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Abstract—As methods and tools for Cyber-Physical Systems
grow in capabilities and use, one-size-fits-all solutions start to
show their limitations. In particular, tools and languages for
programming an algorithm or modeling a CPS that are specific
to the application domain are typically more usable, and yield
better performance, than general-purpose languages and tools.
In the domain of cardiac arrhythmia monitoring, a small,
implantable medical device continuously monitors the patient’s
cardiac rhythm and delivers electrical therapy when needed. The
algorithms executed by these devices are streaming algorithms, so
they are best programmed in a streaming language that allows the
programmer to reason about the incoming data stream as the ba-
sic object, rather than force her to think about lower-level details
like state maintenance and minimization. Because these devices
are resource-constrained, it is useful if the programming language
allowed predictable performance in terms of processing runtime
and energy consumption, or more general costs. StreamQRE is
a declarative streaming programming language, with an efficient
and portable implementation and strong theoretical guarantees.
In particular, its evaluation algorithm guarantees constant cost
(runtime, memory, energy) per data item, and also calculates
upper bounds on the per-item cost. Such an estimate of the cost
allows early exploration of the algorithmic possibilities, while
maintaining a handle on worst-case performance, on the basis of
which hardware can be designed and algorithms can be tuned.

Index Terms—Quantitative Regular Expressions, Streaming
languages, Arrhythmia monitoring, Tachycardia, Real-time

I. INTRODUCTION

THE last few years have witnessed an explosion of IoT

systems in applications such as smart buildings, wearable

devices, and healthcare. A key component of an effective IoT

system is the ability to make decisions in real-time in response

to data it receives. For instance, a gateway router in a smart

home should detect and respond in a timely manner to security

threats based on monitored network traffic, and a healthcare

system should issue alerts in real-time based on measurements

collected from all the devices for all the monitored patients.

Programming the desired logic as a deployable implementation

is challenging due to the volume of data and hard constraints

on available memory, power usage, and response time.

In current practice, a general-purpose imperative language

such as C is used to program real-time decision making

policies. Due to the challenges in analyzing such code, this

approach does not lead to predictable performance and does

not facilitate exploration of design options at early stages.

A specialized language for specifying these policies in a

declarative manner, with programming abstractions suitable

for processing data streams with performance guarantees, can

be a potential solution to both these challenges. It can play

the same role as model-based design does for safety-critical

embedded control software [1], [2], [3], [4].

To specify the decision logic based on computing quanti-

tative summaries of data streams we advocate Quantitative
Regular Expressions (QREs) [5], [6]. The language allows

the computation to be expressed as a streaming composition

of stages. The core QRE combinators, which are quantitative

extensions of operations in classical regular expressions, can

be used to impart to the input data stream a logical hierarchical

structure facilitating modular specifications (for instance, to

view patient data as a sequence of episodes and to view

network traffic as a sequence of Voice-over-IP sessions). The

QRE compiler translates a high-level query into a streaming

algorithm with precise complexity bounds on per-item pro-

cessing time and total memory footprint. The StreamQRE

library, an implementation in Java, has been shown exper-

imentally to have superior performance compared to other

existing high-performance engines for processing streaming

data [6]. This experimental evaluation involved workloads that

are representative of clickstream analysis (Yahoo streaming

benchmark [7]) and real-time analytics for business event

streams (NEXMark benchmark [8]). A variant of StreamQRE

(called NetQRE) has been shown to be useful for network

monitoring [9].

Medical devices offer an ideal test-bed for exploring the

applications of formal methods in system design due to

their safety-critical nature that demands predictable opera-

tion [10]. Recently, the implantable pacemaker has been used

to illustrate the benefits of model-based design [11], [12],

[13]. This involves specifying the algorithms for detecting

slower-than-normal rhythms used by pacemakers using formal

modeling languages, such as timed automata [14] and hybrid

automata [15], and verifying correctness requirements using a

model checker such as UPPAAL [16].

While this previous work dealt with pacemakers,

Implantable Cardioverter Defibrillators (ICDs) and Insertable

Loop Recorders (ILRs) are a more sophisticated class of

implantable cardiac devices that must do multi-beat rhythm
classification, not only detect whether a beat was missing, like

pacemakers do. The goal of such an Arrhythmia Monitoring

Algorithm (AMA) is to detect undesirable patterns in the

(discretized) input signal being monitored. We argue that such

a classification task is best viewed as a matching algorithm

over streaming data, and the desired decision logic can be

naturally expressed using QREs.

In particular, we program a representative AMA, used in an

ICD by Boston Scientific [17], using the QRE language. The
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QRE compiler then generates the low-level implementation

whose space complexity and per-item processing time com-

plexity are constant — that is, independent of the number of

samples processed so far (see Section 4 of [6]). Furthermore,

we show how the QRE compiler can statically compute an

upper bound on the cost of processing each item, where the

cost can be, for example, the energy consumption on a specific

platform. This assures predictable real-time performance. Such

estimates, provided early in the design cycle, allow one to

compare design alternatives (that is, different variants of the

monitoring algorithm) statically in terms of their achievable

worst-case costs. Such analysis complements average-case

analysis (i.e., measured performance when running the algo-

rithm on a typical load). We demonstrate the latter type of

analysis by profiling the energy consumption of the QRE on

a signals database on a given hardware platform.

The paper is organized as follows. Section II gives a back-

ground on cardiac function, necessary for understanding the

complexity of arrhythmia monitoring. Section III motivates the

programming of AMAs in QREs, and Section IV introduces

the QRE formalism and the Java library that implements it.

This library is available online at [18]. Section V describes

one representative AMA and Section VI details its QRE

implementation. The Java library is used in Section VII to

illustrate the implemented AMA on a database of arrhythmia

episodes. Section VIII describes how to compute upper bounds

on QRE cost, like per-item energy consumption. Section IX

summarizes related work and Section X concludes the paper.

II. BACKGROUND ON CARDIAC FUNCTION

To understand the arrhythmia monitoring algorithm pre-

sented in this paper and appreciate its complexities, it is

necessary to first understand some basics of cardiac electro-

physiology: how the heart beats normally, why it could go

into arrhythmia, and what measurements are available to an

implantable device to detect this.

A. Cardiac electrophysiology

The heart has two upper chambers called the atria and

two lower chambers called the ventricles (see Fig. 1) The

synchronized contractions of atria and ventricles assure an

adequate supply of oxygenated blood to the rest of the body.

This contraction is driven by electrical activity in the heart,

which originates in the right atrium, floods the atria first,

then conducts down to the ventricles and floods those in

turn. The cardiac muscle contracts as it is being traversed by

the electrical wavefront, i.e., as it depolarizes. In a first ap-

proximation which is sufficient for understanding AMAs, we

may consider that this contraction is an instantaneous event,

and refer to it as an (atrial or ventricular) beat. This normal

pattern of electrical activity is referred to as Normal Sinus

Rhythm (NSR), after the sino-atrial node where the electricity

normally originates. Disturbances of NSR are referred to as

arrhythmias. They can arise because of structural defects in

the cardiac muscle, like a re-entrant circuit around which the

electrical waveform circulates very fast, or because of irritable

tissue that starts to depolarize faster than the sino-atrial node.

Shock  
Coils

Right Ventricular Electrode

Left Atrium
Left Ventricle
Right Atrium
Right Ventricle

ICD
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Fig. 1: ICD and its connection to the heart

Ventricular Tachycardia (VT) is an example of an arrhythmia

originating in the ventricles, in which the ventricles depolarize

at a very high rate and effectively drive the rhythm. This

high rate of depolarization doesn’t give enough time for the

muscle to contract and relax properly, which can result in

insufficient blood supply. If the VT is sustained, or degenerates

into Ventricular Fibrillation (VF) (Fig. 2), it is fatal within a

minute. An abnormally fast heart rate that originates in the

atria and/or the conduction system above the ventricles is

referred to as a Supra-ventricular Tachycardia (SVT). An SVT

causes patient discomfort but is not fatal in the short-term and

does not require device treatment. Most fast arrhythmias fall

under these two categories: VT or SVT.

B. Implantable devices

Two types of implantable devices monitor a heart’s rhythm

continusouly to detect abnormally fast arrhythmias, aka tachy-
cardias. The first is Implantable Cardioverter Defibrillators

(ICDs). An ICD is inserted under the pectoral muscles, and

has one or two leads that are directly implanted in the cardiac

chambers, and through which it measures local electrical

activity - see Fig. 1. The measured signals are known as

electrograms, or EGMs, and are termed ‘atrial’ or ‘ventricular’

depending on the chamber where they are measured1. See

Fig. 3. An ICD uses EGMs to distinguish a wide range of

tachycardias. If it detects a potentially fatal tachycardia, then

it delivers therapy to the heart in the form of either low-energy

1In this paper, we will ignore the so-called ‘shock EGM’ as it will not be
used in describing arrhythmia monitoring algorithms.
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Fig. 2: Electrical activity during Normal Sinus Rhythm (NSR) and Ventricular Fibrillation (VF). The color scale runs from blue = rest
state to red = excited (aka depolarized) state. (Colors in digital version). In the top left, the ventricles are shown from two different angles,
during a phase of NSR. The ventricles are fully exicted. The bottom left panel shows a later phase of the same beat, where the ventricles
are progressively relaxing, starting with the apex (the pointed tip of the heart). This orderly propagation ensures adequate muscle contraction
and blood flow. Three surface ECGs are shown beneath the left column, with red bars indicating the timing of the two snapshots. Note the
periodic pattern. The right column shows two snapshots during VF (earlier snapshot on top). Note the disorganized nature of the electrical
activity, wavefront breakup, and the multiple regions of depolarization. Note also the change in the surface ECG from periodic and regular
(early on) to disorganized. The AMA reads two such signals (obtained, however, intra-cardially and not from the surface) and tries to detect
fibrillation. [Snapshots obtained from video of a simulation of the ventricles at UCLA, courtesy of Luigi Perotti [19]]
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Fig. 3: EGMs (top and bottom panels) and corresponding boolean
beat signals (middle) during atrial tachycardia. Beats correspond to
peaks in the EGMs.

pacing sequences or (possibly more than one) very high-energy

shock. Either way, the goal of the therapy is to stop the current

rhythm and allow a normal rhythm to start. VTs and SVTs can

share similar heart rates and other characteristics, so an SVT

can be mis-diagnosed as a VT. This is problematic because

shock therapy used to stop a VT can deliver between 30-60

Joules of energy at around 700 Volts in under 15ms [20],

directly to the heart, which is very painful to the patient2, and

2Patients compare the shock to a “horse kicking you in the chest”.

has been shown to increase morbidity [21]. Therefore, one of

the biggest challenges for ICDs is to discriminate between VF

and sustained VT that typically requires a shock, and SVT that

typically should not be shocked [22]. This paper will present

one particular ICD AMA in detail in Section V.

The second type of device that monitors tachycardias is the

Insertable Loop Recorder (ILR) (also known as Implantable

Cardiac Monitor). An ILR is a small device (the smallest ILR

on the market is smaller than a key) that is inserted sub-

cutaneously, and monitors surface ECG signals. It uses these

signals to compute a number of long- and short-term statistics

of the rhythm, and in particular to detect Atrial Fibrillation

(AF) episodes. AF is an abnormally fast and disorganized

atrial rhythm that can lead to fainting spells, and which, in

the long term, contributes to blood clot formation. These clots

can cause a stroke upon reaching the brain. The ILR does

not have any therapeutic functions, but only monitors the

heart rhythm. As an example, Biotronik’s BioMonitor [23]

calculates and stores the following daily quantities, in a sliding

window of 240 days where the oldest day drops out of the

window. The quantities include 1) the average daily heart

rate, 2) the daily minimum average heart rate, where the

averages are calculated over consecutive blocks of 10 mins in

the day, 3) daily heart rate variability, defined as the standard

deviation of the sliding 5-minute averages, and 4) the rate

histogram, where each heartbeat is binned into bins of width
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10 beats-per-minute (bpm). In addition, the BioMonitor will

take consecutive windows of n beats and count the number of

cycle lengths that fall below a fixed value in each window.

Remote continuous monitoring has recently been shown

to improve treatment outcomes [24] and to reduce time-to-

treatment for patients with atrial tachycardia burden [25], so it

is important to develop algorithms that can monitor over longer

periods of time and/or compute more advanced statistics that

can better detect the arrhythmia burden.

C. Device measurement: from real-valued to boolean signal

Formally, an EGM is a uniformly-sampled, discrete-time

real-valued bounded signal. An EGM signal can be char-

acterized by the timing of beats that produced it, and the

morphology of the signal itself. To detect the beat timing (i.e.,

when the chamber is contracting), the peaks of the EGM are

detected [26]. The output of peak detection is a discrete-time

boolean signal, where a 1 indicates a beat. See Fig. 3. Beat

timing is crucial to an arrhythmia’s detection, since it is used

in all discriminators.

The ‘morphology’ refers to the shape of the EGM. The so-

called ‘shock’ EGMs during an atrially-driven rhythm look

different from the shock EGMs during a ventricularly-driven

rhythm. The ICD uses this to help it determine whether the

current arrhythmia is an SVT or VT. In this paper, and in order

to keep the exposition simple, we will only work with the beat

signal, i.e., the boolean signal produced by peak detection on

the local atrial and ventricular channels, as shown in Fig. 3.

III. STREAMING ALGORITHMS FOR ARRHYTHMIA

DETECTION

An AMA is naturally viewed as a pipeline of streaming
algorithms, where each node of the pipeline performs a

streaming calculation on its input signal, and passes its output

signal to the next node. So what is a streaming algorithm?

And why view arrhythmia monitors as streaming algorithms?

The main characteristics of a streaming algorithm are that

it views its input as a sequence, or stream, of items from

some data domain, arriving one at a time. It gets to process

each item only once, after which it discards it and moves on

to the next item in the input stream. After processing each

item, the algorithm produces an output value (which might

also be null). A streaming algorithm has limited memory

available (much smaller than the length of the stream which,

for practical purposes, may be regarded as infinite), and

limited processing time. Section IV gives several examples

of streaming calculations.

The following considerations, which govern the design and

execution of an AMA, establish the suitability of the streaming

model of calculation for AMA. First, an AMA’s input is a

uniformly sampled discrete-time electrical signal that arrives

in real-time, one sample at a time, and thus can be viewed

as a stream. Second, when running on an ICD, the AMA

has a delay constraint. Namely, not much time must elapse

betwen the onset of a fatal VT and the moment that the AMA

detects it, because this delays the delivery of therapy. This

requirement translates directly into a requirement of small

processing time per item of the input signal, which is a key

constraint on streaming algorithms. Third, ICDs and ILRs

share a power consumption concern. Indeed, power is the

main non-functional design factor for these devices. Even

for today’s ICDs, which can have a battery life between

7 and 11 years, an additional 3 months of battery life are

still worth pursuing [27], since they can mean the difference

between having to surgically replace the ICD or not. Because

most ICD and ILR recipients are older patients with health

complications [28], it is desirable to prolong battery life and

reduce the likelihood of a replacement [27]. The power in

an ICD is consumed by the monitoring algorithms, the shock

therapy, and the pacing therapy. Although shocks are the single

most power-hungry event, over an average device’s lifetime,

they will only consume 3% of the battery, and it is exceedingly

rare that they consume more than 36% [29]. The rest is shared

between pacing and monitoring. Thus it is important to reduce

the power cost of monitoring. For ILRs, because they do not

have any therapeutic functions, most of the power is consumed

by monitoring. Thus an AMA has a more general small cost-
per-item constraint.

If AMAs are viewed as streaming algorithms, then it

follows that they are best programmed using a streaming
programming language. That is, a language that is expressly

designed and optimized for describing streaming algorithms

and automatically generating efficient code from the program

description. Indeed, it is important to note the productivity

gains achievable by using a Domain Specific Language (DSL).

It is generally agreed that programming in a DSL results in

greater productivity for the development teams producing the

software - see, e.g., [30] and [31] where development time

reductions of 5-7x are routinely reported. During the design
exploration stage when AMAs are developed, tweaked and

compared, it is helpful to program in a language that allows

high-level reasoning about the stream as the basic object of

manipulation and easy capture of patterns in the stream.

The StreamQRE language [18], [6] permits such a declar-

ative way of programming. StreamQRE (pronounced ‘stream

query’) allows the developer to create Quantitative Regular

Expressions (QREs), which are a quantitative extension of

regular expressions. A QRE declares how the stream should

be divided up (by matching against a regular expression) and

which arbitrary operations should be executed on the match-

ing pieces. Similarly to regular expressions, QREs can be

combined using quantitative extensions of regular combinators

to form more complex computations. QREs are described

in detail in the next section. QREs also provide theoretical

guarantees on the memory, time and energy consumed to

process a data item by the resulting algorithm. Specifically, a

QRE has per-item memory and time complexities and energy

consumption that are independent of the length of the stream,

and depend only on the size of the query. Thus, a QRE

program automatically gives a baseline implementation with

constant cost per data item. One also automatically gets a

static upper bound on the per-item cost of a QRE. This allows

a cost comparison to choose between similarly-performing

algorithms. Such early feedback on cost allows early design

exploration, at a point in the design cycle where algorithmic
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changes are easy and can be correlated to cost decrease, and

where it is well-established that the most gains are possible.

Of course, during design exploration, AMAs can also be

programmed in a general purpose language like C++, and in

a non-streaming fashion, e.g., by keeping a sliding window

big enough to store the entire signal segment of interest

and repeating all computations with every new sample that

enters the window. However, this requires the programmer to

explicitly think of keeping state information and minimizing

it, and to think of various sources of delay in her code

and minimize those. Moreover, it is much harder to obtain

upper bounds on cost (whether power, memory or processing

time) of free-form code than the cost of QREs, which have

sufficient structure to enable the above analysis. Finally, when

it is possible, analysis of cost at code-level enables late-stage

implementation changes whose effect on cost will typically be

small compared to early-stage algorithmic changes.

On adopting a domain-specific language. In general,

learning a new language incurs overhead for the engineers.

This is true for any programming language, not only a DSL

like StreamQRE, and the above-cited studies indicate the

overall productivity gains that can be achieved after the initial

learning curve. For instance, Regular Expressions are familiar

to database developers who favor them over writing C code for

querying databases. In our project, we had two teams: Team M,

consisting of the first author and two other engineers, coded

the AMA in Matlab. Matlab was chosen because Team M

are very familiar with it, it is an easy language to work in,

and has a very rich development environment and IDE. After

understanding the algorithm, it took Team M approximately

three weeks to code it and check its operation (amount of time

estimated from github commits). Team Q, consisting of the

second and third author, took one week to code the same AMA

in StreamQRE. Thus our experience validates the general point

that using a DSL can unlock productivity gains.

In summary, the advantages of describing AMAs in a

streaming language, and more specifically in StreamQRE, over

describing them in a general purpose language, are:

• A more natural way to reason about the algorithm’s

streaming operation, which highlights opportunities to re-

use computation results.

• A declarative way to program the algorithm, which en-

ables reasoning at the stream level and how it needs to

be divided hierarchically and processed, rather than get

bogged down in item-level computations.

• An automatic implementation of the algorithm that guar-

antees bounded memory, runtime, and energy consump-

tion per data item that is independent of the input signal

length. The algorithm designer is relieved from having to

explicitly maintain state.

• An automatic way to obtain an upper bound on the cost of

a QRE as a function of the costs of the basic operations.

This cost can model power consumption, for example.

IV. INTRODUCTION TO QRES

This section is an introduction to the language of Quan-
titative Regular Expressions (QREs). First, we present the

semantic model of streaming functions for describing stateful

streaming transformations. Then, we introduce the language

of QREs and define some derived constructs that will be used

later to specify the arrhythmia detection algorithm. Finally, we

discuss an efficient implementation of QREs as a Java library.

A. Streaming functions

We introduce here the basic semantic objects for our lan-

guage, called streaming functions, which are partial functions

from sequences of input data items to an output value. Each

streaming function has an associated rate that captures its

domain, that is, as the function reads the input data stream,

the rate characterizes the prefixes that trigger the production

of the output. In our language, the rates are required to be

regular, captured by symbolic regular expressions, which lead

to decision procedures for constructing well-typed expressions.

As a motivating example, consider a stream that consists of

integers and special separator symbols #:

3 −5 4 1 −3 # 7 −2 9 # 1 −4

Given such an input data stream, suppose we want to specify

the transformation illutrated below that outputs at every occur-

rence of the # symbol the sum of all integers from the start

of the stream.

input : 3 −5 4 1 −3 # 7 −2 9 # 1 −4
output : 0 14

This transformation can be modeled by a streaming function,

i.e. a partial function f : D∗ ⇀ Z, where D = Z∪{#} is the

set of input data items. For example, f(3−5 4 1−3 #) = 0
and f(3−5 4 1−3 # 7−2 9 #) = 14. The rate of f is the

set of all finite sequences over D that end with #, which

is denoted by the regular expression D∗ ·#. This rate is also

captured by the equivalent expression (Z∗ ·#)+, where Z∗ ·#
matches a block of integers terminated by a # symbol.

Suppose now that we want to process further the output

stream produced by f in order to emit at every occurrence of

a negative output of f the count of all negative outputs of f so

far. This second processing state is described by a streaming

function g : Z∗ ⇀ N, whose rate is denoted by the regular

expression Z∗ ·Z<0, that counts the number of negative input

elements and emits the count at every occurrence of a negative

input item. We write Z<0 for the set of negative integers. The

overall computation is described by the streaming composition
f � g, which supplies the stream of outputs produced by f
as the input stream to g.

B. Quantitative Regular Expressions

We will introduce now the language of Quantitative Regular
Expressions (QREs) for representing stream transformations.

For brevity, we also call these expressions queries. A query

represents a streaming transformation whose domain is a

regular set over the input data type.

To define queries, we first choose a typed signature which

describes the basic data types and operations for manipulating

them. We fix a collection of basic types, and we write A,B, . . .
to range over them. This collection contains the type B of
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boolean values, and the unit type U whose unique inhabitant

is denoted by def. It is also closed under the cartesian product

operation × for forming pairs of values. Typical examples of

basic types are the natural numbers N, the integers Z, the

rationals Q, and the real numbers R. We write a : A to mean

that a is of type A. For example, we have def : U.

We also fix a collection of basic operations on the basic

types, for example the k-ary operation op : A1×· · ·×Ak → B.

The identity function on D is written as idD : D → D, and

the operations π1 : A × B → A and π2 : A × B → B
are the left and right projection respectively. We assume that

the collection of operations contains all identities and projec-

tions, and is closed under pairing and function composition.

To describe derived operations we use a variant of lambda

notation that is similar to Java’s lambda expressions [32]. That

is, we write (A x) -> t(x) to mean λx:A.t(x), which is an

(anonymous) function that takes an argument x of type A and

returns the value t(x). We write (A x, B y, C z)->t(x, y, z)
to mean λx:A, y:B, z:C.t(x, y, z). For example, the identity

function on D is (D x)->x, the left projection on A× B is

(A x, B y)->x, the right projection on A×B is (A x, B y)->
y, and (D x)->def is the unique function from D to U. We

will typically use lambda expressions in the context of queries

from which the types of the input variables can be inferred,

so we will omit the types as in (x, y)->x.

For every basic type D, assume that we have fixed a

collection of atomic predicates, so that the satisfiability of

their Boolean combinations (built up using the Boolean op-

erations: and, or, not) is decidable. We write ϕ : D → B

to indicate that ϕ is a predicate on D, and we denote by

trueD : D → B the predicate that is always true. The

predicate ((Z x) -> x > 0) : Z → B is true of the strictly

positive integers.

Example 4.1: We consider a Boolean ventricular heart

signal, where the data items are values of type B = {0, 1}.

A value 1 indicates a ventricular contraction of the heart, and

a value 0 indicates the absence of a contraction. The signal

is sampled uniformly with a sampling rate of f Hz. The

predicates ¬isV and isV test if a Boolean value is zero or

one respectively. �
For a type D, we define the set of symbolic regular

expressions over D [33], denoted RE〈D〉, with the grammar:

r ::= ϕ | [predicate on D]

ε | [empty sequence]

r � r | [nondeterministic choice]

r · r | [concatenation]

r∗ [iteration].

The concatenation symbol · is sometimes omitted, that is, we

write rs instead of r · s. The expression r+ (iteration at least

once) abbreviates r · r∗. We write r : RE〈D〉 to indicate the r
is a regular expression over D. Every expression r : RE〈D〉 is

interpreted as a set �r� ⊆ D∗ of finite sequences over D:

�ϕ� � {d ∈ D | ϕ(d) is true}

and the rest of the regular construct have their usual inter-

pretations. Two expressions are said to be equivalent if they

denote the same language.
Example 4.2: The symbolic regular expression (¬isV)∗·isV

denotes sequences of samples that contain a single ventricular

beat (contraction) at the end. �
A string can be matched efficiently against a regular ex-

pression if there’s only one way in which it could match the

expression. Intuitively, this reduces the number of possible

matches that have to be kept track of. The notion of unam-
biguity for regular expressions [34] is a way of formalizing

the requirement of uniqueness of parsing. The languages L1,

L2 are said to be unambiguously concatenable if for every

word w ∈ L1 · L2 there are unique w1 ∈ L1 and w2 ∈ L2

with w = w1w2. The language L is said to be unambiguously
iterable if for every word w ∈ L∗ there is a unique integer

n ≥ 0 and unique wi ∈ L with w = w1 · · ·wn. The definitions

of unambiguous concatenability and unambiguous iterability

extend to regular expressions in the obvious way. Now, a

regular expression is said to be unambiguous if it satisfies

the following:

1) For every subexpression e1 � e2, e1 and e2 are disjoint.
2) For every subexpression e1 · e2, e1 and e2 are unambigu-

ously concatenable.

3) For every subexpression e∗, e is unambiguously iterable.

Example 4.3: Consider the finite alphabet Σ = {a, b}. The

regular expression r = (a � b)∗b(a � b)∗ denotes the set of

sequences with at least one occurrence of b. It is ambiguous,

because the subexpressions (a � b)∗b and (a � b)∗ are not

unambiguously concatenable: the word w = ababa matches r,

but there are two different splits w = ab ·aba and w = abab ·a
that witness the ambiguity of parsing. The regular expressions

a∗b(a�b)∗ and (a�b)∗ba∗ are both equivalent to r, and they

are unambiguous. �
Checking whether a regular expression is unambiguous can

be done in polynomial time. For the case of symbolic regular

expressions this results still holds, under the assumption that

satisfiability of the predicates can be decided in unit time [35].
After these preliminaries, we now define quantitative regular

expressions, or queries, recursively. Informally, a query f is a

symbolic regular expression, called the rate of f and written

R(f), with a way to compute quantities over the strings that

match the expression. The rate denotes the domain of the

transformation that f represents. The definition of the query

language has to be given simultaneously with the definition of

rates (by mutual induction), since the query constructs have

typing restrictions that involve the rates. We annotate a query

f with a type QRE〈D,C〉 to denote that the input stream has

elements of type D and the outputs are values of type C.
1) Atomic queries: The basic building blocks of queries are

expressions that describe the processing of a single data item.

Suppose ϕ : D → B is a predicate over the data item type D
and op : D → C is an operation from D to the output type C.

Then, the atomic query atom(ϕ, op) : QRE〈D,C〉, with rate

ϕ, is defined on single-item streams that satisfy the predicate

ϕ. The output is the value of op on the input element.
Notation: It is very common for op to be the identity

function, and ϕ to be the always-true predicate. So, we
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abbreviate the query atom(ϕ, idD) by atom(ϕ), and the

query atom(trueD) by atom().
Example 4.4: For the Boolean ventricular heart signal, the

query that matches a single item that is a heartbeat and returns

nothing is f = atom(isV, x->def). The type of f is QRE〈B,U〉
and its rate is isV. �

2) Empty sequence: The query eps(c) : QRE〈D,C〉, where

c is a value of type C, is only defined on the empty sequence

ε and it returns the output c.
3) Iteration: Suppose that we want to iterate a computation

f : QRE〈D,A〉 over consecutive subsequences of the input

stream and aggregate all these output values sequentially using

an initial value c : B and an aggregation operation op : B ×
A → B. The iteration query

iter(f, c, op) : QRE〈D,B〉
describes this computation. More specifically, we split the

input stream w into subsequences w = w1 w2 . . . wn, where

each wi matches f. The output values a1 a2 · · · an with

ai = f(wi) are combined using the list iterator left fold with

start value c : B and aggregation operation op : B ×A → B.

This can be formalized with the combinator

fold : B × (B ×A → B)×A∗ → B,

which takes an initial value b : B and a stepping map op :
B ×A → B, and iterates through a sequence of values of A:

fold(b, op, ε) = b

fold(b, op, γa) = op(fold(b, op, γ), a)

for all sequences γ ∈ A∗ and all values a ∈ A. For example,

fold(b, op, a1a2) = op(op(b, a1), a2).
In order for iter(f, c, op) to be well-defined as a function,

every input stream w that matches iter(f, c, op) must be

uniquely decomposable into w = w1w2 . . . wn with each wi

matching f. This requirement can be expressed equivalently

as: the rate R(f) is unambiguously iterable.

Example 4.5: For the Boolean heart signal, the query g

below matches a sequence of data items that are not heartbeats

and returns their count:

f : QRE〈B,B〉 = atom(¬isV)
g : QRE〈B,N〉 = iter(f, 0, (x, y)->x+ 1)

The rate of f is ¬isV, and the rate of g is (¬isV)∗. �
4) Combination and application: Assume the queries f

and g describe stream transformations with outputs of type

A and B respectively that process the same set of input

sequences, and op is a function of type A×B → C. Then,

combine(f, g, op) : QRE〈D,C〉
describes the computation where the input is processed accord-

ing to both f and g in parallel and their results are combined

using op. This computation is meaningful only when both

f and g are defined on the input sequence. So, we demand

w.l.o.g. that the rates of f and g are equivalent.

This binary combination construct generalizes to an arbi-

trary number of queries. For example, we write

combine(f, g, h, (x, y, z)-> op(x, y, z))

for the ternary variant. In particular, we write apply(f, op)
for the case of one argument.

Example 4.6: For the Boolean heart signal, suppose g counts

all heartbeats seen so far and h counts all data items. Then,

the query k below computes the ratio of these values.

f : QRE〈B,N〉 = atom(trueB, x->if x then 1 else 0),

g : QRE〈B,N〉 = iter(f, 0, (x, y)->x+ y)

h : QRE〈B,N〉 = iter(atom(), 0, (x, y)->x+ 1)

k : QRE〈B,Q〉 = combine(g, h, (x, y)->x/y)

The rate of f is true and the rates of the queries g, h and k

are all equal to true∗. �
5) Quantitative concatenation: Suppose that we want to

perform two streaming computations in sequence: first execute

the query f : QRE〈D,A〉, then the query g : QRE〈D,B〉, and

finally combine the two results using the operation op : A ×
B → C. The query

split(f, g, op) : QRE〈D,C〉
describes this computation. More specifically, we split the

input into two parts w = w1w2, process the first part w1

according to f with output f(w1), process the second part w2

according to g with output g(w2), and produce the final result

op(f(w1), g(w2)) by applying op to the intermediate results.

In order for this construction to be well-defined as a

function, every input w that matches split(f, g, op) must

be uniquely decomposable into w = w1w2 with w1 matching

f and w2 matching g. In other words, the rates of f and g

must be unambiguously concatenable.

The binary split construct extends naturally to more than

two arguments. For example, the ternary version would be

split(f, g, h, (x, y, z)-> op(x, y, z)).
Example 4.7: For the Boolean heart signal, suppose that

g matches sequences that end with a heartbeat and h counts

the size of sequences without any heartbeat. Then, the query k

below outputs the time that has elapsed since the last heartbeat.

f : QRE〈B, Ut〉 = iter(atom(), def, (x, y)->def)

g : QRE〈B, Ut〉 = split(f, atom(isV), (x, y)->def)

h : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y)->x+ 1)

k : QRE〈B,N〉 = split(g, h, (x, y)-> y)

The rate of f is true∗, that of g is true∗ · isV, the rate of h

is (¬isV)∗, and the rate of k is true∗ · isV · (¬isV)∗. �
6) Streaming composition: A natural operation for query

languages over streaming data is streaming composition: given

two streaming queries f and g, f�g represents the computa-

tion in which the stream of outputs produced by f is supplied

as the input stream to g. Such a composition is useful in setting

up the query as a pipeline of several stages. We allow the

operation � to appear only at the top-level of a query. So, a

general query is a pipeline of �-free queries. At the top level,

no type checking needs to be done for the rates, so we do not

define the function R() for queries f� g.

Example 4.8: For the Boolean heart signal, suppose we

want to emit at every heartbeat the average heart rate over the

entire stream. We will describe this computation as a two-stage
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pipeline. The first stage (query h below) produces a sequence

of natural numbers which correspond to the number of 0’s

between two consecutive 1’s (heartbeats).

f : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y)->x+ 1)

g : QRE〈B,N〉 = split(f, atom(isV), (x, y)->x)

h : QRE〈B,N〉 = split(iter(g, def, (x, y)->def),
g, (x, y)-> y)

The rate of f is (¬isV)∗, the rate of g is (¬isV)∗ · isV, and

the rate of h is ((¬isV)∗ · isV)+. The second stage (query n

below) processes a stream of these numbers to compute the

average heart rate in beats per minute.

k : QRE〈N,N〉 = iter(atom(), 0, (x, y)->x+ y)

l : QRE〈N,N〉 = iter(atom(), 0, (x, y)->x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y)->x/y))

n : QRE〈Q,Q〉 = apply(m, x-> (60 · f)/x)
where f is the sampling rate in Hz. The query m computes

the average number of samples between two consecutive

heartbeats. The top-level query is the pipeline h� n. �
7) Global choice: Given queries f and g of the same type

with disjoint rates r and s, the query or(f, g) applies either f

or g to the input stream depending on which one is defined.

The rate of or(f, g) is the union r�s. This choice construction

allows a case analysis based on a global regular property of

the input stream.

Example 4.9: In our Boolean heart example, suppose we

want to compute a statistic across days, where the contribution

of each day is computed differently depending on whether or

not an abnormally short interval between consecutive heart-

beats occured or not. Then, we can write a query summarizing

the daily activity with a rate capturing normal days (the ones

without any short interval) and a different query with a rate

capturing abnormal days, and iterate over their disjoint union.

Consider the stream of interval lengths between consecutive

heartbeats, i.e. the output stream of query h defined in Exam-

ple 4.8. We assume that T is the threshold for an abnormally

short interval between two consecutive heartbeats. Query h

below computes the smallest interval length for sequences with

at least one abnormally short interval:

f : QRE〈N,Q〉 = iter(atom(x->x > T ),∞,min)

g : QRE〈N,Q〉 = iter(atom(),∞,min)

h : QRE〈N,Q〉 = split(f, atom(x->x ≤ T ), g,min)

The rate of f is (x > T )∗, the rate of g is true∗, and the rate

of h is (x > T )∗ · (x ≤ T ) · true∗. Query m below computes

the average interval length for sequences with no abnormally

short interval:

k : QRE〈N,N〉 = iter(atom(x->x > T ), 0, (x, y)->x+ y)

l : QRE〈N,N〉 = iter(atom(x->x > T ), 0, (x, y)->x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y)->x/y)

The rates of k, l and m are all equal to (x > T )∗. The top-level

query is then or(h, m). �

C. Derived constructs

The core language of Section IV-B is expressive enough to

describe many common stream transformations. We present

below several derived constructs.

1) Matching without output: Suppose r is an unambiguous

symbolic regular expression over the data item type D. The

query match(r), whose rate is equal to r, does not produce

any output when it matches. This is essentially the same as

producing def as output for a match. The match construct

can be encoded as follows:

match(ϕ) � atom(ϕ, x->def)

match(r1 � r2) � or(match(r1), match(r2))

match(r1 · r2) � split(match(r1), match(r2), (x, y)->def)

match(r∗) � iter(match(r), def, (x, y)->def)

An easy induction establishes that R(match(r)) = r.

2) “Until” Iteration: Suppose that φ and ψ are disjoint

predicates on the input data type D, the function op : C×D →
C is an aggregation operation, and c : C is the initial

aggregate. The query iterUntil(φ, ψ, c, op) aggregates a

sequence of data items that satisfy φ and stops when an item

that satisfies ψ is found. It is encoded as:

iterUntil(φ, ψ, c, op) � split(iter(atom(φ), c, op),

atom(ψ), (x, y)->x)

The query has type QRE〈D,C〉 and rate φ∗ · ψ.

3) Stream Annotation: Suppose that the input stream has

items of type D, f is a query of type QRE〈D,C〉, and we

want to produce an output stream with items of type E in the

following way: when the query f produces an output (upon

consumption of the input stream) apply op2 : D×C → E to

the last input element and its output to get the final result,

and when the query f is undefined apply op1 : D → E
to the last input element. This computation is described by

the query annt(f, op1, op2) : QRE〈D,E〉 with rate D+. This

annotation query can be encoded using the regular constructs

of Section IV-B, but the encoding is complex and inefficient,

so we provide a custom efficient implemenation.

a) Tumbling windows: The term tumbling windows is

used to describe the splitting of the stream into contiguous

non-overlapping subsequences [36]. Suppose we want to de-

scribe the streaming function that iterates f at least once and

reports the result given by f at every match. The following

query expresses this behavior:

iterLast(f) � split(match(R(f)∗), f, (x, y)-> y).
The rate of iterLast(f) is equal to R(f)+.

4) Efficient Sliding Windows: Suppose we want to apply

the query f : QRE〈D,A〉 to consecutive nonoverlapping parts

of the input, and efficiently aggregate the intermediate results

over a sliding window of size W . That is, the W most recent

output values of f are aggregated to produce the final output.

The aggregation is described by an initial aggregate c : B and

three functions: an insertion operation ins : B × A → B
describes how to add a new value of type A to the aggregate

(of type B), the removal operation rmv : B×A → B describes
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// Process a single value: rate Double
QRe<Double, Double> f =

Q.atomic(x -> true, x -> x);

// Sum of sequence of values: rate Double*
QRe<Double, Double> sum =

Q.iter(f, 0.0, (x,y) -> x+y);

// Length of sequence of values: rate Double*
QRe<Double, Long> count =

Q.iter(f, 0L, (x,y) -> x+1);

// Average of sequence of values: rate Double*
QRe<Double, Double> avg =

Q.combine(sum, count, (x,y) -> x/y);

Iterator<Double> stream = ... // input stream

// evaluator for the query
Eval<Double, Double> e = avg.getEval();

// execution loop
Double output = e.start();
// e.start() returns null, if undefined
while (stream.hasNext()) {

Double d = stream.next();
output = e.next(d);
// e.next(d) returns null, if undefined

}

Fig. 4: StreamQRE Library in Java: Computing the average of

a sequence of values.

how to remove a value from the aggregate, and the finalization
operation op : B → C computes the final result from the

aggregate. This computation is described by the query

wnd(f,W, c, ins, rmv, op) : QRE〈D,C〉,
whose rate is equal to R(f)+. This query can be encoded using

the regular constructs of Section IV-B and an additional data

type for FIFO queues (in order to maintain the buffer of values

of type A that are currently in the active window).

D. A Java Library of QREs
StreamQRE has been implemented as a Java library [18]

in order to facilitate the easy integration with user-defined

types and operations. The implementation covers all the core

constructs of Section IV-B, and also provides optimizations

for the derived constructs of Section IV-C (matching without

output, “until” iteration, stream annotation, etc.).
Figure 4 gives a simple example that illustrates how to

program with the StreamQRE Java library. The query avg
describes the computation of the average of a sequence of

values of type Double. The method getEval, which stands

for “get evaluator”, is used to obtain an object that encapsu-

lates the evaluation algorithm for the query. On this evaluator

object, the methods start and next are used to initialize the

algorithm and consume data items respectively.

V. AN ICD ARRHYTHMIA MONITORING ALGORITHM

We now describe in details an Arrhythmia Monitoring

Algorithm (AMA) found in one of the ICDs on the market

Three consecutive short intervals &
8/10 intervals are short

Begin Duration (1 to 5sec)

6 out of every 10 intervals are short No Therapy

V rate > A rate + 10 bpm Therapy

Afib Rate &
V rate unstable &
Onset is gradual

Therapy

No Therapy

YES

NO

YES

NO

NO

YES

Duration

Fig. 5: Boston Scientific discrimination algorithm

today [17]. All ICD AMAs on the market today take the form

of a decision tree, such as the one in Fig. 5. Each node in

the tree is a discriminator, which computes one feature of

the input signal and decides, on its basis, how to branch.

Thus, each discriminator returns a decision, Yes or No. We

chose to present this particular AMA because variants on

its discriminators can be found in the AMAs of all devices

on the market. For example, all devices measure average

heart rate, compare atrial and ventricular rates, measure rate

variability, onset of arrhythmia, etc. The differences are in how

variability is defined (variance or sum of absolute differences,

for example), the size of windows for computing quantities,

the way they are combined in the decision tree, etc.

A. Discriminators

Recall that the input to the AMA is a discrete-time boolean

signal, which is obtained by running a peak detector on

the discrete-time real-valued EGM signal. The peak detector

outputs a 1 at peaks, and 0 otherwise. The signals we work

with in this paper have a sampling period of 1ms. Formally,

let B = {0, 1}. At every time t ∈ N, the AMA receives a data

item s of the following form

s = (V,A, t) ∈ D := B× B× N (1)

where V = 1 indicates there is a ventricular beat at time t
(and V = 0 indicates that there is not). Similarly for A. We
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Fig. 6: Input stream from one channel. Measured electrogram (top figure) and corresponding Boolean stream (bottom figure).

In the Boolean stream, spikes represent beats, and Ik is an interval of time between beats. Duration is a fixed time period,

here set to 5 seconds.

will find the need to refer to the ventricular boolean signal

separately, and we write V ∈ B∗ to denote it. It will also be

called the ventricular channel. Similarly, A ∈ B∗ is the atrial
channel. See Fig. 6. Given an item s, the function call s.V
returns its first element; similarly for s.A and s.t.

An (atrial or ventricular) interval in a given channel is the

interval of time between two consecutive beats. Its length is

denoted by I , and is always an integer measured in millisec-

onds (ms). The average (atrial or ventricular) rate is the inverse

of the average interval length.

The decision tree of the AMA we describe is shown in

Fig. 5. It is made up of the following discriminators.

1) Three Consecutive Short Intervals: Three consecutive

short intervals are required to initiate rhythm analysis, as

they indicate a potentially accelerating rhythm. Therefore, this

discriminator checks if three consecutive intervals are shorter

than some pre-specified threshold Tcsi. Referring to Fig. 6:

CSI := (I5 < Tcsi) ∧ (I6 < Tcsi) ∧ (I7 < Tcsi) (2)

2) 8/10 Short Intervals: A rhythm that becomes fast for a

few beats then slows down again is not fatal and so should not

cause therapy to be delivered. To estimate whether the current

rhythm is sustained, this discriminator checks whether 8 out of

10 intervals are shorter than some threshold T8/10. Referring

to Fig. 6:

Short8outof10 := |{Ik : 5 ≤ k ≤ 14, Ik < T8/10}| ≥ 8 (3)

3) Sudden Onset: Ventricular Fibrillation (VF), which is

fatal, usually occurs suddenly, whereas a tachycardia that ac-

celerates gradually is usually non-fatal. The Onset discrimina-

tor quantifies the suddenness of tachycardia onset as follows. It

operates in two steps, which process a window of 2m intervals.

To help explain this discriminator using Fig. 6, we will assume

m = 4. In the first step, it detects the ventricular beat in

the first 4 intervals (I1, . . . , I4) at which the interval length

decreased the most. This is the pivot beat. If the amount of

decrease is greater than some threshold, Step I declares Onset.

In the second step, the algorithm computes the differences be-

tween the average of 4 pre-pivot beats ((I1+ . . .+I4)/4 := μ)

and each of 4 post-pivot beats (I5, . . . , I8). I.e., it computes

d5 = μ−I5, . . . , d8 = μ−I8. If at least 3 of these 4 differences

d5, . . . , d8 is greater than a threshold, Step II declares Onset. If

both stages declare Onset, the discriminator declares Sudden

Onset. In our implementation, we simplify things by taking

the pivot to be the middle beat in the window of 2m = 8
intervals. So SuddenOnset is computed as:

SO-StepI := Ipost−pivot < α · Ipre−pivot (4)

SO-StepII := |{dk : dk > To2}| ≥ 3 (5)

SuddenOnset := SO-StepI ∧ SO-StepII

When both Three Consecutive Short Intervals and 8/10 Short

Intervals match, then a Duration is started. A Duration is a

fixed-length time period (e.g., 5sec) during which the algo-

rithm will continue to monitor the rhythm to see whether the

arrhythmia is sustained, or it slows down and dies out. In

the latter case, no therapy is delivered. See Fig. 6. During

Duration, the following four discriminators are evaluated.

4) A/V Rate Comparison: If the ventricles have more beats

than the atria, this is an almost sure sign that the arrhythmia

is ventricular in origin (i.e., the ventricles are driving the atria

and not the other way around). This discriminator compares

the average ventricular heart rate rV with the average atrial

heart rate rA, where the average is computed over the last 10

intervals in the Duration window:

AVRate := rV > rA + 10bpm

5) Sliding 6/10: Sometimes an arrhythmia terminates on

its own, which is preferable to having the device terminate it

with a shock. This discriminator continuously checks whether
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6 out of every 10 intervals are short; if any 10 intervals fails

this check, the discriminator declares No Therapy.

Sliding6outof10 := For every 10 intervals I1, . . . , I10

|{Ik : Ik < T6/10}| ≥ 6

6) Stability: VF is an unstable rhythm, meaning that the

interval lengths during fibrillation vary greatly. The Stability

discriminator defines rhythm stability as being the variance in

ventricular intervals’ lengths during Duration. If variance is

below a threshold Tstab, then the rhythm is deemed stable.

With Ī denoting the average interval length,

Stability :=
1

n

n∑

k=1

(Ik − Ī)2 ≤ Tstab

7) AFib Rate: Atrial Fibrillation (AF) is an atrially-driven

rhythm with a high rate, and is one possible source of

misclassification for the AMA. To circumvent this issue, this

discriminator measures the atrial rate throughout the Duration.

As long as at least 4/10 intervals are shorter than the AF

threshold Taf , this discriminator decides that the current

rhythm is in fact AF and therapy should be withheld.

SlidingAFib := For every 10 interval lengths I1, . . . , I10

|{Ik : Ik < Taf}| ≥ 4

VI. QRE IMPLEMENTATION OF THE ARRHYTMIA

MONITORING ALGORITHM

The QRE implementation of the BSC algorithm of SectionV

is divided into four main stages. The first two stages annotate

the input signal with additional information: the lengths of

the intervals between heartbeats, and some sliding-window

statistics over them. The annotated stream is passed to the

later stages in order to compute the discriminators for decid-

ing whether therapy should be delivered or not. We give a

high-level overview of each stage in Section VI-A, as well

as more detailed descriptions and QREs implementations in

Sections VI-B to VI-E.

A. Overview of Implementation Stages

All discriminators described in Section V use the interval

lengths between consecutive heartbeats. In order to simplify

the later computations, it is useful to annotate the stream

with this extra information so that it is readily available in

the next processing steps. Similarly, there are some sliding-

window statistics that are required for the discriminators “A/V

Rate Comparison”, “Sliding 6/10” and “AFib Rate”. These

quantities require looking at the 10 previous intervals to be

computed. The specification of the algorithm is much easier

if this information is already present in the stream, which

obviates the need to look back 10 intervals into the past. This

motivates our design choice to always annotate the stream with

these useful sliding-window statistics.

The ICD’s AMA receives beats from the atrium and the

ventricle. The input stream consists of data items that are of

the form shown in (1). The implementation is a multi-stage

pipeline, where each stage is a QRE. Each stage feeds its

1 1 1
STAGE 0

(1, I) (1, I) (1, I)
STAGE 1

(1, I, w10fast, w10sum)
(1, I, w10fast, w10sum)

…

STAGE 2

(1, I, w10fast, w10sum, SO, BD)
(1, I, w10fast, w10sum, SO, BD)

STAGE 3

THERAPY NO THERAPY

(1, I, w10fast, w10sum)

…

……

……

……

……

(1, I, w10fast, w10sum, SO, BD)

NO THERAPY

Fig. 7: The overall detection algorithm, shown for the ventricular
channel and with the timestamp sequence omitted. The top stream
gives the input boolean signal. Streams below it are annotated with
the information in bold font. I = Interval Length, w10fast = number
of last 10 intervals that are short, w10sum = sum of last 10 interval
lengths, SO = Sudden Onset flag, BD = Begin Duration flag.

1 1 1

(1, 253) (1, 190) (1, 200)

……

…

I = 253 I = 190

1

I = 200

(1, 260)V0 =

V =

…

Fig. 8: Stage 0 annotates both channels V and A with interval
lengths, i.e. the number of 0s between 1s. Here it is shown operating
on the ventricular channel.

output stream to the following stage for further annotation

and processing. They are:

• Stage 0: pre-processing stage which annotates the input

stream s with the lengths of the ventricular and atrial

intervals. See Figure 8. The output from this stage will

be used in all subsequent stages. Call the output stream

of this stage s0.

• Stage 1: augments its input stream s0 with two pieces of

information. The first is the total duration of every win-

dow of 10 consecutive intervals, in both channels. This

will be used for the A/V Rate Comparison discriminator.

The second piece of information is the number of short3

intervals in every window of 10 consecutive intervals, in

both channels. This will be used for the Sliding 6/10 and

AFib Rate Comparison discriminators. See Figure 9 for

3I.e., those that are shorter than a pre-defined threshold T6/10.
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(1, 253) (1, 190) (1, 200)
…

(1, 260)V0 = (1, 203)

  0         +    1       +    …   +           1

10 intervals

260     +     253    +    …   +        190
∑

Ik∑
(Ik < 255?)

(w10sum, w10short) = (3640, 2)

0         +     1        +    …   +        1
253     +     242    +    …   +        200

(w10sum, w10short) = (3580, 3)

1         +     1        +    …   +        1
241     +     240    +    …   +        203

(w10sum, w10short) = (3530, 5)

V1 = …, (1,190, 3640, 2), (1, 200, 3580, 3), (1, 203, 3530, 5), …

…

…

Fig. 9: Stage 1, shown acting on the V channel, augments V0 with
the total duration counter w10sum and the short intervals counter
w10short, computed over the last 10 intervals. Here, the threshold
T6/10 = 255.

the computation of both quantities on the V channel. Call

the output stream of this stage s1.

• Stage 2: detects the beginning of Duration, the period

of time during which the rhythm is monitored for a

fixed amount of time to confirm whether a suspected

arrhythmia is indeed sustained and ventricular in ori-

gin. For Duration to be declared and monitored, both

the Three Consecutive Short Intervals and 8/10 Short

Intervals discriminators must return Yes. If Duration is

initiated as a result, the input stream s1 is annotated

with a BD marker to indicate the start of Duration. See

Fig. 10. This stage also computes the Onset discriminator

and annotates the stream with flag SO = 1 if it is met.

Call the output stream of this stage s2.

• Stage 3: final stage, has input stream s2. It computes

all discriminators in Duration: Stability, Sliding 6/10, AV

Rate Comparison, and AFib Rate. Based on all these and

the value of Onset, the stage makes a final decision of

Therapy or No Therapy. See Figure 10.

REMARK. Because a QRE describes a streaming algorithm,

each of the above stages operates continuously and issues an

output with every new data item (including ⊥ if the string

so far doesn’t match). So for example, it is possible for

Stage 2 to declare the start of Duration several times in a

row, i.e., to output BD = 1 several times. See Fig. 14 for

an example. The first Duration to end in a Therapy decision

in Stage 3 will cause therapy to be scheduled, and the other

Durations in progress are aborted. On the other hand, if the first

Duration does not end in therapy, the subsequent ones continue

to be monitored to their conclusion. Thus one important

consequence of this streaming implementation is that it is

possible for the QRE to track multiple simultaneous potential

…

(1, 190, 3640, 2)V1 =

Three 
Consecutive 

Short 
Intervals

14 intervals

Sudden Onset I

8/10 Short Intervals

Stability

5 seconds = Duration length

(1, 301, 3500, 9)

Sudden Onset 
II

BD = 1 (Begin Duration)

SO = 1 (Sudden Onset)

Sliding 6/10 Short 
Intervals

AV Rate Comparison

AFib Rate

THERAPY 

V2 = …, (1, 301, 3500, 9, SO = 1, BD = 1), (1, 257, 3400, 7, 0, 0), …

STAGE 2 
Computations

STAGE 3 
Computations

V3 = …, THERAPY,    THERAPY,    NO THERAPY, …

500    350     355    342   350   350   348  342  349   355   325    343    351   341 

350 < α · 500

IV =

Ik ≤ Tcsi

Ik ≤ T8/10 = 350

Fig. 10: Stages 2 and 3. The rectangles show the computed discrimi-
nators, and their width covers the part of the input stream used in the
computation. E.g., “8/10 Short Intervals” uses the 10 intervals above
its box, while Stability uses all intervals in the Duration window.
Downward blue arrows indicate when a quantity is computed. E.g.,
the BD marker is computed every 14 intervals. SO and BD are
added to stream V1 to obtain stream V2. The A channel is not
shown, though it enters in the calculation of AV Rate Comparison
discriminator.

arrhythmias. In this way, no potentially fatal arrhythmia is

missed.

We will explain now each stage in detail, and present the

precise implementation in the StreamQRE language. Recall the

QRE constructs of Section IV and the type of the input data

items (1). Some computations are performed in the same way

both on the atrial and the ventricular channel. In such cases

we will only give the queries that describe the processing of

the ventricular channel for the sake of brevity.

B. Stage 0: Annotate interval lengths

This stage annotates the stream with heartbeat interval

lengths, that is, the lengths of the sequences between two

consecutive heartbeats. So, the length of an interval of the

form 100 · · · 001 is the number of 0s between the 1s. This

computation is performed both for the ventricular and atrial

channel. The regular expression that describes a signal that has

a single heartbeat at the end is 0∗1. The query for computing

the ventricular interval lengths is the following:

lincr = (x, y)->x+ 1, of type N× N → N

intV = iterUntil(¬isV, isV, 0, lincr)
allIntV = iterLast(intV) // rate ((¬isV)∗ · isV)+
annt0V = annt(allIntV, x->x, (x, c)->x[IV := c])

stage0 = annt0V� annt0A
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The query intV iterates over the 0s of the ventricular channel

(predicate ¬isV) while incrementing a counter until it encoun-

ters a 1 (predicate isV). The query allIntV iterates intV over

consecutive nonoverlapping subsequences, thus processing all

ventricular intervals. The query annt0V annotates the input

elements with the interval values IV calculated by allIntV,

and annt0A does the same with the atrial channel. See Fig. 8.

Therefore, the output stream s0 from this stage consists of

data items of the following form:

s0 = (V, IV , A, IA, t) ∈ D0 = (B× N)2 × N (6)

C. Stage 1: Sudden Onset and Short Intervals

The input stream for this stage consists of items of the form

shown in (6). In this state, we first calculate the sum of interval

lengths over a sliding window that consists of 10 intervals, and

we annotate the stream with this information (see Fig. 9):

blockV = split(match((¬isV)∗), isV, (x, y)-> y.IV )
wndSumV = wnd(blockV, 10, 0, (x, y)->x+ y)

stg1SumV = annt(wndSumV, x->x, (x, c)->x[SumV := c])

The query blockV matches 0∗1 in the ventricular channel and

returns the length of the interval that ends with the matched 1.

The query wndSumV executes blockV over a sliding window

of size 10 and accumulates the interval lengths by summing

them up. The query stg1SumV annotates the stream with all

these sliding-window sums.

In the second part of this stage we also calculate the number

of short ventricular intervals over a sliding window of size 10,

where “short” is defined as being of length less than T6/10.

shortV = apply(blockV,

x->if (x ≤ T6/10) then 1 else 0)

wndShortV = wnd(shortV, 10, 0, (x, y)->x+ y)

stg1ShortV = annt(wndShortV, x->x,
(x, y)->x[ShrtV := c])

The query shortV applies a thresholding operator to the

output of blockV. As before, shortV is run in a sliding-

window fashion using the wnd construct, and the output is

annotated onto the stream using annt.

The same two computations are performed on the atrial

channel, but with a different threshold, Tafib , for stg1ShortA.

The final query for this state is the streaming composition of

the above channel-specific computations:

stage1 =

stg1SumV� stg1ShortV� stg1SumA� stg1ShortA

The output stream s1 of this stage consists of items (with

re-arrangement) of the following form:

s1 = (V, IV , SumV, ShrtV,A, IA, SumA, ShrtA, t)

∈ D1 = (B× N3)2 × N (7)

D. Stage 2: Sudden Onset and Begin Duration

This stage computes the Sudden Onset discriminator and

Begin Duration (BD) marker at every ventricular beat. In order

to do this, the last 14 ventrical intervals I1, I2, . . . , I14 have

to be considered, as shown in Fig. 10.

• The first 4 intervals I1, I2, I3 and I4 are used for Step I

of “Sudden Onset”, defined in (4).

• The next 4 intervals I5, I6, I7 and I8 are used for Step

II of “Sudden Onset”, defined in (5).

• The intervals I5, I6, I7 are used for the “Three Consec-

utive Intervals” discriminator, defined in (2).

• The last 10 intervals I5, I6, . . . , I14 are used for the “8/10

Short Intervals” discriminator, defined in (3).

This stage splits the stream into consecutive intervals, and

evaluates all the relevant discriminators over the last 14

intervals using the operation opStage2 : N14 → B × B. The

input to opStage2 is a vector of 14 ventricular interval lengths,

and the output is a pair of Boolean values: the first component

indicates the presence of “Sudden Onset” (SO), and the second

component indicates the presence of “Begin Duration” (BD).

sobd = split(blockV, . . . , blockV,

(x1, . . . , x14)-> opStage2 (x1, . . . , x14))

wndsobd = split(match(R(blockV)∗), sobd, π2)

stage2 = annt(wndsobd, x->x,
(x, 〈c1, c2〉)->x[SO := c1,BD := c2])

The query sobd : QRE〈D1,B
2〉 matches 14 consecutive ven-

tricular intervals, and applies the function opStage2 to their

lengths in order to compute the Boolean flags for “Sudden

Onset” and “Begin Duration”. This computation is executed

in a sliding-window fashion and the output is used to annotate

the stream. The output stream s2 from Stage 2 contains data

items of the following form:

s2 = (s1,SO ,BD) ∈ D2 = D1 × B2

E. Stage 3: Therapy Decision

This stage uses the four discriminators shown in Fig. 10

to make the final decision whether to apply therapy or not.

Whenever “Begin Duration” (BD) is detected by the previous

stage, the algorithm considers the window of N data items

following BD, and the discriminators are computed using the

information contained within this window. For example, if the

Duration window is programmed to be 5 seconds, and the

sampling rate is 256Hz, then the window contains N = 5 ×
256 = 1280 items. The query

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

describes a sliding-window computation that maintains a

buffer with all ventricular and atrial beats of the duration

period. The function ins adds a new item to the buffer, the

function rmv removes an expiring item from the buffer, and

the operation discr computes the discriminators and the final

therapy decision using only the items contained in the buffer.
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F. Overall AMA Query

The top-level query for this Arrhythmia Monitoring Algo-

rithm is the streaming composition of all stages (see Fig. 7):

AMA = stage0� stage1� stage2� stage3.

VII. ILLUSTRATIVE EXAMPLES

A. Sample executions

Two examples will serve to illustrate the details of the

query execution. Fig. 11 shows a Ventricular Fibrillation (VF)

EGM signal along with the corresponding boolean beat stream.

The results of running stage2 on this signal are presented

in a Fig. 12. At times 12, 572 ms and 12, 811 ms the start

of Duration is detected (BD = 1). At the end of the first

initiated Duration (at 17, 572 ms), the A/V Rate Comparison

discriminator and Sliding 6/10 discriminator are satisfied and

the AMA outputs Therapy. This is consistent with the decision

tree in Fig 5.

Fig 14 shows an Atrial Fibrillation (AF) signal. The al-

gorithm never outputs therapy. Before time 15, 529 ms the

rhythm is not determined to be fast (Three Consecutive Short

Intervals and 8/10 Short Intervals are never satisfied together).

The first time when the fast rhythm is detected is at 15, 529ms.

Therefore, the first BD = 1 flag happens at time 15, 529 ms

and Duration starts. At the end of this Duration (20, 529 ms),

A/V Rate Comparison is not satisfied. Moreover, the rhythm

is determined to be unstable with gradual onset and AFib Rate

condition is satisfied. Therefore, no therapy is delivered at this

point. The same thing occurs for the next ventricular beat time

point (15, 867 ms), and no therapy is detected again.

B. Validation of the QRE Implementation

To validate the correctness of our QRE implementations, we

created three versions of the AMA in Fig. 5. These three ver-

sions will also be used in the power analysis of Section VIII.

The baseline version, presented in Section V, includes all

discriminators and has a Duration length of 5sec. The second

version does not use the Sudden Onset discriminator. This

discriminator is Off by default when the device ships. The

third version reduces Duration length to 1sec. Accuracy is

measured using the Specificity and Sensitivity of detection,

defined respecitvely as

Specificity =
# correctly detected SVTs

# true SVTs
× 100%

Sensitivity =
# correctly detected VTs

# true VTs
× 100%

where the denominators are the number of true SVTs and VT,

respectively.

The three versions were run on a database of 960 EGMs,

equally divided into 480 SVTs and 480 VTs. The beat timing

in the EGMs (in other words, the boolean stream s) was

generated by the heart model of [37],[38]. Briefly, this model

can simulate beat generation and propagation at different rates,

from different locations in the heart. E.g., it can simulate a

Normal Sinus Rhythm (NSR) which originates in the sino-

atrial node and conducts down, or a fast ventricular rhythm

TABLE I: Database-averaged detection accuracy for three versions
of AMA. Throughput measured on a standard desktop with Intel i5
processor running Ubuntu.

Algorithm

Measurements: Baseline No Onset Duration = 1s

Throughput [items/sec] 674.602 714.206 914.746
Sensitivity 100% 100% 100%
Specificity 92.5% 93.13% 88.54%

that starts in the ventricles and conducts up to the atria. The

model can also simulate different conduction pathways and

conduction delays between locations. In this manner, it is

capable of simulating a wide range of VTs and SVTs. These

simulated arrhythmia episodes are automatically labelled by

the model so that we know whether they should be treated by

the device or not, thus allowing us to compute specificity and

sensitivity.

The validity of the simulated beat stream is guaranteed

in three complementary ways: 1) The model implements

well-known clinical principles of arrhythmia generation, such

as re-entrant circuits [22], and the implementation has been

reviewed by two cardiologists. 2) Key output stream charac-

teristics, like the rate, are guaranteed to fall in the clinically

observed ranges. And finally, 3) a representative sample of

model outputs has been validated as correct by two cardiolo-

gists.

Table I shows the results of running these three versions on

the signals database. It also includes throughput, which is the

number of data items processed per second. First, we note that

the Sensitivity of all three agorithms is 100%, which matches

the reported sensitivity of ICDs in the literature. Indeed, miss-

ing a true VT or VF can have a debilitating or fatal effect on

the patient, so the algorithms are programmed to err on the side

of safety and guarantee 100% sensitivity. Second, we note that

turning off Sudden Onset has a negligible effect on Specificity,

which justifies its being turned off by default in real devices.

Finally, shortening Duration futher decreases Specificity, as

expected: when Duration is shorter, the algorithm is leaving

less time for the arrhythmia to terminate on its own, and is

taking a Therapy decision for signals that shouldn’t be treated.

VIII. UPPER BOUNDS ON QRE COST

Power consumption is an important consideration when de-

signing the software and hardware of an implantable medical

device. Replacing an implantable device requires surgery, and

most ICD and ILR recipients are older patients with various

health issues [28], so reducing the likelihood of a replacement

by prolonging battery life is highly desirable [27].

It is generally true that the higher the abstraction level at

which power consumption is estimated, then the easier it is to

correlate algorithmic changes to power changes and the more

questions can be answered analytically. However, the estimates

are then less accurate in absolute terms. Conversely, at a lower

abstraction level, the power model is more accurate, but is

much harder to correlate to algorithmic changes, especially if

it is tied to a particular target processor.

In this section, we provide a way to compute an upper bound
on the energy consumed by a QRE per data item. The per-item
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Fig. 11: EGM during a VF. Top panel shows the atrial EGM. Bottom panel shows the ventricular EGM. The middle panel shows the
sensed boolean signal that is part of the input stream s to the AMA. Spikes above the x-axis indicate atrial beats, and spikes below it are
the ventricular beats.

Fig. 12: Boolean beat stream from Fig. 11 and the streaming output of QRE stage2 (which calculates CSI, Short8outof10 and SuddenOnset).

consumption is the appropriate unit of measurement since a

stream can be arbitrarily long. Being an upper bound, it allows

the algorithm developers to compare design options very

early on based on worst-case cost, and hardware engineers

to provision battery capacity and electronics that are suitable

for the expected worst-case energy draw. The upper bound is

obtained by first measuring the per-item energy consumption

of all the predicates and ops that appear in the QRE. These

will be referred to as the basic costs. Then the QRE evaluator

itself is used to combine these basic costs into the worst-case

cost of the query. It is possible to do this for programs written

in the StreamQRE language because of the well-understood

syntactical restrictions it imposes, in particular, the restriction

that computation results cannot be used in predicates. Note

that these analyses apply trivially to any other additive cost,

such as processing time, and not just power.

The upper-bound energy analysis described in the previous

paragraph is meant to provide only a crude estimate of energy

consumption for early design space exploration. It is not meant

to replace a more fine-grained analysis (such as a WCET

analysis) that takes the hardware and the input data into

account. Such a high-precision analysis is useful for finetuning

the performance of a production implementation, but a more

rough analysis is still useful in the early design stage.

A. An upper bound based on the evaluator

We first need to understand roughly how the QRE evaluator

works. The evaluator is the algorithm that evaluates a QRE

on a given stream For a query q, the evaluator first invokes

a query-specific start routine to initialize the internal data

structures appropriately. With every new data item that arrives,

the evaluator invokes a query-specific next routine to process

it. Moreover, next might have to pass the item to sub-queries:

e.g., split(f, g) will pass the item to g everytime the string

seen so far matches f. In such a case, next will need to invoke

the start method of g. Therefore, the cost of processing a
data item is the cost of calling the QRE’s next routine.

1) From basic cost to QRE cost: Let cost(ϕ) and cost(op)
be the cost of evaluating the predicate ϕ and operation op re-

spectively. It is assumed that these costs are data-independent,

which is true for the queries that appear in AMA. Let start(q)
and next(q) be functions that return the cost of executing

start and next methods of query q. The per-item cost of a

QRE q can be upper-bounded using the following recursion

on its structure.

q = atom(ϕ, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(op)
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Fig. 13: Atrial Fibrillation (AF) EGMs and their boolean beat streams.

Fig. 14: Boolean beat stream from Fig. 13 and the streaming output of QRE stage2.

q = split(f, g, op) :

start(q) = start(f) + start(g) + cost(op)

next(q) = next(f) + next(g) + start(g) + cost(op)

q = iter(f, init, op, out) :

start(q) = start(f) + cost(out)

next(q) = next(f) + cost(op) + start(f) + cost(out)

q = iterLast(f) :

start(q) = start(f)

next(q) = next(f) + start(f)

q = iterUntil(ϕ, ψ, init, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(ψ) + cost(op)

q = wnd(f, size, init, ins, rmv, out) :

start(q) = start(f)

next(q) = next(f) + cost(ins) + cost(rmv)+

cost(out) + start(f)

q = annt(f, op1, op2) :

start(q) = start(f)

next(q) = next(f) + max(cost(op1), cost(op2))

q = f� g :

start(q) = start(f) + start(g) + next(g)

next(q) = next(f) + next(g)

To understand this recursion, consider the case

q = atom(ϕ, op). Starting the evaluator doesn’t cost anything

in this case. When the data item arrives and it matches

ϕ, then op is executed and we pay cost(ϕ) + cost(op).
Otherwise, we only pay cost(ϕ). Thus an upper-bound on

cost is cost(ϕ) + cost(op), as indicated.

For a more involved example, consider the case q =
split(f, g, op). start-ing q involves start-ing f and g,

and we pay the corresponding costs. If both of them match

the empty string, then we also pay cost(op). So worst-case

cost of start is as shown. When a data item arrives, it is

passed to both f and g: f might match the string in multiple

positions, and it is not possible to know ahead of time which

will be the right split point, so the string is always fed to f, and

we pay next(f). If the string seen so far matches f then the
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item is also passed to g to see if the string suffix will match

it, and we pay start(g). g might also be in the middle of

matching a previous suffix (remember the evaluator maintains

all possible matches). In that case, it will also process the new

item using its next routine, and we pay next(g). Finally, if

both f and g match, then op(�f�w, �g�w) is evaluated and we

pay cost(op). Thus in the worst-case, the cost of next(q) is

next(f) + next(g) + start(g) + cost(op), as shown.

2) Measuring the basic costs: To start the above recursion,

we need knowledge of cost(ϕ) and cost(op). For example,

consider query stage3 defined in Section VI-E and its asso-

ciated costs:

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

start(stage3) = start(atom()) = 0

next(stage3) =next(atom()) + cost(ins) + cost(rmv)

+ cost(discr) + start(atom())

= cost(x->True) + cost(x->x)

+ cost(ins) + cost(rmv) + cost(discr)

Therefore, it is necessary to measure the following:

C1 = cost(x->True)

C2 = cost(x->x)

C3 = cost(ins) + cost(rmv) + cost(discr)

The costs of predicates and ops can be measured using

jRAPL [39] for example. jRAPL provides a mean to mea-

sure the energy consumption of any snippet of Java code

by enclosing it between getEnergyStats function calls.

The getEnergyStats function accesses Machine-Specific

Registers (MSRs) that store the energy consumed since a pre-

defined datum. Thus we can measure the energy consumed

by a given piece of code by comparing the register contents

before and after invoking that code, e.g. as shown below:

EnergyCheckUtils ec = new
EnergyCheckUtils();

double[] before = ec.getEnergyStats();
long duration =

Queries.execute(streamlength, stream,
myquery); //nano-sec

double[] after = ec.getEnergyStats();
double[] energy = after - before;
System.out.println("Consumed energy = "

+ energy);

Internally, jRAPL is a Java wrapper around the RAPL li-

brary. RAPL (Running Average Power Limit) is a suite of low-

level interfaces to the MSRs with the ability to monitor and

control energy and power consumption of different hardware

levels, and is widely supported in Intel architectures. RAPL

allows energy/power consumption to be reported separately

from the CPU core, package (L3 cache, on-chip GPUs, and

interconnects), and DRAM.

For the example of stage3, Table II shows the energy

values C1 and C2 reported by jRAPL. These operations

TABLE II: jRAPL-reported values for basic costs (Obtained by
averaging over 20M execution of the operation (= 1 experiment),
and over 125 experiments after a 25-experiment warm up.

Basic operation

Measurements: x-> True x->x

DRAM [J·e−5] 0.000003244 0.00004134
CPU [J·e−5] 0.0000045418 0.0001023086
Package [J·e−5] 0.00001155 0.0002180939
Total [J·e−5] 0.000019336 0.000361745

TABLE III: jRAPL-reported energy values for C3 = cost(ins) +
cost(rmv) + cost(discr), for three versions of AMA. Obtained as
average of 100 experiments after a 25-experiment warm-up, each
experiment having 1M runs.

Measurements: Baseline No Onset Duration = 1s

DRAM [J·e−5] 0.55755 0.54573 0.182398
CPU [J·e−5] 0.549273 0.502224 0.23123
Package [J·e−5] 2.2693036 2.21987 0.726192
Total [J·e−5] 3.376137 3.267839 1.13983

are extremely cheap and their measurement can be non-

deterministically affected by irrelevant processes running on

the hardware (like page swaps), compiler optimizations (like

discarding of unused outputs, which is why in the code listing

above we print out duration). Therefore, and to account for

this variability, we compute cost by running the same operation

20M times and averaging the energy over the runs. We call

this an experiment. We run 125 such experiments in a row,

and discard the first 25 experiments to take into account

background noise caused by the warm up, and average the

last 100 experiments. The final reported number is then the

energy per predicate or op.

REMARK. As noted, measuring the cost of simple basic

operations is affected by irrelevant sources of energy con-

sumption. When the objective is to compare algorithms, it is

reasonable to assume unit costs for the cheap basic operations,

and proportionally larger cost to more complex operations, and

compare the QREs on the basis of this cost model. The results,

of course, are as good as our guess of the relative magnitudes

of the various basic costs.

Table III shows the energy value C3, when running as part

of the three versions of AMA described in section VII-B:

the Baseline algorithm, version with no Sudden Onset dis-

crimintor, and version with a Duration of 1sec. The energy

consumption of discr depends on which algorithm it is

running in because, for example, a shorter Duration implies

that discr is operating on fewer items, while no Onset means

that the value of Sudden Onset is not used in the decision

making of discr.

Equipped with these numbers we can upper-bound the per-

item energy consumption of stage3 by C1+C2+C3. On this

basis, the Duration=1sec version is the cheapest in the worst-

case, and Baseline is the most expensive. On the other hand,

No Onset has a per-item cost which is only slightly smaller

than that of Baseline. This can be explained by the fact that

Baseline only performs one extra AND relative to No Onset,

which is a cheap operation (and even that is sometimes not

executed, depending on the ordering of arguments ). The fact

Page 26 of 31

PROCEEDINGS OF THE IEEE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



REVIEW
 COPY

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 18

TABLE IV: Database-averaged jRAPL-reported energy for three
version of entire algorithm. Obtained as average of 40 experiments
after a warm-up of 10 experiments, each experiment having 1 run.

Algorithm

Measurements: Baseline No Onset Duration = 1s

DRAM [J·e−5] 1.7177 1.5836 1.1813
CPU [J·e−5] 2.7648 2.0992 1.6067
Package [J·e−5] 6.7009 5.9251 4.4322
Total [J·e−5] 11.1834 9.6078 7.2203

that disabling Onset does not yield meaningful energy savings

suggests that for patients that might benefit from Sudden

Onset discrimination (like patients who have low frequency of

SVTs), it can be enabled without any loss in device longevity.

B. Measured Energy Consumption of Entire Algorithm

In addition to the upper bounds, it is of course possibe to

measure the cost of a QRE on a typical workload, e.g., when

processing the signals in the EGM database. The three versions

of AMA and the signals database were described in Section VII.

The energy is measured again using jRAPL. Because the AMA

is a sufficiently costly operation and its energy measurements

will not vary significantly between repeated runs, each exper-

iment consists of a single run of the QRE on the database of

signals. We still run and discrad some initital experiments as

warm-up.

Table IV reports the per-item energy consumption, averaged

over the signals in the database. The energy numbers match

expectations: the baseline version consumes the most energy.

Version No Onset is second most expensive, because elim-

inating Sudden Onset reduces the costs of Stage 2 (which

computes the Onset decision SO – see Fig. 10 and QRE

stage2), and Stage 3 (which uses the SO value in an AND

statement). Finally, Shortening Duration saves the most energy,

since it implies shorter computations for 4 discriminators

(Fig. 10).

IX. RELATED WORK

Medical device algorithms. Most of the literature on formal

methods for medical device algorithms focuses on verifying

and testing the functionality of the algorithm - see [40], [41],

[42], [43] for examples in the specific context of implantable

cardiac devices. These concerns are orthogonal to ours: the

focus of this paper is the description of a programming
language that is suitable for arrhythmia monitoring, and the

meta-functional characteristics it automatically guarantees. It

is worth nothing that the U.S. Food and Drug Administration

(FDA), which regulates medical devices in the U.S.A., does

not mandate particular types of validation, such as model

checking [44]. Rather, it describes in generic terms the kind

of evidence that should be provided. For example, it stipulates

that “Software quality assurance needs to focus on preventing

the introduction of defects into the software development

process”, and that “software developers should use a mixture

of methods and techniques to prevent software errors and to

detect software errors that do occur. ” [44, Section 4.2].

The FDA Guidance does not explicitly address meta-

functional properties. Works in quantitative verification, such

as [45] and [46], model the heart and pacemaker to verify

statistically or through simulations whether some quantitative

properties are satisfied. This contrasts with our approach which

is model-free, and provides cost upper bounds based on the

QRE code itself, not a model of it. An application of QREs to

arrhythmia monitoring appeared in [26] where a peak detector

is coded in an early variant of the language.

QREs are a Domain-Specific Language (DSL): they are

meant for programming queries on arbitrary data streams,

with strong theoretical foundations [5] and a flexible program-

ming environment [6], [18]. DSLs have been developed for

medical device development, albeit these are usually meant

for the creation of the entire device, including hardware, and

focus on capturing object-oriented aspects of the domain (i.e.,

identifying the main objects in the domain and modeling

them and their relations). E.g., [47] develops a graphical

language for modeling blood separator machines, along with

code generators and lock-step simulators of the model and its

generated code. No work has appeared in the literature on a

DSL for ICDs or ILR algorithms, and more generally, rhythm

monitoring algorithms.

Streaming languages. There is a large body of work

on streaming database languages and systems such as Au-

rora [48], Borealis [49], STREAM [50], and StreamInsight

[51], [52]. The query language supported by these systems

(for example, CQL [53]) is typically a version of SQL

with additional constructs for splitting the stream into finite

windows (e.g., tumbling or sliding windows, count-based or

time-based). This allows for rich relational queries, including

set-aggregations (e.g. sum, maximum, minimum, average,

count) and joins over multiple data streams. Such SQL-based

languages are, however, limited in their ability to express

properties and computations that rely on the sequence of

the events such as: sequence-based pattern-matching, and

numerical computation based on list-iteration when the order

of the data items is significant. There are streaming engines

such as IBM’s Stream Processing Language (SPL) [54], [55],

ReactiveX [56], Esper [57] and Flink [58], which support user-

defined types and operations, and allow for both relational and

stateful sequential computation. However, none of these en-

gines provides support for decomposing the stream in a regular

fashion and performing incremental computations that reflect

the structure of the parse tree, which is a central feature of the

QRE language. LOLA [59] allows arbitrary computations on

streams and incremental computation of statistics, but does not

support regular decomposition of the stream to define the com-

putation domains. Finally, Timed Regular Expressions [60]

allow the specification of time windows during which the

timed string must match a regular expression. As such they are

a specification language rather than a programming language

and do not support the rich computations and quantitative

combinators that QREs support.

Power estimation. Since QREs are aimed at high-level

programming and the cost analysis is aimed at early de-

sign exploration, we don’t review the vast literature on low-

level power estimation techniques (anything below C program
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level), nor do we review analyses that focus on the impact of

particular hardware choices like [61]. Such analyses occur later

in the design cycle and require the availability of low-level

artifacts like circuits. The interested reader can consult [62]

for a recent review of such techniques.

In [63],[64] and [62], a functional level power model is used

for estimating the power consumption of a C program without

compiling it. It requires partitioning the target processor into

functional units, and estimating some key parameters like the

cache miss rate, external data memory access rate and the

processing rate. It also depends on the user providing low-level

execution details like the data mapping. This target-specific

code-level analysis complements our presented bounds, which

occur earlier in the design cycle and are at the algorithm level.

The approach in [65] estimates battery dissipation. It treats

the processor as a black box and instead decomposes the
program into types of basic instructions, similar to what we did

to obtain the upper bounds in Section VIII. However, the basic

instructions in [65] are at the instruction-set level, like integer

and floating point loads and stores. And while we exploit the

fact that we have a uniform evaluation algorithm for any QRE

to infer bounds on the entire program’s cost, the authors in [65]

must establish empirically, for a given processor and program,

that the program’s cost is the weighted sum of the dissipations

for basic instructions.

A static analysis of energy consumption of XC programs

is presented in [66]. 4 After building an ISA-level power

model using hardware measurements of a test suite, the XC

program is translated to Horn clauses in the Ciao programming

language [67]. The Ciao pre-processor can then bound the

power consumption as a function of input data sizes. This

technique was later extended to use a power model at the

level of the compiler’s intermediate representation rather than

the ISA level [68]. This approach applies to programs that

can be translated into a logic program. Another static analysis

technique [69] uses integer linear programming to compute the

worst case energy consumption, given estimates of dynamic

and leakage power contributions of basic blocks in a program’s

control flow graph. This is inspired by well-known Worst-Case

Execution Time estimation techniques.

X. CONCLUSION

This paper has argued that arrhythmia monitoring algo-

rithms are best viewed as streaming algorithms, and that they

are best programmed in the StreamQRE language. Unlike

traditional streaming applications where throughput is a prime

concern, here energy consumption is the primary design factor.

A program written in StreamQRE automatically gets a baseline

implementation with a constant memory, processing time and

energy consumption per item. Moreover, the QRE evaluator

automatically provides upper bounds on the per-item cost of

the query, which can be used early in the design cycle to guide

the choice of algorithm, and to decide whether some discrimi-

nators are worth having at all. We showed how the StreamQRE

Java Library can be used to program and evaluate a query and

to obtain cost upper bounds, and how these bounds correlate

4XC is a high-level C-based programming language.

to actual power measurements. We believe this approach to

exploring and programming arrhythmia monitors, and other

medical device algorithms, has the potential to greatly alleviate

the device development burden. In particular, it opens the

possibility of designing ILR algorithms that collect statistics

over longer time durations than is currently done. Other ap-

plications that might benefit from StreamQRE include glucose

monitoring [70], [71], where a mobile device periodically or

continuously measures a diabetic’s blood glucose and performs

various filtering operations to predict hypo- or hyperglycemic

episodes.

The theoretical basis of StreamQRE raises the possibility

of performing static (formal) analysis of its performance.

It is already possible, for queries written in a subset of

the language, to answer questions such as “Does the worst-

case peak power consumed by the algorithm exceed some

threshold?”, “Could the long-term average power consumed by

the algorithm exceed some threshold?”, and “Does algorithm

A consume less peak/average power than algorithm B?”.

Answers to these questions impact the choice of electronics

that must withstand the peak power draw, and the capacity of

the device battery.

On the tools side, two projects are worth exploring: first,

implementing the decision procedures that perform the above-

described static analysis. Second, creating a compiler that

compiles a QRE into C or assemly code targeting a given

hardware platform. This would complete the path from algo-

rithm to code to implementation, and would allow a reliable

comparison of upper-bounds to actual energy consumption of

the compiled code. In niche areas, expert coders might be

able to squeeze more performance per Watt from hand-written

code than a compiler could from automatically generated code.

However, it is to be expected in the long run that medical

devices will follow the arc of semiconductors, where automa-

tion has gradually out-performed humans, or has yielded such

productivity gains that small performance losses are more than

made up for by the reduced time-to-market, reproducibility and

scalability of the design process, and automatic guarantees of

correctness and performance.
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