Cell Reports

Parallel Processing of Sound Dynamics across
Mouse Auditory Cortex via Spatially Patterned
Thalamic Inputs and Distinct Areal Intracortical
Circuits

Graphical Abstract Authors

Ji Liu, Matthew R. Whiteway,
Alireza Sheikhattar, Daniel A. Butts,
Behtash Babadi, Patrick O. Kanold

. S M—

@ ) @ Correspondence
Q- On-Response —_ pkanold@umd.edu

Off—Response_N

In Brief
Using multiscale imaging of mouse
/ \ auditory cortices, Liu et al. found that the
A/_\O A offset.response is tf)notoplcally
O~ organized and spatially extensive across

parallel networks. The offset response is

High
: A A A A auditory fields, while A1 L2/3 pyramidal
|:| T 9) o A neurons process tone onset and offset in

Al Q P amplified by differential convergence of
i Off | | thalamic input and intracortical
On-Tonotopy — | @0 processing involving interneurons.
Off-Tonotopy ]
MGB
Highlights

e Automatic image segmentation defines auditory cortex fields
by temporal responses

e Both onset and offset responses are tonotopically organized
across auditory cortex

e Parallel neuronal networks process tone onset and offset in
the auditory cortex

e A1 amplifies offset response by convergent thalamic input
and intracortical processing

A Liu et al., 2019, Cell Reports 27, 872-885
April 16, 2019 © 2019 The Authors. ‘ :e“
https://doi.org/10.1016/j.celrep.2019.03.069


mailto:pkanold@umd.edu
https://doi.org/10.1016/j.celrep.2019.03.069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.03.069&domain=pdf

OPEN

ACCESS
CellPress

Cell Reports

Parallel Processing of Sound Dynamics across Mouse
Auditory Cortex via Spatially Patterned Thalamic
Inputs and Distinct Areal Intracortical Circuits

Ji Liu,’ Matthew R. Whiteway,? Alireza Sheikhattar,® Daniel A. Butts,"->* Behtash Babadi,® and Patrick O. Kanold-#:5*
1Department of Biology, University of Maryland, College Park, MD 20742, USA

2Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA
3Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA

4Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA

5Lead Contact
*Correspondence: pkanold@umd.edu
https://doi.org/10.1016/j.celrep.2019.03.069

SUMMARY

Natural sounds have rich spectrotemporal dynamics.
Spectral information is spatially represented in the
auditory cortex (ACX) via large-scale maps. How-
ever, the representation of temporal information,
e.g., sound offset, is unclear. We perform multiscale
imaging of neuronal and thalamic activity evoked by
sound onset and offset in awake mouse ACX. ACX
areas differed in onset responses (On-Rs) and offset
responses (Off-Rs). Most excitatory L2/3 neurons
show either On-Rs or Off-Rs, and ACX areas are
characterized by differing fractions of On and Off-R
neurons. Somatostatin and parvalbumin interneu-
rons show distinct temporal dynamics, potentially
amplifying Off-Rs. Functional network analysis
shows that ACX areas contain distinct parallel onset
and offset networks. Thalamic (MGB) terminals show
either On-Rs or Off-Rs, indicating a thalamic origin of
On and Off-R pathways. Thus, ACX areas spatially
represent temporal features, and this representation
is created by spatial convergence and co-activation
of distinct MGB inputs and is refined by specific in-
tracortical connectivity.

INTRODUCTION

Natural sounds have rich spectral and temporal dynamics,
and neuronal populations along the auditory processing
stream encode both spectral and temporal information. Onset
(On) and offset (Off) are fundamental dynamic features of
sound to which single neurons at multiple levels of the audi-
tory system respond (He et al., 1997; Henry, 1985; Hillyard
and Picton, 1978; Kopp-Scheinpflug et al., 2011), including
the auditory cortex (ACX) (Baba et al., 2016; Fishman and
Steinschneider, 2009; He, 2001; Qin et al., 2007; Recanzone,
2000; Scholl et al., 2010). While offset responses (Off-Rs) have
been suggested to be responsible for duration coding (He,
2001), they, together with onset responses (On-Rs), encode
the basic cues (On and Off) for auditory scene analysis
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(Bregman, 1994). Thus, besides elucidating the encoding of
both sound On and sound Off, revealing the underlying
cellular networks is essential for understanding auditory
processing.

ACX contains multiple functional areas, and the spatial orga-
nization of ACX with respect to On-Rs has been extensively
studied. On a large scale (hundreds of microns), there are clear
tonotopic maps that result from topographic thalamocortical
projections (Guo et al., 2012; Issa et al., 2014; Kanold et al.,
2014; Merzenich et al., 1975; Stiebler et al., 1997; Tsukano
et al., 2015), while on a finer scale, two-photon imaging studies
in mouse primary ACX (A1) revealed a diverse tonotopic orga-
nization of On-Rs in superficial layers (Bandyopadhyay et al.,
2010; Kanold et al., 2014; Rothschild et al., 2010; Winkowski
and Kanold, 2013). In contrast, the spatial organization of
Off-Rs in ACX is less well understood. Widefield (WF) flavopro-
tein imaging revealed the existence of an area adjacent to A1
that specializes in processing tone offset regardless of tone
frequency in anesthetized mice (Baba et al., 2016). On a finer
scale, neurons in mouse ACX show distinct On and Off-R pat-
terns (Deneux et al., 2016), and inputs carrying On-Rs and
Off-Rs are proposed to originate in nonoverlapping synaptic
circuits (Scholl et al., 2010). These findings at different scales
raise the possibilities that On-Rs and Off-Rs reflect distinct
parallel pathways not only within A1 but also across ACX
and that On-Rs and Off-Rs might be differentially represented
in the cortical space. Here, we tested these hypotheses by
investigating the spatial representation and functional microcir-
cuits contributing to On-Rs and Off-Rs on multiple spatial
scales in ACX.

Because multiple ACX areas contribute to auditory process-
ing, we first performed WF imaging of GCaMP6s in awake
mice. For unbiased identification of ACX areas, we developed
an automated image segmentation algorithm based upon tem-
poral responses. We detected known and other ACX areas.
ACX areas differed in their response properties to tone onset
and offset, indicating that temporal selectivity might underlie
the auditory scene analysis in ACX. Both On-Rs and Off-Rs
showed tonotopic organizations. Two-photon calcium imaging
of ACX neurons revealed that most excitatory layer 2/3 neurons
showed either On-Rs or Off-Rs. ACX areas were characterized
by differing fractions of On-R and Off-R neurons. Parvalbumin
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(PV) and somatostatin (SOM) interneurons showed differential
On-R and Off-R dynamics, suggesting suppression of PV
neurons by SOM neurons during prolonged tone presentations
and potentially exerting a disinhibiting effect on local excitatory
neurons to selectively amplify cortical Off-R. Functional connec-
tivity analysis showed that ACX areas varied in their intrinsic
network structure. Imaging of medial geniculate body (MGB)
axons showed a thalamic origin of the parallel On and Off-R
circuits and that spatial convergence and co-activation of
MGB inputs determine cellular On and Off preference. Alto-
gether, our results demonstrate that ACX fields differentially
process sound onset/offset via parallel and spatially patterned
projections from the MGB and are refined by specific intracorti-
cal connectivity.

RESULTS

We set out to investigate the spatial organization of temporal
sensitivity in mouse ACX on multiple spatial scales. Because
ACX responses, especially Off-Rs, are temporally sensitive to
anesthesia (Fishman and Steinschneider, 2009; Joachimsthaler
et al., 2014; Qin et al., 2007; Recanzone, 2000), we performed
our studies in ACX of awake animals. We used F1s of CBA/
CaJ and Thy1-GCaMP6s (C57BL/6 background) crosses
(Dana et al., 2014), which show normal adult hearing (Frisina
et al., 2011) and widespread cortical expression of GCaMP6s.

We first investigated the spatial distribution of On-Rs and Off-
Rs on the mesoscale using WF imaging. We imaged the left ACX
of awake adult mice (n = 13) while presenting 2 s pure tones (Fig-
ure 1A). Tone onset resulted in spatially restricted fluorescence
increases at several locations in ACX (Figure 1B, see 0.4 s
following tone On; Figure S1A). Fluorescence increases were
widespread in ACX, with the largest increases present in discrete
locations corresponding to activations of primary, as well as
higher-order, ACX areas, putatively A1, the anterior auditory field
(AAF), and secondary ACX (A2), respectively. Following tone
offset, we observed additional widespread increases of fluores-
cence (at 2.4 s, or 0.4 s after tone offset), which corresponded to
an Off-R (Figure 1B). Off-Rs are not due to changes in animal
state after tone cessation (Figure S2). On-R and Off-R were
also present in response to ultrasonic frequencies such as 83.0
kHz (Figure 1B). In both examples, the spatial pattern of On-R
qualitatively matches previous results (Baba et al., 2016; Issa
et al., 2014; Tsukano et al., 2015).

Varying sound frequency and level showed that both On-R and
Off-R changed their response locations with respect to tone fre-
quency (Figure S1). We overlaid contours of the strongest activa-
tions across ACX for each frequency at the respective thresholds
of On-R (Figure 1C) and Off-R (Figure 1D). Clear systematic
changes of activated areas can be seen in multiple locations.
Based on the relative positions of these gradients in On-R, we
labeled areas as A1, AAF, and A2. The gradients were consistent
across animals (Figure S3). A1 shows dual tonotopic axes: one
from the caudal area toward the dorsomedial area (ultrasonic
field [UF]) and the other one reaching toward the ventrolateral
side (Figure 1C), largely consistent with prior reports (Issa
et al., 2014; Polley et al., 2007; Tsukano et al., 2015) but with
the subtle difference that two On-tonotopic gradients in A1 share

the low- to mid-frequency axis before splitting dorsally and
ventrally. In addition, we observed that a tonotopic gradient is
present for Off-Rs in A1, AAF, and A2 in all animals (Figure 1D;
Figure S3B). The Off-tonotopic gradient from A1 to UF overlap-
ped with the On-tonotopic gradient. However, the Off-tonotopic
gradient also extends dorsoposteriorly and thus covers more
area dorsally than the On-tonotopic gradient. Between these
dominant gradients of strong tone responses there was a weakly
responding central region, consistent with previous WF studies
(Issa et al., 2017). Thus, Off-Rs are present in multiple ACX areas
and Off-Rs are tonotopically organized. The differences in the to-
notopic gradients between On-Rs and Off-Rs suggest that
different microcircuits might underlie On and Off processing.

Distinct ACX Areas Show Selectivity to Temporal
Features

So far, we identified functional ACX areas based on separate On
and Off-Rs at threshold. Because these areas showed overlap,
we sought to determine whether ACX contained distinct func-
tional areas based on the combination of selectivity for On and
Off-R throughout frequency and sound-level combinations and
whether such ACX segmentations could identify unique ACX
areas. We developed an unsupervised and unbiased image seg-
mentation technique that takes the entire temporal response of
each pixel into account. We expressed the temporal activities
of pixels as a linear combination of spatially distinct regions of in-
terest (ROls) weighted by temporal modulations (Figure 2A) us-
ing an autoencoder with non-negativity constraints on the spatial
weights (Whiteway and Butts, 2017). An autoencoder is a neural
network with one or more hidden layers (Figure 2B). While the
input and output layers have the same number of nodes, the au-
toencoder reduces the dimension in the image sequence by ex-
pressing the intensity of each pixel as the weighted sum of the
activity of the hidden layer, which has a smaller dimensionality.
These weights are interpreted as distinct spatial patterns of ac-
tivity (or ROls), and the activity of the hidden layer reflects the
temporal modulation (Figure 2C).

Typically, an autoencoder with ~50 ROIs well approximated
the acquired image sequence (Figure S4A). The resulting ROIs
densely tiled the imaged area (Figures S4B and S4D) with mini-
mal spatial overlap (Figure S4C), which reflects the distinct
selectivity of On and Off-Rs of different ACX fields while making
parsing ACX fields unambiguous. In addition, the minimal over-
lap is likely due to our choice of the minimum number of ROls
to the desired degree of goodness of fit (Figure S4A). Adding
ROls increases overlap but does not increase goodness of fit
(Figure S4A). To verify our method, we compared the locations
of the ROIs with evoked fluorescence increases. We found that
ROI placements agreed with locations of activation for both
On-R (Figures 2D and 2E) and Off-R (Figures 2F and 2G), and
their shapes reflected the contours of fluorescence increases.
Thus, our method reliably identifies regions of common
activations and extracts their temporal activations without prior
knowledge of the spatial distribution of activity. This approach
provides advantages over the common square/hexagonal grid
segmentation, because the choice of grid size could be arbitrary
and might obscure the temporal selectivity of ROls by grouping
functionally separate fields together. Here, we segmented ACX
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Figure 1. Both On-R and Off-R Show Global Tonotopy

(A) Experimental paradigm: head-fixed mouse passively listened to tones while ACX was imaged. On-Rs and Off-Rs are defined as increases in fluorescence

following tone onset and offset, respectively.

(B) Sequence of WF images showing responses to a 7.3 kHz tone at 35 dB SPL and a 83.0 kHz tone at 65 dB SPL. The red bar indicates the images collected

during tone presentation (0-2 s).

(C) On tonotopy showing the contour of the 95th percentile of the responses following tone onset. A systematic shift of maximum activation location can be seen in

A1, AAF, and A2.

(D) Same as in (C) but for Off tonotopy. The center of ACX shows weaker tone-evoked responses and thus is not marked by contours.

into functional fields, but our method can be applied to
arbitrary WF datasets for spatiotemporal analysis and image
segmentation.

Identified ACX fields show distinct On and Off-frequency
response areas (FRAs) (Figures 2H and 2I), indicating that differ-
ences in the sensitivity to temporal features are a major determi-
nant of ACX organization. The low-frequency selective A1 ROI
(Figure 21, A1(L)) shows predominant On and Off-R for tones of
4.0 to 7.3 kHz, while the mid-frequency selective A1 ROI
(Figure 2I, A1(M)) responded mostly to frequencies around
18.2 kHz. The high-frequency selective A1 ROI (ventrolateral
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gradient of A1) (Figure 2I, A1(H)) typically has On and Off-Rs
similar to those of mid-frequency A1 due to spatial proximity
and the diffuse nature of WF signals. However, the average
On-R of high-frequency A1 ROI to 61.3 kHz is larger than that
of mid-frequency A1 ROI at threshold. In contrast, UF ROl shows
much higher selectivity to high frequencies (Figure 21, UF),
consistent with the proposed role in processing conspecific
ultrasonic vocalizations (Stiebler et al., 1997). Dorsoposterior
(DP) ROI shows stronger Off-R (Figure 21, DP). AAF ROI (Fig-
ure 2l, AAF) shows comparable On and Off-R, while A2 ROI
(Figure 21, A2) shows weaker Off-R. Lastly, the center region



A ROI 1
Trace 1
% [0,0,1,1,..1]
t=1 t=2 t=3 t=4 -
ROI 2
Trace 2
| % [0,2,0,1,.., 0]
o 1 2
pixel ROIs
Cc ;
| S—
N

e~ N

E 0On-R, 83.0kHz, 50dB SPL

A1(L)
“ Al e

| " IJ--..___
| I T R R

UF
“_.JJJ]JJ]il

e andeadalan

Sound level
(dB SPL)

7,

@ A2
1T IITITT N
TR 1T
e bl bw_LL_
L.

A1(L)

o’

SN B

— Al — AAF
-UF = A2

—Dp —CTR  200Mm

Figure 2. WF Image Segmentation Using an Autoencoder Reveals ACX Areas with

F Off-R, 13.5kHz, 50dB SPL

L e e 5%

OPEN

ACCESS
CellPress

O
O

hidden layer

input layer output layer

spatial

weighting
x1.0 ¢
x1.3
X 1.0 s
x0.8 e
X0.6 =
X 1.2 e
X 1.0 St
x0.7 ——
X 1.3 i

pixel approx.

A1(M)
.-.-“ Eldd e aaldduaddas
ey daddlaa. e dudadaa. .
et bl cenat b o
Y E— Y s | - VRPN~ SRS | LI L.
DP AAF
-uJJJJJJJ-L wadddddadii
_odaldddaa.. L dedumoann
cem o md o m e
U R — e = L
CTR
-..-JJJ.‘.IJII_
R N B ) I = On
—_—— e .= _Off
4})"_*' 1‘8.2—1“8;.0

Frequency(kHz)

Distinct On and Off Selectivity

(A) Cartoon showing image segmentation. The example image sequence at any time point can be expressed as the weighted summation of ROI 1 and ROI 2 by

respective activity level. Our goal of image segmentation is to retrieve activated areas, as well

as their temporal activation traces.
(legend continued on next page)

Cell Reports 27, 872-885, April 16, 2019 875



OPEN

ACCESS
CellPress

(Figure 21, CTR) shows weaker responses and is likely less sen-
sitive to simple stimuli such as pure tones (Figure 2H; Figure S4F).
The spatial layout of these ROIs was consistent across mice (Fig-
ure S3). Thus, ACX contains functional areas with distinct sensi-
tivity to temporal features. Our image segmentation approach
can better subdivide ACX, because it captures the different tem-
poral dynamics of ACX fields.

ACX Fields Differ in Thresholds and Sound-Level
Dependence of On-Rs and Off-Rs

We next characterized threshold and sound-level dependence of
parsed ACX fields. Off-Rs in all areas showed a higher threshold
than On-Rs, and Off-Rs can have higher amplitudes than On-Rs
(e.g., at 50 and 65 dB sound pressure level [SPL]) (Figures 3A-
3E). UF and DP showed the highest Off-R preference at 65 dB
SPL (Figure 3F). Thus, while core ACX fields (e.g., A1 and AAF)
robustly respond to both tone onset and offset, areas away from
core fields can show dominant Off-Rs, especially for loud tones.

Off-Responsive Areas Are More Spatially Extensive than
On-Responsive Areas

The different selectivity for On and Off-R in ACX fields suggest a
different underlying circuit topology. To quantify the large-scale
spatial topology, we computed signal correlations (SCs) be-
tween individual ROIs among a dorsal-ventral slice in each
ACX area. In A1 and UF, Off-SCs were significantly higher than
On-SCs (Figures 3G and 3H). This relationship was maintained
over distance, suggesting that Off-Rs are more spatially exten-
sive in the dorsal direction (Figures 3G and 3H). This pattern
was also true across ACX (Figure 3l), suggesting that Off-Rs
are more diffusively represented in all ACX areas. These results
are consistent with dorsal ACX areas, especially UF and DP, hav-
ing dominant Off-R (Figure 3F). Altogether, the areal differences
in the tonotopic gradients (Figure 1) and the differences in SCs
between On and Off-Rs suggest that different intrinsic and
ascending microcircuits within each area underlie the regional
differences in On and Off processing.

Neural Populations in ACX Areas Differ in Their
Selectivity to Sound Onset or Offset

To investigate areal differences in processing tone onset and
offset, we sought to analyze local microcircuits and assessed
the temporal stimulus preferences of single neurons in four
ACX areas using in vivo two-photon imaging. (n = 32 mice; A1:
67 fields of view (FOVs), 19,366 cells; AAF: 24 FOVs, 5,425 cells;
A2: 20 FOVs, 5,918 cells; DP: 8 FOVs, 2,573 cells). Cells in all
ACX areas could show time-locked responses to tone onset
and/or offset (Figures 4A and 4B; Figure S5). Cells showing

On-R were sparse (A1, 5.05% + 2.89%; AAF, 5.36% =+ 2.58%;
A2, 5.83% =+ 4.53%; DP, 2.23% + 1.29%, among all neurons
imaged), and the same was true of Off-R (A1, 6.62% =+ 4.34%;
AAF, 2.14% + 1.83%; A2, 2.28% =+ 2.24%; DP, 4.64% =+
2.42%, among all neurons imaged), consistent with a sparse
representation of sound in ACX in electrophysiological studies
(Hromadka et al., 2008). Few neurons showed both On-Rs and
Off-Rs (A1, 0.98% =+ 0.90%; AAF, 0.54% =+ 0.54%; A2, 0.95%
+1.31%; DP, 0.43% + 0.57%, among all neurons imaged) (Fig-
ure S6A), suggesting that most layer (L) 2/3 neurons are either
only On responsive or Off responsive. We quantified the selec-
tivity of On and Off-Rs by computing the On and Off-R bias index
(OBI = (Off-R — On-R)/(Off-R + On-R)) (Figure 4C). Most OBI
values were —1 (On-only) or 1 (Off-only). In A1 and DP, Off-
only neurons (53% and 65% of neurons) outnumber On-only
neurons (38% and 28% of neurons), while in A2 and AAF, the
reverse is true (67% and 70% versus 23% and 19% of neurons).
Neurons showing both On-R and Off-R constituted ~10% of re-
sponding neurons and were more Off biased in A1 and DP than in
AAF and A2 (Figure 4D). We confirmed these results in a separate
analysis (Figure S6). Altogether, these results show that ACX
areas differ in both number of On and Off-only cells, as well as
in On and Off selectivity of individual cells. Thus, ACX areas
are defined by the underlying population representation of tone
onset and offset and cellular response amplitudes.

To confirm our results and to sample across layers, we im-
planted 16-channel linear multielectrode arrays into A1, span-
ning a cortical depth of 800 um. We first analyzed the local field
potential (LFP), which reflects the combination of local neuronal
activity and afferent input into A1 (Herreras, 2016; Katzner et al.,
2009; Liu et al., 2015). We found that more tone frequencies
evoked Off-R compared to On-R (Figures S7TA-S7C), consistent
with the widespread nature of Off-R (Figure 3). Moreover, distri-
bution of OBI of all electrode contacts shifted toward Off-R
(Figure S7D). These results confirm that Off-R evokes wide acti-
vation in A1 and that A1 responses are biased toward Off-R.

Prior electrophysiology studies reported a higher proportion of
neurons showing both On-R and Off-R than our imaging results
(Joachimsthaler et al., 2014; Qin et al., 2007; Tian et al., 2013). To
identify potential sources for this discrepancy, we recorded sin-
gle units (n = 220) from A1 of awake mice and analyzed their On
and Off-R (Figures S7F-S7H). 200/220 units (91%) were respon-
sive to either tone onset or offset. Among these units, 26% had
only On-R, 57% had both On-R and Off-R, and 7% had only Off-
R. We classified neurons based on their spike shape (wide
versus narrow), reflecting putative excitatory and inhibitory units
and analyzed their OBI. Both classes showed similar OBI distri-
butions (Figure S7G). Analyzing OBI across depth showed that

(B) Autoencoder is a neural network with one or more hidden layers between input and output layers, which have the same number of nodes. The weights between
input or output layer and hidden layer are adjusted such that the output matches the input as closely as possible. The hidden layer typically has fewer nodes than

the input or output layer to achieve dimension reduction.

(C) Principle of fitting autoencoder ROls. Original pixels (left) are linearly combined to produce ROIs (middle) such that each pixel can be approximated (right) in
turn by the linear combination of these ROls, while the weights are interpreted as the spatial profile of the ROls.

(D-G) On-R and Off-R spatial profiles overlaid with selected autoencoder ROlIs to validate ROl placement. (D)—~(G) share a color scale. (D) On-R to 4.0 kHz at 35 dB
SPL. (E) On-R to 83.0 kHz at 50 dB SPL. (F) Off-R to 13.5 kHz at 50 dB SPL. (G) Off-R to 83.0 kHz at 65 dB SPL.

(H) Parcellation of ROIs into ACX fields. ROls outlined in solid lines have the On and Off-frequency response areas (FRAs) shown in (l).

(I) On and Off-R amplitude is plotted as a function of frequency and sound level for ACX fields. Adjacent blue and red bars represent On and Off-R to the same

frequency and sound-level combination.
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(A-E) Differential On-R and Off-R profile as a function of both sound level and
ACX field ((A) A1; (B) UF; (C) DP; (D) AAF; (E) A2). On-R and Off-R profiles with
respect to sound level for different ACX fields were obtained by summing over
frequency in On and Off-FRAs. **p < 0.001; ***p < 0.0001. Shaded regions
show the 95% confidence interval.

(F) Off-R and On-R ratio at 65 dB SPL as a function of ACX fields. Error bars
show SEM.

(G) On and Off-SC as a function of distance along the dorsal-ventral axis,
calculated among ROlIs dorsal to A1 ROls. Off-Rs show higher SCs than
On-Rs. Shaded regions show the 95% confidence interval.

(H) On and Off-SC calculated among ROls dorsal to UF ROls. Shaded regions
show the 95% confidence interval.

(I) On and Off-SC among all ROIs. Shaded regions show the 95% confidence
interval.

OBI was depth dependent, with deeper-layer units more biased
to On-R (Figure S7H). Altogether, these results suggest that A1
contains both On and Off-only neurons and that there is a
depth-dependent distribution of these neurons consistent with
sublaminar circuit differences in L2/3 (Meng et al., 2017).

Local Tonotopy Is Heterogeneous for Both On-R and
Off-R in All Areas

Both On-R and Off-R show large-scale tonotopy (Figures 1
and 2), whereas cellular frequency selectivity is heterogeneous
in anesthetized A1 (Bandyopadhyay et al., 2010; Kanold et al.,
2014; Rothschild et al., 2010). We tested whether Off-R exhibited

local tonotopy and whether On-R and Off-R cells differed in local
heterogeneity of frequency preference. We compared the de-
gree to which On-R and Off-R are locally tonotopically organized
by analyzing separate linear models between best frequency
and spatial locations of cells (Figure 4E). We found low local to-
notopy of frequency selectivity, because the goodness of fit (R%)
was low, consistent with prior studies (Bandyopadhyay et al.,
2010; Maor et al., 2016; Rothschild et al., 2010). Moreover, the
models showed a similar R? for On-R or Off-R across ACX areas,
suggesting that the local heterogeneity of frequency selectivity
between On-R and Off-R is similar within and across mouse
ACX fields.

ACX Areas Differ in the Spatial Pattern of Neuronal
Correlated On-R and Off-R Activity

Our results indicate regional differences in cellular selectivity. To
gain insight into the spatial distribution of ACX circuits, we calcu-
lated pairwise SCs, which are reflective of shared inputs (Shad-
len and Newsome, 1998). In A1, On-SCs are highest for nearby
neurons and decrease with distance, consistent with results in
anesthetized mice (Figure 4F) (Winkowski and Kanold, 2013).
Such a decrease is also present in A2, while DP shows a patchy
distribution of On-SCs and AAF shows a weak SC gradient. Off-
SCs were larger than On-SCs in most areas except for DP. In A1,
these differences between On-SC and Off-SC were widespread,
while such differences were present in patchy areas in AAF
(~150-175 pm) and A2 (~50-275 um). We validated this result
by computing the SC among chronically implanted linear elec-
trode contacts; a similar correlation structure was seen, in which
Off-SC was higher than On-SC over distance (Figure S7E). These
results show that Off-R neurons are more widespread among
different cortical columns and along cortical depth, which could
be due to a difference in the underlying intrinsic circuits or due to
the spatial distribution of the ascending input.

Granger Causality Analysis Reveals Areal Differences in
Functional On and Off Networks

The areal differences in SCs suggest different underlying
neuronal networks. We sought to identify the functional networks
in the different ACX areas by performing Granger causality (GC)
analysis separately among On-R and Off-R neurons (Francis
et al., 2018; Friston et al., 2013; Granger, 1969; Oya et al.,,
2007; Sheikhattar and Babadi, 2016; Sheikhattar et al., 2018).
GC analysis provides a data-driven framework for inferring
causal interactions between neurons by statistically testing
whether a neuron’s activity can be predicted by the recent activ-
ity history of other neurons and thus uncovering functional net-
works (Francis et al., 2018; Granger, 1969; Sheikhattar and
Babadi, 2016). The causal interactions (GC links) can take posi-
tive or negative signs, reflecting correlated or anticorrelated
neuronal activities, respectively (Francis et al., 2018). Our cal-
cium indicator is expressed in excitatory neurons; thus, we
focused on positive GC links. An example of two GC-linked neu-
rons is shown in Figure 5A. The source trace preceded the target
trace. Figure 5B shows one example FOV, with the most signif-
icant GC links labeled. We quantified the number, strength,
length, and directionality of the GC links. In A1 and DP, Off-GC
links outnumbered On-GC links, while the opposite was true in
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Figure 4. L2/3 Neurons Show Distinct On-R and Off-R and Are Differentially Distributed across ACX Areas
(A) Example On-R neuron (arrow). Vertical dotted lines indicate tone onset and offset, respectively. Light blue areas indicate tone duration.

(B) Example Off-R neuron. Scale bar: 10 um.

(C and D) Histogram of cellular OBI values as a function of ACX fields (C). OBI = (Off-R — On-R)/(Off-R + On-R), while (D) shows the cumulative distribution function
(CDF) of values other than —1 and 1. Wilcoxon rank-sum test; A1 versus AAF: z = 2.77, p = 0.0056; A1 versus A2: z=4.41,p =1.02 x 1075 DP versus AAF:

z=1.93, p = 0.053; DP versus A2: z = 2.49, p = 0.013.

(E) Left: cartoon showing a linear model to predict the best frequency (BF) of On-R and Off-R with respect to the cell’s spatial locations. A direction is searched
onto which the projection of the cell’s coordinates best explains the cell’s BF. Right: goodness of fit of On-R and Off-R in cells of different ACX fields.

(F) Relationship between On- and Off-SCs and pairwise distance on the neuronal level. Solid lines show the median, while shading indicates the 95% confidence
interval. The flanking panel shows CDF of On-SC and Off-SC not regarding distance. ***p < 0.001. **p < 0.01. Rank-sum test; A1: z= —13.6, p = 4.33 x 102, AAF:
z=-852,p=4.30x 1074 A2:z= —8.73,p=2.07 x 107 '8, DP: 2= —2.93, p=3.4 x 1075,

AAF and A2 (Figure 5C). These differences indicate higher
respective interconnectivity and are consistent with the differ-
ences in the relative numbers of On-R and Off-R neurons. In
contrast, GC link strength (J statistics) largely showed no differ-
ence except for AAF (Figure 5D), suggesting both On and Off net-
works are strongly functionally connected. Because most cells
had either On-R or Off-R, these results indicate that ACX areas
contain separate interdigitated On and Off networks.

We next extracted the spatial properties of GC links for On and
Off networks. First, Off-GC links tend to have more short links in
A1 (Figure 5E), suggesting that Off-GC networks more densely
cover the neural populations in A1 and are more spatially clus-
tered. Other ACX fields showed no length differences (Figure 5E).
Because ACX areas have large-scale tonotopic maps, we next
investigated whether GC links also show a direction preference.

878 Cell Reports 27, 872-885, April 16, 2019

Except for DP and A2 Off-Rs, the distributions of the GC-link di-
rections significantly deviate from uniform distributions (Fig-
ure 5F). In A1, AAF, and A2, the ellipse-like distributions have
the long axis, reflecting a spatial bias of cell pair interactions,
roughly in parallel to the tonotopic axes. Thus, although local
cellular populations lack precise tonotopic, there are regularities
in their functional connectivity whose spatial patterns are closely
related to the tonotopic axis. Moreover, we found no difference
in the On-/Off-GC-link direction distribution (Figure 5F). Lastly,
the distribution of GC-link directions in AAF appeared to be nar-
rower than in A1 or A2. We thus combined both On and Off-GC
links and compared the spread in the direction of the short axis of
the eclipse-like distributions. AAF GC links were more narrowly
distributed than those in A1 (p = 0.033) and the difference be-
tween AAF and A2 was close to significance (p = 0.058). Thus,
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Figure 5. GC Analysis Reveals Distinct On and Off Subnetworks
(A) Fluorescence time course of GC-linked cells.

(B) Example field: On (blue) and Off (red) GC links. Only GC links with J statistics > 0.95 are shown for clarity.

(C) Proportion of GC links (false discovery rate: 0.001). More Off-GC links in A1 and DP. Wilcoxon rank-sum test; On versus Off: A1,p=2.53 x 107, z= —5.16; DP,
p =1.55 x 10*. More On-GC links in AAF and A2. AAF: p =5.44 x 1077, z = 4.55; A2: p = 3.32 x 107, z = 4.65.

(D) J statistics, a measure of GC-link strength. Only AAF shows a slightly higher On-GC-link strength. Wilcoxon rank-sum test, p = 0.0175, z = 2.38.

(E) GC-link length. A1 contains shorter Off-GC links. Wilcoxon rank-sum test, p = 0.0022, z = 3.06.

(F) Distribution of the direction of GC links. The nonuniformity of the distributions was tested using the chi-square goodness-of-fit test. A1: On, p = 0.043, Off,
p=1.08 x 10722 AAF: On, p = 1.48 x 1077, Off, p = 7.77 x 1074 A2: On, 8.15 x 104, Off, p = 0.42; DP: On, p = 0.89, Off, p = 0.17. On and Off distribution
difference: two-sample Kolmogorov-Smirnov test; A1: p = 0.065; AAF: p = 0.82; A2: p = 0.68; DP: p = 0.85.

the spatial topology of the intrinsic functional architecture of L2/3
in different ACX fields differs. Altogether, these results indicate
that although On and Off-R populations are largely nonoverlap-
ping, they are spatially intermingled and parallel, consistent
with the salt-and-pepper structure in L2/3 of mouse ACX (Ban-
dyopadhyay et al., 2010; Rothschild et al., 2010).

The On and Off Responsivity of MGB Terminals
Determines Areal Responses

So far, our results indicate that ACX contains distinct functional
areas defined by differing cellular selectivity and intrinsic con-
nectivity. Because ascending inputs to ACX neurons determine
the initial cellular selectivity to sound dynamics, we examined
how the cellular On and Off selectivity emerged from ACX inputs.
The main ascending inputs to ACX are provided by MGB axons,
which terminate on excitatory neurons ranging from L2/3 to L6,

with the strongest input in L4 (Ji et al., 2016). Because different
ACX areas receive dominant input from different subdivisions
of the MGB, we speculate that these sets of synapses reflect
separate pathways from the MGB. To test this hypothesis, we in-
jected the adeno-associated virus (AAV)-expressing GCaMP6s
into the MGB (n = 7 mice) and imaged axon terminals in A1 (20
FOVs) (Figure S8). We focused on A1 because of its distinct dif-
ference in On and Off-Rs and because prior in vivo patch-clamp
recordings showed that in A1, On-Rs and Off-Rs are driven by
nonoverlapping sets of synapses (Scholl et al., 2010). MGB ter-
minals showed prominent On-R or Off-R (Figures 6A and 6B).
Few MGB terminals showed both On-R and Off-R (0.88% =+
1.06%). The proportion of MGB terminals showing either On-R
or Off-R was similar (Figure 6C), and most terminals were either
On only or Off only (Figure 6D). Thus, most MGB terminals either
relay On-R or Off-R, suggesting the existence of distinct parallel
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Figure 6. MGB Terminals in A1 Largely Show Either On-R or Off-R, and Off-R Terminals Show Higher Local Signal Correlations
(A) On-R terminal. The image shows the contour of the terminal in red. Scale bar: 5 um. Light blue areas indicate tone duration.

(B) Same as in (A) but showing an Off-R terminal.

(C) Proportion of On-R or Off-R terminals is similar. On, 5.99% =+ 6.72%; Off, 5.62% =+ 6.00%; paired t test, t(20) =

0.34, p = 0.74.

(D) Histogram of OBl values of MGB terminals in A1. Inset shows CDFs of OBl values other than —1 and 1 from MGB terminals and A1 L2/3 neurons. Wilcoxon

rank-sum test, z = 3.64, p = 2.71 x 1074,

(E) Individual MGB terminals in A1 show significant larger On-Rs. Wilcoxon rank-sum test, z = 2.91, p = 0.0036.
(F) Overall On and Off-R amplitude (see STAR Methods). Wilcoxon rank-sum test, z = 0.85, p = 0.39.
(G) Off-Rs show higher Off-SCs over distance (0-70 pm). Shaded regions show the 95% confidence interval around the median. Right: cumulative distribution

function of all On- and Off-SCs. ***p < 0.001.

(H) Goodness of fit of the linear On-R and Off-R tonotopy model in MGB terminals in A1 was similar.

MGB to A1 pathways. Terminals showing both On-R and Off-R
had a more negative OBl compared to the distribution of OBI
of the cellular response (Figure 6D, inset), suggesting that a
transformation of On-R and Off-R selectivity exists from MGB
terminals to A1 cellular responses, which are more Off-R biased.
Moreover, given the prevalence of Off-R A1 neurons, this sug-
gests a differential amplification of Off-Rs from MGB inputs to
yield a larger fraction of Off-R neurons.

To gain insight into the transformation, we compared the
average strength of On and Off-R pooled across terminals. Ter-
minal On-Rs were larger than Off-Rs (Figure 6E), which is similar
to the cellular responses (Figure S6B). However, unlike the
cellular response in A1, the On-R and Off-R MGB terminals
have similar overall response amplitudes (Figure 6F). This sug-
gests that the Off-R dominance in A1 cells was not generated
by stronger or more numerous Off-R MGB afferents.

Convergence and temporal synchrony of thalamic inputs can
strongly influence cortical neurons (Bruno and Sakmann,
2006), which could lead to stronger cellular responses. We
observed a distinct spatial SC structure in mesoscale (Figures
3G-3l), as well as in cellular responses (Figure 4F). These prop-
erties could result from spatially structured MGB input, and we
found that MGB terminals had higher Off-SCs (Figure 6G)
consistent with the cellular data. We also investigated the dis-
tance dependence of On and Off-SC of MGB terminals and
found that Off-SC was higher than On-SC over a distance of
0-70 um, indicating a larger spatial spread of terminal Off-R.
These results suggest that although individual MGB terminals
do not respond to tone offset more strongly than to tone onset,
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the spatial correlation structure of MGB inputs is transformed
into cellular tuning in A1 and leads to a more spatially extensive
representation of tone offset.

Lastly, we investigated whether there are tonotopic structures
in MGB terminal responses. A linear model did not reveal a tono-
topic structure in either On-R or Off-R in MGB terminals (Fig-
ure 6H), consistent with reports that local On-R MGB projections
to A1 show spatially heterogeneous tuning (Vasquez-Lopez et al.,
2017). Altogether, our results suggest that the spatial mesoscale
distribution of On and Off-R A1 neurons is largely inherited
from the spatial distribution of On and Off-R MGB terminals.

Cortical Inhibitory Networks Can Amplify Off-R through
Disinhibition

The activity of cortical neurons is influenced by inhibition, and we
hypothesized that the On and Off selectivity of ACX L2/3 excit-
atory neurons is actively shaped by the local inhibitory network.
To investigate this question, we focused on PV- and SOM-pos-
itive interneurons, which are thought to control the activity of L2/
3 neurons via a disinhibitory circuit (Pfeffer et al., 2013). We
crossed Thy1-GCaMP6s mice with either PV-cre or SOM-cre
mice and injected AAV-expressing mRuby and GCaMP6s under
control of the flip-excision (FLEX) switch sequence into ACX of
F1 animals. Thus, PV or SOM interneurons could be identified
based on the nuclear red fluorescence signal while allowing
simultaneous imaging of Thy1+ excitatory neurons and PV or
SOM neural populations (Figures 7A and 7C) (Thy1xPV-cre: 8
mice, 427 PV neurons; Thy1xSOM: 6 mice, 288 SOM neurons).
We presented 2 s tones and found that although some PV and
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Figure 7. PV and SOM Neurons Show Distinct Temporal Dynamics in Response to Prolonged Tones
(A) Example FOV showing both Thy1-GCaMP6s cells and PV-positive interneurons expressing GCaMP6s and mRuby. Scale bar: 10 um. Light blue areas indicate

tone duration.

(B) Example PV interneurons showing suppressed response (top), On-R (middle), and Off-R (bottom).

(C) Example FOV showing both Thy1-GCaMP6s cells and SOM-positive interneurons expressing GCaMP6s and mRuby.

(D) Example SOM interneurons showing slow ramping responses following tone On (top and middle) and Off-R (bottom).

(E) k-means clustering on responses by Thy1, PV, and SOM cells. All traces were normalized to maximum absolute amplitude before they were averaged within

each cluster. Shaded regions show SD.
(F) Thy1, PV, and SOM cells show distinct proportion of response types.

(G) We propose that cortical On and Off-R result from largely segregated On and Off thalamic input and that the spatial patterns of these inputs determine the
spatial layout of On and Off-R selective neurons. Furthermore, Off-R cortical neurons have more recurrent connections that amplify the thalamic input compared
to On-R circuitry. Black triangles represent On and Off-R neurons, and gray triangles represent unresponsive neurons.

SOM interneurons displayed typical On and Off-R similar to
those seen in excitatory neurons, most interneurons displayed
slower temporal dynamics (Figures 7A and 7B). Most PV neurons
showed a slow decrease in fluorescence following tone onset
(Figure 7B). Although a subset of suppression responses
showed a brief positive deflection immediately after tone onset,
their occurrence was rarer than pure suppression responses
(Figure S9). SOM neurons showed similarly slow temporal re-
sponses, albeit positive in sign (Figure 7D). To classify different
response types, we performed k-means clustering on significant
responses averaged across trials, pooling responses from both
Thy1 and PV or SOM cells. We could identify 5 clusters with
distinct temporal dynamics. Cluster 1 shows a sharp increase
in fluorescence following tone onset and decays afterward (Fig-
ure 7E, On). Cluster 2 shows a more graded fluorescence in-
crease, which sustains during tone presentation (Figure 7E,
On-sustained). Cluster 3 shows even slower rise with little
plateau and decays following tone offset (Figure 7E, On-ramp-
ing). Cluster 4 shows a sharp increase after tone offset and is
categorized as typical Off-Rs (Figure 7E, Off). Cluster 5 has dy-
namics similar to those of On-ramping while opposite in sign
(Figure 7E, Suppressed). The proportion of responses assigned
to each cluster differed among cell types (Figure 7F). Thy1 re-
sponses are mostly Off, On, and On-sustained. PV interneurons
mostly show Suppressed responses, while SOM interneurons
show mostly On-ramping responses. These two response clus-

ters show no difference in latency reaching half-peak amplitude
(0.95 + 0.36 s versus 0.85 £ 0.26 s, p = 0.21, Wilcoxon rank-sum
test). The opposite responses suggest that SOM neurons sup-
press PV neurons during prolonged tone activation, consistent
with a disinhibition circuit scheme (Pfeffer et al., 2013). The inhib-
itory postsynaptic current from SOM to PV interneurons could
last until after tone offset, despite the cessation of firing of
SOM interneurons. This prolonged suppression of PV neurons
by SOM neurons potentially allows a decrease of PV inhibitory
input onto local excitatory populations, which in turn could
amplify Off-R.

In summary, our results suggest that the spatial distribution of
On and Off-R MGB terminals determines the spatial distribution
of On-R or Off-R A1 neurons and that Off-Rs are amplified
compared to On-Rs due to disinhibition through suppression
of PV interneurons by SOM interneurons (Figure 7), as well as
to increased local spatial clustering of Off-R MGB afferents
(Figure 7G).

DISCUSSION

We show that ACX encodes tone offset in a parallel, spatially
extensive, yet globally, tonotopically organized manner. We
find distinct functional ACX areas characterized by distinct On
and Off selectivity on the population level. Thus, the cortical rep-
resentation of spectral information is influenced by the temporal

Cell Reports 27, 872-885, April 16, 2019 881

OPEN

ACCESS
CellPress




OPEN

ACCESS
CellPress

dynamics of spectrally static tones. GC analysis revealed that
ACX areas contain intermingled On and Off networks within
L2/3. Therefore, areal selectivity is due to both different numbers
of On and Off-R neurons and distinct intracortical circuits.
Distinct temporal dynamics in the responses of PV and SOM
interneurons point to disinhibition as one mechanism that am-
plifies Off-R. Moreover, areal and cellular On and Off-R selec-
tivity may arise from differences in MGB input, which could be
enhanced by spatially correlated activity of MGB terminals. Alto-
gether, our results suggest that the differential dynamic re-
sponses originate from differential feedforward input from
MGB and are elaborated by different intrinsic excitatory and
inhibitory circuits in different ACX regions. Thus, ACX areas op-
erate in parallel to extract temporal information. Our results also
demonstrate that Off-Rs are tonotopically organized on the
mesoscale. The lack of Off-R tonotopy in prior studies (Baba
et al., 2016) is likely due to Off-R being most prominent in awake
animals (Fishman and Steinschneider, 2009; Joachimsthaler
et al., 2014; Qin et al., 2007; Recanzone, 2000).

We here developed a method to define functional ACX areas
based on temporal coactivation of pixels in the WF dataset
(Whiteway and Butts, 2017). This method is unbiased and unsu-
pervised, requires no prior knowledge of the locations of cortical
fields, and can be applied to arbitrary WF datasets.

Besides tone onset and offset, ACX neurons can be sensitive
to other dynamic aspects of sound, such as amplitude or fre-
quency modulation, sound duration, and frequency sweep
rate (Baumann et al., 2015; He et al., 1997; Heil et al., 1992;
Issa et al., 2017; Schreiner and Urbas, 1986). While frequency
sweep rate is topographically organized in mouse ACX (Issa
et al., 2017), our results show that Off-Rs are also topographi-
cally represented.

We found an extensive representation of tone offset in A1 and
DP neurons. A1 neurons receive On and Off synaptic inputs
shown to be mediated by nonoverlapping sets of synapses
(Scholl et al., 2010). We found that MGB terminals mostly have
only On-Rs or Off-Rs, suggesting that A1 neurons receive
convergent input from such On-R or Off-R MGB terminals.
Furthermore, Off-R MGB terminals do not outnumber On-R
MGB terminals and MGB terminals have weaker Off-R, suggest-
ing that the cellular Off-R dominance in A1 results from different
On and Off-R input topology, or the spatial distribution of con-
nections. No evidence so far suggests that On and Off circuits
have different quantal synaptic strength; thus, the cellular On
and Off-R bias is more likely to result from differential conver-
gence of connections. Altogether, these observations suggest
the presence of local A1 circuits to amplify Off-R. Our results
suggest that a disinhibitory circuit formed by SOM and PV cells
could play this role. A multilayer nonlinear neural network has
been proposed to underlie the various On and Off-Rs observed
in A1 (Deneux et al., 2016). Our work suggests that the MGB-
A1 circuit could underlie this transformation. Ideally, our conclu-
sion would be strengthened by simultaneously imaging MGB
terminals and ACX postsynaptic neurons. However, such an
approach would be limited, because corresponding terminals
and postsynaptic neurons would not necessarily be localized in
the same imaging plane, making it difficult to determine unequiv-
ocally presynaptic terminal and postsynaptic cell pairs.
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On-R and Off-R MGB terminals likely originate from different
MGB subdivisions. ACX receives MGB inputs via lemniscal
and nonlemniscal pathways. The lemniscal pathway arises
from the ventral MGB (MGBYV), which shows On-Rs (Aitkin and
Webster, 1972; Hackett et al., 2011; Imig and Morel, 1983; Re-
dies and Brandner, 1991). Multiple lines of evidence suggest
that Off-Rs originate in nonlemniscal pathways. Off-Rs are pre-
dominantly observed in a sheet partially surrounding MGBv
(He, 2001). Off-Rs can also originate from the dorsal MGB
(MGBd) and medial MGB (MGBm). We found that A2 and DP,
which receive MGBd input (Lee and Sherman, 2008; Llano and
Sherman, 2008) show Off-Rs. Moreover, the spatial extensive-
ness of Off-Rs is consistent with broad projection from MGBm
to ACX through L1 (Huang and Winer, 2000; Lee and Winer,
2008). Thus, nonlemniscal pathways likely provide tone Off infor-
mation to ACX. We imaged terminals at roughly the same depth
as neurons (~150 um); thus, these terminal might reflect a
mixture of lemniscal and nonlemniscal pathways, because
terminals from both MGBv and MGBd are present in L2 in A1
(Saldeitis et al., 2014). Our results show overlapping tonotopy
of On-R and Off-R despite areal differences, suggesting that
lemniscal and nonlemniscal pathways are coarsely aligned but
show distinct spatial patterning.

Most responding A1 L2/3 neurons have either On-R or Off-R.
Thus, the spatial heterogeneity of tonal responses in A1 L2/3
might be due to intermingled cells receiving differing thalamic in-
puts. In the primary somatosensory cortex (S1), functionally
different thalamic inputs from the ventral posterior medial nu-
cleus and the posterior medial nucleus are relayed to barrels
and septa (Koralek et al., 1988; Lu and Lin, 1993), which are
spatially separated and carry whisking-touch information (Yu
et al., 2006) and temporal information on whisker movement,
respectively (Ahissar et al., 2000). Our results suggest that in
contrast to S1, functionally different thalamic inputs to A1 are
spatially interspersed. A1 L2/3 contains cells with distinct func-
tional intracortical circuits and shows a sublaminar organization
(Meng et al., 2017). Itis possible that the distinct On and Off sub-
networks we identified relate to these distinct subpopulations.
Because recurrent inputs from subgranular layers are thought
to be able to amplify thalamic inputs (Li et al., 2013; Miller
et al., 2001; Somers et al., 1995), we speculate that Off-R cells
receive stronger or more extensive inputs from subgranular
layers. Prior electrophysiology studies identified a larger propor-
tion of neurons responding to both tone onset and offset (Joa-
chimsthaler et al., 2014; Qin et al., 2007). The discrepancy
most likely results from differences in recording depth and the
inclusion of multiunit activity, given the intermingled spatial
distribution of On-Rs and Off-Rs (Figure 5B), which could bias
electrophysiological studies. Although our single-unit recordings
(Figure S7) showed a significant proportion of neurons respond-
ing to both tone onset and offset, there was a differential distribu-
tion of Off-R bias across the depth of A1, with superficial A1 cells
being more Off-R biased. Thus, Off-Rs are more prevalent in su-
perficial layers, where we imaged (~150 um depth). This is also
consistent with the laminar targets of lemniscal and nonlemnis-
cal MGB afferents, with the latter being present in L1 (Llano
and Sherman, 2008; Saldeitis et al., 2014) and with L5/6 neurons
less likely to generate Off-R (Volkov and Galazjuk, 1991).In



addition, L2/3 shows a functional suborganization (Meng et al.,
2017), with deep L3b receiving L4 inputs and superficial L2a
receiving few L4 inputs. Thus, it is likely the recurrent connec-
tions in L2a amplify the segregation of On and Off-R, as well as
Off-R strength. Future studies linking intracortical connectivity
with functional responses are needed to explore these issues.
Altogether, given that two-photon imaging has much higher
spatial resolution and lacks electrode bias, our imaging results
most likely revealed a highly specific On and Off-R selectivity
in upper L2/3.

We found that ~5% of neurons in A1 respond to tone onset
and offset, consistent with a sparse representation of sound in
rat A1 (Hromadka et al., 2008) and mouse A1 (Liang et al.,
2018). However, previous imaging studies of A1 have reported
a 20%-30% response rate (Issa et al., 2014; Kato et al., 2015).
This discrepancy likely arises from sampling different neuronal
populations. Issa et al. (2014) used cre-dependent GCaMP3
driven by Syni-cre or Emx-cre. In the primary visual cortex
(V1), such labeled populations had fewer visual responses
compared with the Oregon green BAPTA-1 (OGB-1)-labeled
neurons (Zariwala et al., 2012), suggesting nonuniform popula-
tion labeling. Kato et al. (2015) used viral expression of
GCaMP6s under a Syn1 promotor, which densely labeled neu-
rons close to the injection site. We used the GP4.2 line, which
relatively uniformly labels about 70% of L2/3 pyramidal cells
(Dana et al., 2014). The difference in response rate between
our and prior imaging studies is likely due to labeling of different
but potentially overlapping populations, the difference in cal-
cium indicator (GCaMP3 versus GCaMP6s), expression profile
(transgenic versus viral expression), and cell selection or inclu-
sion criteria.

We find that L2/3 PV and SOM interneurons show distinct tem-
poral dynamics from each other, as well as from excitatory neu-
rons. PV and SOM interneurons show mostly opposite signs of
responses. Because the suppression of PV responses likely indi-
cates a reduction in the firing rate (Forli et al., 2018), our data sug-
gest suppression of PV activity by SOM interneurons, consistent
with mostly suppressed responses of L2/3 PV neurons to pro-
longed tones (Kato et al., 2015) and the proposed cortical pro-
cessing scheme of SOM — PV inhibition (Pfeffer et al., 2013).
Finally, SOM neurons more readily inhibit PV neurons than they
inhibit local excitatory neurons (Cottam et al., 2013). We specu-
late that such inhibition could facilitate detection of changes in
auditory streams, such as tone offset. The duration of inhibitory
postsynaptic currents in PV cells could outlast firing of SOM
cells, creating a window for elevated excitability in local pyrami-
dal cells before PV activity returns to baseline. Furthermore, we
find that SOM cells are active throughout tone presentation, in
contrast to previous findings that SOM cells fire transiently,
although this difference could be due to the animal’s state
(Chenetal., 2015; Liet al., 2015). Thus, SOM cells are potentially
important for auditory stream analysis, and their interactions with
PV neurons could facilitate change detection.

In conclusion, we have demonstrated a distinctly extensive
parallel spatial representation of sound dynamics in ACX at mul-
tiple levels, and we propose that this spatial pattern is deter-
mined by the meso- and microscale spatial layout of thalamic
input and by distinct intracortical circuits.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s. (Rose et al., 2016) Addgene 68720-AAV1

WPRE.SV40

Experimental Models: Organisms/Strains

Mouse: C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J The Jackson Laboratory JAX 024275

Mouse: CBA/Cad The Jackson Laboratory JAX 000654

Mouse: B6;129P2-Pvalbt™1Cre)Arbry The Jackson Laboratory JAX 008069

Mouse: Sst!m2-1re)zin/ The Jackson Laboratory JAX 013044

Software and Algorithms

Autoencoder (Whiteway and Butts, 2017) https://github.com/themattinthehatt/rlvm

Suite2P (Pachitariu et al., 2016) https://github.com/cortex-lab/Suite2P

TurboReg (Thévenaz et al., 1998) http://bigwww.epfl.ch/thevenaz/turboreg/

MClust3.5 A. David Redish http://redishlab.neuroscience.umn.edu/MClust/
MClust.html

Klustakwik Ken Harris http://klustakwik.sourceforge.net/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Patrick
Kanold (pkanold@umd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the University of Maryland’s Animal Care and Use Committee. We crossed CBA/CaJ (JAX stock
#000654) mice with Thy1-GCaMP6s (JAX stock #024275, GP4.3, (Dana et al., 2014)) to obtain F1’s since C57BL/6 are homozygous
for Cdh23 allele ahl, which causes them to suffer from aging related hearing loss, while CBA/CaJ mice are homozygous for Ahl+,
which spare them from the phenotype (Kane et al., 2012). F1’s thus have no hearing loss and yet have uniform expression of
GCaMP6s under Thy1 promotor in excitatory neurons. We used adult mice of both sexes whose ages range from 2 to 4 months
old. For imaging PV or SOM neurons, we crossed Thy1-GCaMP6s mice with PV-cre (JAX #008069) or SOM-cre (JAX #013044)
mice and injected ~30nl of AAV1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (Addgene viral prep # 68720-AAV1 (Rose
et al., 2016)) into the left ACX of the F1 animals. Such generated animals express innate GCaMP6s in Thy1 pyramidal cells while ex-
pressing GCaMP6s and mRuby in either PV and SOM interneurons.

METHOD DETAILS

Chronic window implant

2-3 hours before surgery, 0.1cc dexamethasone (2mg/ml, VetOne) was injected subcutaneously to reduce brain swelling during
craniotomy. Anesthesia was induced with 4% isoflurane (Fluriso, VetOne) with a calibrated vaporizer (Matrx VIP 3000). During sur-
gery, isoflurane level was reduced to and maintained at a level of 1.5%-2%. Body temperature of the animal was maintained at
36.0°C during surgery. Hair on top of head of the animal was removed using Hair Remover Face Cream (Nair), after which Betadine
(Purdue Products) and 70% ethanol was applied sequentially 3 times to the surface of the skin before the central part is removed. Soft
tissues and muscles were scraped to expose the skull. Then a custom designed 3D printed stainless headplate was mounted over the
left auditory cortex and secured with C&B-bond (Parkell). A craniotomy with a diameter of about 3.5mm was then performed over the
left auditory cortex. A three layered coverslip was used as cranial window, which is made by stacking 2 pieces of 3mm coverslips (64-
0720 (CS-3R), Warner Instruments) at the center of a 5mm coverslip (64-0700 (CS-5R), Warner Instruments), using optic glue (NOA71,
Norland Products). The cranial window was quickly dabbed in kwik-sil (World Precision Instruments) before mounted onto the brain
with 3mm coverslips facing down. After kwik-sil cured (2-5min), C&B-bond was applied to secure the cranial window. Synthetic black
iron oxide (Alpha Chemicals) was then applied to the hardened surface. 0.05cc Cefazolin (1 g/vial, West Ward Pharmaceuticals) was
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injected subcutaneously when the entire procedure was finished. After the surgery, the animal was kept warm under heat light for
30 minutes for recovery before returning to the home cage. Medicated water (Sulfamethoxazole and Trimethoprim Oral Suspension,
USP 200mg/40mg per 5ml, Aurobindo Pharms USA; 6ml solution diluted in 100ml water) substituted normal drinking water for 7 days
before any imaging was performed.

Widefield imaging

Mice were affixed to a custom designed head-post and restrained within a plastic tube. The head of the animal was held upright.
Imaging was performed using Ultima-IV two photon microscope (Bruker Technologies) with an orbital nosepiece such that the illu-
minance light is roughly perpendicular to cranial window (rotation angle was ~60 degrees). As a result, the anterior-posterior axis was
not parallel to the edge of the images. 470nm LED light (M470L3, Thorlabs Inc.) was used to excite green fluorescence. Images were
acquired with StreamPix 6.5 software (Norpix) at 10Hz and 100ms exposure time. In StreamPix software, we specified the image size
to be 400 by 400 with a spatial binning of 3.

Acoustic stimulus

Pure tones were generated with custom MATLAB scripts. Each tone lasted 2 s with linear ramps of 5ms at the beginning and at the
end of the tone. The amplitudes of the tones were calibrated to 75dB SPL with a Briel & Kjeer 4944-A microphone. During sound
presentation, sound waveform was loaded into RX6 multi-function processor (Tucker-Davis Technologies (TDT)) and attenuated
to desired sound levels by PA5 attenuator (TDT). Then the signal was fed into ED1 speaker driver (TDT), which drove an ES1 elec-
trostatic speaker (TDT). The speaker was placed on the right-hand side of the animal, 10cm away from the head, at an angle of
45 degrees relative to the mid-line. The presentation of tones with various combination of frequencies and sound levels are random-
ized and controlled by a custom MATLAB program. The silent period in between the 2 s tones was randomly chosen from a uniform
distribution between 3 and 3.5 s. Frequencies of the tones vary from 4kHz to 83.0kHz with logarithmic spacing and with a density of
2.28 tones per octave. Sound levels vary from 5dB SPL to 65dB SPL with a step of 15dB. Each stimulus was repeated 10 times. In
total, the widefield imaging session for for each animal lasted ~45min. For 2-photon imaging, 9 tones with equal logarithmic spacing
between 4 and 64kHz were used at a single level of 60dB SPL. The tone duration was 2 s and repeated 10 times.

2-Photon imaging of mouse ACX

A week after the cranial window implant, the animals were head-fixed in custom designed holder while 2 s long tones were presented
in a similar fashion as in WF experiment. Field of views were placed in A1, AAF, A2 and DP region with a depth of around 150um and
with a size of 369 um x 369 um. The imaging was performed with a B-SCOPE (Thorlabs Inc.) with the microscope body tilted around
45 to 50 degrees while the mouse head was held upright. The excitation wavelength was 920nm and images were collected with
Thorlmage software (Thorlabs Inc.) at a frame rate of 30Hz. A 16x Nikon objective was used (NA 0.80). For terminal imaging, the
average imaging depth was around 140um, comparable to cellular data.

Injection of GCaMP6s virus in MGB

AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (Addgene 50942) virus was injected into MGB for axon terminal imaging in
ACX. Micropipettes pulled with a long tapering tip (> 3mm) were used for injection with Nanoject Il (Drummond Inc.). The location of
the left MGB was determined using the mouse brain atlas (AP: 3.2mm; ML 2.1mm; DV: 3.0mm). Anesthesia was induced with 4%
isoflurane and maintained at 1.5%. The skin over the skull was cut open and a small craniotomy was made to allow penetration
from the dorsal side and the micropipette was lowered vertically into MGB. 150-200nl of undiluted virus was injected over 5min. After
the injection, the skin was sutured back. 3-4 weeks after the injection, the cranial window was implanted over the left ACX as pre-
viously described.

Pupillometry

During 2P imaging, the arousal state of the animal was monitored through pupillometry (McGinley et al., 2015). In short, a camera
(BCE-B013-U, Mightex) was positioned around 20cm away from and toward the right eye of the head-fixed mouse. An ultraviolet
LED was placed near the camera to restrict the pupil dilation to around 1/2 of the maximum dilation. The exposure time of the camera
was set to 26ms and each frame was triggered by 2P “Frame Out” triggers and thus synchronized to 2P images.

Extracellular electrophysiology

We performed extracellular electrophysiology in CBA/Cad and Thy1-GCaMP6s F1 crosses by either acutely recording from A1 neu-
rons or chronically implanting electrodes. We used 16-channel linear arrays with 50um spacing between adjacent contacts (A1x16-
3mm-100-177-CM16, NeuroNexus) and a Neuralynx Cheetah system (32 channels). The acute surgery or implant surgery was similar
to the cranial window implantations. In both cases, we first identified the location of A1 through widefield imaging of GCaMP6s and
we advanced the electrode at a depth of around 900um, which was read out from the manipulator. Figures S7A-S7E used data from
chronic implantation while Figures S7F and S7G used single unit data pooling from both acute and chronic recordings. LFP signals
and single units were acquired a previously described (Petrus et al., 2014). Briefly LFPs were acquired at 30kHz (filtered between 1
and 6000Hz) and down-sampled by a factor of 100 (using MATLAB built-in function ‘decimate’) before analysis. To calculate local
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field potential (LFP) responses, we took the difference of the mean LFP amplitude within a 50ms time window before and after tone
onset/offset. To determine the significance, we used a paired t test separately for each frequency and onset/offset and a significant
change above baseline was considered a significant response. For spike extraction, the raw headstage signal was filtered from
300Hz to 6000Hz and detected online with a threshold of 30pv.

QUANTIFICATION AND STATISTICAL ANALYSIS

Widefield image preprocessing

We performed three preprocessing steps before using autoencoder for image segmentation. First, we downsampled the original im-
age (400 by 400) using MATLAB (2015b) using the MATLAB built-in function ‘imresize’, by a factor of 4. The resultant image size was
100 by 100. Next we performed whitening of the image sequence. We first re-shaped each image into column vectors, then we
stacked them horizontally. Let /; denote the column vector corresponding to image at time t, M be the stacked matrix, and N be
the total number of images:

M= [I1>I27 -“aIN}
We then subtracted the time average image ((/),) from all images:

M=M— (I, x[1,1, ..., 1]
N

We then performed singular value decomposition on sample covariance matrix of M:
U,S,V]=SVD(M M/N)

Then we obtained the whitened images using the following equation:
M=Ux (S+2) xU xM

Where 1 is the regularization term. We picked A by first plotting the sorted eigenvalues in S in logarithmic space and usually a fast
initial drop off and a following relatively flat region can be observed. We picked 2 close to the turning point to preserve relevant vari-
ance and to avoid amplifying noise. We then fed M into autoencoder algorithm.

Image Segmentation with constrained autoencoder

We used a dimensionality reduction technique to perform automatic image segmentation such that pixels with strong temporal cor-
relations across the set of images were grouped together into single components (ROls), following the formulation of Whiteway and
Butts (2017). To perform this dimensionality reduction, we used an autoencoder neural network. The goal of this constrained autoen-
coder is to adjust the weights between the input layer and the hidden layer and those between the hidden layer and the output layer
such that the output matches the input as closely as possible. For each time point ¢, the autoencoder takes the vector of pixel values
y;e RN and projects it down onto a lower dimensional space R using an encoding matrix W1 R¥*N_ A bias term b;e RV is added to
this projected vector, so that the resulting vector z:c RV is given by

z;=W,y; + by

The autoencoder then reconstructs the original activity y; by applying a decoding matrix Woe RN*M to z, and adding a bias term
b, RV, so that the reconstructed activity y;c R is given by

Vz =Wzz; + by

Since the dimensionality of z; is typically much smaller than that of y;, z; should capture variations in y; that are shared across many
pixels. The entries of W, then describe how each pixel is related to each dimension of z; (see Figure 2C).

The weight matrices and bias terms, grouped as ® = [W4,W,,b,b, ], are simultaneously fit by minimizing the mean square error
between the observed activity y; and the predicted activity y;:

~ 1 ~
© =argmin Svi-vs
e t

To further enable interpretability of the results, we constrained the weights W, to be non-negative, as one could flip the signs of both
spatial and temporal components arbitrarily. This also ensured that all pixels in a given ROl always increase or decrease in intensity
together, depending on the sign of z;. We also tied the weights such that W, = W1T. Thus, there was essentially only one spatial weight
matrix.

This version of the autoencoder is closely related to principal components analysis (PCA) (Bengio et al., 2013). However, PCA is an
inadequate technique for automatic image segmentation since it did not in general result in spatially localized ROls, due to the
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orthogonality constraints imposed by the PCA model. A similar approach to our non-negatively constrained autoencoder is to use
non-negative matrix factorization (NNMF) on the preprocessed image sequence. NNMF constrains both the spatial maps and the
temporal activations to be non-negative, whereas the RLVM just constrains the spatial maps to be non-negative. The NNMF ROls
also failed to be spatially localized. Finally, in order to solve the constrained minimization problem above we used the spectral pro-
jected gradient method, a constrained variant of gradient descent (Schmidt et al., 2009).

To perform image segmentation with this method we must first specify the number of ROIs (the dimensionality of z;). We deter-
mined the appropriate number of ROIs using cross-validation by first fitting the parameters of the autoencoder on 75% of the frames
from the image sequence (training data), and then reconstructing the remaining 25% of the images (testing data) using the autoen-
coder. We then calculated the correlation between the true and reconstructed images on the testing data, as a measurement for
goodness of fit. In Figure S3A, we show that with an increasing number of ROls, the correlation from the testing data increases mono-
tonically, and roughly plateaus after ~50 ROls. We also performed fitting on the entire image sequence and plot the correlation (Fig-
ure S3A, blue curve). A similar monotonic increase is observed, and with 50 or more ROls, the correlation value is above 0.8, which is
agreeable considering that the full image sequence consisted of more than 28,000 images. Another criterion we utilized to choose the
number of ROIs was the total spatial area covered by the ROIs. An increasing portion of the total area is covered with an increasing
number of ROls, (Figure S3B), and total area covered by 50 ROls are close to maximum coverage. Given these results, we typically
used 50 ROls in the autoencoder.

Widefield On-R and Off-R amplitude
To determine response amplitude, first the temporal trace from each trial was normalized to percentage change with respect to base-
line fluorescence:

normalized trace at time t=F; — FO/,_—O

where Fy is the baseline determined by finding the most frequent value in the histogram of the trace assuming stability. For On-R
amplitude, we averaged the normalized trace from 200-500ms after tone onset with the baseline from normalized trace subtracted.
For Off-R, we averaged the normalized trace from 200-500ms after tone offset and subtracted the average from the same trace
0-200ms right before tone offset. The 200-500ms window was sufficient to capture the rising phase as well as the peak of the increase
in fluorescence in typical On/Off-R.

Field Parcellation

We assigned ROls to different ACX fields based upon known tonotopic structure revealed with optical approaches (Issa et al., 2014;
Tsukano et al., 2015). ACX of mice contains several ACX fields, including A1, AAF and Ultrasonic Field (UF), which are characterized
by the presence of tonotopic gradients in On-R (Stiebler et al., 1997). Tonotopy also exists in secondary area A2, albeit on a com-
pressed scale (Issa et al., 2014). First, we identified A1 and UF ROlIs based on their two tonotopic axes, one from the caudal side
to dorsomedial side (low to high) and the other one, sharing the same low frequency area, from caudal to ventrolateral side (Issa
et al., 2014). The example A1 and UF ROlIs (Figures 2I-20) show progression of frequency selectivity along the two tonotopic
axes. We use ‘UF’ and ‘high A1’ to distinguish between the two spatially distinct areas that are high frequency selective, while
they are both considered primary auditory cortices. We also found a subset of ROls located dorsoposterior to A1 which we assigned
as DP. They showed relatively weak On-Rs but prominent Off-Rs (Figure 2M). We performed parcellation of ROlIs in all animals stud-
ied, and the similar spatial layout of A1, UF, AAF, A2 and DP can be robustly observed.

Signal correlation among ROIs
We used corrected signal correlation (SC) for all our calculation due to the limited number of repeats and the strong tendency of
close-by pixels to covary in time (Rothschild et al., 2010; Winkowski and Kanold, 2013). The basic idea is that the uncorrected SC
equation contains products of responses from the two ROls in question on the same trial, and these terms also appear in noise cor-
relation equation. Thus, these products represent to some extent the covariation of ROIs regardless of stimulus presentation, and
thus should be excluded from SC calculation. The denominator in the equation was adjusted accordingly to take into account the
reduction of number of summation in the nominator.

In Figures 3G and 3H, we calculated SC among selected ROIs that were dorsally located with respect to A1 and UF respectively.
These ROIs have centers within ~450um to the A1 and UF ROls in the rostrocaudal direction but dorsally located. Then we calculated
pairwise SCs among all these ROI pairs and plotted them as a function of distance (Figure 3I).

On- and Off-tonotopy

To establish On- and Off-tonotopy, threshold of WF On-R and Off-R were first manually determined (Figure S1, white solid lines). Then
WF images with baseline subtracted following tone onset or offset were obtained at identified threshold. Next a homomorphic
filter was applied to the images to correct for unevenness of illumination. Then 95 percentile contour lines of the responses were ex-
tracted and overlaid to demonstrate systematic movement of activation area as a function of different tone frequencies (Figures 1C
and 1D; Figure S3).
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2-Photon imaging data analysis

First motion correction was performed with TurboReg plugin (Thévenaz et al., 1998). In a subset of experiments, the motion correc-
tion was performed using the Suite2P package (Pachitariu et al., 2016). ROIs were drawn manually using a custom written GUI. A ring
was placed on each cell soma to extract raw fluorescence trace while a circular region of 20um radius was used to extract nearby
neuropil signal (excluding soma). We used the following equation to correct neuropil contamination of cell:

Fcorrected(t) :Fcell(t) —-08x Fneuropil(t)

The coefficient of correction (0.8) was measured with the collected 2P dataset by taking the ratio of the intensity non-radial blood
vessel and the intensity of adjacent neuropil containing no neurons. To calculate AF/F, the baseline of each cell was determined
by constructing a histogram of all fluorescence intensity over time and by finding the peak of the histogram and the corresponding
fluorescence intensity value, which we used as the estimate of fluorescence baseline. This procedure is based on several assump-
tions. First, we assume the baseline is constant over time, which we generally found to be true given our relatively short imaging ses-
sions (~9 min). Second, we assume that the response in ACX is sparse (Hromadka et al., 2008) and thus baseline value should be
observed the most often, which will be reflected as the peak in histogram. This procedure is generally robust and generates AF/F
change over a reasonable range. If this procedure found negative baseline values, suggesting the soma fluorescence was lower
in intensity than surrounding neuropil, then these cells were excluded from further analysis. Then, we calculate AF/F using the
following equation:

AiF (t)= Feorrectea(t) — baseline
F baseline

To determine whether a cell is significantly responding to sound onset or offset, we first determine the response amplitude in the AF/F
trace by finding the maximum change within 1 s after sound onset or offset and average over a small window (+2 frames) around the
maximum time point to account for the noisy fluctuation in the trace. Then the 95 percent confidence interval (Cl) of the median of the
response amplitude was constructed through a bootstrapping procedure (resampling 1000 times) and if the lower Cl bound ex-
ceeded 1.5 times the standard deviation of the baseline fluctuation (5 frames or ~150ms before sound onset/offset) then the cell
was considered significantly on/off-responsive. The response significance was determined separately for each frequency and sound
level combination and separately for On-R- and Off-R. Neuropil and MGB terminal signals were processed with the same procedure.
Unlike cellular ROIs, MGB terminal ROIs were obtained with Suite2P in an automated fashion.

For classifying different types of responses (Figure 7E), we performed k-means clustering on averaged responses (across repeti-
tions) to each frequency, pooling these traces from Thy1 (including traces from F1s of CBA/CaJ and Thy1-GCaMP®6s crosses), PV
and SOM neurons. The clustering is only confined to statistically significant responses. We used correlation as the distance measure
and thus the clustering disregarded absolute amplitude of the traces. We chose 5 clusters to sufficiently encompass the different
response types encountered.

Off-R Bias Index (OBI)

OBls are calculated by first averaging On-R and Off-R for responding neurons over frequency and repeats, and then calculated with
the following equation:

<Roff> - <Ron>

(Rorr) + (Ron)

where the angle brackets denote average over tone frequency and repeats.

OBl =

Granger Causality analysis

The notion of causality proposed by Granger (Granger, 1969) aims at capturing the two fundamental principles of temporal predict-
ability and the precedence of cause over effect. In order to capture the functional dependencies within a neuronal ensemble and the
sparsity of interactions, we employ sparse multivariate autoregressive models. We introduce a measure of GC which accounts for
sparse interactions, estimate the model parameters using fast optimization methods, and perform statistical tests to assess the sig-
nificance of possible GC interactions (Francis et al., 2018), while controlling the false discovery rate (FDR) to avoid spurious detection
of GC links.

We used the same framework as in (Francis et al., 2018) for our Granger Causality (GC) measurement (Sheikhattar and Babadli,
2016). In order to infer GC patterns for the two On/Off conditions, we divide the corresponding responses to the onset and offset
inputs, and pool across all the tone frequencies, thereby treating them as implicit repetitions to the same stimuli condition. In
what follows, we present our modeling, parameter estimation and GC inference procedure.

Modeling: Consider a sequence of calcium indicator fluorescence measurements from a set of C neurons indexed byc=1,2,...,C

,:1;,‘”: 1 Overtimebinsn = 1,...,N, and across R trial repetitions indexed by r = 1,...,R. We adopt a
sparse vector autoregressive (VAR) framework (Valdés-Sosa et al., 2005) for modeling the slow-decaying and transient dynamics of

the calcium fluorescence signals as well as the cross-dependencies among the neurons.

e . (©) c=1.C
within a slice, denoted by {y;, }
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Suppose that the fluorescence observation vector of neuron (c) at the r-th repetition is represented by yﬁc) D= D/,(ﬁ), ey yﬁ&] , and
lety®© : = [ygc)/ , y(20>/, ...,y}f)/} denote the zero-mean total observation vector, containing the set of all observation vectors yﬁc) fromall
trialsr=1,...,R.

The effective neural covariates taken into account in our models are each neuron’s self-history of activity and the history of activ-
ities of other neurons in the ensemble. We consider a lag of L samples within which the possible neuronal interactions may occur.
Then, we segment L into M windows of lengths Wy, W5, ---, W), such that Z,"ZWV,- =L.Letbp: =Z';:1W12 form=1,...,M, and
bo = 0. Let

1 n—-1-bp, 4 ©
h = ’ 1
rnm Wm k:’;bm yr‘k ? ( )
represent the average activity of neuron (c) within the m-th window lag of length W,,, with respect to time n and at trial r. We can then
define the vector of history covariates from neuron (c), effective at time n and trial r as h{%) : = | £°n)1 ,hﬁlcn).g, ~-~,h£,°n)’M] . Next, let
xen o =h hE) . hS)] denote the vector of covariates from all neurons at time n and trial r.

In order to represent the covariates in a more compact form, we consider the NxMC matrix X : = [x;1,X,2, ..., x,,N]/ which contains
in its rows the covariate vectors at all times n=1, ..., N within trial r. Finally, let X : = [X/1 ,X'Z, ...,X;q] represent the matrix of all cova-
riates with standardized columns (i.e., zero-mean columns with unit norm), capturing the covariates X, for all the trialsr = 1,...,R

the VAR model can then be expressed as:

7 =Xw© +£©), (&)
where £©) : =[e\) &l ... &) ~ N(0,6(©2l) is a zero-mean Gaussian noise vector of size RN with variance ¢/©2, and w(© is a
parameter vector accounting for the interactions in the network, forc = 1,2,---,C. ) )

In agreement with the parsing of the covariates in the matrix X, the parameter vector »(© : = [w©")  ©©2) ... «©C)] in Equation 2

is composed of a collection of cross-history dependence vectors {w(©) }5 =1C where (¢ represents the contribution of the history

of neuron (¢) to the activity of neuron (c) via the corresponding covariate vector hﬁcn) encoded in matrix X. In particular the component
(€ is important in capturing the slow calcium florescence decay in an autoregressive fashion, and thereby excluding the transient
effects of florescence decay from the GC analysis.

Next, we invoke the hypothesis of sparsity in the interactions among the neurons in the ensemble. In our model, the sparsity of the
interactions can be captured through the sparsity of the parameter vector w(©): when only very few components of () are non-zero,
neuron (c) is only affected by the activity history of a few neurons in the ensembile. In addition, as the dimension of the parameter
vector given by MC scales with the network size C, the hypothesis of sparisty enables the detection of salient interactions within
a large network, and thereby mitigates overfitting, especially when the observations are noisy and trials are limited in number.

Parameter Estimation: In order to define a framework for inferring a possible GC link (¢+ c), two nested models are taken into ac-
count: 1) the VAR model in Equation 2, where the contributing covariates from all the neurons are taken into account, referred to as the
full model, and 2) the same model in which the covariates and parameters of a single neuron (¢) on neuron (c), ¢ #c are excluded, to
which we refer as the reduced model. The parameters and covariates associated with the reduced model are denoted by w©'¢) and
X'°, respectively.

The sparse parameter vector associated with either of the two models can be estimated by solving an £¢-regularized maximum
likelihood (ML) problem for each neuron as follows:

~ (1 2
o=argmin (J5° ~Xo |5 +1lo] ). ®

where X takes the two values of X and X'© for the full and reduced models, respectively, the £ -norm is defined as |lw||{: =
2%21 |om |, and ¥ >0 is a regularization parameter tuning the sparsity level, which can be selected based on analytical results on
24 -regularized ML problems or via cross-validation. Given the parameter estimate @, the corresponding variance associated with
the model can be computed as 32 = 1/NR|y — X& || 2.

Inference: The conventional measures of GC are based on ML estimates of the VAR parameters, and not the regularized ML as in
our case. Hence, we need to modify the GC measure and the corresponding deviance statistics, to account for the estimation bias
incurred due to £1-regularization. This new measure is the static VAR-based counterpart of a similar measure presented in our earlier
studies in the context of dynamic sparse point process models (Sheikhattar and Babadi, 2016) To this end, we modify the deviance
difference statistic corresponding to the full and reduced models to compensate for the bias incurred due to sparse regularization.

The bias can be computed for the full model as B¢) : = g© H©~'g(©), where g© : =X (¥© — X&©)/52 and H®) : = - XX/
are the gradient and Hessian of the log-likelihood function for the Gaussian VAR model of Equation 2, respectively. Similarly, the bias

B(©'9) for the reduced model can be computed by replacing the matrix of covariates and parameter estimate by X' and ©°),
respectively.
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The deviance difference statistic associated with the two nested full and reduced models can be expressed as:

~(c\c)2
a.( )

(é—c). _ _ pg(rec)
D ._NRIog—a(c)z B , (4)

where B(€~¢) . =B(©) _ B(¢\%) denotes the difference of bias terms corresponding to the full and reduced models.

We finally employ the inference framework presented in (Kim et al., 2011; Sheikhattar and Babadi, 2016) to simultaneously test the
statistical significance of all possible GC interactions and to control the FDR at a given significance level «. This inference framework
integrates an extension of classical results on analysis of deviance, and a multiple hypothesis testing procedure based on the Ben-
jamini-Yekutieli FDR control (Benjamini and Yekutieli, 2001). The weights of the detected links are further characterized using the
Youden’s J-statistic, which is a summary statistic for quantifying the strength of hypothesis tests. The excitatory or suppressive na-
ture of GC links are determined by the effective sign of estimated cross-history parameters associated with shorter latencies.

To quantify the spread of the distribution of GC-link directions (Figure 5F), we first constructed a circular histogram of the GC-link
angles which were computed from MATLAB built-in function atan2. Based on this histogram we used PCA to extract the long and
short axes of the eclipse like distributions. Then all the original angles were projected onto the short axis and the resultant dot prod-
ucts (taking absolute values) were compared between ACX fields. The more the values are shifted toward 1, the larger the spread in
the short axis, indicating a less ‘pointy’ distribution.

Pupillometry data analysis

To extract pupil size, each image was first cropped around the eye and the MATLAB built-in function “imfindcircles” was used to
determine pupil location and diameter. The pupil size over time was further smoothed with a time window of ~150ms. The onset
of micro-dilations was determined by first inverting the trace (flip sign) and using MATLAB built-in function “findpeaks” with a min-
imum peak prominence of 10um. Next, we quantified the occurrence of micro-dilation before, during and after tone onset using 1 s
windows, to investigate whether micro-dilations were more likely to occur following tone offset. We established confidence interval
by shuffling tone onset time and counting the micro-dilation occurrence in reference to the shuffled stimulus onset. We performed
such analysis for 10 sets of experiments (n = 9 mice). If a micro-dilation is more likely to occur during any specific time window,
then the actual counts should exceed the upper bound of the confidence interval. If the counts are within the confidence interval,
then the occurrence of micro-dilations is equally likely to occur before, during or after tone presentation.

Electrophysiological data analysis

Single units were sorted offline using MClust-3.5 package (A. D. Redish et al., http://redishlab.neuroscience.umn.edu/MClust/
MClust.html) and KlustaKwik algorithm (K. Harris, http://klustakwik.sourceforge.net). For single unit analysis, we calculated re-
sponses as the spike count change within a 500ms window before or after tone onset/offset and used paired t test to determine
the response significance for each frequency.
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