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ABSTRACT

We present observations of the HD 15115 debris disk from ALMA at 1.3 mm that capture this
intriguing system with the highest resolution (0’6 or 29 AU) at millimeter wavelengths to date. This
new ALMA image shows evidence for two rings in the disk separated by a cleared gap. By fitting
models directly to the observed visibilities within a MCMC framework, we are able to characterize
the millimeter continuum emission and place robust constraints on the disk structure and geometry.
In the best-fit model of a power law disk with a Gaussian gap, the disk inner and outer edges are
at 43.9 + 5.8 AU (0789 4+ 0712) and 92.2 + 2.4 AU (1788 + 0”49), respectively, with a gap located
at 58.9 £ 4.5 AU (172 £ 0710) with a fractional depth of 0.88 4+ 0.10 and a width of 13.8 £ 5.6 AU
(0728 £ 0”11). Since we do not see any evidence at millimeter wavelengths for the dramatic east-west
asymmetry seen in scattered light, we conclude that this feature most likely results from a mechanism
that only affects small grains. Using dynamical modeling and our constraints on the gap properties,
we are able to estimate a mass for the possible planet sculpting the gap to be 0.16 = 0.06 M.
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1. INTRODUCTION

As planets form in circumstellar disks, they inherit their dynamics and composition, and imprint their presence
on the remaining material through dynamical interactions. Debris disks, the end-stage of circumstellar evolution, are
continually replenished through collisions between remnant asteroids and comets that produce dust grains over a broad
range of sizes. Small micron-sized grains are influenced by non-gravitational effects including radiation pressure and
interactions with the interstellar medium (ISM). Larger millimeter-sized grains are less affected by these forces, making
them more reliable tracers of the underlying planetesimal belt structure. Both scattering albedo and thermal emission
are strong functions of grain size; grains emit at wavelengths comparable to their sizes. Thus, millimeter wavelength
observations probe larger grains and provide the best opportunity to detect the influence of planets on surrounding
disk material.

HD 15115 hosts a debris disk initially detected as a strong infrared excess (Silverstone 2000; Moor et al. 2006)
and later revealed in scattered light with the Hubble Space Telescope (HST) to have an edge-on disk with pronounced
asymmetries (Kalas et al. 2007; Debes et al. 2008; Schueider et al. 2014). Since then, the disk has been imaged multiple
times in scattered light with higher resolution by Keck, LBT, Gemini, Subaru, and VLT (Rodigas et al. 2012; Mazoyer
et al. 2014; Sai et al. 2015; Engler et al. 2019). In most scattered light images, the west side of the disk extends nearly
twice as far from the star and has a higher flux. The star is mid-F type (estimates range from F2-F4, Ochsenbein
1980; Harlan 1974) at a GATA DR2 distance of 49.0 + 0.1 pc (~ 10% farther than the Hipparcos distance of 45 pc).
The age of the system is not well-known, and is derived from potential membership in young moving groups including
the ~ 20 Myr-old 8 Pictoris Association (Modr et al. 2006) and the ~ 45 Myr-old Tucana-Horologium Association
(from BANYAN ¥ using GAIA RV, Gagné et al. 2018).
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Figure 1. Our new ALMA 1.3 mm continuum image of HD 15115 (left) shows evidence for two rings in the disk. At right, the
ALMA image is overlaid as 3¢ contours (3x the rms noise of 15 uJy beam™) on the HST STIS image from Schneider et al.
(2014). In both panels, the white ellipse in the lower left corner indicates the synthesized beam size of 058 x 0”55 (with robust
= 0.5 weighting).

Previous millimeter observations of the HD 15115 debris disk hinted that the asymmetric structure seen in scattered
light might also be traced by larger grains, but lacked the sensitivity or resolution to draw firm conclusions (MacGregor
et al. 2015a). Here, we present new ALMA observations of this intriguing system with the highest resolution and
sensitivity at these wavelengths to date that trace the large grain population, and by inference, the planetesimal
locations within the disk.

2. OBSERVATIONS

We observed the HD 15115 debris disk with ALMA in Cycle 3 using Band 6 (1.3 mm, 230 GHz). Two scheduling
blocks (SBs) were executed in both a compact (baselines of 15-310 m) and more extended (baselines of 15-704 m)
configuration with 36 antennas in the array on 2016 January 1 and 2016 June 9, respectively. The total observing
duration was 31.7 min with an on-source time of 15.1 min, and 48.5 min with 30.2 min on-source for the compact and
extended configurations, respectively. For both executions, the precipitable water vapor (PWV) was < 1.5 mm.

The correlator was set-up to maximize continuum sensitivity while still covering the 2CO J= 2—1 line at 230.538 GHz
with high spectral resolution. To achieve this, we used four spectral windows with central frequencies of 230.538
(centered on the 12CO J= 2 — 1 line), 232.538, 215.5, and 217.5 GHz. The three continuum-only spectral windows
had a bandwidth of 2 GHz with 128 channels, while the final spectral window had a reduced bandwidth of 1.875 GHz
with 3840 channels.

Both the compact and more extended SBs made use of the same calibration sources. The bright blazar J0238+41636
(10°8 away from the target) was used for both bandpass and flux calibration, as well as pointing. We estimate that
the absolute flux calibration uncertainty is < 10%. Observations of J0224+0659 (0°8 away) were interleaved with the
target to account for time-dependent gain variations due to instrumental and atmospheric effects. All data processing
and calibration was done with the ALMA pipeline in CASA (version 4.7.2). To reduce data volume, the calibrated
visibilities were time-averaged in 30 sec intervals. All images were generated using the CLEAN task in CASA.

3. RESULTS AND ANALYSIS

Our new ALMA 1.3 mm dust continuum image of HD 15115 is shown in Figure | (left panel). The synthesized beam
is (/58 x 0’55 (28 x 27 AU) with robust = 0.5 weighting, and the rms noise in the image is 15 uJy beam~!. The right
panel of Figure 1 shows the same continuum image overlaid as contours in increments of 30 over the previous HST
STIS scattered light image. With ALMA, we detect the disk and a point source coincident with the stellar position
at 180 and 150, respectively. Most surprisingly, the disk appears to consist of two rings separated by a gap at ~ 1”
seen as two peaks or ansae (the characteristic limb brightening of an optically thin, edge-on disk) on either side of the
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Figure 2. A schematic of both the two ring and Gaussian gap models. The top images show the radial surface density profile
for each disk model, while the bottom images show the resulting models at full resolution.

star. Overall, the millimeter emission aligns well with the scattered light, but does not exhibit the same radial extent.
Although the western side of the disk appears ~ 3¢ brighter than the eastern side, there is no significant evidence for
the dramatic east-west asymmetry seen in scattered light images.

We do not detect any 2CO emission from the disk in our observations. Given this non-detection, we can determine
a 30 upper limit on the integrated flux density of the line of < 0.022 Jy km s~! or < 1.6 x 10722 W m?2, which implies
an upper limit on the total CO mass of < 1.4 x 1079 Mg assuming Local Thermodynamic Equilibrium (LTE). For
comparison, this result is significantly below the upper limit of < 7.7 x 10~7 Mg determined for HD 61005 (Olofsson
et al. 2016) and the detected CO mass of 4.34 x 10~% Mg, for HD 32297 (MacGregor et al. 2018), both assuming LTE.

3.1. Modeling Approach

We fit three different models to the HD 15115 ALMA data— a single ring model and two different double ring models.
The single ring model fits the outer regions of the disk well, but leaves significant residuals at the locations of the inner
ansae. The double ring models consist of either (1) two power law rings with a completely empty gap between them,
or (2) a single power law ring with a partially depleted, Gaussian gap. The most significant difference between these
two models is edge sharpness and fractional depth of the gap. In all models, we assume that the surface brightness is
an axisymmetric function, I,, o< r®, where the power law index « incorporates both a temperature fall off, T oc 7795,
and a surface density distribution, ¥ o 7%, with two power law indices for the two ring model (z; and x2) and one
index for the gap model (z). The Gaussian gap is defined by a multiplicative function

2
QUgap

Gaap() = 1 — Agap X exp [LR“)T : (1

where Ag,p, is the fractional depth, Rgap, is the radial location, and the FWHM is Wyap = 2V 2102044y, all of which are
free model parameters. Figure 2 shows the surface density profiles for both models along with full resolution images.
The total flux density of the disk is normalized to Fyisx = f 1,,dS}, and the flux of the central point source is F},;. We
also fit for the disk geometry, namely the inclination (¢) and position angle (PA), as well as an offset in RA and DEC
of the star from the disk centroid (A« and AJ).

In order to efficiently explore the parameter space and characterize the uncertainties, we adopt the modeling pro-
cedure initially described in MacGregor et al. (2013) and most recently in MacGregor et al. (2018), where models are
fit to the millimeter visibilities within a Markov Chain Monte Carlo (MCMC) framework. We make use of both the
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emcee (Foreman-Mackey et al. 2013) and vis_sample’ python packages. We assume uniform priors for all parameters
and only introduce limits to ensure that each model is physical: Fyjex > 0 and 0 < Rin < Rout. We use ~ 108 iterations
(100 walkers, 10,000 steps each) to fully explore parameter space, and evaluate the fit quality of each model using a x?
likelihood function, InL = —x?2/2. To check for convergence, we examine all chains and compute the Gelman-Rubin
statistic (Gelman & Rubin 1992) requiring R < 1.1 for all model parameters. The one-dimensional marginalized
probability distributions for all model parameters appear Gaussian. We do note a degeneracy between the surface
density gradient and inner/outer disk radii as has been discussed in previous works (e.g., MacGregor et al. 2015a).
The 1o errors are determined by assuming normally distributed errors where the probability that a measurement has

a distance less than a from the mean value is given by erf (a?ﬁ)

3.2. Modeling Results

Both the two ring and gap models provide good fits to the data with reduced x? values of ~ 1.1. Table 1 lists the
best-fit parameter values for both models, and Figure 3 shows the data, the best-fit models imaged like the data, and
the resulting residuals. The residuals are minimal (< 30) for both models. For comparison, the first row of Figure 3
shows the results for the single ring model, which leaves significant (60) residuals close to the star, indicating the need
for an additional model component. Given the current resolution of these observations, we cannot distinguish between
the two ring and Gaussian gap models. However, the best-fit Gaussian gap model has a fractional depth of 0.88+0.10,
implying an almost completely empty gap. Since both models yield this result, we conclude that the gap between the
inner and outer rings must be nearly devoid of millimeter emission.

Despite using different parameterizations, both best-fit models yield consistent radial locations for the two rings and
gap. In the two ring model, the inner ring is located between 44.6+4.5 AU and 50.94+8.8 AU, and the outer ring spans
from 65.7 £ 4.5 AU to 92.8 +£ 3.1 AU, implying a gap at 58.3 +2.2 AU with a width of 14.8 £4.3 AU. In the Gaussian
gap model, the inner edge of the disk is at 43.9 + 5.8 AU and the outer edge is at 92.8 & 3.2. The gap is located at
58.9+ 4.5 AU with a FWHM of 13.8 + 5.6 AU, nearly identical to the results from the two ring model. The best-fit
total disk and stellar flux densities, the offset of the star from the disk centroid, and the disk geometry (inclination
and position angle) are also consistent between both models. For the two ring model, the flux densities of the inner
and outer rings are 0.38 = 0.08 mJy and 1.61 4 0.09 mJy, respectively. The combined flux is 1.99 + 0.10 mJy, which is
nearly identical to the total flux determined from the Gaussian gap model of 1.98 + 0.03 mJy. Neither model places a
strong constraint on the surface density profile of the disk or the gap edge sharpness. The best-fit value for the flux of
the central star is 0.04+0.01 mJy, about 20 in excess of the expected flux of the stellar photosphere. We attribute this
slight difference to chromospheric emission as has been seen for stars with similar spectral types including o Centauri
A/B and € Eridani (Liseau et al. 2016; MacGregor et al. 2015b). There is no evidence for a significant offset between
the star and the disk centroid, indicating that any eccentricity of the disk must be small.

4. DISCUSSION

We have presented a new high-resolution image of the HD 15115 debris disk from ALMA at 1.3 mm that shows
evidence for multiple ring structure. Here, we compare this ALMA image to previous studies of the same system,
discuss disk sculpting mechanisms, and place constraints on a possible planet opening the observed gap.

4.1. Comparison to Previous Observations

In previous scattered light images, the HD 15115 debris disk shows an extreme asymmetry, with the eastern side of
the disk extending to only ~ 7" and the western side reaching > 12" (Kalas et al. 2007; Debes et al. 2008; Schneider
et al. 2014; Mazoyer et al. 2014; Sai et al. 2015; Engler et al. 2019), although Rodigas et al. (2012) do not see an
asymmetry at 3.8 um. The disk also appears bowed, which is thought to result from an inclined (86 — 87°), highly
forward scattering disk. An additional halo of small dust grains (1) extends up to 620 AU from the star on its western
side, (2) appears to slope away from the disk major axis on the eastern side, and (3) appears out (north) of the disk
plane on the western side in HST images (Schneider et al. 2014). We do not see any of these features in our ALMA
image, implying that they are only traced by the small, micron-sized grains that dominate scattered light images. We
have modified the results of previous work to bring them all to the same scale, at the distance provided by the new
GAIA parallax (49.0 £ 0.1 pc).

1 vis_sample is publicly available at https://github.com/AstroChem/vis_sample or in the Anaconda Cloud at https://anaconda.org/

rloomis/vis_sample.
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Figure 3. The best-fit two ring (middle) and Gaussian belt models (bottom) both agree well with the data. A model with
only one ring (top) leaves significant residuals indicating the need for an additional model component. For all rows, the ALMA
1.3 mm continuum image is shown at left, the best-fit model imaged like the data is shown in the middle, and the resulting
residuals imaged like the data are shown at right. In all panels, contours are in steps of 30 contours (3x the rms noise of

15 puJy beam™'), except in the residual images where a 20 contour has been added. The location of the central star is indicated
by the blue star symbol, and the dashed blue vertical lines in the residual panels mark the radial position of the outer ring. The
ellipse in the lower left panel shows the synthesized beam size of 0”58 x 0”55 (same as in Figure 1 with robust = 0.5 weighting).

Our best-fit values for the disk inner and outer edges agree with previous determinations. Debes et al. (2008)
and Rodigas et al. (2012) detect steepening of the surface brightness profile for the western side of the disk between
~ 87 — 98 AU, consistent with our determination of ~ 92 AU for the outer disk edge. Mazoyer et al. (2014) show
conclusively that the outer ring is symmetrical with a radius of ~ 2" (~ 98 AU). Schneider et al. (2014) and Mazoyer
et al. (2014) note a partial clearing of the disk interior to 1” (49 AU), and Modr et al. (2011) determine a minimum
radius of 46 £ 2 AU from SED modeling. Our best-fit inner radius is somewhat interior to these values at ~ 44 AU,
but consistent within the uncertainties. Low-resolution millimeter imaging with the Submillimeter Array (SMA) gave
comparable values of 1201‘3% AU and 47+ 28 AU for the inner and outer radius, respectively (MacGregor et al. 2015a).

These new ALMA observations are the first to resolve and conclusively determine the presence of a second dust ring
in the HD 15115 debris disk. However, several previous studies have suggested that this system might contain multiple
rings of dust. The SED fits of Modr et al. (2011) included a hot dust component at 4 £ 2 AU. Recently, Engler et al.
(2019) found evidence in SPHERE images for a second ring interior to ~ 173 (~ 63 AU), slightly outside of our best-fit
gap position of ~ 59 AU. Our ALMA observations do not indicate that the inner ring is misaligned with the outer ring
as Engler et al. (2019) suggest. While the disk is not vertically resolved in our image, a misalignment of ~ 6° should
have been detectable.



4.2. Possible Sculpting Mechanisms

The origin of HD 15115’s complex scattered light structure has been much debated. There are similarities to
other edge-on, asymmetric systems such as HD 61005 and HD 32297, whose structure was originally attributed to
ISM interactions (Schneider et al. 2014) but which recent ALMA observations show might have a planetary origin
(MacGregor et al. 2018). Although HD 15115 has a stellar luminosity intermediate to HD 32297 and HD 61005, it
has a distinctly different structure pointing to a different dynamical origin. By considering the resolved structure of
the HD 15115 debris disk in both scattered light (small grains) and millimeter (large grains) images, we can place
new constraints on how this system is shaped. Notably, since the ALMA image does not show any asymmetry > 30
between the eastern and western sides of the disk, we conclude that the mechanism producing this asymmetry likely
only operates on small grains. Many possible mechanisms have been suggested previously including stellar encounters
(Kalas et al. 2007), local increases in collisions (Mazoyer et al. 2014), and interactions with the interstellar medium
(ISM, Debes et al. 2009), which we consider here.

Stellar encounters could affect the orbits of planetesimals in a disk and generate complex structures as they continue
to evolve and collide. Kalas et al. (2007) suggested that interaction with the nearby M star HIP 12545, which differs
from HD 15115 by only 3.5 km/s in UVW and is currently only 5.5 pc away, could have shaped the disk ~ 1.5 Myr ago.
However, BANYAN 3 does not find a high probability that HIP 12545 is in Tuc-Hor. The stars are currently moving
apart in X and closer together in Y and Z, making a previous encounter likely only if the stars were bound, which is
itself unlikely given their large separation. We note that eccentric planets within a disk can have a similar effect on
disk structure as a stellar encounter, and modeling has shown that high eccentricity planets can generate asymmetric
disks (e.g., Lee & Chiang 2016).

Perhaps the most likely explanation for the scattered light asymmetry is an interaction with the ISM, which operates
predominantly on small grains and is unlikely to affect large grains. In this scenario, the eastern side of the disk becomes
truncated when it impacts a dense clump of interstellar gas. Ram pressure from the interaction strips grains from
the disk into an extended halo on the western side of the disk. Conveniently, the proper motion of HD 15115 is
almost entirely along the major axis of the disk (towards the east). No absorption is detected along the line of sight
to HD 15115 in Call (Iglesias et al. 2018), although more sensitive tracers may reveal weak circumstellar and/or
interstellar absorption. Disk gas could also be stripped by ISM interactions and then remove grains when they become
entrained (Maness et al. 2009). However, we do not detect any 2CO emission in our ALMA observations, which
indicates that there is likely insufficient disk gas for this process to occur.

4.3. Constraints on a Planet in the Gap

The ALMA image of HD 15115 shows two bright ansae on both sides of the central star, and our modeling favors the
interpretation that this structure results from two rings of dust separated by a depleted gap. Before concluding that
this surface brightness distribution stems from a planetary origin, we must consider other possibilities. If particles in
the disk were on eccentric orbits but not apsidally aligned, models predict that particles would pile up on the disk
inner and outer edges making them appear brighter (i.e., Pan et al. 2016). For a nearly edge-on disk, the resulting
surface brightness distribution would show two bright peaks on either side of the star, comparable ‘by eye’ to our
ALMA image. To test this, we created toy disk models using particles with fixed semi-major axis and eccentricity,
but random longitude of periapses. While these models do produce the predicted effect, the maximum brightness
difference between the two apparent peaks is ~ 40 — 50%, not large enough to match our observations.

We conclude that the most likely mechanism to produce the observed structure of the HD 15115 debris disk is
removal of planetesimals via a planet in the gap. The Gaussian gap model constrains the gap position and width to
be 58.9 + 4.5 AU and 13.8 + 5.6 AU, respectively, with a fractional depth of 0.88 4+ 0.10. We can use these best-fit

parameter values to place constraints on the mass of the potential planet. Quillen & Faber (2006) define the mass

. . . 7/2 . Lo .
ratio of the planet to the star () given the gap size to be p = (fga) / , where a is the planet’s semi-major axis and

da is the difference between the planet’s semi-major axis and the edge of the gap (i.e., half the gap width). Given our
best-fit gap parameters, the mass ratio g = 0.00011 £ 0.00004. Assuming the central star is an F4 spectral type with
mass ~ 1.4 Mg yields an estimate for the planet mass of 0.16 £ 0.06 Mjy,p. Quillen & Faber (2006) estimate that for
mass ratios of 1074, 75% of particles will be removed from the gap after 10 orbits. At a distance of 59 AU from the
star, the orbital period is ~ 400 years, which implies that the gap should be > 75% depleted after ~ 1 Myr. Since the
HD 15115 system is older (~ 20 — 45 Myr), it is plausible that a 0.16 Mjy,, planet could produce a nearly depleted
gap within the lifetime of the system.

To demonstrate that a ~ 0.2 Mj,p-mass planet could indeed open the observed gap in the HD 15115 disk, we
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Figure 4. REBOUND simulations show that a 0.2 Mjup-mass planet with semi-major axis 58 AU could open the observed gap
in the HD 15115 debris disk within 1 Myr. The face-on disk image (left) and radial surface density profile (right) are shown for
planets with eccentricity e = 0 (top) and e = 0.06 (bottom). Both models assume a 1.4 Mg star and include 10000 particles.
In the face-on images, the stellar position is marked by the blue star and the planet pericenter position with the white circle at
58 AU and 54.52 AU in the circular and eccentric simulations, respectively.

performed N-body simulations using REBOUND (Rein & Liu 2012). Figure 4 shows the resulting face-on disk image
and radial surface density profile after 1 Myr for a 0.2 Mj,,-mass planet at semi-major axis 58 AU with eccentricity
e =0 (top) and e = 0.06 (bottom). Both models assume a 1.4 Mg, star and include 10000 particles. The planet quickly
opens a gap with FWHM ~ 15 AU in both models, but differences between the circular and eccentric cases could be
revealed by future observations with increased sensitivity and resolution. For a circular orbit, material is maintained in
a co-rotating ring at the 1:1 resonance with the planet; these orbits are unstable in the eccentric case. In addition, the
gap appears slightly broader for an eccentric planet, indicating that a lower mass planet could maintain the observed
gap. Indeed, a lower mass planet could work in both cases, since Nesvold & Kuchner (2015) show that gaps grow over
time due to collisional erosion. Future high-quality extreme AO observations from a GPI-2.0 (Chilcote et al. 2018),
SCExAO (Currie et al. 2018), or later ELTs could recover the gap in the HD 15115 disk and possibly detect a planet
responsible for sculpting it.

It is well-known that young protoplanetary disks exhibit multiple rings, potentially created by forming planets (i.e.,
the DSHARP survey, Andrews et al. 2018, and references therein). Since debris disks are the later evolutionary stage
of circumstellar disks, we might expect them also to exhibit multiple rings. However, to date, only two previous disks
have shown evidence for multiple cold belts, HD 107146 (Ricci et al. 2015; Marino et al. 2018) and HD 92945 (Marino
et al. 2019). With the addition of HD 15115, we are beginning to build a sample of multiple ring debris disks that can
inform our understanding of how and when disk gaps are produced.



5. CONCLUSIONS

We present new ALMA observations of the HD 15115 debris disk at 1.3 mm (230 GHz), which provide the highest
resolution image of this unique system at millimeter wavelengths to date. The ALMA image shows two bright peaks
or ansae on either side of the star, characteristic of a double-ringed system viewed edge-on. We fit models to the
millimeter visibilities within a MCMC framework to robustly constrain the structure and geometry of the system. The
best-fit model has a gap at 58.9 £ 4.5 AU (1”72 £ 0710) with a width of 13.8 £ 5.6 AU (0728 £ 0”11) and a fractional
depth of 0.88+0.10. There is no evidence from the ALMA data for the dramatic east-west asymmetry seen in scattered
light images. Since the mechanism producing this asymmetry appears to only affect small grains, we conclude that
ram pressure stripping from an interaction with the local ISM is most likely. From dynamical modeling, we conclude
that the depleted gap in the disk is likely carved by a 0.16 & 0.06 Mj,, mass planet. Higher resolution observations
could reveal additional substructures in the disk resulting from interactions between the planet and disk material that
would improve constraints on the planet mass and orbital properties.
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Table 1. Best-fit Model Parameters

Parameter Description Two Ring Model Gaussian Gap Model
Faisk,1 Total disk flux density [mJy] 0.38 +0.08 —

Rin1 Ring 1 inner edge [AU] 44.6 + 4.5 (0790 + 0709) -

Rout 1 Ring 1 outer edge [AU] 50.9 + 8.8 (1704 + 0718) —

T Ring 1 power law gradient —0.95 + 0.64 —

Flisk,2 Total disk flux density [mJy] 1.61 £ 0.09 —

Rino Ring 2 inner edge [AU] 65.7 = 4.5 (1734 £ 0”09) —

Rout,2 Ring 2 outer edge [AU] 92.8 4+ 3.1 (1789 4 0”06) -

T2 Ring 2 power law gradient —0.65 +0.78 -

Faisk Total disk flux density [mJy] - 1.98 + 0.03

Rin Ring inner edge [AU] - 43.9+5.8 (0789 £ 0712)
Rous Ring outer edge [AU] - 92.2 + 2.4 (1788 + 0749)
T Ring power law gradient — —0.43 £ 0.88

Rgap Gap location [AU]J - 58.9 + 4.5 (1720 + 0”10)
Weap Gap FWHM [AU] - 13.8 £ 5.6 (0728 £ 0711)
Agap Gap fractional depth — 0.88 £0.10

Fot Central point source flux density [mJy] 0.04 £ 0.01 0.04 £0.01

Aa RA offset of star from disk centroid [] 0.10 4 0.05 0.09 & 0.05

AS DEC offset of star from disk centroid [] —0.05 £ 0.05 —0.06 + 0.05

) Disk inclination [°] 86.3+0.4 86.2+£0.5

PA Disk position angle [°] 278 £1 278 £1




