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SUMMARY

Natural sounds have rich spectrotemporal dynamics.
Spectral information is spatially represented in the
auditory cortex (ACX) via large-scale maps. How-
ever, the representation of temporal information,
e.g., sound offset, is unclear. We perform multiscale
imaging of neuronal and thalamic activity evoked by
sound onset and offset in awake mouse ACX. ACX
areas differed in onset responses (On-Rs) and offset
responses (Off-Rs). Most excitatory L2/3 neurons
show either On-Rs or Off-Rs, and ACX areas are
characterized by differing fractions of On and Off-R
neurons. Somatostatin and parvalbumin interneu-
rons show distinct temporal dynamics, potentially
amplifying Off-Rs. Functional network analysis
shows that ACX areas contain distinct parallel onset
and offset networks. Thalamic (MGB) terminals show
either On-Rs or Off-Rs, indicating a thalamic origin of
On and Off-R pathways. Thus, ACX areas spatially
represent temporal features, and this representation
is created by spatial convergence and co-activation
of distinct MGB inputs and is refined by specific in-
tracortical connectivity.

INTRODUCTION

Natural sounds have rich spectral and temporal dynamics,

and neuronal populations along the auditory processing

stream encode both spectral and temporal information. Onset

(On) and offset (Off) are fundamental dynamic features of

sound to which single neurons at multiple levels of the audi-

tory system respond (He et al., 1997; Henry, 1985; Hillyard

and Picton, 1978; Kopp-Scheinpflug et al., 2011), including

the auditory cortex (ACX) (Baba et al., 2016; Fishman and

Steinschneider, 2009; He, 2001; Qin et al., 2007; Recanzone,

2000; Scholl et al., 2010). While offset responses (Off-Rs) have

been suggested to be responsible for duration coding (He,

2001), they, together with onset responses (On-Rs), encode

the basic cues (On and Off) for auditory scene analysis
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(Bregman, 1994). Thus, besides elucidating the encoding of

both sound On and sound Off, revealing the underlying

cellular networks is essential for understanding auditory

processing.

ACX contains multiple functional areas, and the spatial orga-

nization of ACX with respect to On-Rs has been extensively

studied. On a large scale (hundreds of microns), there are clear

tonotopic maps that result from topographic thalamocortical

projections (Guo et al., 2012; Issa et al., 2014; Kanold et al.,

2014; Merzenich et al., 1975; Stiebler et al., 1997; Tsukano

et al., 2015), while on a finer scale, two-photon imaging studies

in mouse primary ACX (A1) revealed a diverse tonotopic orga-

nization of On-Rs in superficial layers (Bandyopadhyay et al.,

2010; Kanold et al., 2014; Rothschild et al., 2010; Winkowski

and Kanold, 2013). In contrast, the spatial organization of

Off-Rs in ACX is less well understood. Widefield (WF) flavopro-

tein imaging revealed the existence of an area adjacent to A1

that specializes in processing tone offset regardless of tone

frequency in anesthetized mice (Baba et al., 2016). On a finer

scale, neurons in mouse ACX show distinct On and Off-R pat-

terns (Deneux et al., 2016), and inputs carrying On-Rs and

Off-Rs are proposed to originate in nonoverlapping synaptic

circuits (Scholl et al., 2010). These findings at different scales

raise the possibilities that On-Rs and Off-Rs reflect distinct

parallel pathways not only within A1 but also across ACX

and that On-Rs and Off-Rs might be differentially represented

in the cortical space. Here, we tested these hypotheses by

investigating the spatial representation and functional microcir-

cuits contributing to On-Rs and Off-Rs on multiple spatial

scales in ACX.

Because multiple ACX areas contribute to auditory process-

ing, we first performed WF imaging of GCaMP6s in awake

mice. For unbiased identification of ACX areas, we developed

an automated image segmentation algorithm based upon tem-

poral responses. We detected known and other ACX areas.

ACX areas differed in their response properties to tone onset

and offset, indicating that temporal selectivity might underlie

the auditory scene analysis in ACX. Both On-Rs and Off-Rs

showed tonotopic organizations. Two-photon calcium imaging

of ACX neurons revealed that most excitatory layer 2/3 neurons

showed either On-Rs or Off-Rs. ACX areas were characterized

by differing fractions of On-R and Off-R neurons. Parvalbumin
creativecommons.org/licenses/by-nc-nd/4.0/).
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(PV) and somatostatin (SOM) interneurons showed differential

On-R and Off-R dynamics, suggesting suppression of PV

neurons by SOM neurons during prolonged tone presentations

and potentially exerting a disinhibiting effect on local excitatory

neurons to selectively amplify cortical Off-R. Functional connec-

tivity analysis showed that ACX areas varied in their intrinsic

network structure. Imaging of medial geniculate body (MGB)

axons showed a thalamic origin of the parallel On and Off-R

circuits and that spatial convergence and co-activation of

MGB inputs determine cellular On and Off preference. Alto-

gether, our results demonstrate that ACX fields differentially

process sound onset/offset via parallel and spatially patterned

projections from the MGB and are refined by specific intracorti-

cal connectivity.

RESULTS

We set out to investigate the spatial organization of temporal

sensitivity in mouse ACX on multiple spatial scales. Because

ACX responses, especially Off-Rs, are temporally sensitive to

anesthesia (Fishman and Steinschneider, 2009; Joachimsthaler

et al., 2014; Qin et al., 2007; Recanzone, 2000), we performed

our studies in ACX of awake animals. We used F1s of CBA/

CaJ and Thy1-GCaMP6s (C57BL/6 background) crosses

(Dana et al., 2014), which show normal adult hearing (Frisina

et al., 2011) and widespread cortical expression of GCaMP6s.

We first investigated the spatial distribution of On-Rs and Off-

Rs on the mesoscale using WF imaging. We imaged the left ACX

of awake adult mice (n = 13) while presenting 2 s pure tones (Fig-

ure 1A). Tone onset resulted in spatially restricted fluorescence

increases at several locations in ACX (Figure 1B, see 0.4 s

following tone On; Figure S1A). Fluorescence increases were

widespread in ACX, with the largest increases present in discrete

locations corresponding to activations of primary, as well as

higher-order, ACX areas, putatively A1, the anterior auditory field

(AAF), and secondary ACX (A2), respectively. Following tone

offset, we observed additional widespread increases of fluores-

cence (at 2.4 s, or 0.4 s after tone offset), which corresponded to

an Off-R (Figure 1B). Off-Rs are not due to changes in animal

state after tone cessation (Figure S2). On-R and Off-R were

also present in response to ultrasonic frequencies such as 83.0

kHz (Figure 1B). In both examples, the spatial pattern of On-R

qualitatively matches previous results (Baba et al., 2016; Issa

et al., 2014; Tsukano et al., 2015).

Varying sound frequency and level showed that bothOn-R and

Off-R changed their response locations with respect to tone fre-

quency (Figure S1).We overlaid contours of the strongest activa-

tions across ACX for each frequency at the respective thresholds

of On-R (Figure 1C) and Off-R (Figure 1D). Clear systematic

changes of activated areas can be seen in multiple locations.

Based on the relative positions of these gradients in On-R, we

labeled areas as A1, AAF, and A2. The gradients were consistent

across animals (Figure S3). A1 shows dual tonotopic axes: one

from the caudal area toward the dorsomedial area (ultrasonic

field [UF]) and the other one reaching toward the ventrolateral

side (Figure 1C), largely consistent with prior reports (Issa

et al., 2014; Polley et al., 2007; Tsukano et al., 2015) but with

the subtle difference that twoOn-tonotopic gradients in A1 share
the low- to mid-frequency axis before splitting dorsally and

ventrally. In addition, we observed that a tonotopic gradient is

present for Off-Rs in A1, AAF, and A2 in all animals (Figure 1D;

Figure S3B). The Off-tonotopic gradient from A1 to UF overlap-

ped with the On-tonotopic gradient. However, the Off-tonotopic

gradient also extends dorsoposteriorly and thus covers more

area dorsally than the On-tonotopic gradient. Between these

dominant gradients of strong tone responses there was a weakly

responding central region, consistent with previous WF studies

(Issa et al., 2017). Thus, Off-Rs are present in multiple ACX areas

andOff-Rs are tonotopically organized. The differences in the to-

notopic gradients between On-Rs and Off-Rs suggest that

different microcircuits might underlie On and Off processing.

Distinct ACX Areas Show Selectivity to Temporal
Features
So far, we identified functional ACX areas based on separate On

and Off-Rs at threshold. Because these areas showed overlap,

we sought to determine whether ACX contained distinct func-

tional areas based on the combination of selectivity for On and

Off-R throughout frequency and sound-level combinations and

whether such ACX segmentations could identify unique ACX

areas. We developed an unsupervised and unbiased image seg-

mentation technique that takes the entire temporal response of

each pixel into account. We expressed the temporal activities

of pixels as a linear combination of spatially distinct regions of in-

terest (ROIs) weighted by temporal modulations (Figure 2A) us-

ing an autoencoder with non-negativity constraints on the spatial

weights (Whiteway and Butts, 2017). An autoencoder is a neural

network with one or more hidden layers (Figure 2B). While the

input and output layers have the same number of nodes, the au-

toencoder reduces the dimension in the image sequence by ex-

pressing the intensity of each pixel as the weighted sum of the

activity of the hidden layer, which has a smaller dimensionality.

These weights are interpreted as distinct spatial patterns of ac-

tivity (or ROIs), and the activity of the hidden layer reflects the

temporal modulation (Figure 2C).

Typically, an autoencoder with �50 ROIs well approximated

the acquired image sequence (Figure S4A). The resulting ROIs

densely tiled the imaged area (Figures S4B and S4D) with mini-

mal spatial overlap (Figure S4C), which reflects the distinct

selectivity of On and Off-Rs of different ACX fields while making

parsing ACX fields unambiguous. In addition, the minimal over-

lap is likely due to our choice of the minimum number of ROIs

to the desired degree of goodness of fit (Figure S4A). Adding

ROIs increases overlap but does not increase goodness of fit

(Figure S4A). To verify our method, we compared the locations

of the ROIs with evoked fluorescence increases. We found that

ROI placements agreed with locations of activation for both

On-R (Figures 2D and 2E) and Off-R (Figures 2F and 2G), and

their shapes reflected the contours of fluorescence increases.

Thus, our method reliably identifies regions of common

activations and extracts their temporal activations without prior

knowledge of the spatial distribution of activity. This approach

provides advantages over the common square/hexagonal grid

segmentation, because the choice of grid size could be arbitrary

and might obscure the temporal selectivity of ROIs by grouping

functionally separate fields together. Here, we segmented ACX
Cell Reports 27, 872–885, April 16, 2019 873



Figure 1. Both On-R and Off-R Show Global Tonotopy

(A) Experimental paradigm: head-fixed mouse passively listened to tones while ACX was imaged. On-Rs and Off-Rs are defined as increases in fluorescence

following tone onset and offset, respectively.

(B) Sequence of WF images showing responses to a 7.3 kHz tone at 35 dB SPL and a 83.0 kHz tone at 65 dB SPL. The red bar indicates the images collected

during tone presentation (0–2 s).

(C) On tonotopy showing the contour of the 95th percentile of the responses following tone onset. A systematic shift of maximum activation location can be seen in

A1, AAF, and A2.

(D) Same as in (C) but for Off tonotopy. The center of ACX shows weaker tone-evoked responses and thus is not marked by contours.
into functional fields, but our method can be applied to

arbitrary WF datasets for spatiotemporal analysis and image

segmentation.

Identified ACX fields show distinct On and Off-frequency

response areas (FRAs) (Figures 2H and 2I), indicating that differ-

ences in the sensitivity to temporal features are a major determi-

nant of ACX organization. The low-frequency selective A1 ROI

(Figure 2I, A1(L)) shows predominant On and Off-R for tones of

4.0 to 7.3 kHz, while the mid-frequency selective A1 ROI

(Figure 2I, A1(M)) responded mostly to frequencies around

18.2 kHz. The high-frequency selective A1 ROI (ventrolateral
874 Cell Reports 27, 872–885, April 16, 2019
gradient of A1) (Figure 2I, A1(H)) typically has On and Off-Rs

similar to those of mid-frequency A1 due to spatial proximity

and the diffuse nature of WF signals. However, the average

On-R of high-frequency A1 ROI to 61.3 kHz is larger than that

of mid-frequency A1 ROI at threshold. In contrast, UF ROI shows

much higher selectivity to high frequencies (Figure 2I, UF),

consistent with the proposed role in processing conspecific

ultrasonic vocalizations (Stiebler et al., 1997). Dorsoposterior

(DP) ROI shows stronger Off-R (Figure 2I, DP). AAF ROI (Fig-

ure 2I, AAF) shows comparable On and Off-R, while A2 ROI

(Figure 2I, A2) shows weaker Off-R. Lastly, the center region



Figure 2. WF Image Segmentation Using an Autoencoder Reveals ACX Areas with Distinct On and Off Selectivity

(A) Cartoon showing image segmentation. The example image sequence at any time point can be expressed as the weighted summation of ROI 1 and ROI 2 by

respective activity level. Our goal of image segmentation is to retrieve activated areas, as well as their temporal activation traces.

(legend continued on next page)

Cell Reports 27, 872–885, April 16, 2019 875



(Figure 2I, CTR) shows weaker responses and is likely less sen-

sitive to simple stimuli such as pure tones (Figure 2H; Figure S4F).

The spatial layout of these ROIs was consistent acrossmice (Fig-

ure S3). Thus, ACX contains functional areas with distinct sensi-

tivity to temporal features. Our image segmentation approach

can better subdivide ACX, because it captures the different tem-

poral dynamics of ACX fields.

ACX Fields Differ in Thresholds and Sound-Level
Dependence of On-Rs and Off-Rs
We next characterized threshold and sound-level dependence of

parsed ACX fields. Off-Rs in all areas showed a higher threshold

than On-Rs, and Off-Rs can have higher amplitudes than On-Rs

(e.g., at 50 and 65 dB sound pressure level [SPL]) (Figures 3A–

3E). UF and DP showed the highest Off-R preference at 65 dB

SPL (Figure 3F). Thus, while core ACX fields (e.g., A1 and AAF)

robustly respond to both tone onset and offset, areas away from

core fields can show dominant Off-Rs, especially for loud tones.

Off-Responsive Areas AreMore Spatially Extensive than
On-Responsive Areas
The different selectivity for On and Off-R in ACX fields suggest a

different underlying circuit topology. To quantify the large-scale

spatial topology, we computed signal correlations (SCs) be-

tween individual ROIs among a dorsal-ventral slice in each

ACX area. In A1 and UF, Off-SCs were significantly higher than

On-SCs (Figures 3G and 3H). This relationship was maintained

over distance, suggesting that Off-Rs are more spatially exten-

sive in the dorsal direction (Figures 3G and 3H). This pattern

was also true across ACX (Figure 3I), suggesting that Off-Rs

are more diffusively represented in all ACX areas. These results

are consistent with dorsal ACX areas, especially UF andDP, hav-

ing dominant Off-R (Figure 3F). Altogether, the areal differences

in the tonotopic gradients (Figure 1) and the differences in SCs

between On and Off-Rs suggest that different intrinsic and

ascending microcircuits within each area underlie the regional

differences in On and Off processing.

Neural Populations in ACX Areas Differ in Their
Selectivity to Sound Onset or Offset
To investigate areal differences in processing tone onset and

offset, we sought to analyze local microcircuits and assessed

the temporal stimulus preferences of single neurons in four

ACX areas using in vivo two-photon imaging. (n = 32 mice; A1:

67 fields of view (FOVs), 19,366 cells; AAF: 24 FOVs, 5,425 cells;

A2: 20 FOVs, 5,918 cells; DP: 8 FOVs, 2,573 cells). Cells in all

ACX areas could show time-locked responses to tone onset

and/or offset (Figures 4A and 4B; Figure S5). Cells showing
(B) Autoencoder is a neural network with one ormore hidden layers between input

input or output layer and hidden layer are adjusted such that the output matches t

the input or output layer to achieve dimension reduction.

(C) Principle of fitting autoencoder ROIs. Original pixels (left) are linearly combine

turn by the linear combination of these ROIs, while the weights are interpreted a

(D–G) On-R andOff-R spatial profiles overlaid with selected autoencoder ROIs to v

SPL. (E) On-R to 83.0 kHz at 50 dB SPL. (F) Off-R to 13.5 kHz at 50 dB SPL. (G)

(H) Parcellation of ROIs into ACX fields. ROIs outlined in solid lines have the On

(I) On and Off-R amplitude is plotted as a function of frequency and sound level f

frequency and sound-level combination.
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On-R were sparse (A1, 5.05% ± 2.89%; AAF, 5.36% ± 2.58%;

A2, 5.83% ± 4.53%; DP, 2.23% ± 1.29%, among all neurons

imaged), and the same was true of Off-R (A1, 6.62% ± 4.34%;

AAF, 2.14% ± 1.83%; A2, 2.28% ± 2.24%; DP, 4.64% ±

2.42%, among all neurons imaged), consistent with a sparse

representation of sound in ACX in electrophysiological studies

(Hromádka et al., 2008). Few neurons showed both On-Rs and

Off-Rs (A1, 0.98% ± 0.90%; AAF, 0.54% ± 0.54%; A2, 0.95%

± 1.31%; DP, 0.43% ± 0.57%, among all neurons imaged) (Fig-

ure S6A), suggesting that most layer (L) 2/3 neurons are either

only On responsive or Off responsive. We quantified the selec-

tivity of On and Off-Rs by computing the On and Off-R bias index

(OBI = (Off-R � On-R)/(Off-R + On-R)) (Figure 4C). Most OBI

values were �1 (On-only) or 1 (Off-only). In A1 and DP, Off-

only neurons (53% and 65% of neurons) outnumber On-only

neurons (38% and 28% of neurons), while in A2 and AAF, the

reverse is true (67% and 70% versus 23% and 19% of neurons).

Neurons showing both On-R and Off-R constituted �10% of re-

sponding neurons andweremoreOff biased in A1 andDP than in

AAF andA2 (Figure 4D).We confirmed these results in a separate

analysis (Figure S6). Altogether, these results show that ACX

areas differ in both number of On and Off-only cells, as well as

in On and Off selectivity of individual cells. Thus, ACX areas

are defined by the underlying population representation of tone

onset and offset and cellular response amplitudes.

To confirm our results and to sample across layers, we im-

planted 16-channel linear multielectrode arrays into A1, span-

ning a cortical depth of 800 mm. We first analyzed the local field

potential (LFP), which reflects the combination of local neuronal

activity and afferent input into A1 (Herreras, 2016; Katzner et al.,

2009; Liu et al., 2015). We found that more tone frequencies

evoked Off-R compared to On-R (Figures S7A–S7C), consistent

with the widespread nature of Off-R (Figure 3). Moreover, distri-

bution of OBI of all electrode contacts shifted toward Off-R

(Figure S7D). These results confirm that Off-R evokes wide acti-

vation in A1 and that A1 responses are biased toward Off-R.

Prior electrophysiology studies reported a higher proportion of

neurons showing both On-R and Off-R than our imaging results

(Joachimsthaler et al., 2014; Qin et al., 2007; Tian et al., 2013). To

identify potential sources for this discrepancy, we recorded sin-

gle units (n = 220) from A1 of awake mice and analyzed their On

and Off-R (Figures S7F–S7H). 200/220 units (91%) were respon-

sive to either tone onset or offset. Among these units, 26% had

only On-R, 57% had both On-R and Off-R, and 7% had only Off-

R. We classified neurons based on their spike shape (wide

versus narrow), reflecting putative excitatory and inhibitory units

and analyzed their OBI. Both classes showed similar OBI distri-

butions (Figure S7G). Analyzing OBI across depth showed that
and output layers, which have the same number of nodes. Theweights between

he input as closely as possible. The hidden layer typically has fewer nodes than

d to produce ROIs (middle) such that each pixel can be approximated (right) in

s the spatial profile of the ROIs.

alidate ROI placement. (D)–(G) share a color scale. (D) On-R to 4.0 kHz at 35 dB

Off-R to 83.0 kHz at 65 dB SPL.

and Off-frequency response areas (FRAs) shown in (I).

or ACX fields. Adjacent blue and red bars represent On and Off-R to the same



Figure 3. On and Off-R Show Areal Differences in Amplitude and

Spatial Distribution

(A–E) Differential On-R and Off-R profile as a function of both sound level and

ACX field ((A) A1; (B) UF; (C) DP; (D) AAF; (E) A2). On-R and Off-R profiles with

respect to sound level for different ACX fields were obtained by summing over

frequency in On and Off-FRAs. ***p < 0.001; ****p < 0.0001. Shaded regions

show the 95% confidence interval.

(F) Off-R and On-R ratio at 65 dB SPL as a function of ACX fields. Error bars

show SEM.

(G) On and Off-SC as a function of distance along the dorsal-ventral axis,

calculated among ROIs dorsal to A1 ROIs. Off-Rs show higher SCs than

On-Rs. Shaded regions show the 95% confidence interval.

(H) On and Off-SC calculated among ROIs dorsal to UF ROIs. Shaded regions

show the 95% confidence interval.

(I) On and Off-SC among all ROIs. Shaded regions show the 95% confidence

interval.
OBI was depth dependent, with deeper-layer units more biased

to On-R (Figure S7H). Altogether, these results suggest that A1

contains both On and Off-only neurons and that there is a

depth-dependent distribution of these neurons consistent with

sublaminar circuit differences in L2/3 (Meng et al., 2017).

Local Tonotopy Is Heterogeneous for Both On-R and
Off-R in All Areas
Both On-R and Off-R show large-scale tonotopy (Figures 1

and 2), whereas cellular frequency selectivity is heterogeneous

in anesthetized A1 (Bandyopadhyay et al., 2010; Kanold et al.,

2014; Rothschild et al., 2010).We testedwhether Off-R exhibited
local tonotopy and whether On-R and Off-R cells differed in local

heterogeneity of frequency preference. We compared the de-

gree to which On-R and Off-R are locally tonotopically organized

by analyzing separate linear models between best frequency

and spatial locations of cells (Figure 4E). We found low local to-

notopy of frequency selectivity, because the goodness of fit (R2)

was low, consistent with prior studies (Bandyopadhyay et al.,

2010; Maor et al., 2016; Rothschild et al., 2010). Moreover, the

models showed a similar R2 for On-R or Off-R across ACX areas,

suggesting that the local heterogeneity of frequency selectivity

between On-R and Off-R is similar within and across mouse

ACX fields.

ACX Areas Differ in the Spatial Pattern of Neuronal
Correlated On-R and Off-R Activity
Our results indicate regional differences in cellular selectivity. To

gain insight into the spatial distribution of ACX circuits, we calcu-

lated pairwise SCs, which are reflective of shared inputs (Shad-

len and Newsome, 1998). In A1, On-SCs are highest for nearby

neurons and decrease with distance, consistent with results in

anesthetized mice (Figure 4F) (Winkowski and Kanold, 2013).

Such a decrease is also present in A2, while DP shows a patchy

distribution of On-SCs and AAF shows a weak SC gradient. Off-

SCs were larger than On-SCs in most areas except for DP. In A1,

these differences between On-SC and Off-SC were widespread,

while such differences were present in patchy areas in AAF

(�150–175 mm) and A2 (�50–275 mm). We validated this result

by computing the SC among chronically implanted linear elec-

trode contacts; a similar correlation structure was seen, in which

Off-SCwas higher thanOn-SC over distance (Figure S7E). These

results show that Off-R neurons are more widespread among

different cortical columns and along cortical depth, which could

be due to a difference in the underlying intrinsic circuits or due to

the spatial distribution of the ascending input.

Granger Causality Analysis Reveals Areal Differences in
Functional On and Off Networks
The areal differences in SCs suggest different underlying

neuronal networks.We sought to identify the functional networks

in the different ACX areas by performing Granger causality (GC)

analysis separately among On-R and Off-R neurons (Francis

et al., 2018; Friston et al., 2013; Granger, 1969; Oya et al.,

2007; Sheikhattar and Babadi, 2016; Sheikhattar et al., 2018).

GC analysis provides a data-driven framework for inferring

causal interactions between neurons by statistically testing

whether a neuron’s activity can be predicted by the recent activ-

ity history of other neurons and thus uncovering functional net-

works (Francis et al., 2018; Granger, 1969; Sheikhattar and

Babadi, 2016). The causal interactions (GC links) can take posi-

tive or negative signs, reflecting correlated or anticorrelated

neuronal activities, respectively (Francis et al., 2018). Our cal-

cium indicator is expressed in excitatory neurons; thus, we

focused on positive GC links. An example of two GC-linked neu-

rons is shown in Figure 5A. The source trace preceded the target

trace. Figure 5B shows one example FOV, with the most signif-

icant GC links labeled. We quantified the number, strength,

length, and directionality of the GC links. In A1 and DP, Off-GC

links outnumbered On-GC links, while the opposite was true in
Cell Reports 27, 872–885, April 16, 2019 877



Figure 4. L2/3 Neurons Show Distinct On-R and Off-R and Are Differentially Distributed across ACX Areas

(A) Example On-R neuron (arrow). Vertical dotted lines indicate tone onset and offset, respectively. Light blue areas indicate tone duration.

(B) Example Off-R neuron. Scale bar: 10 mm.

(C andD) Histogram of cellular OBI values as a function of ACX fields (C). OBI = (Off-R�On-R)/(Off-R +On-R), while (D) shows the cumulative distribution function

(CDF) of values other than �1 and 1. Wilcoxon rank-sum test; A1 versus AAF: z = 2.77, p = 0.0056; A1 versus A2: z = 4.41, p = 1.02 3 10�5; DP versus AAF:

z = 1.93, p = 0.053; DP versus A2: z = 2.49, p = 0.013.

(E) Left: cartoon showing a linear model to predict the best frequency (BF) of On-R and Off-R with respect to the cell’s spatial locations. A direction is searched

onto which the projection of the cell’s coordinates best explains the cell’s BF. Right: goodness of fit of On-R and Off-R in cells of different ACX fields.

(F) Relationship between On- and Off-SCs and pairwise distance on the neuronal level. Solid lines show the median, while shading indicates the 95% confidence

interval. The flanking panel showsCDF of On-SC andOff-SC not regarding distance. ***p < 0.001. **p < 0.01. Rank-sum test; A1: z =�13.6, p = 4.333 10�42; AAF:

z = �3.52, p = 4.30 3 10�4; A2: z = �8.73, p = 2.07 3 10�18; DP: z = �2.93, p = 3.4 3 10�3.
AAF and A2 (Figure 5C). These differences indicate higher

respective interconnectivity and are consistent with the differ-

ences in the relative numbers of On-R and Off-R neurons. In

contrast, GC link strength (J statistics) largely showed no differ-

ence except for AAF (Figure 5D), suggesting bothOn andOff net-

works are strongly functionally connected. Because most cells

had either On-R or Off-R, these results indicate that ACX areas

contain separate interdigitated On and Off networks.

We next extracted the spatial properties of GC links for On and

Off networks. First, Off-GC links tend to have more short links in

A1 (Figure 5E), suggesting that Off-GC networks more densely

cover the neural populations in A1 and are more spatially clus-

tered. Other ACX fields showed no length differences (Figure 5E).

Because ACX areas have large-scale tonotopic maps, we next

investigated whether GC links also show a direction preference.
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Except for DP and A2 Off-Rs, the distributions of the GC-link di-

rections significantly deviate from uniform distributions (Fig-

ure 5F). In A1, AAF, and A2, the ellipse-like distributions have

the long axis, reflecting a spatial bias of cell pair interactions,

roughly in parallel to the tonotopic axes. Thus, although local

cellular populations lack precise tonotopic, there are regularities

in their functional connectivity whose spatial patterns are closely

related to the tonotopic axis. Moreover, we found no difference

in the On-/Off-GC-link direction distribution (Figure 5F). Lastly,

the distribution of GC-link directions in AAF appeared to be nar-

rower than in A1 or A2. We thus combined both On and Off-GC

links and compared the spread in the direction of the short axis of

the eclipse-like distributions. AAF GC links were more narrowly

distributed than those in A1 (p = 0.033) and the difference be-

tween AAF and A2 was close to significance (p = 0.058). Thus,



Figure 5. GC Analysis Reveals Distinct On and Off Subnetworks

(A) Fluorescence time course of GC-linked cells.

(B) Example field: On (blue) and Off (red) GC links. Only GC links with J statistics > 0.95 are shown for clarity.

(C) Proportion of GC links (false discovery rate: 0.001). More Off-GC links in A1 andDP.Wilcoxon rank-sum test; On versusOff: A1, p = 2.533 10�7, z =�5.16; DP,

p = 1.55 3 10�4. More On-GC links in AAF and A2. AAF: p = 5.44 3 10�7, z = 4.55; A2: p = 3.32 3 10�6, z = 4.65.

(D) J statistics, a measure of GC-link strength. Only AAF shows a slightly higher On-GC-link strength. Wilcoxon rank-sum test, p = 0.0175, z = 2.38.

(E) GC-link length. A1 contains shorter Off-GC links. Wilcoxon rank-sum test, p = 0.0022, z = 3.06.

(F) Distribution of the direction of GC links. The nonuniformity of the distributions was tested using the chi-square goodness-of-fit test. A1: On, p = 0.043, Off,

p = 1.08 3 10�22; AAF: On, p = 1.48 3 10�7, Off, p = 7.77 3 10�4; A2: On, 8.15 3 10�4, Off, p = 0.42; DP: On, p = 0.89, Off, p = 0.17. On and Off distribution

difference: two-sample Kolmogorov-Smirnov test; A1: p = 0.065; AAF: p = 0.82; A2: p = 0.68; DP: p = 0.85.
the spatial topology of the intrinsic functional architecture of L2/3

in different ACX fields differs. Altogether, these results indicate

that although On and Off-R populations are largely nonoverlap-

ping, they are spatially intermingled and parallel, consistent

with the salt-and-pepper structure in L2/3 of mouse ACX (Ban-

dyopadhyay et al., 2010; Rothschild et al., 2010).

The On and Off Responsivity of MGB Terminals
Determines Areal Responses
So far, our results indicate that ACX contains distinct functional

areas defined by differing cellular selectivity and intrinsic con-

nectivity. Because ascending inputs to ACX neurons determine

the initial cellular selectivity to sound dynamics, we examined

how the cellular On and Off selectivity emerged from ACX inputs.

The main ascending inputs to ACX are provided by MGB axons,

which terminate on excitatory neurons ranging from L2/3 to L6,
with the strongest input in L4 (Ji et al., 2016). Because different

ACX areas receive dominant input from different subdivisions

of the MGB, we speculate that these sets of synapses reflect

separate pathways from theMGB. To test this hypothesis, we in-

jected the adeno-associated virus (AAV)-expressing GCaMP6s

into the MGB (n = 7 mice) and imaged axon terminals in A1 (20

FOVs) (Figure S8). We focused on A1 because of its distinct dif-

ference in On and Off-Rs and because prior in vivo patch-clamp

recordings showed that in A1, On-Rs and Off-Rs are driven by

nonoverlapping sets of synapses (Scholl et al., 2010). MGB ter-

minals showed prominent On-R or Off-R (Figures 6A and 6B).

Few MGB terminals showed both On-R and Off-R (0.88% ±

1.06%). The proportion of MGB terminals showing either On-R

or Off-R was similar (Figure 6C), and most terminals were either

On only or Off only (Figure 6D). Thus, most MGB terminals either

relay On-R or Off-R, suggesting the existence of distinct parallel
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Figure 6. MGB Terminals in A1 Largely Show Either On-R or Off-R, and Off-R Terminals Show Higher Local Signal Correlations

(A) On-R terminal. The image shows the contour of the terminal in red. Scale bar: 5 mm. Light blue areas indicate tone duration.

(B) Same as in (A) but showing an Off-R terminal.

(C) Proportion of On-R or Off-R terminals is similar. On, 5.99% ± 6.72%; Off, 5.62% ± 6.00%; paired t test, t(20) = 0.34, p = 0.74.

(D) Histogram of OBI values of MGB terminals in A1. Inset shows CDFs of OBI values other than �1 and 1 from MGB terminals and A1 L2/3 neurons. Wilcoxon

rank-sum test, z = 3.64, p = 2.71 3 10�4.

(E) Individual MGB terminals in A1 show significant larger On-Rs. Wilcoxon rank-sum test, z = 2.91, p = 0.0036.

(F) Overall On and Off-R amplitude (see STAR Methods). Wilcoxon rank-sum test, z = 0.85, p = 0.39.

(G) Off-Rs show higher Off-SCs over distance (0–70 mm). Shaded regions show the 95% confidence interval around the median. Right: cumulative distribution

function of all On- and Off-SCs. ***p < 0.001.

(H) Goodness of fit of the linear On-R and Off-R tonotopy model in MGB terminals in A1 was similar.
MGB to A1 pathways. Terminals showing both On-R and Off-R

had a more negative OBI compared to the distribution of OBI

of the cellular response (Figure 6D, inset), suggesting that a

transformation of On-R and Off-R selectivity exists from MGB

terminals to A1 cellular responses, which are more Off-R biased.

Moreover, given the prevalence of Off-R A1 neurons, this sug-

gests a differential amplification of Off-Rs from MGB inputs to

yield a larger fraction of Off-R neurons.

To gain insight into the transformation, we compared the

average strength of On and Off-R pooled across terminals. Ter-

minal On-Rs were larger than Off-Rs (Figure 6E), which is similar

to the cellular responses (Figure S6B). However, unlike the

cellular response in A1, the On-R and Off-R MGB terminals

have similar overall response amplitudes (Figure 6F). This sug-

gests that the Off-R dominance in A1 cells was not generated

by stronger or more numerous Off-R MGB afferents.

Convergence and temporal synchrony of thalamic inputs can

strongly influence cortical neurons (Bruno and Sakmann,

2006), which could lead to stronger cellular responses. We

observed a distinct spatial SC structure in mesoscale (Figures

3G–3I), as well as in cellular responses (Figure 4F). These prop-

erties could result from spatially structured MGB input, and we

found that MGB terminals had higher Off-SCs (Figure 6G)

consistent with the cellular data. We also investigated the dis-

tance dependence of On and Off-SC of MGB terminals and

found that Off-SC was higher than On-SC over a distance of

0–70 mm, indicating a larger spatial spread of terminal Off-R.

These results suggest that although individual MGB terminals

do not respond to tone offset more strongly than to tone onset,
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the spatial correlation structure of MGB inputs is transformed

into cellular tuning in A1 and leads to a more spatially extensive

representation of tone offset.

Lastly, we investigated whether there are tonotopic structures

in MGB terminal responses. A linear model did not reveal a tono-

topic structure in either On-R or Off-R in MGB terminals (Fig-

ure 6H), consistent with reports that local On-RMGB projections

toA1 showspatially heterogeneous tuning (Vasquez-Lopez et al.,

2017). Altogether, our results suggest that the spatial mesoscale

distribution of On and Off-R A1 neurons is largely inherited

from the spatial distribution of On and Off-R MGB terminals.

Cortical Inhibitory Networks Can Amplify Off-R through
Disinhibition
The activity of cortical neurons is influenced by inhibition, and we

hypothesized that the On and Off selectivity of ACX L2/3 excit-

atory neurons is actively shaped by the local inhibitory network.

To investigate this question, we focused on PV- and SOM-pos-

itive interneurons, which are thought to control the activity of L2/

3 neurons via a disinhibitory circuit (Pfeffer et al., 2013). We

crossed Thy1-GCaMP6s mice with either PV-cre or SOM-cre

mice and injected AAV-expressing mRuby and GCaMP6s under

control of the flip-excision (FLEX) switch sequence into ACX of

F1 animals. Thus, PV or SOM interneurons could be identified

based on the nuclear red fluorescence signal while allowing

simultaneous imaging of Thy1+ excitatory neurons and PV or

SOM neural populations (Figures 7A and 7C) (Thy1xPV-cre: 8

mice, 427 PV neurons; Thy1xSOM: 6 mice, 288 SOM neurons).

We presented 2 s tones and found that although some PV and



Figure 7. PV and SOM Neurons Show Distinct Temporal Dynamics in Response to Prolonged Tones

(A) Example FOV showing both Thy1-GCaMP6s cells and PV-positive interneurons expressing GCaMP6s andmRuby. Scale bar: 10 mm. Light blue areas indicate

tone duration.

(B) Example PV interneurons showing suppressed response (top), On-R (middle), and Off-R (bottom).

(C) Example FOV showing both Thy1-GCaMP6s cells and SOM-positive interneurons expressing GCaMP6s and mRuby.

(D) Example SOM interneurons showing slow ramping responses following tone On (top and middle) and Off-R (bottom).

(E) k-means clustering on responses by Thy1, PV, and SOM cells. All traces were normalized to maximum absolute amplitude before they were averaged within

each cluster. Shaded regions show SD.

(F) Thy1, PV, and SOM cells show distinct proportion of response types.

(G) We propose that cortical On and Off-R result from largely segregated On and Off thalamic input and that the spatial patterns of these inputs determine the

spatial layout of On and Off-R selective neurons. Furthermore, Off-R cortical neurons have more recurrent connections that amplify the thalamic input compared

to On-R circuitry. Black triangles represent On and Off-R neurons, and gray triangles represent unresponsive neurons.
SOM interneurons displayed typical On and Off-R similar to

those seen in excitatory neurons, most interneurons displayed

slower temporal dynamics (Figures 7A and 7B). Most PV neurons

showed a slow decrease in fluorescence following tone onset

(Figure 7B). Although a subset of suppression responses

showed a brief positive deflection immediately after tone onset,

their occurrence was rarer than pure suppression responses

(Figure S9). SOM neurons showed similarly slow temporal re-

sponses, albeit positive in sign (Figure 7D). To classify different

response types, we performed k-means clustering on significant

responses averaged across trials, pooling responses from both

Thy1 and PV or SOM cells. We could identify 5 clusters with

distinct temporal dynamics. Cluster 1 shows a sharp increase

in fluorescence following tone onset and decays afterward (Fig-

ure 7E, On). Cluster 2 shows a more graded fluorescence in-

crease, which sustains during tone presentation (Figure 7E,

On-sustained). Cluster 3 shows even slower rise with little

plateau and decays following tone offset (Figure 7E, On-ramp-

ing). Cluster 4 shows a sharp increase after tone offset and is

categorized as typical Off-Rs (Figure 7E, Off). Cluster 5 has dy-

namics similar to those of On-ramping while opposite in sign

(Figure 7E, Suppressed). The proportion of responses assigned

to each cluster differed among cell types (Figure 7F). Thy1 re-

sponses are mostly Off, On, and On-sustained. PV interneurons

mostly show Suppressed responses, while SOM interneurons

show mostly On-ramping responses. These two response clus-
ters show no difference in latency reaching half-peak amplitude

(0.95 ± 0.36 s versus 0.85 ± 0.26 s, p = 0.21, Wilcoxon rank-sum

test). The opposite responses suggest that SOM neurons sup-

press PV neurons during prolonged tone activation, consistent

with a disinhibition circuit scheme (Pfeffer et al., 2013). The inhib-

itory postsynaptic current from SOM to PV interneurons could

last until after tone offset, despite the cessation of firing of

SOM interneurons. This prolonged suppression of PV neurons

by SOM neurons potentially allows a decrease of PV inhibitory

input onto local excitatory populations, which in turn could

amplify Off-R.

In summary, our results suggest that the spatial distribution of

On and Off-R MGB terminals determines the spatial distribution

of On-R or Off-R A1 neurons and that Off-Rs are amplified

compared to On-Rs due to disinhibition through suppression

of PV interneurons by SOM interneurons (Figure 7), as well as

to increased local spatial clustering of Off-R MGB afferents

(Figure 7G).

DISCUSSION

We show that ACX encodes tone offset in a parallel, spatially

extensive, yet globally, tonotopically organized manner. We

find distinct functional ACX areas characterized by distinct On

and Off selectivity on the population level. Thus, the cortical rep-

resentation of spectral information is influenced by the temporal
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dynamics of spectrally static tones. GC analysis revealed that

ACX areas contain intermingled On and Off networks within

L2/3. Therefore, areal selectivity is due to both different numbers

of On and Off-R neurons and distinct intracortical circuits.

Distinct temporal dynamics in the responses of PV and SOM

interneurons point to disinhibition as one mechanism that am-

plifies Off-R. Moreover, areal and cellular On and Off-R selec-

tivity may arise from differences in MGB input, which could be

enhanced by spatially correlated activity of MGB terminals. Alto-

gether, our results suggest that the differential dynamic re-

sponses originate from differential feedforward input from

MGB and are elaborated by different intrinsic excitatory and

inhibitory circuits in different ACX regions. Thus, ACX areas op-

erate in parallel to extract temporal information. Our results also

demonstrate that Off-Rs are tonotopically organized on the

mesoscale. The lack of Off-R tonotopy in prior studies (Baba

et al., 2016) is likely due to Off-R being most prominent in awake

animals (Fishman and Steinschneider, 2009; Joachimsthaler

et al., 2014; Qin et al., 2007; Recanzone, 2000).

We here developed a method to define functional ACX areas

based on temporal coactivation of pixels in the WF dataset

(Whiteway and Butts, 2017). This method is unbiased and unsu-

pervised, requires no prior knowledge of the locations of cortical

fields, and can be applied to arbitrary WF datasets.

Besides tone onset and offset, ACX neurons can be sensitive

to other dynamic aspects of sound, such as amplitude or fre-

quency modulation, sound duration, and frequency sweep

rate (Baumann et al., 2015; He et al., 1997; Heil et al., 1992;

Issa et al., 2017; Schreiner and Urbas, 1986). While frequency

sweep rate is topographically organized in mouse ACX (Issa

et al., 2017), our results show that Off-Rs are also topographi-

cally represented.

We found an extensive representation of tone offset in A1 and

DP neurons. A1 neurons receive On and Off synaptic inputs

shown to be mediated by nonoverlapping sets of synapses

(Scholl et al., 2010). We found that MGB terminals mostly have

only On-Rs or Off-Rs, suggesting that A1 neurons receive

convergent input from such On-R or Off-R MGB terminals.

Furthermore, Off-R MGB terminals do not outnumber On-R

MGB terminals and MGB terminals have weaker Off-R, suggest-

ing that the cellular Off-R dominance in A1 results from different

On and Off-R input topology, or the spatial distribution of con-

nections. No evidence so far suggests that On and Off circuits

have different quantal synaptic strength; thus, the cellular On

and Off-R bias is more likely to result from differential conver-

gence of connections. Altogether, these observations suggest

the presence of local A1 circuits to amplify Off-R. Our results

suggest that a disinhibitory circuit formed by SOM and PV cells

could play this role. A multilayer nonlinear neural network has

been proposed to underlie the various On and Off-Rs observed

in A1 (Deneux et al., 2016). Our work suggests that the MGB-

A1 circuit could underlie this transformation. Ideally, our conclu-

sion would be strengthened by simultaneously imaging MGB

terminals and ACX postsynaptic neurons. However, such an

approach would be limited, because corresponding terminals

and postsynaptic neurons would not necessarily be localized in

the same imaging plane, making it difficult to determine unequiv-

ocally presynaptic terminal and postsynaptic cell pairs.
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On-R and Off-R MGB terminals likely originate from different

MGB subdivisions. ACX receives MGB inputs via lemniscal

and nonlemniscal pathways. The lemniscal pathway arises

from the ventral MGB (MGBv), which shows On-Rs (Aitkin and

Webster, 1972; Hackett et al., 2011; Imig and Morel, 1983; Re-

dies and Brandner, 1991). Multiple lines of evidence suggest

that Off-Rs originate in nonlemniscal pathways. Off-Rs are pre-

dominantly observed in a sheet partially surrounding MGBv

(He, 2001). Off-Rs can also originate from the dorsal MGB

(MGBd) and medial MGB (MGBm). We found that A2 and DP,

which receive MGBd input (Lee and Sherman, 2008; Llano and

Sherman, 2008) show Off-Rs. Moreover, the spatial extensive-

ness of Off-Rs is consistent with broad projection from MGBm

to ACX through L1 (Huang and Winer, 2000; Lee and Winer,

2008). Thus, nonlemniscal pathways likely provide tone Off infor-

mation to ACX. We imaged terminals at roughly the same depth

as neurons (�150 mm); thus, these terminal might reflect a

mixture of lemniscal and nonlemniscal pathways, because

terminals from both MGBv and MGBd are present in L2 in A1

(Saldeitis et al., 2014). Our results show overlapping tonotopy

of On-R and Off-R despite areal differences, suggesting that

lemniscal and nonlemniscal pathways are coarsely aligned but

show distinct spatial patterning.

Most responding A1 L2/3 neurons have either On-R or Off-R.

Thus, the spatial heterogeneity of tonal responses in A1 L2/3

might be due to intermingled cells receiving differing thalamic in-

puts. In the primary somatosensory cortex (S1), functionally

different thalamic inputs from the ventral posterior medial nu-

cleus and the posterior medial nucleus are relayed to barrels

and septa (Koralek et al., 1988; Lu and Lin, 1993), which are

spatially separated and carry whisking-touch information (Yu

et al., 2006) and temporal information on whisker movement,

respectively (Ahissar et al., 2000). Our results suggest that in

contrast to S1, functionally different thalamic inputs to A1 are

spatially interspersed. A1 L2/3 contains cells with distinct func-

tional intracortical circuits and shows a sublaminar organization

(Meng et al., 2017). It is possible that the distinct On and Off sub-

networks we identified relate to these distinct subpopulations.

Because recurrent inputs from subgranular layers are thought

to be able to amplify thalamic inputs (Li et al., 2013; Miller

et al., 2001; Somers et al., 1995), we speculate that Off-R cells

receive stronger or more extensive inputs from subgranular

layers. Prior electrophysiology studies identified a larger propor-

tion of neurons responding to both tone onset and offset (Joa-

chimsthaler et al., 2014; Qin et al., 2007). The discrepancy

most likely results from differences in recording depth and the

inclusion of multiunit activity, given the intermingled spatial

distribution of On-Rs and Off-Rs (Figure 5B), which could bias

electrophysiological studies. Although our single-unit recordings

(Figure S7) showed a significant proportion of neurons respond-

ing to both tone onset and offset, therewas a differential distribu-

tion of Off-R bias across the depth of A1, with superficial A1 cells

being more Off-R biased. Thus, Off-Rs are more prevalent in su-

perficial layers, where we imaged (�150 mm depth). This is also

consistent with the laminar targets of lemniscal and nonlemnis-

cal MGB afferents, with the latter being present in L1 (Llano

and Sherman, 2008; Saldeitis et al., 2014) and with L5/6 neurons

less likely to generate Off-R (Volkov and Galazjuk, 1991).In



addition, L2/3 shows a functional suborganization (Meng et al.,

2017), with deep L3b receiving L4 inputs and superficial L2a

receiving few L4 inputs. Thus, it is likely the recurrent connec-

tions in L2a amplify the segregation of On and Off-R, as well as

Off-R strength. Future studies linking intracortical connectivity

with functional responses are needed to explore these issues.

Altogether, given that two-photon imaging has much higher

spatial resolution and lacks electrode bias, our imaging results

most likely revealed a highly specific On and Off-R selectivity

in upper L2/3.

We found that �5% of neurons in A1 respond to tone onset

and offset, consistent with a sparse representation of sound in

rat A1 (Hromádka et al., 2008) and mouse A1 (Liang et al.,

2018). However, previous imaging studies of A1 have reported

a 20%–30% response rate (Issa et al., 2014; Kato et al., 2015).

This discrepancy likely arises from sampling different neuronal

populations. Issa et al. (2014) used cre-dependent GCaMP3

driven by Syn1-cre or Emx-cre. In the primary visual cortex

(V1), such labeled populations had fewer visual responses

compared with the Oregon green BAPTA-1 (OGB-1)-labeled

neurons (Zariwala et al., 2012), suggesting nonuniform popula-

tion labeling. Kato et al. (2015) used viral expression of

GCaMP6s under a Syn1 promotor, which densely labeled neu-

rons close to the injection site. We used the GP4.2 line, which

relatively uniformly labels about 70% of L2/3 pyramidal cells

(Dana et al., 2014). The difference in response rate between

our and prior imaging studies is likely due to labeling of different

but potentially overlapping populations, the difference in cal-

cium indicator (GCaMP3 versus GCaMP6s), expression profile

(transgenic versus viral expression), and cell selection or inclu-

sion criteria.

We find that L2/3 PV and SOM interneurons showdistinct tem-

poral dynamics from each other, as well as from excitatory neu-

rons. PV and SOM interneurons show mostly opposite signs of

responses. Because the suppression of PV responses likely indi-

cates a reduction in the firing rate (Forli et al., 2018), our data sug-

gest suppression of PV activity by SOM interneurons, consistent

with mostly suppressed responses of L2/3 PV neurons to pro-

longed tones (Kato et al., 2015) and the proposed cortical pro-

cessing scheme of SOM / PV inhibition (Pfeffer et al., 2013).

Finally, SOM neurons more readily inhibit PV neurons than they

inhibit local excitatory neurons (Cottam et al., 2013). We specu-

late that such inhibition could facilitate detection of changes in

auditory streams, such as tone offset. The duration of inhibitory

postsynaptic currents in PV cells could outlast firing of SOM

cells, creating a window for elevated excitability in local pyrami-

dal cells before PV activity returns to baseline. Furthermore, we

find that SOM cells are active throughout tone presentation, in

contrast to previous findings that SOM cells fire transiently,

although this difference could be due to the animal’s state

(Chen et al., 2015; Li et al., 2015). Thus, SOM cells are potentially

important for auditory stream analysis, and their interactions with

PV neurons could facilitate change detection.

In conclusion, we have demonstrated a distinctly extensive

parallel spatial representation of sound dynamics in ACX at mul-

tiple levels, and we propose that this spatial pattern is deter-

mined by the meso- and microscale spatial layout of thalamic

input and by distinct intracortical circuits.
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Experimental Models: Organisms/Strains

Mouse: C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J The Jackson Laboratory JAX 024275

Mouse: CBA/CaJ The Jackson Laboratory JAX 000654

Mouse: B6;129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory JAX 008069

Mouse: Ssttm2.1(cre)Zjh/J The Jackson Laboratory JAX 013044

Software and Algorithms

Autoencoder (Whiteway and Butts, 2017) https://github.com/themattinthehatt/rlvm

Suite2P (Pachitariu et al., 2016) https://github.com/cortex-lab/Suite2P

TurboReg (Thévenaz et al., 1998) http://bigwww.epfl.ch/thevenaz/turboreg/

MClust3.5 A. David Redish http://redishlab.neuroscience.umn.edu/MClust/

MClust.html
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Patrick

Kanold (pkanold@umd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the University of Maryland’s Animal Care and Use Committee. We crossed CBA/CaJ (JAX stock

#000654) mice with Thy1-GCaMP6s (JAX stock #024275, GP4.3, (Dana et al., 2014)) to obtain F1’s since C57BL/6 are homozygous

for Cdh23 allele ahl, which causes them to suffer from aging related hearing loss, while CBA/CaJ mice are homozygous for Ahl+,

which spare them from the phenotype (Kane et al., 2012). F1’s thus have no hearing loss and yet have uniform expression of

GCaMP6s under Thy1 promotor in excitatory neurons. We used adult mice of both sexes whose ages range from 2 to 4 months

old. For imaging PV or SOM neurons, we crossed Thy1-GCaMP6s mice with PV-cre (JAX #008069) or SOM-cre (JAX #013044)

mice and injected �30nl of AAV1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (Addgene viral prep # 68720-AAV1 (Rose

et al., 2016)) into the left ACX of the F1 animals. Such generated animals express innate GCaMP6s in Thy1 pyramidal cells while ex-

pressing GCaMP6s and mRuby in either PV and SOM interneurons.

METHOD DETAILS

Chronic window implant
2-3 hours before surgery, 0.1cc dexamethasone (2mg/ml, VetOne) was injected subcutaneously to reduce brain swelling during

craniotomy. Anesthesia was induced with 4% isoflurane (Fluriso, VetOne) with a calibrated vaporizer (Matrx VIP 3000). During sur-

gery, isoflurane level was reduced to and maintained at a level of 1.5%–2%. Body temperature of the animal was maintained at

36.0�C during surgery. Hair on top of head of the animal was removed using Hair Remover Face Cream (Nair), after which Betadine

(Purdue Products) and 70%ethanol was applied sequentially 3 times to the surface of the skin before the central part is removed. Soft

tissues andmuscleswere scraped to expose the skull. Then a customdesigned 3Dprinted stainless headplate wasmounted over the

left auditory cortex and secured with C&B-bond (Parkell). A craniotomy with a diameter of about 3.5mmwas then performed over the

left auditory cortex. A three layered coverslip was used as cranial window, which ismade by stacking 2 pieces of 3mm coverslips (64-

0720 (CS-3R),Warner Instruments) at the center of a 5mmcoverslip (64-0700 (CS-5R),Warner Instruments), using optic glue (NOA71,

Norland Products). The cranial window was quickly dabbed in kwik-sil (World Precision Instruments) before mounted onto the brain

with 3mmcoverslips facing down. After kwik-sil cured (2-5min), C&B-bondwas applied to secure the cranial window. Synthetic black

iron oxide (Alpha Chemicals) was then applied to the hardened surface. 0.05cc Cefazolin (1 g/vial, West Ward Pharmaceuticals) was
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injected subcutaneously when the entire procedure was finished. After the surgery, the animal was kept warm under heat light for

30 minutes for recovery before returning to the home cage. Medicated water (Sulfamethoxazole and Trimethoprim Oral Suspension,

USP 200mg/40mg per 5ml, Aurobindo Pharms USA; 6ml solution diluted in 100ml water) substituted normal drinking water for 7 days

before any imaging was performed.

Widefield imaging
Mice were affixed to a custom designed head-post and restrained within a plastic tube. The head of the animal was held upright.

Imaging was performed using Ultima-IV two photon microscope (Bruker Technologies) with an orbital nosepiece such that the illu-

minance light is roughly perpendicular to cranial window (rotation angle was�60 degrees). As a result, the anterior-posterior axis was

not parallel to the edge of the images. 470nm LED light (M470L3, Thorlabs Inc.) was used to excite green fluorescence. Images were

acquired with StreamPix 6.5 software (Norpix) at 10Hz and 100ms exposure time. In StreamPix software, we specified the image size

to be 400 by 400 with a spatial binning of 3.

Acoustic stimulus
Pure tones were generated with custom MATLAB scripts. Each tone lasted 2 s with linear ramps of 5ms at the beginning and at the

end of the tone. The amplitudes of the tones were calibrated to 75dB SPL with a Br€uel & Kjær 4944-A microphone. During sound

presentation, sound waveform was loaded into RX6 multi-function processor (Tucker-Davis Technologies (TDT)) and attenuated

to desired sound levels by PA5 attenuator (TDT). Then the signal was fed into ED1 speaker driver (TDT), which drove an ES1 elec-

trostatic speaker (TDT). The speaker was placed on the right-hand side of the animal, 10cm away from the head, at an angle of

45 degrees relative to the mid-line. The presentation of tones with various combination of frequencies and sound levels are random-

ized and controlled by a custom MATLAB program. The silent period in between the 2 s tones was randomly chosen from a uniform

distribution between 3 and 3.5 s. Frequencies of the tones vary from 4kHz to 83.0kHz with logarithmic spacing and with a density of

2.28 tones per octave. Sound levels vary from 5dB SPL to 65dB SPL with a step of 15dB. Each stimulus was repeated 10 times. In

total, the widefield imaging session for for each animal lasted�45min. For 2-photon imaging, 9 tones with equal logarithmic spacing

between 4 and 64kHz were used at a single level of 60dB SPL. The tone duration was 2 s and repeated 10 times.

2-Photon imaging of mouse ACX
Aweek after the cranial window implant, the animals were head-fixed in custom designed holder while 2 s long tones were presented

in a similar fashion as in WF experiment. Field of views were placed in A1, AAF, A2 and DP region with a depth of around 150mm and

with a size of 369 mm x 369 mm. The imaging was performed with a B-SCOPE (Thorlabs Inc.) with the microscope body tilted around

45 to 50 degrees while the mouse head was held upright. The excitation wavelength was 920nm and images were collected with

ThorImage software (Thorlabs Inc.) at a frame rate of 30Hz. A 16x Nikon objective was used (NA 0.80). For terminal imaging, the

average imaging depth was around 140um, comparable to cellular data.

Injection of GCaMP6s virus in MGB
AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (Addgene 50942) virus was injected into MGB for axon terminal imaging in

ACX. Micropipettes pulled with a long tapering tip (> 3mm) were used for injection with Nanoject II (Drummond Inc.). The location of

the left MGB was determined using the mouse brain atlas (AP: 3.2mm; ML 2.1mm; DV: 3.0mm). Anesthesia was induced with 4%

isoflurane and maintained at 1.5%. The skin over the skull was cut open and a small craniotomy was made to allow penetration

from the dorsal side and themicropipette was lowered vertically into MGB. 150-200nl of undiluted virus was injected over 5min. After

the injection, the skin was sutured back. 3-4 weeks after the injection, the cranial window was implanted over the left ACX as pre-

viously described.

Pupillometry
During 2P imaging, the arousal state of the animal was monitored through pupillometry (McGinley et al., 2015). In short, a camera

(BCE-B013-U, Mightex) was positioned around 20cm away from and toward the right eye of the head-fixed mouse. An ultraviolet

LEDwas placed near the camera to restrict the pupil dilation to around 1/2 of themaximum dilation. The exposure time of the camera

was set to 26ms and each frame was triggered by 2P ‘‘Frame Out’’ triggers and thus synchronized to 2P images.

Extracellular electrophysiology
We performed extracellular electrophysiology in CBA/CaJ and Thy1-GCaMP6s F1 crosses by either acutely recording from A1 neu-

rons or chronically implanting electrodes. We used 16-channel linear arrays with 50mm spacing between adjacent contacts (A1x16-

3mm-100-177-CM16, NeuroNexus) and a Neuralynx Cheetah system (32 channels). The acute surgery or implant surgery was similar

to the cranial window implantations. In both cases, we first identified the location of A1 through widefield imaging of GCaMP6s and

we advanced the electrode at a depth of around 900mm, which was read out from the manipulator. Figures S7A–S7E used data from

chronic implantation while Figures S7F and S7G used single unit data pooling from both acute and chronic recordings. LFP signals

and single units were acquired a previously described (Petrus et al., 2014). Briefly LFPs were acquired at 30kHz (filtered between 1

and 6000Hz) and down-sampled by a factor of 100 (using MATLAB built-in function ‘decimate’) before analysis. To calculate local
Cell Reports 27, 872–885.e1–e7, April 16, 2019 e2



field potential (LFP) responses, we took the difference of the mean LFP amplitude within a 50ms time window before and after tone

onset/offset. To determine the significance, we used a paired t test separately for each frequency and onset/offset and a significant

change above baseline was considered a significant response. For spike extraction, the raw headstage signal was filtered from

300Hz to 6000Hz and detected online with a threshold of 30mv.

QUANTIFICATION AND STATISTICAL ANALYSIS

Widefield image preprocessing
We performed three preprocessing steps before using autoencoder for image segmentation. First, we downsampled the original im-

age (400 by 400) using MATLAB (2015b) using the MATLAB built-in function ‘imresize’, by a factor of 4. The resultant image size was

100 by 100. Next we performed whitening of the image sequence. We first re-shaped each image into column vectors, then we

stacked them horizontally. Let It denote the column vector corresponding to image at time t, M be the stacked matrix, and N be

the total number of images:

M= ½I1; I2;/; IN�
We then subtracted the time average image (hIit) from all images:

bM =M� hIit 3 ½1; 1; .; 1�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N

We then performed singular value decomposition on sample covariance matrix of bM:

½U;S;V �=SVD
� bM3 bM 0.

N
�

Then we obtained the whitened images using the following equation:

~M=U3
�
S�1 + l

�
3U

0
3 bM

Where l is the regularization term. We picked l by first plotting the sorted eigenvalues in S in logarithmic space and usually a fast

initial drop off and a following relatively flat region can be observed. We picked l close to the turning point to preserve relevant vari-

ance and to avoid amplifying noise. We then fed ~M into autoencoder algorithm.

Image Segmentation with constrained autoencoder
We used a dimensionality reduction technique to perform automatic image segmentation such that pixels with strong temporal cor-

relations across the set of images were grouped together into single components (ROIs), following the formulation of Whiteway and

Butts (2017). To perform this dimensionality reduction, we used an autoencoder neural network. The goal of this constrained autoen-

coder is to adjust the weights between the input layer and the hidden layer and those between the hidden layer and the output layer

such that the output matches the input as closely as possible. For each time point t, the autoencoder takes the vector of pixel values

yt˛RN and projects it down onto a lower dimensional space RM using an encoding matrixW1˛RM3N. A bias term b1˛RM is added to

this projected vector, so that the resulting vector zt˛RM is given by

zt =W1yt +b1

The autoencoder then reconstructs the original activity yt by applying a decoding matrix W2˛RN3M to zt and adding a bias term

b2˛RN, so that the reconstructed activity byt˛RN is given by

byt =W2zt +b2

Since the dimensionality of zt is typically much smaller than that of yt, zt should capture variations in yt that are shared across many

pixels. The entries of W2 then describe how each pixel is related to each dimension of zt (see Figure 2C).

The weight matrices and bias terms, grouped as Q = [W1,W2,b1,b2 ], are simultaneously fit by minimizing the mean square error

between the observed activity yt and the predicted activity byt:

bQ = argmin
Q

1

2

X
t

yt � by2

t2

To further enable interpretability of the results, we constrained the weights W2 to be non-negative, as one could flip the signs of both

spatial and temporal components arbitrarily. This also ensured that all pixels in a given ROI always increase or decrease in intensity

together, depending on the sign of zt. We also tied theweights such thatW2 = WT
1 . Thus, there was essentially only one spatial weight

matrix.

This version of the autoencoder is closely related to principal components analysis (PCA) (Bengio et al., 2013). However, PCA is an

inadequate technique for automatic image segmentation since it did not in general result in spatially localized ROIs, due to the
e3 Cell Reports 27, 872–885.e1–e7, April 16, 2019



orthogonality constraints imposed by the PCA model. A similar approach to our non-negatively constrained autoencoder is to use

non-negative matrix factorization (NNMF) on the preprocessed image sequence. NNMF constrains both the spatial maps and the

temporal activations to be non-negative, whereas the RLVM just constrains the spatial maps to be non-negative. The NNMF ROIs

also failed to be spatially localized. Finally, in order to solve the constrained minimization problem above we used the spectral pro-

jected gradient method, a constrained variant of gradient descent (Schmidt et al., 2009).

To perform image segmentation with this method we must first specify the number of ROIs (the dimensionality of zt). We deter-

mined the appropriate number of ROIs using cross-validation by first fitting the parameters of the autoencoder on 75% of the frames

from the image sequence (training data), and then reconstructing the remaining 25% of the images (testing data) using the autoen-

coder. We then calculated the correlation between the true and reconstructed images on the testing data, as a measurement for

goodness of fit. In Figure S3A, we show that with an increasing number of ROIs, the correlation from the testing data increasesmono-

tonically, and roughly plateaus after �50 ROIs. We also performed fitting on the entire image sequence and plot the correlation (Fig-

ure S3A, blue curve). A similar monotonic increase is observed, and with 50 or more ROIs, the correlation value is above 0.8, which is

agreeable considering that the full image sequence consisted ofmore than 28,000 images. Another criterion we utilized to choose the

number of ROIs was the total spatial area covered by the ROIs. An increasing portion of the total area is covered with an increasing

number of ROIs, (Figure S3B), and total area covered by 50 ROIs are close to maximum coverage. Given these results, we typically

used 50 ROIs in the autoencoder.

Widefield On-R and Off-R amplitude
To determine response amplitude, first the temporal trace from each trial was normalized to percentage changewith respect to base-

line fluorescence:

normalized trace at time t=Ft � F0=F0

where F0 is the baseline determined by finding the most frequent value in the histogram of the trace assuming stability. For On-R

amplitude, we averaged the normalized trace from 200-500ms after tone onset with the baseline from normalized trace subtracted.

For Off-R, we averaged the normalized trace from 200-500ms after tone offset and subtracted the average from the same trace

0-200ms right before tone offset. The 200-500mswindowwas sufficient to capture the rising phase aswell as the peak of the increase

in fluorescence in typical On/Off-R.

Field Parcellation
We assigned ROIs to different ACX fields based upon known tonotopic structure revealed with optical approaches (Issa et al., 2014;

Tsukano et al., 2015). ACX of mice contains several ACX fields, including A1, AAF and Ultrasonic Field (UF), which are characterized

by the presence of tonotopic gradients in On-R (Stiebler et al., 1997). Tonotopy also exists in secondary area A2, albeit on a com-

pressed scale (Issa et al., 2014). First, we identified A1 and UF ROIs based on their two tonotopic axes, one from the caudal side

to dorsomedial side (low to high) and the other one, sharing the same low frequency area, from caudal to ventrolateral side (Issa

et al., 2014). The example A1 and UF ROIs (Figures 2I–2O) show progression of frequency selectivity along the two tonotopic

axes. We use ‘UF’ and ‘high A1’ to distinguish between the two spatially distinct areas that are high frequency selective, while

they are both considered primary auditory cortices. We also found a subset of ROIs located dorsoposterior to A1 which we assigned

as DP. They showed relatively weak On-Rs but prominent Off-Rs (Figure 2M). We performed parcellation of ROIs in all animals stud-

ied, and the similar spatial layout of A1, UF, AAF, A2 and DP can be robustly observed.

Signal correlation among ROIs
We used corrected signal correlation (SC) for all our calculation due to the limited number of repeats and the strong tendency of

close-by pixels to covary in time (Rothschild et al., 2010; Winkowski and Kanold, 2013). The basic idea is that the uncorrected SC

equation contains products of responses from the two ROIs in question on the same trial, and these terms also appear in noise cor-

relation equation. Thus, these products represent to some extent the covariation of ROIs regardless of stimulus presentation, and

thus should be excluded from SC calculation. The denominator in the equation was adjusted accordingly to take into account the

reduction of number of summation in the nominator.

In Figures 3G and 3H, we calculated SC among selected ROIs that were dorsally located with respect to A1 and UF respectively.

These ROIs have centers within�450mm to the A1 and UFROIs in the rostrocaudal direction but dorsally located. Thenwe calculated

pairwise SCs among all these ROI pairs and plotted them as a function of distance (Figure 3I).

On- and Off-tonotopy
To establishOn- andOff-tonotopy, threshold ofWFOn-R andOff-Rwere firstmanually determined (Figure S1, white solid lines). Then

WF images with baseline subtracted following tone onset or offset were obtained at identified threshold. Next a homomorphic

filter was applied to the images to correct for unevenness of illumination. Then 95 percentile contour lines of the responses were ex-

tracted and overlaid to demonstrate systematic movement of activation area as a function of different tone frequencies (Figures 1C

and 1D; Figure S3).
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2-Photon imaging data analysis
First motion correction was performed with TurboReg plugin (Thévenaz et al., 1998). In a subset of experiments, the motion correc-

tion was performed using the Suite2P package (Pachitariu et al., 2016). ROIs were drawnmanually using a customwritten GUI. A ring

was placed on each cell soma to extract raw fluorescence trace while a circular region of 20mm radius was used to extract nearby

neuropil signal (excluding soma). We used the following equation to correct neuropil contamination of cell:

FcorrectedðtÞ=FcellðtÞ � 0:83FneuropilðtÞ
The coefficient of correction (0.8) was measured with the collected 2P dataset by taking the ratio of the intensity non-radial blood

vessel and the intensity of adjacent neuropil containing no neurons. To calculate DF/F, the baseline of each cell was determined

by constructing a histogram of all fluorescence intensity over time and by finding the peak of the histogram and the corresponding

fluorescence intensity value, which we used as the estimate of fluorescence baseline. This procedure is based on several assump-

tions. First, we assume the baseline is constant over time, which we generally found to be true given our relatively short imaging ses-

sions (�9 min). Second, we assume that the response in ACX is sparse (Hromádka et al., 2008) and thus baseline value should be

observed the most often, which will be reflected as the peak in histogram. This procedure is generally robust and generates DF/F

change over a reasonable range. If this procedure found negative baseline values, suggesting the soma fluorescence was lower

in intensity than surrounding neuropil, then these cells were excluded from further analysis. Then, we calculate DF/F using the

following equation:

DF

F
ðtÞ=FcorrectedðtÞ � baseline

baseline

To determine whether a cell is significantly responding to sound onset or offset, we first determine the response amplitude in theDF/F

trace by finding the maximum change within 1 s after sound onset or offset and average over a small window (±2 frames) around the

maximum time point to account for the noisy fluctuation in the trace. Then the 95 percent confidence interval (CI) of the median of the

response amplitude was constructed through a bootstrapping procedure (resampling 1000 times) and if the lower CI bound ex-

ceeded 1.5 times the standard deviation of the baseline fluctuation (5 frames or �150ms before sound onset/offset) then the cell

was considered significantly on/off-responsive. The response significance was determined separately for each frequency and sound

level combination and separately for On-R- and Off-R. Neuropil andMGB terminal signals were processed with the same procedure.

Unlike cellular ROIs, MGB terminal ROIs were obtained with Suite2P in an automated fashion.

For classifying different types of responses (Figure 7E), we performed k-means clustering on averaged responses (across repeti-

tions) to each frequency, pooling these traces from Thy1 (including traces from F1s of CBA/CaJ and Thy1-GCaMP6s crosses), PV

and SOM neurons. The clustering is only confined to statistically significant responses. We used correlation as the distance measure

and thus the clustering disregarded absolute amplitude of the traces. We chose 5 clusters to sufficiently encompass the different

response types encountered.

Off-R Bias Index (OBI)
OBIs are calculated by first averaging On-R and Off-R for responding neurons over frequency and repeats, and then calculated with

the following equation:

OBI=
hRoffi � hRoni
hRoffi+ hRoni

where the angle brackets denote average over tone frequency and repeats.

Granger Causality analysis
The notion of causality proposed by Granger (Granger, 1969) aims at capturing the two fundamental principles of temporal predict-

ability and the precedence of cause over effect. In order to capture the functional dependencies within a neuronal ensemble and the

sparsity of interactions, we employ sparse multivariate autoregressive models. We introduce a measure of GC which accounts for

sparse interactions, estimate the model parameters using fast optimization methods, and perform statistical tests to assess the sig-

nificance of possible GC interactions (Francis et al., 2018), while controlling the false discovery rate (FDR) to avoid spurious detection

of GC links.

We used the same framework as in (Francis et al., 2018) for our Granger Causality (GC) measurement (Sheikhattar and Babadi,

2016). In order to infer GC patterns for the two On/Off conditions, we divide the corresponding responses to the onset and offset

inputs, and pool across all the tone frequencies, thereby treating them as implicit repetitions to the same stimuli condition. In

what follows, we present our modeling, parameter estimation and GC inference procedure.

Modeling: Consider a sequence of calcium indicator fluorescence measurements from a set ofC neurons indexed by c= 1;2;.;C

within a slice, denoted by fyðcÞr;n g
c=1:C

r = 1:R;n= 1:N over time bins n = 1;.;N, and acrossR trial repetitions indexed by r = 1;.;R. We adopt a

sparse vector autoregressive (VAR) framework (Valdés-Sosa et al., 2005) for modeling the slow-decaying and transient dynamics of

the calcium fluorescence signals as well as the cross-dependencies among the neurons.
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Suppose that the fluorescence observation vector of neuron ðcÞ at the r-th repetition is represented by y
ðcÞ
r : = ½yðcÞr;1 ;.; y

ðcÞ
r;N�

0
, and

let yðcÞ : = ½yðcÞ01 ; y
ðcÞ0
2 ;.; y

ðcÞ0
R �

0
denote the zero-mean total observation vector, containing the set of all observation vectors y

ðcÞ
r from all

trials r = 1;.;R.

The effective neural covariates taken into account in our models are each neuron’s self-history of activity and the history of activ-

ities of other neurons in the ensemble. We consider a lag of L samples within which the possible neuronal interactions may occur.

Then, we segment L into M windows of lengths W1;W2;/;WM such that
PM

i = 1Wi = L. Let bm : =
Pm

[ =1W[ for m = 1;.;M, and

b0 = 0. Let

hðcÞ
r;n;m : =

1

Wm

Xn�1�bm�1

k =n�1�bm

yðcÞ
r;k ; (1)

represent the average activity of neuron ðcÞwithin them-th window lag of lengthWm with respect to time n and at trial r. We can then

define the vector of history covariates from neuron ðcÞ, effective at time n and trial r as hðcÞ
r;n : = ½hðcÞr;n;1;h

ðcÞ
r;n;2;/;h

ðcÞ
r;n;M�

0
. Next, let

xr;n : = ½hð1Þ0
r;n ;hð2Þ0

r;n ;.;hðCÞ0
r;n �

0
denote the vector of covariates from all neurons at time n and trial r.

In order to represent the covariates in amore compact form, we consider theN3MCmatrixXr : = ½xr;1; xr;2;.; xr;N�
0
which contains

in its rows the covariate vectors at all times n= 1;.;N within trial r. Finally, let X : = ½X0
1;X

0
2;.;X

0
R�

0
represent the matrix of all cova-

riates with standardized columns (i.e., zero-mean columns with unit norm), capturing the covariates Xr for all the trials r = 1;.;R

the VAR model can then be expressed as:

yðcÞ =XuðcÞ + ε
ðcÞ; (2)

where ε
ðcÞ : = ½εðcÞ

0

1 ; ε
ðcÞ0
2 ;.; ε

ðcÞ0
R �

0

� N ð0;sðcÞ2IÞ is a zero-mean Gaussian noise vector of size RN with variance sðcÞ2, and uðcÞ is a

parameter vector accounting for the interactions in the network, for c = 1; 2;/;C.

In agreement with the parsing of the covariates in thematrix X, the parameter vectoruðcÞ : = ½uðc;1Þ0 ;uðc;2Þ0 ;.;uðc;CÞ0 �0 in Equation 2

is composed of a collection of cross-history dependence vectors fuðc;~cÞg~c=1:C, whereuðc;~cÞ represents the contribution of the history

of neuron ð~cÞ to the activity of neuron ðcÞ via the corresponding covariate vector hðcÞ
r;n encoded inmatrix X. In particular the component

uðc;cÞ is important in capturing the slow calcium florescence decay in an autoregressive fashion, and thereby excluding the transient

effects of florescence decay from the GC analysis.

Next, we invoke the hypothesis of sparsity in the interactions among the neurons in the ensemble. In our model, the sparsity of the

interactions can be captured through the sparsity of the parameter vectoruðcÞ: when only very few components ofuðcÞ are non-zero,

neuron ðcÞ is only affected by the activity history of a few neurons in the ensemble. In addition, as the dimension of the parameter

vector given by MC scales with the network size C, the hypothesis of sparisty enables the detection of salient interactions within

a large network, and thereby mitigates overfitting, especially when the observations are noisy and trials are limited in number.

Parameter Estimation: In order to define a framework for inferring a possible GC link ð~c1cÞ, two nested models are taken into ac-

count: 1) the VARmodel in Equation 2, where the contributing covariates from all the neurons are taken into account, referred to as the

full model, and 2) the samemodel in which the covariates and parameters of a single neuron ð~cÞ on neuron ðcÞ, ~csc are excluded, to

which we refer as the reduced model. The parameters and covariates associated with the reduced model are denoted by uðcy ~cÞ and
X
y ~c

, respectively.

The sparse parameter vector associated with either of the two models can be estimated by solving an [ 1-regularized maximum

likelihood (ML) problem for each neuron as follows:

bu =argmin
u

�
1

2
kyðcÞ � Xu k 2

2 +gku k 1

�
; (3)

where X takes the two values of X and X
y ~c

for the full and reduced models, respectively, the [ 1 -norm is defined as ku k 1 : =PM
m= 1jum j , and gR0 is a regularization parameter tuning the sparsity level, which can be selected based on analytical results on

[ 1 -regularized ML problems or via cross-validation. Given the parameter estimate bu, the corresponding variance associated with

the model can be computed as bs2 = 1=NRky� Xbu k 2

2.

Inference: The conventional measures of GC are based on ML estimates of the VAR parameters, and not the regularized ML as in

our case. Hence, we need to modify the GC measure and the corresponding deviance statistics, to account for the estimation bias

incurred due to [ 1-regularization. This newmeasure is the static VAR-based counterpart of a similar measure presented in our earlier

studies in the context of dynamic sparse point process models (Sheikhattar and Babadi, 2016) To this end, we modify the deviance

difference statistic corresponding to the full and reduced models to compensate for the bias incurred due to sparse regularization.

The bias can be computed for the full model as BðcÞ : = gðcÞ0HðcÞ�1gðcÞ, where gðcÞ : =X
0
ðyðcÞ � XbuðcÞÞ=bsðcÞ2 and HðcÞ : = � X

0
X=bsðcÞ2

are the gradient and Hessian of the log-likelihood function for the Gaussian VARmodel of Equation 2, respectively. Similarly, the bias

Bðcy ~cÞ for the reduced model can be computed by replacing the matrix of covariates and parameter estimate by X
y ~c

and buðcy ~cÞ,
respectively.
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The deviance difference statistic associated with the two nested full and reduced models can be expressed as:

Dð~c1cÞ: =NR log
bsðcy~cÞ2

bsðcÞ2 � Bð~c1cÞ; (4)

where Bð~c1cÞ : =BðcÞ � Bðcy ~cÞ denotes the difference of bias terms corresponding to the full and reduced models.

We finally employ the inference framework presented in (Kim et al., 2011; Sheikhattar and Babadi, 2016) to simultaneously test the

statistical significance of all possible GC interactions and to control the FDR at a given significance level a. This inference framework

integrates an extension of classical results on analysis of deviance, and a multiple hypothesis testing procedure based on the Ben-

jamini-Yekutieli FDR control (Benjamini and Yekutieli, 2001). The weights of the detected links are further characterized using the

Youden’s J-statistic, which is a summary statistic for quantifying the strength of hypothesis tests. The excitatory or suppressive na-

ture of GC links are determined by the effective sign of estimated cross-history parameters associated with shorter latencies.

To quantify the spread of the distribution of GC-link directions (Figure 5F), we first constructed a circular histogram of the GC-link

angles which were computed from MATLAB built-in function atan2. Based on this histogram we used PCA to extract the long and

short axes of the eclipse like distributions. Then all the original angles were projected onto the short axis and the resultant dot prod-

ucts (taking absolute values) were compared between ACX fields. The more the values are shifted toward 1, the larger the spread in

the short axis, indicating a less ‘pointy’ distribution.

Pupillometry data analysis
To extract pupil size, each image was first cropped around the eye and the MATLAB built-in function ‘‘imfindcircles’’ was used to

determine pupil location and diameter. The pupil size over time was further smoothed with a time window of �150ms. The onset

of micro-dilations was determined by first inverting the trace (flip sign) and using MATLAB built-in function ‘‘findpeaks’’ with a min-

imum peak prominence of 10mm. Next, we quantified the occurrence of micro-dilation before, during and after tone onset using 1 s

windows, to investigate whether micro-dilations were more likely to occur following tone offset. We established confidence interval

by shuffling tone onset time and counting the micro-dilation occurrence in reference to the shuffled stimulus onset. We performed

such analysis for 10 sets of experiments (n = 9 mice). If a micro-dilation is more likely to occur during any specific time window,

then the actual counts should exceed the upper bound of the confidence interval. If the counts are within the confidence interval,

then the occurrence of micro-dilations is equally likely to occur before, during or after tone presentation.

Electrophysiological data analysis
Single units were sorted offline using MClust-3.5 package (A. D. Redish et al., http://redishlab.neuroscience.umn.edu/MClust/

MClust.html) and KlustaKwik algorithm (K. Harris, http://klustakwik.sourceforge.net). For single unit analysis, we calculated re-

sponses as the spike count change within a 500ms window before or after tone onset/offset and used paired t test to determine

the response significance for each frequency.
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