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Abstract—Robot-assisted medical interventions, such as robotic
catheter ablation, often require the robot to perform tasks on a
tissue surface. This paper presents a task-space motion planning
method that generates actuation trajectories which steer the end-
effector of the MRI-actuated robot along desired trajectories
on the surface. The continuum robot is modeled using the
pseudo-rigid-body model, where the continuum body of the robot
is approximated by rigid links joined by flexible joints. The
quasistatic motion model of the robot is formulated as a potential
energy minimization problem. The Jacobian of the quasistatic
motion model is used in calculating the actuations that steer the
tip in the desired directions. The proposed method is validated
experimentally in a clinical 3-T MRI scanner.

I. INTRODUCTION

This work focuses on the class of continuum robotic manip-

ulators that are made of thin elastic rods. This particular type

of continuum robots has several characteristics that make it

especially appealing to medical applications. First, continuum

robots are compliant, i.e., their elasticity allows them to con-

form to their surroundings, which makes it easier to navigate

continuum robots in confined spaces. Their compliance makes

it less likely that the robots will damage the surrounding

tissue; therefore, continuum robots are potentially safer for the

patient. The elasticity of the robots also provides intrinsic force

sensing, where contact forces can be estimated from the shape

of the robot and the applied actuation. Another appealing

characteristic of continuum robots is that they are generally

easier to miniaturize than their traditional counterparts that

rely on pin joints.

The MRI-actuated continuum robot, otherwise known as

MRI-actuated robotic catheter, is a robotic catheter designed

to operate while the patient is inside the bore of an MRI

scanner. This setup has two main advantages. First, the MRI

scanner poses no radiation-exposure threat to the patient, while

also providing images with superior soft-tissue visualization.

The images from the scanner can also be used to estimate

the configuration of the robot without the use of additional

sensing equipment. Moreover, the MRI scanner provides the

robotic catheter with a strong magnetic field, which is used for
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Fig. 1: MRI-actuated catheter with two actuators. Each actua-

tor has three mutually orthogonal coils that can generate mag-

netic moments in any direction. The cross products between

the magnetic moments and the MRI scanner’s magnetic field

are the torques that remotely steer the robot. The catheter’s

length and outer diameter are 104.0 mm and 3.2 mm, respec-

tively.

remote-steering of the robot. Remote steering is enabled by

electromagnetic coils attached to the body of the robot. When

electrical currents are applied, the coils produce magnetic

moments that bend the robot under the scanner’s magnetic

field [1]. This magnetic actuation scheme has no friction

or backlash problems, and the actuation bandwidth is much

higher than that of the mechanical bandwidth of the robot. A

prototype of the MRI-actuated catheter is shown in Figure 1.

Catheter interventions, such as catheter ablation, require the

continuum robot to perform tasks on a tissue surface. In order

to perform a given task, the robot must maintain contact with

the surface while moving its end-effector on the surface. This

is also known as task-space control in robotics, where the

goal is to calculate an actuation trajectory that results in the

desired end-effector trajectory in the task space. For serial

manipulators with motorized joints, the joint-space trajectory

for a given task can be calculated either by discretizing tip

trajectory and solving inverse kinematics along the discrete

trajectory, or by using the Jacobian of the robot’s forward



kinematics to calculate joint velocities from workspace ve-
locities. The latter method is often more practical, because
solving inverse kinematics involves solving a set of nonlinear
equations, which can be very computationally expensive. The
Jacobian approach also lends itself well to feedback control
in the task space, where task-space errors are used to regulate
the robot along the desired trajectory [2].

Since a continuum robot usually moves slowly during a
medical procedure, the robot is often assumed to be mov-
ing quasistatically, i.e., the robot has enough time to reach
its equilibrium configuration for a given actuation [3]. The
quasistatic configuration of the robot for a given actuation
can be formulated as a potential energy optimization problem.
This paper presents a task-space motion planning method
for MRI-actuated continuum robots based on the Jacobian
approach. The first Jacobian is similar to the Jacobian of serial
manipulators, and it depends only on how the shape of the
robot is parameterized. The shape of the robot is represented
by the pseudo-rigid-body (PRB) model, where the continuum
body of the robot is approximated by n + 1 rigid links
joined by n flexible joints, and the Jacobian of the forward
kinematics of the PRB model can be calculated analytically.
The Jacobian of a continuum robot with quasistatic motion
can be separated into two parts, where the first Jacobian is
the Jacobian of the robot’s forward kinematics, and the second
Jacobian is the Jacobian of the mapping between the actuation
and the quasistatic shape of the robot. The potential energy
minimization problem then becomes an implicit mapping
between the actuation and the quasistatic configuration, and
its Jacobian can be obtained through the implicit function
theorem. The proposed method is experimentally validated in
a 3-T clinical MRI scanner, where the robot performs three
different trajectories on a rigid surface.

The rest of the paper is organized as follows. Related work
is presented in Section II. The PRB model of the continuum
robot is presented in Section III. The Jacobian-based motion
planning method is presented in Section IV. Experimental
validation of the proposed method is presented in Section V.
Conclusions are presented in Section VI.

II. RELATED WORK

Continuum robots can be categorized by their actuation
methods. Pull-wire mechanisms have been used for actuating
continuum robots [4]–[7], similar to cable-driven manipula-
tors. Some robots have pneumatic actuation [6], [8]. Another
type of continuum robots have pre-curved concentric tubes,
and the desired shape of the robot is achieved by sliding and
rotating the tubes [9], [10]. Alternatively, continuum robots
can be actuated magnetically. Stereotaxis Niobe Magnetic
Navigation System uses two permanent magnets mounted
on pivoting arms to steer the tip of a continuum robot
equipped with permanent magnets. The pivoting arms change
the configurations of the external magnets to remotely steer the
robot [11]. Spatial manipulation of a continuum robot with
a magnetic actuation system similar to the Niobe system is
presented in [12]. Continuum robots equipped with permanent

magnets can also be controlled by an external magnetic field
that is manipulated electrically [13], [14].

Trajectory generation based on the Jacobian, which is
common approach for serial manipulators, is also applicable
to continuum robots. There are multiple ways of calculating
the Jacobian for continuum robots. The Jacobian can be
calculated from finite differences of forward kinematics [4],
[12], [15], or symbolic differentiation [6]. Alternatively, when
the motion of the robot is assumed to be quasistatic, the
Jacobian can be calculated from the implicit function defined
by the equilibrium condition [16], [17]. Bajo and Simaan
perform hybrid position/force control of a multi-backbone
tendon-driven continuum robot using the Jacobian [18]. Yip
and Camarillo present model-less hybrid position/force control
of a multi-backbone tendon-driven continuum robot, where
the Jacobian is estimated from sensor data [19]. The model-
less control method demonstrates its ability to perform cardiac
ablation tasks in [20].

This work presents the PRB model of magnetically-actuated
MRI-guided continuum robots. The PRB model is generalized
to the spatial case, where both planar and torsional rotations
are included. This work also presents the first task-space con-
trol method that combines the potential energy minimization
framework with explicit task-space constraints. The model
of the catheter in this work extends the free-space model
presented in [21] by incorporating a surface constraint to the
potential energy formulation. The motion planning method
in this work improves upon the method presented in [22]
by extending the quasistatic formulation presented in [16],
[17] to the case where the continuum robot has to perform
tasks on a two-dimensional surface. The present work is
different from [18] because it does not rely on the geometric
relationship between the actuation parameters and the shape
of the robot in calculating the Jacobian, instead the Jacobian is
calculated from the implicit function defined by the potential
energy minimization problem, which can be easily extended
to different continuum robots and kinematic models. The
planning method presented in this work is also different from
[19] and [20] because it is a model-based method. While
model-based methods generally require higher computational
effort, they provide a platform in which the knowledge of the
underlying physics of the robot can be seamlessly integrated
with sensor measurements, either in a classical feedback
control framework [2], or in a probabilistic framework [23].

III. MATHEMATICAL MODEL

A PRB model with n spherical joints, shown in Figure 2,
has 3n degrees of freedom, where each joint has three de-
grees of freedom, two bending and one twisting. The PRB
model approximates the compliance of a continuum robot
with a torsional spring attached to each degree of freedom.
The continuously changing curvature of the centerline of the
catheter is approximated by the rotations of the spherical joints
and the translations along the rigid links. The PRB model can
be interpreted as a Dirac delta function approximation of the
curvature of a continuum robot as a function of the arc length.
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Fig. 2: The MRI-actuated catheter with two actuators (right)

and the corresponding PRB model (left).

Forward kinematics of the PRB model with spherical joints

is presented in Section III-A. The potential energy minimiza-

tion formulation of the quasistatic motion model is presented

in Section III-B. Mathematical notations used in this paper

generally follow those of [2].

A. Forward Kinematics

For industrial serial manipulators, a spherical wrist is mod-

eled as three sequential revolute joints, where the axes of

rotation intersect at a common point. In such cases, the

sequential joints accurately model a spherical wrist where each

rotation is actuated by a motor. However, this model is not

applicable to the PRB model of a continuum robot, because

the model assumes an order of rotation exists amongst the

degrees of freedom. In order to accurately model the spherical

joints in the PRB model without assuming an order of rotation,

the rotation of the ith joint is parameterized by three rotation

angles as follows, θi = [θi,1 θi,2 θi,3]
T ∈ R

3. The orientation

of the link above the ith joint with respect to the (i − 1)th

joint is given by eθ̂, where the wedge symbol (∧) maps the

R
3 vector representation to the R

3×3 matrix representation of

an element of so(3), with the inverse mapping denoted by the

vee symbol (∨), and the exponential function maps an element

of so(3) to an element of SO(3).
Once the spherical joint is parameterized, rigid body motion

of the robot can be defined as follows. A twist, denoted by ξ ∈
se(3), is an infinitesimal generator of SE(3). Let qi denote

the initial position of the ith joint with respect to the spatial

frame. The twist of the ith joint can be written as an R
6 vector

or an R
4×4 matrix as follows,

ξi(θi) =

[−θi × qi
θi

]
or ξ̂i(θi) =

[
θ̂i −θi × qi
0 0

]
(1)

Similarly to rigid body rotation, for the rigid body motion

case, ∧ maps the R
6 vector representation to the R

4×4

matrix representation of an element of se(3), with the inverse

mapping denoted by ∨. The shape of the PRB model of the

catheter with n spherical joints is completely described by the

joint angle vector θ = [θT1 θT2 · · · θTn ]
T ∈ C ⊂ R

3n, where C
denotes the set of all possible joint angles, also known as the

configuration space.

The configuration of a coordinate frame A attached to the

jth link given joint angles θ, denoted by gsa(θ) ∈ SE(3),
is calculated from the product of exponentials formula as

follows,

gsa(θ) = eξ̂1(θ1)eξ̂2(θ2) · · · eξ̂j(θj)gsa(0), (2)

where gsa(0) is the configuration of the frame A when θ = 0,

i.e., when the catheter is perfectly straight.

B. Potential Energy Minimization

Continuum robots are inherently underactuated because

their continuum bodies have infinite degrees of freedom, while

there are finite actuation degrees of freedom. The quasistatic

assumption resolves the underactuation problem by assuming

that the robots move slowly enough that they can be considered

as being in perpetual equilibrium. This is a reasonable as-

sumption in medical applications, because surgical continuum

robots usually move slowly compare to their mechanical

bandwidth [3]. The quasistatic configuration of a continuum

robot can be calculated either by solving the constitutive

equations, or by minimizing the potential energy. This work

extends the potential energy minimization formulation in [21]

to include a surface constraint. The quasistatic configuration

of the catheter given external forces and actuation currents is

calculated by minimizing the potential energy of the catheter

subjected to the surface constraint as follows,

min
θ∈C

1

2
θTKθ −

∑
i

FT
i pi(θ)−

∑
j

Bj(θ)
Tμj(uj), (3a)

s.t. h(θ) ≤ 0. (3b)

The first term in the objective function (3a) is the potential

energy due to the internal stiffness of the catheter, where K
is a constant, positive definite spring stiffness matrix. The

next term is the work done by external forces, where Fi is

a conservative force acting on the catheter at pi(θ). The effect

of gravity can also be expressed as conservative forces acting

on the center of masses of the links. The last term is the

summation of the work from the magnetic moments from the

actuators [24], where Bj(θ) is the MRI’s magnetic field vector

written in the jth actuator body frame, μj is the magnetic

moment of the jth actuator expressed in its body frame, and

uj are the currents sent to the jth actuator.

The surface is represented by the inequality constraint (3b).

The constraint is defined such that when the catheter is in

contact with the surface, h(θ) = 0, and when the catheter is

not in contact, h(θ) < 0. This inequality constraint makes it

possible to use the optimization problem (3) to calculate the

equilibrium configuration of the catheter both when it is in

contact as well as in free space.

IV. MOTION PLANNING

Let the position of the catheter’s tip in the workspace be

denoted by x ∈ R
3. The Jacobian of the mapping from

actuations to tip positions can be written as a production



the Jacobian of forward kinematics and the Jacobian of the
quasistatic motion model using the chain rule as follows,

dx =
∂x

∂θ︸︷︷︸
Jk

∂θ

∂u︸︷︷︸
Jq

du, (4)

where Jk is the forward kinematics Jacobian, and Jq is the
quasistatic Jacobian. The derivation of the forward kinematics
and the quasistatic Jacobians are presented in Section IV-A and
IV-B, respectively. Task-space motion planning of the catheter
is presented in Section IV-C, where the aforementioned Ja-
cobians, combined with the Jacobian of the surface, yield a
linear relationship between the differential of the end-effector
position of the surface and the differential of the actuation.

A. Forward Kinematics Jacobian

Recall that the configuration of a frame attached to the
catheter can be written as a product of exponentials, as
described in (2).[

x
1

]
= eξ̂1eξ̂2eξ̂3 · · · eξ̂n

[
x0
1

]
, (5)

where x ∈ R3 is the position of the end-effector given all the
joint angles, and x0 ∈ R3 is the initial tip position when all the
joint angles are zeros. Since the mapping from the joint angles
to the end-effector position only depends on the kinematic
model, its partial derivative can be calculated algebraically.
To simplify the calculation, Jk is partitioned into columns as
follows,

Jk =

[
∂x

∂θ1,1
· · · ∂x

∂θi,j
· · · ∂x

∂θn,3

]
, (6)

where i ∈ {1, 2, · · · , n} is the joint number, and j ∈ {1, 2, 3}
is the jth degree of freedom of the joint. Each column of the
right-hand side of (6) is obtained by differentiating (5) with
respect to the corresponding joint angle as follows, ∂x

∂θi,j
0

 = eξ̂1 · · · eξ̂i−1
∂eξ̂i

∂θi,j
eξ̂i+1 · · · eξ̂n

[
x0
1

]
, (7a)

= eξ̂1 · · · eξ̂i−1

(
∂eξ̂i

∂θi,j
e−ξ̂i

)
︸ ︷︷ ︸

ξ̂i,j

eξ̂ieξ̂i+1 · · · eξ̂n
[
x0
1

]
,

(7b)

= eξ̂1 · · · eξ̂i−1 ξ̂i,je
ξ̂ieξ̂i+1 · · · eξ̂n

[
x0
1

]
, (7c)

= eξ̂1 · · · eξ̂i−1 ξ̂i,je
−ξ̂i−1 · · · e−ξ̂1

[
x
1

]
, (7d)

=
(

Ad
(eξ̂1 ···eξ̂i−1 )

ξi,j

)∧ [x
1

]
. (7e)

B. Quasistatic Jacobian

The quasistatic Jacobian can be obtained from the Jacobian
of the implicit function defined by (3). Let L : C → R denote
the Lagrangian of the optimization problem (3). Suppose θ is

a (local) minimizer, then it satisfies the first-order optimality
condition

∇L(θ) = Kθ +N(θ) +∇h(θ)λ− τ(θ, u) = 0, (8)

where

N(θ) = −
∑
i

FTi ∂pi/∂θ,

τ(θ, u) =
∑
j

µTj (uj)∂Bj/∂θ.

Define a vector-valued function f : C × U → R3n as

f(θ, u) := ∇L(θ) = Kθ +N(θ) +∇h(θ)λ− τ(θ, u). (9)

Then (8) is simply f(θ, u) = 0, which defines the implicit
function between θ and u. If ∂f/∂θ is nonsingular, then Jq
can be calculated as follows,

Jq =
∂θ

∂u
= −

(
∂f

∂θ

)−1(
∂f

∂u

)
. (10)

Note that ∂f/∂θ is simply the Hessian of the Lagrangian. The
Hessian can be calculated using automatic differentiation, the
finite difference method, or symbolic differentiation. In this
work, the Jacobian of the Lagrangian is calculated analytically,
and the Hessian is obtained by differentiating the Jacobian
using the finite difference method. The other term on the right-
hand-side of (10) is ∂f/∂u. Since the only term in f that is
a function of u is τ , which is linear with respect to u (see
Appendix A), hence ∂f/∂u is a matrix function of θ but not
is independent of u.

C. Actuation Calculation

Let h(θ, y) = 0 denote the surface constraint with explicit
dependency on the surface coordinates, denoted by y ∈ R2.
The tangent space of the constraint is defined by

∂h

∂θ
dθ +

∂h

∂y
dy = 0.

The constraint can be written as h(θ, y) = p(θ)− q(y) where
p maps joint angles to tip positions in the workspace, and q
maps surface coordinates to workspace position, i.e., x = p(θ)
and x = q(y). Therefore, the forward kinematics Jacobian can
be written as Jk = ∂p/∂θ = ∂h/∂θ. Let the Jacobian of q
be denoted by GT = ∂q/∂y = −∂h/∂y, then the differential
constraint above becomes

Jkdθ = GT dy. (11)

Substituting (10) into (11) yields the desired linear relationship

JkJqdu = GT dy.

In the case that the actuators have more degrees of freedom
than the task, it is possible to have an actuation that moves
the catheter in such a way that the end-effector remains at the
same position of the surface. This type of motion is known
as internal motion. Let He be the matrix whose rows are in
the null space of Jk and are mutually orthogonal amongst



themselves, then the internal motion, denoted by dv, can be
obtained from the following linear relationship,[

Jk
He

]
Jqdu =

[
GT 0
0 I

] [
dy
dv

]
The redundancy of the actuation with respect to the task can
be resolved by the following optimization problem,

min
du,dv

1

2

(
‖du‖2 + γ‖dv‖2

)
, (12a)

s.t.
[
Jk
He

]
Jqdu =

[
GT 0
0 I

] [
dy
dv

]
, (12b)

where the desired tip motion on the surface is expressed as
the constraint, and γ is the weight of the internal motion. Note
that (12) is a quadratic programing, and consequently has a
closed-form solution [25].

The task-space motion planning algorithm is summarized in
Algorithm 1. The algorithm takes as inputs the initial joint an-
gles (θ0), a sequence of via points on the desired end-effector
trajectory (ȳ1:n), and a step size (σ). The algorithm iteratively
drives the tip of the catheter towards the next via point in the
sequence. Once the via point is reached, the algorithm moves
on to the next via point. The algorithm works as follows.
In Line 3, the forward kinematics function calculates the
end-effector position from the initial joint angles using the
forward kinematics equation described in (2). The end-effector
position is projected onto the surface coordinates in Line 4.
The algorithm loops over all the via points between Lines 5
and 19. For each via point, the algorithm tries to bring the end-
effector to the via point through a sequence of actuations. First,
the end-effector motion, denoted by dy, is calculated in Line 6.
The end-effector motion is compared to the step size in Line 7.
If the end-effector motion is larger than a fraction of the step
size, i.e., dy > ασ, 0 < α < 1, the algorithm continues
to move the end-effector toward the via point, otherwise it
continues to the next via point. Between Lines 8 to 10, the end-
effector motion is normalized if it is larger than the step size.
In Line 11, the inverse kinematics function calculates an
actuation update, denoted by du, from dy by solving the
optimization problem (12). A new actuation is calculated from
the previous actuation and the actuation update in Lines 13.
The simulate function in Line 14 integrates the equations
of motion described in [22] with the new actuation to obtain
a new joint angle vector. A new end-effector position in the
spatial frame calculated from the new joint angle vector in
Line 15 is projected onto the surface coordinates in Line 16,
and a new end-effector motion is calculated from the new end-
effector position in Line 17. Once all the via points are visited,
the algorithm returns the resulting actuation sequence.

V. EXPERIMENTAL VALIDATION

A. Setup

The experimental setup is similar to the one reported in
[21], with two notable changes. First, the catheter prototype
in this work has two actuators, where each actuator has three
mutually orthogonal coils. The body of the catheter is made

Algorithm 1 Task-Space Motion Planning Algorithm for the
Robotic Catheter

1: procedure taskspace planning(θ0, ȳ1:n, σ)
2: t = 0
3: xt = forward kinematics(θ0)
4: yt = project(xt)
5: for all i = 1, 2, . . . , n do
6: dy = ȳi − yt
7: while ‖dy‖ > ασ do
8: if ‖dy‖ > σ then
9: dy = σ dy/‖dy‖

10: end if
11: du = inverse kinematics(θt, dy)
12: t = t+ 1
13: ut = ut−1 + du
14: θt = simulate(θt−1, ut)
15: xt = forward kinematics(θt)
16: yt = project(xt)
17: dy = ȳi − yt
18: end while
19: end for
20: return ut,∀t
21: end procedure

of a silicone rubber tube with the outer diameter of 3.2 mm
and the length of 104.0 mm (Part number: T2011, QOSINA).
The coils are made of heavy insulated 38-gauge solid core
enameled copper wire (Adapt Industries, LLC, Salisbury, MD,
USA). The catheter is mounted on top of an aquarium that is
placed on a foam pad. The other notable addition to the setup
is a rectangular piece of acrylic mounted on the bottom of
the aquarium that serves as the task space. Experiments are
conducted with the catheter setup placed at the isocenter of a 3-
T MRI scanner (Skyra, Siemens Medical Solutions, Erlangen,
Germany). A 60 fps high definition camera with a resolution
of 1080 × 1920 pixels (Flea3 FL3-U3-32S2C by Point Grey,
Richmond, BC, Canada) is used to capture the images of the
catheter during the experiments. For safety reasons, the camera
is placed at the far end of the MRI suite, approximately 6 m
away from the isocenter of the scanner. A mirror is placed on
the foam pad next to the catheter at approximately 45 degree
angle measured from the side of the aquarium. By placing the
mirror at an approximately 45 degree angle, the mirror serves
and a virtual camera that view the catheter from the side. The
catheter setup is shown in Figure 3.

Three trajectories, namely rectangular, rhomboid (diamond-
shaped), and circular trajectories, are considered in the exper-
iment. The rectangular and the rhomboid trajectories demon-
strate the capability of the catheter to move in straight lines
in different directions, while the circular trajectory represents
a common trajectory found in applications such as catheter
ablation. The trajectories are discretized into via points. The
catheter is assumed to be perfectly straight initially, i.e.,
θi = 0, ∀i. Then the catheter moves toward the surface and
make contact. Once the catheter is in contact with the surface,



(a) The experimental setup with the catheter mounted at the top of the
aquarium. The surface is mounted on the bottom of the aquarium. The
mirror provides side view of the catheter setup.

(b) The catheter setup during an experiment. The camera can be seen
at the bottom of the image. The catheter setup is at the isocenter of the
MRI scanner.

(c) An image captured by the camera. The graph paper main grid
spacing is 10 mm and the secondary grid spacing is 2 mm.

Fig. 3: Experimental setup.

the catheter moves its tip toward the center of its workspace

on the surface, then the catheter’s tip is driven along the
desired trajectories with actuation trajectories generated using
Algorithm 1. The PRB model used in the experiment has
nine joints, where the two actuation coils are on individual
links, and the rest of the catheter is divided equally into the
remaining seven links. The step size in Algorithm 1 is set
to 2 mm, which is slightly smaller than the outer diameter
of the catheter. Nine links are chosen for its balanced trade-
off between computation time and accuracy based on the
previous work [26]. Algorithm 1 is implement in MATLAB on
a computer running macOS 10.13.6 with 2.8 GHz Intel Core
i7 CPU and 8 GB of memory. The position of the end-effector
of the catheter on the surface is read from a piece graph paper
with 2-mm grid affixed to the surface, as observed from the
camera images.

B. Results

The initial deflection of the catheter with zero actuation is
often not perfectly straight, and it is difficult to accurately
predict the initial deflection prior to the experiment. Con-
sequently, the initial shape recorded during the experiment
is estimated and included in the simulations as the shape
that minimizes the potential energy with zero actuation. The
results are shown in Figure 4, which compares the simulated
trajectories of the catheter’s end-effector on the surface with-
out initial deflection, the simulated trajectories where initial
deflection is taken into account, and the actual trajectories
obtained from the experiment. The root-mean-square errors
between the observed trajectories and the simulated trajectories
with initial deflection are 6.03 mm, 7.86 mm, and 7.68 mm
for the rectangular, the rhomboid, and the circular trajectories,
respectively. While the errors are high compared to the human
anatomy, it is to be expected since the trajectories are executed
as open-loop trajectories, which are susceptible to offset and
drift types of errors. Note that the errors are lower than the
errors of the free-space trajectories of the previous prototype
presented in [21]. The two main computational intensive tasks
in Algorithm 1 are inverse kinematics in Line 11 and the
simulation in Line 14. It takes 0.1330 second on average to
calculate the Jacobians and solve (12) for a new actuation in
Line 11, and 1.045 second on average to simulate the catheter
using MATLAB’s ode45.

A possible source of the offset error is the mismatch
in the initial conditions of the catheter, such as the initial
deflection of the catheter at rest, the pose of the surface
etc., between the current experiments and the experiment in
which the model parameters are obtained. The effect of the
mismatch in the initial shape can be seen when comparing
the trajectories computed prior to the experiment without the
initial deflection and the trajectories computed with the initial
deflection obtained from the experiment. Note that when the
initial deflection is taken into account, the model predicts
similar shifts along the x-axis in Figure 4. The error along
the y-axis is likely due to the errors in the distance and the
slope of the surface, which is mounted at the bottom of the
aquarium independently of the catheter. A calibration routine



executed at the beginning of each experiment will be useful
in reducing such error and is a part of future work.

The model of the catheter is another possible source of both
offset and drift errors. Since the PRB model approximates
the continuum body of the catheter with discrete links, some
offset between the model and the observed results is likely.
The problem is further complicated with the surface, whose
nonuniform friction coefficient can cause further drift when
the trajectories are perform open-loop. However, the three
trajectories in Figure 4 demonstrate that the Jacobian derived
in Section IV can be used to drive the tip of the catheter on
the surface in all directions. This means the Jacobian can be
used in conjunction with a catheter localization algorithm as a
closed-loop control system that regulates the tip of the catheter
along the desired trajectory. Closed-loop control has been
demonstrated to be effective in reducing the errors between
desired and actual trajectories [14], [22]. Nevertheless, closed-
loop control of the catheter requires real-time localization
using MRI images, which is beyond the scope of this work.

VI. CONCLUSIONS

This paper presents a motion planning method for the MRI-
actuated continuum robot. The kinematics of the robot is
modeled using the PRB model. The quasistatic motion model
of the robot is formulated as a constrained potential energy
minimization problem, where the task space is represented by
an inequality constraint. The actuation trajectories that yield
the desired surface trajectories are calculated using the differ-
ential surface constraint, the forward kinematics Jacobian, and
the quasistatic Jacobian. Experimental results show that the
motion planning method is capable of generating desired end-
effector trajectories in the task space. While the experimental
trajectories exhibit drift and offset errors, it is expected since
the trajectories are executed as open-loop trajectories. The
present work focuses on how to calculate the Jacobian for
task-space motion and how to use the Jacobian to drive the
catheter’s end-effector in desired directions. As a part of future
work, the presented method will be integrated with real-time
MRI localization for closed-loop control of the catheter. Once
closed-loop control is achieved, a comprehensive validation
with quantitative analysis will be performed.
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APPENDIX A
ACTUATION JOINT TORQUES

Consider the kth actuator. Let Ck ∈ R3×3 denote the
orientations of the actuator’s coils, Sk ∈ R3×3 denote a



(a) Rectangular trajectory. (b) Rhomboid trajectory. (c) Circular trajectory.

Fig. 4: Comparisons between the simulated trajectories without initial deflection (blue), with initial deflection (red), and the
experimental (yellow) trajectories. The trajectories are expressed in the surface coordinates.

diagonal matrix whose diagonal elements represent the total
surface areas of the coils, and uk ∈ R3 denote the currents
applied to the coils. Then the magnetic moments from the
actuator is µk = CkSkuk.

Next, we will show that the gradient of the work of the
actuator’s magnetic moment in the MRI scanner’s magnetic
field is precisely the joint torques due to the Lorentz force
of the magnetic moment. In order to simplify the notations
in this part of the derivation, only one actuator is considered
and the index k is dropped. Let W (θ, u) denote the work
due to the magnetic moment µb the magnetic field Bb, where
the subscript b denotes the body frame (and the subscript s
denotes the spatial frame). Let the orientation of the actuator
with respect to the base frame be denoted by gsa(θ) ∈ SE(3),
and the rotational part of gsa(θ) and gsa(0) are denoted by R
and R0, respectively. The work of the magnetic moment is
W = BTb µb. The element of the gradient of W due to θi,j is
given by,

∂W

∂θi,j
=
∂BTb
∂θi,j

µb

=
∂BTs R(θ)

∂θi,j
µb

= BTs
∂R(θ)

∂θi,j
µb

= BTs

(
eθ1 · · · eθi−1

∂eθi

∂θi,j
eθi+1 · · · eθnR0

)
µb

= BTs

(
eθ1 · · · eθi−1

∂eθi

∂θi,j
eθ
−1
i︸ ︷︷ ︸

ω̂i,j

eθieθi+1 · · · eθnR0

)
µb

= BTs RR
−1
(
eθ1 · · · eθi−1 ω̂i,je

θi · · · eθnR0

)
µb

= BTs R
(
R−10 · · · e−θi ω̂i,jeθi · · · eθnR0

)
︸ ︷︷ ︸

ω̂†i,j

µb

= BTb ω̂
†
i,jµb

= BTb (ω†i,j × µb)
= ω†i,j(µb ×Bb).

Note that ω†i,j is the rotational part of the body manipulator
Jacobian [2]. So, the equation above can be written together
with the translational part as

∂W

∂θi,j
= ξ†Ti,j

[
0

µb ×Bb

]
.

Therefore, the gradient of W can be written as a wrench due
to the Lorentz of the magnetic moment acting on the actuator
as follows,

∂W

∂θ

T

=



ξ†T1,1
...
ξ†Ti,j

...
ξ†Tn,3


[

0
µb ×Bb

]
= JbTsa

[
0

µb ×Bb

]
,

where Jbsa is the body manipulator Jacobian at the actuator
[2], [21], [27]. Now let Wk(θ, uk) denote the work from
the kth actuator, then the joint torques from the kth actuator
is τk(θ, uk) = ∂Wk/∂θ, and the total joint torques due
to actuation is τ(θ, u) =

∑
k τk(θ, uk). Since all of the

operations is linear with respect to u, τ is also linear in u.


