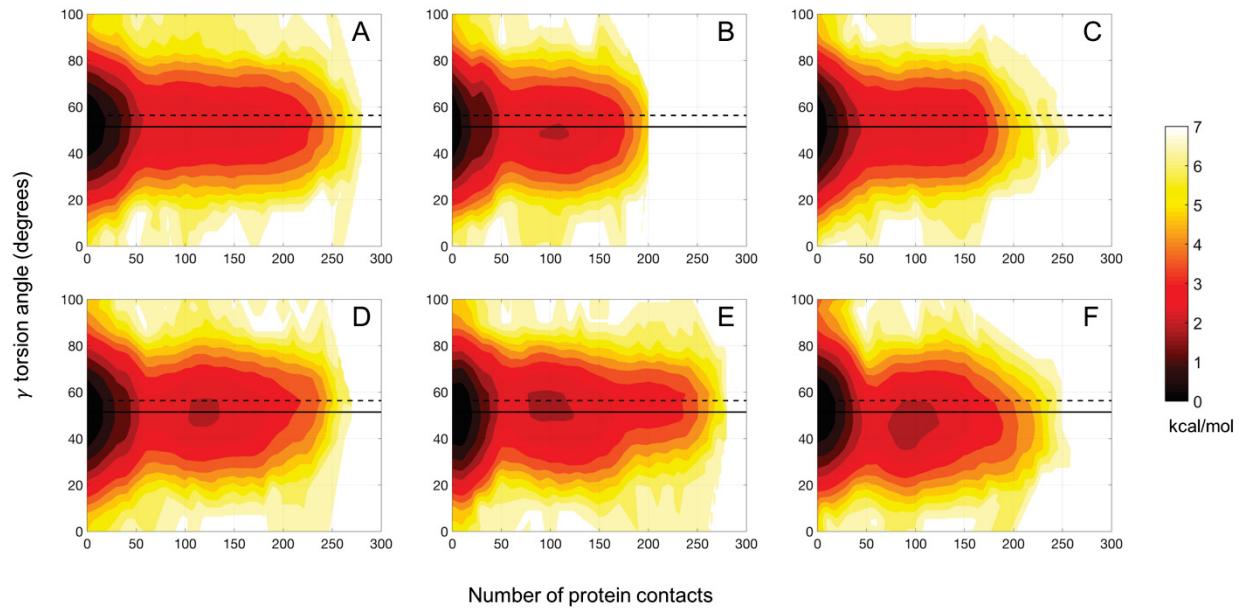
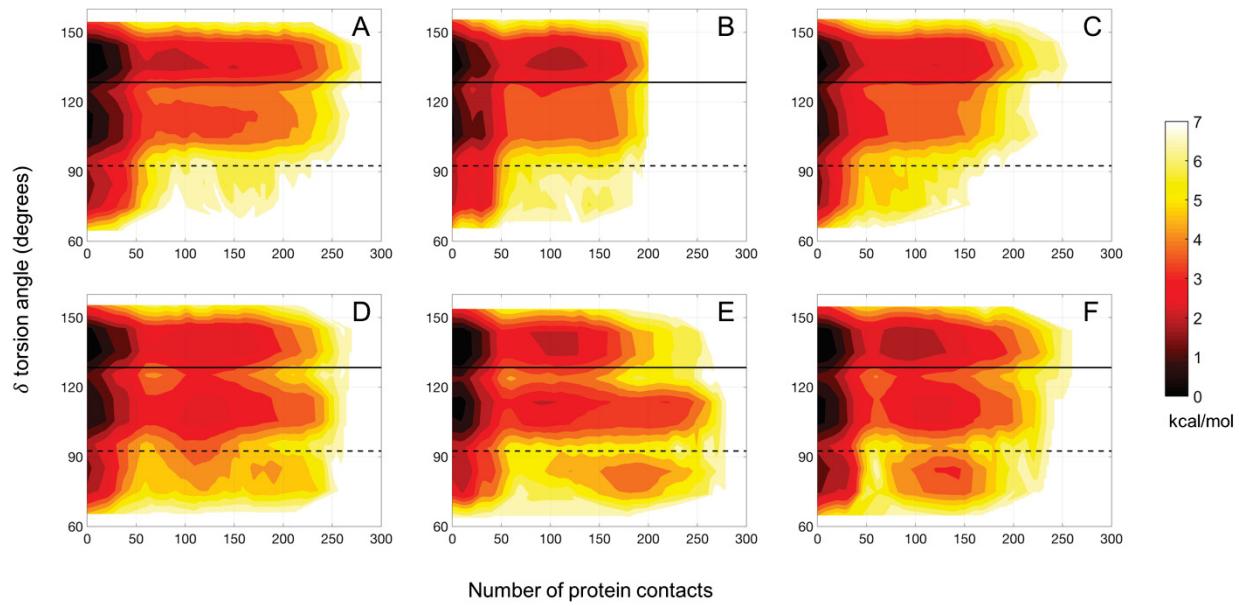

Figure S6. Average minimum distances between the crowder protein residues and the major grooves, minor grooves, sugar and phosphate backbone for the individual base-pairs of GC-rich dodecamer at 20% (A), 30% (B) and 40% (C) protein concentrations. Distances were calculated from the heavy atoms only.

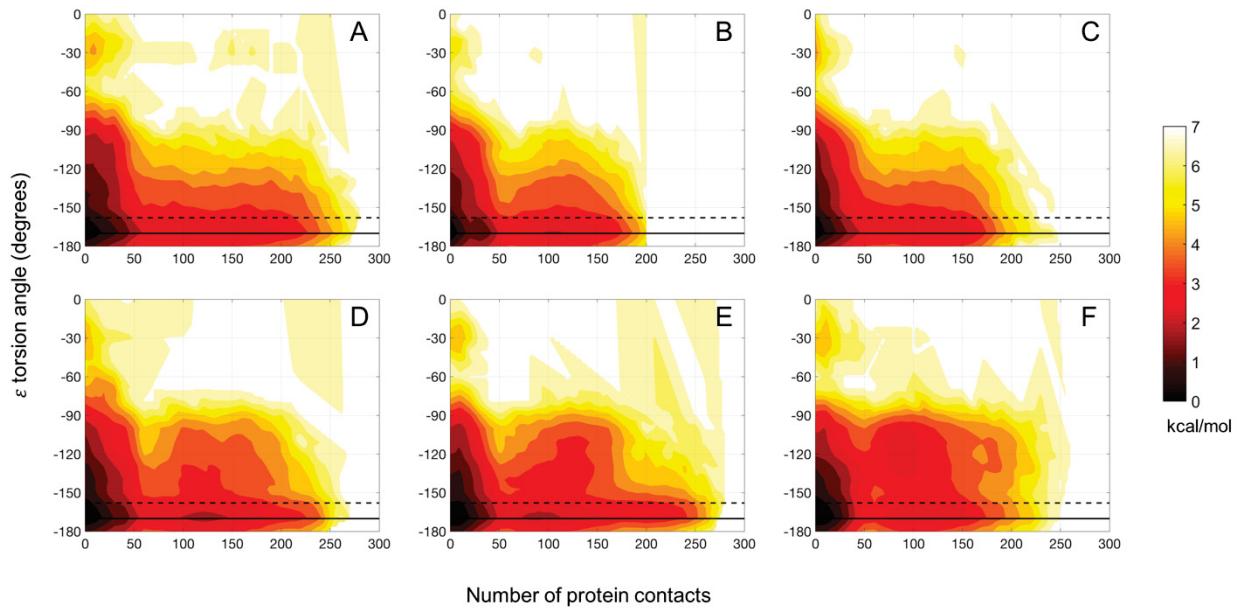

Figure S7. Potential of mean force (kcal/mol) as a function of twist angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S8. Potential of mean force (kcal/mol) as a function of inclination angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S9. Potential of mean force (kcal/mol) as a function of minor groove width and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S10. Potential of mean force (kcal/mol) as a function of major groove width and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S11. Potential of mean force (kcal/mol) as a function of α backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S12. Potential of mean force (kcal/mol) as a function of β backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

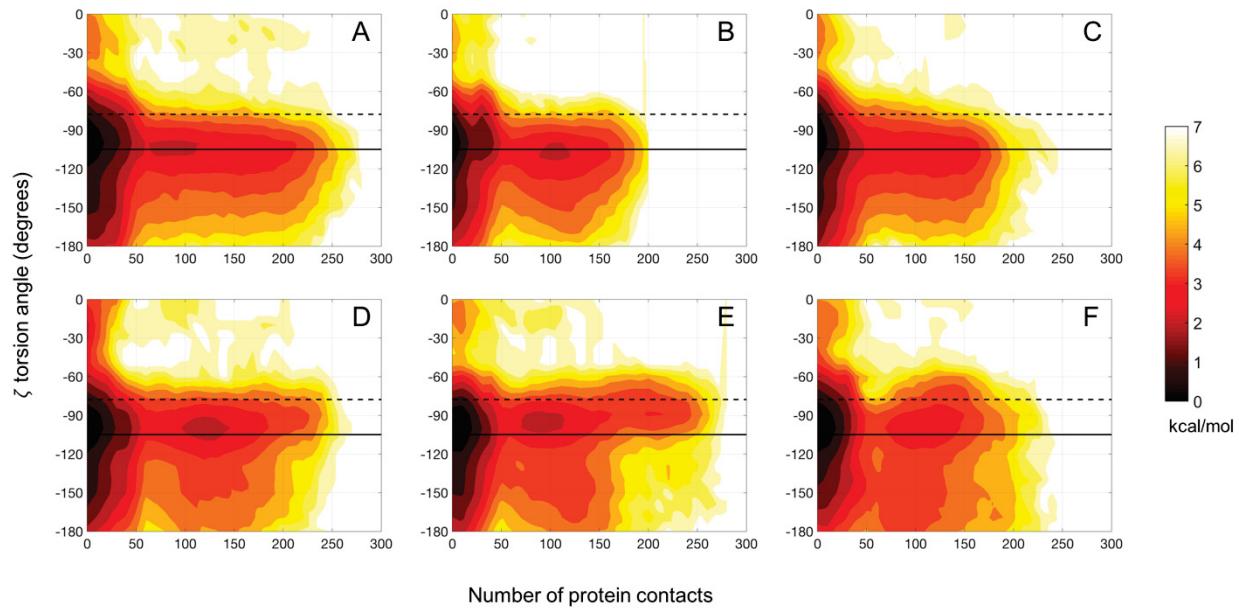
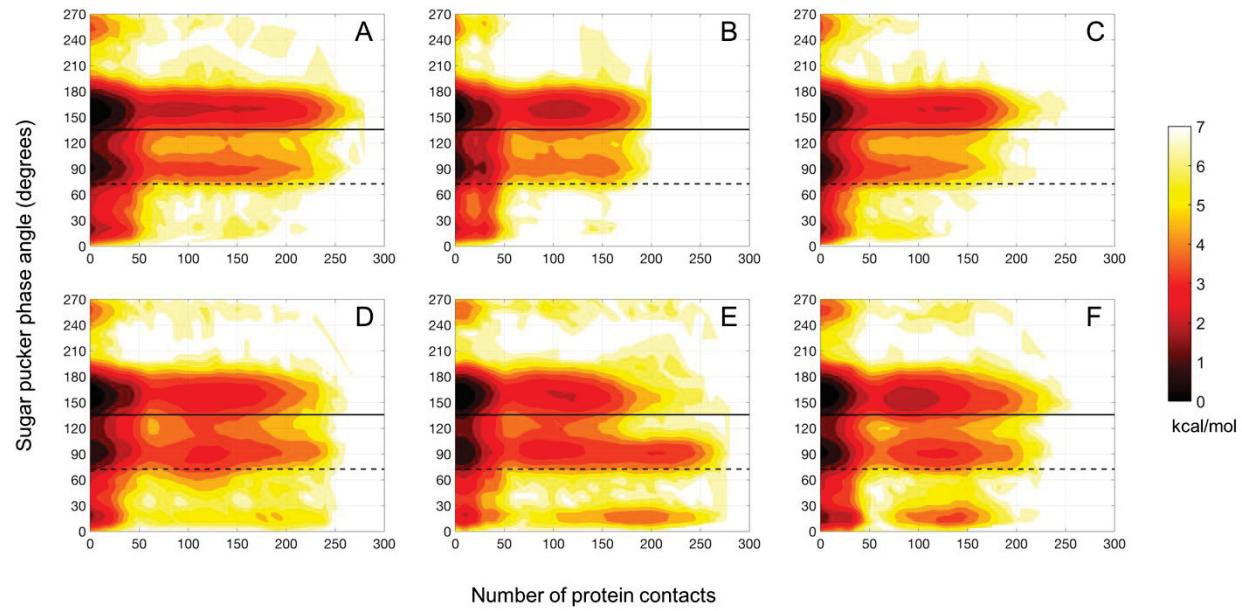

Figure S13. Potential of mean force (kcal/mol) as a function of γ backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

Figure S14. Potential of mean force (kcal/mol) as a function of δ backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.


Figure S15. Potential of mean force (kcal/mol) as a function of ϵ backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

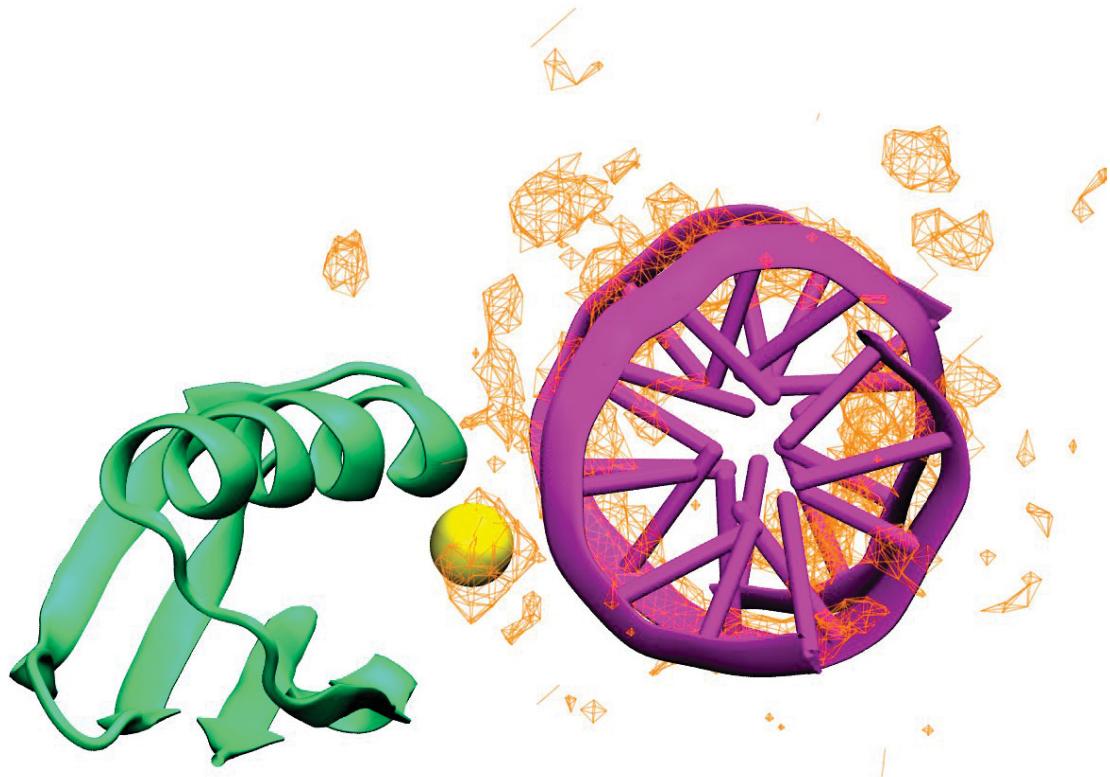

Figure S16. Potential of mean force (kcal/mol) as a function of ζ backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

Figure S17. Potential of mean force (kcal/mol) as a function of χ backbone torsion angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

Figure S18. Potential of mean force (kcal/mol) as a function of sugar pucker phase angle and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A contact is defined when the minimum distance between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the canonical B- and A-form values, respectively. See Table S5 for uncertainties.

Figure S19. A snapshot showing a crowder protein interacting with the Drew-Dickerson DNA and orienting a sodium ion at the same time.