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Abstract—An MRI-actuated catheter is a novel robotic catheter
system that utilizes the MR scanner for both remote steering and
catheter tracking. In order to develop the mathematical model
and the planning algorithm of the catheter in parallel to the
MR tracking system, an alternative catheter tracking method is
needed. This paper presents a catheter tracking algorithm based
on the particle filter and the catadioptric camera system. The
motion model of the particle filter is based on the quasi-static
kinematics of the catheter. The measurement model calculates
the weights of the particles according to the normalized cross-
correlation of the segmented image from camera and a virtual
rendering of the catheter. The efficacy of the tracking algorithm
is demonstrates via experimental results.

I. INTRODUCTION

The MRI-actuated catheter is a robotic catheter designed to
operate while the patient is inside the bore of an MR scanner.
Electromagnetic coils attached to the catheter remotely steer
the catheter under the magnetic field of the MR scanner when
electrical currents are applied to the coils [1]. The MR scanner
also provides anatomical images and tracks the catheter during
procedures.

In order to validate the model of the catheter and the
planning algorithm in parallel to the development of the
MR tracking system, an alternative sensing mechanism for
obtaining the configurations of the catheter under different
actuation currents is needed. A camera is an ideal candidate
in this situation because the sensing device has to be placed
as far away as possible from the MR scanner for safety
reasons. However, the traditional stereo camera system cannot
be used here because the distance of the two cameras, and
consequently depth perception, is limited by the cylindrical
shape of the MR scanner’s bore. Fortunately, the problem can
be circumvented by replacing the second camera with a mirror
placed next to the catheter at 45 degree angle. The mirror
provides a side view of the catheter, and effectively serves as
a virtual camera. A single camera then records images of the
catheter and its reflection in the mirror, which can be used to
reconstruct the 3D shape of the catheter. This setup is known
in the literature as the catadioptric camera system [2]-[6].
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This paper presents a catadioptric stereo vision-based track-
ing algorithm for the MRI-actuated catheter. The algorithm
takes the images from the catadioptric camera system as an
input, and estimates the configurations of the catheter. The
tracking algorithm is an implementation of the particle filter
[7], where the quasi-static kinematic model of the catheter
[8] serves as the motion model of the particle filter, and the
measurement model of the particle filter calculates the weight
from the normalized cross-correlations between a segmented
catheter image and a virtual rendering of the catheter.

The paper is organized as follows. First, the experimental
setup is described in Section II. The tracking algorithm, the
motion model, and the measurement model are explained in
Section III. Experimental validation of the tracking algorithm
is presented in Section IV. Conclusions are given in Section V.

II. EXPERIMENTAL SETUP

The catheter prototype is shown in Fig. 1. The body of
the catheter is made of a silicone rubber tube with the outer
diameter of 3.2 mm and the length of 104.0 mm (Part number:
T2011, QOSINA). The catheter has two actuators, and each
actuator has three mutually orthogonal coils. The coils are
made of heavy insulated 38-gauge solid core enameled copper
wire (Adapt Industries, LLC, Salisbury, MD, USA). Each
coil is controlled by one channel on the controller, where
Channels 1 and 2 are the side coils of the proximal actuator,
Channels 4 and 5 are the side coils of the distal actuator,
and Channels 3 and 6 are the axial coils of the proximal and
distal actuators, respectively. The rest of the parameters of the
catheter prototype are listed in Table L.

The catheter setup is shown in Fig. 2. The catheter is
mounted on top of an aquarium that is placed on a foam pad.
The mirror is placed on the foam pad next to the catheter
at approximately 45 degree angle measured from the side of
the aquarium. The calibration pattern in the aquarium and its
reflection in the mirror are used to calculate the configuration
of the mirror. The black plastic beads hanging from the side
of the aquarium and their reflections provide the orientation
of the catheter’s coordinate system. Nail polish is painted on
the catheter as the markers for the tracking algorithm.

Experiments are conducted with the catheter setup placed
at the isocenter of a 3 T MR scanner (Skyra, Siemens Medical
Solutions, Erlangen, Germany). A 60 fps high definition
camera with a resolution of 1080 x 1920 pixels (Flea3 FL3-
U3-3282C by Point Grey, Richmond, BC, Canada) is used
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Fig. 1: Catheter prototype with two actuators. Each actuator
has an axial and two side coils. The proximal actuator is closer
to the base, while the distal actuator is closer to the tip. The
catheter is glued to a Lego piece that is attached to the base
mount.

TABLE I: Catheter Prototype Parameters

Parameter Value
Inner diameter (mm) 2.0
Outer diameter (mm) 3.2
Total length (mm) 104.0
Distance of the 1st actuator from the base (mm) 54.0
Distance of the 2nd actuator from the base (mm) 85.2
Winding turns of channel 1 30
Winding turns of channel 2 30
Winding turns of channel 3 100
Winding turns of channel 4 30
Winding turns of channel 5 30
Winding turns of channel 6 100
Surface area of channel 1 (mm?) 55.0
Surface area of channel 2 (mm?) 44.2
Surface area of channel 3 (mm?) 15.6
Surface area of channel 4 (mm?) 48.0
Surface area of channel 5 (mm?) 46.2
Surface area of channel 6 (mm?) 16.0

to capture the images of the catheter during the experiments.
For safety reasons, the camera is placed at the far end of the
MRI suite, approximately 6 m away from the isocenter of the
scanner. Fig. 3 shows the catheter setup and the camera during
an experiment. The images from the camera are stored on a
laptop connected to the camera via a USB3 cable. Additional
information, such as timestamps and actuation indices, are
embedded on the top left corner of the image via the GPIO
pins.

Fig. 2: The experimental setup with the catheter and the
mirror mounted on the foam pad. By placing the mirror at
an approximately 45 degree angle, the mirror serves and a
virtual camera that view the catheter from the side. This setup
solves the problem with low depth of field that came with the
constraints in the MRI suite. A flat surface mounted is on the
bottom of the aquarium tank for surface motion experiments.

Fig. 3: The camera and the catheter setup in the MRI suite.
The camera is at the bottom of the image, while the catheter
setup is inside the MR scanner’s bore. The distance from the
camera to the catheter is 6 m.

III. PARTICLE FILTER TRACKING

The particle filter is a nonparametric Bayes filter [7]. Unlike
parametric filters, such as the extended Kalman filter or the
unscented Kalman filter, the particle filter does not represent
the belief using parametric functions. Instead, the particle
filter relies on particles, where each particle has a value and
a weight, to represent the belief. The value of a particle
represents a hypothesis of the state of the system, while the
weight indicates how likely that hypothesis is. In the case of
catheter tracking, the state of the system is a vector containing
the shape parameters of the catheter, denoted by 6.

The pseudo code for the catheter tracking algorithm based



Algorithm 1 Particle update steps in the particle filter

1: procedure update_particle(P_1, us, z¢)
2 Pe=10

3 for all p = (6,w) € Pi_1 do

4 6 = motion_model(f, u;)

5: w = measurement_model(f, z;)
6 end for

7 fori=1,---,P_1.size() do

8 p = sample(P;_1)

9 P;.add(p)

10: end for

11: return P,

12: end procedure

on the particle filter is shown in Algorithm 1. The algorithm
takes as inputs the previous list of particles (denoted by P;_1),
a new actuation (denoted by wu;), and a new measurement
(denoted by z;). The value and the weight of a particle, p, are
denoted by 6 and w, respectively. There are two main steps in
the algorithm, i.e., the prediction and the measurement update
steps. In the prediction step, the values of the particles from
the previous particle list are updated using the motion model
of the system. This happens in Line 4 of the algorithm. In
the measurement update step, the weights of the particles are
updated using the measurement model of the system. Then a
new particle list is created by resampling from the updated
particle list, where the chance of a particle being sampled is
proportional to the weight of the particle. This happens in
Line 5 and Lines 8 to 9, respectively. The remainder of this
section explains how prediction and measurement updates are
implemented for the catheter tracking algorithm.

A. Motion Model

The motion model describes how the state of the system
changes as a function of the previous state and actuation. In
this work, the motion model is assumed to be quasi-static, that
is the catheter has enough time to reach its equilibrium con-
figuration after each actuation. This is a common assumption
for continuum robots in medical applications [9]. A quasi-
static configuration of the catheter for a given actuation can
be obtained by minimizing the potential energy of the catheter
as follows,

1
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s.t. h(6) < 0. (1b)

The first term in the objective function (la) is the potential
energy due to the internal stiffness of the catheter, where K is
the stiffness matrix. The next term is the potential energy due
to gravity, where m; is the mass of the ith rigid body, which
can be a link or an actuator, ¢ is the gravity vector, and p; ()
is the center of mass of the ¢ rigid body. The last term is the
summation of the potential energy of the magnetic moments
from the actuators [10], where B;(#) is the MRI’s magnetic

field vector in the jth actuator body frame, 11; is the magnetic
moment of the jth actuator expressed in its body frame, and
u,; are the currents sent to the jth actuator.

The inequality constraint (1b) represents the surface the
catheter operates on. The constraint is defined such that when
the catheter is in contact with the surface, h(f) = 0, and
when the catheter is not in contact, h(#) < 0. This inequality
constraint makes it possible to use the optimization problem
(1) to calculate the equilibrium configuration of the catheter
both when it is in contact, and when it is free space.

The motion model uses the Jacobian of the implicit function
defined by the potential energy minimization problem to
calculate a new joint angle vector. Being a linearization, the
Jacobian only approximates the minimization problem locally.
This locality makes the Jacobian well suited as the motion
model of the particle filter, because the unmodeled errors can
be included in the particles’ values, and the Jacobian will
update the values locally. The motion model based on the
Jacobian is given by

Oy =61+ Ji—1 (v + p) + v, 2

where J;_1 = 00;_1/0u;_1 is the Jacobian, p is the actuation
noise that represents error in actuation model, and v is the
state-space noise that represents other unmodeled errors.

In order to save computational resources, only the Jacobian
of the best particle is calculated, and the other particles use the
same Jacobian to update its value. The rationale behind this
is the fact that good particles most likely have similar values,
so their Jacobians will have the same range space. While this
may result in errors in the new particle values, remember that
noises are added to both actuation and state variables anyway.
So, the errors induced by using the same Jacobian can be seen
as an additional noise in the motion model.

B. Measurement Model

The measurement model describes the likelihood of a mea-
surement given a state. The measurement for the catheter
tracking system is the images from the camera. The mea-
surement model of the catheter tracking system is more
complicated when compared to, for example, range-based
sensors, because each measurement is a pair of stereo images.
Fig. 4 illustrates the processes involved in calculating the
weight of a particle from the particle’s value and a pair of
stereo images. On the image-processing side, a raw image
from the camera is first rectified to correct lens distortion.
An example of a raw image from the camera is shown in
Fig. 5. The distortion coefficients are obtained from the camera
calibration images taken at the beginning of the experiment.
Then the rectified image is segmented to obtain a gray-scale
image, where the parts of the image with the same color
as the markers are highlighted. Next, the segmented image
is thresholded to obtain the binary image shown in Fig. 6.
The binary image will be compared with the images rendered
from the values of the particles to obtain the weights for the
particles.
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Fig. 4: The image-processing and the rendering procedures
involved in calculating the weight of a particle.

Fig. 5: The raw image obtained from the camera.

Fig. 6: The binary image obtained after the threshold is applied
to the segmented image.

The rendering process has the following steps. First the
configurations of the markers are calculated from the kine-
matics of the model, and the particle’s value [8]. Next, the
configurations of the markers are projected onto the real
and mirrored images using the camera projection matrix and
the configuration of the mirror. Let points in the real and
the mirrored images be denoted by (x,,y,) and (T, Ym),
respectively. A 3D point in the camera frame, denoted by
(X,Y,Z), is projected into points on the real and mirrored
images as follows [6], [11],
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where P € R3** is the camera projection matrix, and
G € SE(3) is the transformation between the real camera to
the virtual camera frames. Since it is desirable for the tracking
algorithm to be capable of handling occlusions, the links of
the model are rendered as well. It is important to render the
objects in the correct order to simulate occlusion, because the
object that is occluded has to be rendered before the object that
is in front. In this work, the process is simplified by assuming
that the catheter bends in simple arcs, where the coordinate
position of the parts of the catheter along the camera axis
changes monotonically. Therefore, the order of rendering can
be determined from the direction that the catheter is bending.
If the catheter bends away from the camera, the catheter
is rendered from the tip to the base. Conversely, if the
catheter bends toward the camera, the catheter is rendered
from the base to the tip. This order of rendering can be easily
generalized if the catheter bends in complex shapes by sorting
the parts to be rendered according to their coordinate positions
along the camera axis. Finally, Gaussian blur is applied to
the rendered image to add measurement uncertainty to the
measurement model. Figures 7 shows a rendered image of the
catheter.

The similarity between the binary and the rendered images
is calculated from their normalized cross-correlation imple-
mented in the matchTemplate function in OpenCV. Let T’
denote the template, which in this case is the image rendered
from the value of a particle, and I denote the binary image.
The normalized cross-correlation of the two images, denoted
by R, is calculated as follows,

50 (T(@,9) 1))
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where (z,y) is the image coordinates. In order to reduce
the computational burden, and more importantly to make the
measurement model more selective, the matching score is
calculated for the region of interest (ROI) around each marker.

R =
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Fig. 7: The rendered image.

The weight of the particle is then defined as the square root
of the sum of the matching scores squared. Let R; denote
the normalized cross-correlation between the binary and the
rendered images in the ith ROI, then the weight of the particle
is calculated as follows,

w=3" /R )

By calculating the matching score of the ROIs instead of
the whole image, computational effort is reduced because
a much smaller number of pixels have to be processed.
The measurement model is also more selective because the
baseline similarity from the background the the images is not
considered, as a result, the differences between particles are
greater.

IV. TRACKING RESULTS

This section presents the experimental results of the tracking
algorithm. In the first experiment, the algorithm tracks the
catheter when it is at its rest configuration and when it
deflects away from the camera. Fig. 8 shows the tracking
algorithm locating the catheter when the catheter is at the
initial configuration. Fig. 9 shows the catheter being tracked
successfully when the catheter deflects away from the camera
at approximately 90 degrees, obscuring parts of the catheter’s
markers. By employing the motion model, the tracking algo-
rithm can track the catheter even when the some of the markers
are not clearly visible on one of the images.

In the second experiment, the efficacy of the tracking
algorithm is validated by comparing the positions of the
catheter’s tip from the tracking algorithm with the positions
manually obtained from the images. In this experiment, the
grid on the surface is replaced with graph paper that serves
as an alternative measurement tool for validating the tracking
algorithm. The new setup is shown in Fig. 10. This experiment
demonstrates the ability of the algorithm in tracking the
catheter when the catheter moves on the surface. The catheter
first moves toward the surface, then the catheter slides its
tip on the surface. The orientation of the surface’s coordinate
frame with respect to the catheter’s coordinate frame written
in the axis-angle representation is [—1.1410, 0, 0]% rad, and

Fig. 8: The catheter being tracked at its initial configuration.
The markers are highlighted in blue. The coordinate frames
at the catheter’s base, the catheter’s tip, and the surface origin
are rendered with red-green-blue cylinders.

Fig. 9: The catheter being tracked when it bends toward the
surface. Note that the tracking algorithm can still track the
catheter even when the catheter deflects away from the camera
at approximately 90 degrees. The markers are highlighted
in blue. The coordinate frames at the catheter’s base, the
catheter’s tip, and the surface origin are rendered with red-
green-blue cylinders.

the position of the surface’s origin is [~5.0, 57.0, 79.5]T
mm. ! The results from the tracking algorithm and manual
tracking are shown in Fig. 11, and the error between the
two trajectories is plotted in Fig. 12. Note that the results
from the tracking algorithm and manual tracking have similar
overall shapes. There seems to be a 2 to 3 mm offset along
the surface’s y-axis between the two trajectories. This could
be due to multiple reasons, such as poor lighting causing tip
segmentation issue, error in the transformation between the
catheter’s to the camera’s coordinate frame, human error in
reading the graph paper, etc. This level of error considered
acceptable because it is smaller than the diameter of the
catheter, and it is difficult to read graph paper with higher
resolution in this lighting condition.

IThe catheter’s coordinate frame is defined at the catheter’s base mount
with the y-axis and the z-axis aligned with the scanner’s magnetic field and
gravity, respectively.



Fig. 10: The catheter setup with the grid on the surface re-
placed by graph paper. The graph paper serves as an alternative
measurement tool for validating the tracking algorithm. The
main grid lines in the graph paper are 10 mm apart, and the
secondary lines are 2 mm apart.
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Fig. 11: Tracking result from the tracking algorithm compared
with manual tracking result.

V. CONCLUSIONS

This paper presents a catadioptric stereo vision-based track-
ing algorithm for the MRI-actuated catheter. The tracking
algorithm is an implementation of the particle filter, where
the motion model is the linearization of the potential energy
minimization problem, and the measurement model calculates
the weight of a particle from the normalized cross-correlation
between an image from the camera and a virtual rendering of
the catheter based on the particle’s values. The first experi-
mental result shows that the algorithm can track the catheter
even when the some markers are not clearly visible on one of
the images. The second experiment demonstrates the ability
of the algorithm in tracking the catheter performing a surface
motion. The presented tracking method is useful in validating
the model and planning algorithm of the catheter while the MR
tracking system is being developed. The presented tracking
method can also be used to validate the MR tracking system.
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Fig. 12: The error between the results from the tracking
algorithm and the manual tracking.
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