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Biotic interactions are an unexpected yet critical
control on the complexity of an abiotically driven
polar ecosystem
Charles K. Lee et al.#

Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions

remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet

highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic

and biotic controls of community structure. We undertook a multidisciplinary investigation to

capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry

Valleys, encompassing observed landscape heterogeneities across more than 200 km2. Using

richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked

measured variables in a parsimonious yet comprehensive structural equation model that

explained significant variations in biological complexity and identified landscape-scale and

fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of lin-

kages among functional groups was essential for constructing the best-fitting model. Our

findings support the notion that biotic interactions make crucial contributions even in an

extremely simple ecosystem.
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U
nderstanding how ecosystems self-organize at landscape
scales has long been a formidable challenge in ecology1,2

since the trophic complexity of most ecosystems obscures
the relative contributions of the biotic and abiotic factors reg-
ulating biological diversity3–6. Given the fundamental effects of
biodiversity on ecosystem function7, a critical task is to resolve
the relative importance of three sets of ecological factors that
drive community structure: abiotic environmentalfiltering, dis-
persal limitation in space, and biotic interactions (e.g., competi-
tion, mutualism, and trophic relationships)2,8. Thorough and
spatially explicit descriptions of these ecosystem drivers are
required for this task, but the complexity of most ecosystems
creates enormous logistical obstacles.
Biotic interactions, including those among higher eukaryotes

and those between higher eukaryotes and microorganisms, have
long been recognized as important drivers of ecosystem structure
and function6,9. However, attempts to capture biotic interactions
at the ecosystem level have often been restricted both by sampling
approaches and/or the expertise of individual investigators10, and
studies have largely focused on testing hypotheses associated with
pre-identified biotic interactions or ecosystem components6,11–15.
A comprehensive investigation of abiotic and biotic interactions
within an ecosystem therefore requires a sampling design that is
consistent across all major biological groups present. It also
requires an explicitly interdisciplinary and comprehensive
approach for data collection and analysis of both abiotic and
biotic variables.
For microorganisms (bacteria, archaea, and unicellular fungi),

culture-independent characterization using molecular genetic
techniques is widely recognized as the most consistent and sen-
sitive approach16, whereas conventional surveys remain the most
reliable and practical approach for larger invertebrates and higher
animals and plants in terrestrial environments. For abiotic vari-
ables and some major macroecological features (e.g., primary
productivity), geographic information system (GIS) has become
an essential tool for collecting information across spatial scales.
The integration of GIS and remote sensing technologies (e.g.,
satellites) can provide spatially explicit environmental informa-
tion for entire geographic regions17,18. Specifically, the availability
of high-resolution data layers from sources such as the Landsat 7
and MODIS satellites facilitates complete and consistent
descriptions of environmental conditions (e.g., surface tempera-
ture and snow coverage) at the landscape scale18,19. Using these
descriptions in conjunction with information on bedrock geology
and geomorphology, it is now feasible to carry out systematic
landscape-scale surveys that capture heterogeneities in abiotic
conditions within an ecosystem. Additionally, all information
collected within a GIS-enabled sampling framework is spatially
explicit and enables thorough examinations of dispersal limita-
tion effects across multiple spatial scales.
Despite the advances in methodologies, disentangling the

relative roles of abiotic and biotic controls on the complexity in
terrestrial ecosystems is still a major challenge in ecology. We
propose that extreme ecosystems offer a natural laboratory to
reduce this complexity while representing its major features20.
Here, we offer an analysis of the controls on the biological
complexity of a region of the McMurdo Dry Valleys of Antarc-
tica. Located between the Polar Plateau and the Ross Sea (Fig.1),
the McMurdo Dry Valleys (hereinafter the Dry Valleys) are the
largest contiguous ice-free area on the Antarctic continent and
subject to some of the most extreme conditions of any terrestrial
habitat on Earth21, which severely constrain the range of biota
present22,23. Vascular plants and vertebrates are entirely absent,
and soils are predominantly ultraoligotrophic, hyperarid, and
often hypersaline21,22. Consequently, abiotic factors are widely
regarded as the primary force shaping the ecology of Dry Valley

soils20,21,24–27. The extreme environmental conditions and lack of
evidence for critical biotic interactions have made ecologists
hypothesize that these ecosystems are fundamentally constrained
by abiotic factors and host some of the simplest trophic structures
on Earth21,23,24,28,29(Supplementary Figure 1). These unique
characteristics make the Dry Valleys a model system for resolving
the roles of abiotic and biotic factors that shape community
structure.
In this study, we analyzed data collected by the New Zealand

Terrestrial Antarctic Biocomplexity Survey (nzTABS,https://
ictar.aq/nztabs-science/), which was initiated during the Inter-
national Polar Year 2007–2008. This project draws on a wide
range of international expertise to profile the biology, geochem-
istry, geology, and climate of the Dry Valleys, and has completed
a spatially and biologically comprehensive landscape-scale survey
that aims to resolve the biotic and abiotic control of ecosystem
complexity. We then used structural equation modelling (SEM)
to analyze the comprehensive collection of geological, geo-
graphical, geochemical, hydrological, and biological variables
measured systematically across three Dry Valleys of Antarctica.
Structural equation modelling (SEM), which is built on path

analysis and factor analysis, is one of the most useful statistical
approaches to disentangle numerous factors of influence30and
develop deeper causal understanding from observational data31.
Users of SEM translate theoretical frameworks (informed by
knowledge of the ecosystem) into explicit multivariate hypoth-
eses, and the SEM is used to evaluate whether the theory is
consistent with empirical data30,32. A robust SEM allows
researchers to quantitatively assess the relative importance of
ecological drivers32,33and is thus well suited for predicting eco-
system responses to global change1,33.
In addition to challenging climatic conditions and hyperar-

idity21, biotic interactions in Dry Valley soils are thought to be
limited by very low biomass and patchy distribution of photo-
trophic communities28. Temperature and biologically available
water have been proposed as the primary determinants of species
occurrence21,34, but the lack of studies explicitly addressing biotic
interactions in the Dry Valley ecosystems means that the role of
biotic interactions is largely unknown (if present at all)28.
Therefore, our primary hypothesis was that abiotic environmental
filters are the major control on the biodiversity of this envir-
onmentally extreme and simple terrestrial ecosystem, and the
structure of our SEM mostly reflected this notion. However, we
found that linkages between different groups of biota and the
groups’discrete spatial patterns (i.e., independent of the effects of
spatial variation in abiotic factors) had to be included to obtain
the best-fitting SEM. Overall, thesefindings indicate that biotic
interactions make crucial contributions even in an extremely
simple ecosystem.

Results
Correlations and nestedness of measured variables. Our data
indicated that richness (see Methods for definitions) was related
to community composition in each of the three groups of
organisms examined (i.e., multicellular taxa, cyanobacteria, and
fungi), which was to be expected given the low species richness of
each group in the analyzed system. Multicellular taxon commu-
nities were significantly nested (nestedness temperature=17.56,
P=0.010), and the richness of multicellular taxa was strongly
correlated (r=−0.99,P=0.001) with thefirst NMS axis of
multicellular community composition. Nematodes were by far the
most frequently observed organism, occurring in 80% of the
sampled tiles, followed by hypoliths (40%), rotifers (32%), lichens
(25%), tardigrades (23%), springtails (19%), cyanobacterial mats
(15%), mites (12%), and mosses (11%). Cyanobacterial
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communities were significantly nested (nestedness temperature
=2.01,P=0.010), and cyanobacterial richness was correlated
with both NMS axes (axis 1:r=−0.75, axis 2:r=−0.66,P=
0.001) derived from the cyanobacterial community matrix. Fun-
gal communities were also significantly nested (nestedness tem-
perature=2.61,P=0.010), and fungal richness was correlated
with both NMS axes (axis 1:r=0.61, axis 2:r=−0.79,P=
0.003) derived from the fungal community matrix.

Structural equation models. The initiala prioriSEM (Supple-
mentary Figure 2) did notfit the data well (Comparative Fit Index
[CFI]=0.706,χ2=394.397, df=43,P< 0.0001). This initial
model only included pathways that were well supported by pre-
vious empirical studies at the time the model wasfit. This initial
result made it clear that oura prioriexpectations were missing
important relationships within the ecosystem that were not well
known in the literature. Consequently, to obtain a model with an
implied covariance structure that matched the observed data well,
we made two modifications. First, we identified missing pathways
that contributed to poor model-fit by inspecting the residual
covariance matrix and added as few of these theoretically plausible
pathways as possible (e.g., direct pathways from abiotic variables
to biotic variables). Second, we removed non-significant pathways.
Thefinal model (Fig.2a)fits the data well (CFI=0.996,χ2=
45.018, df=35,P=0.1196) and represents the most parsimo-
nious model possible. Each pathway in the model is significant

(the standardized path coefficients can be interpreted as partial
correlation coefficients). The model explains between 30 and 40%
of the variance in the richness variables (i.e., Multicellular Taxa S,
Cyano S, and Fungal S), which are strongly correlated with
community composition, as described above. Importantly, soil
properties do not clearly mediate the effects of topography and
climate on biotic diversity, and topographic and climate variables
have many important direct pathways to biota. Attempts to trim
the model by removing select pathways substantially reduced the
goodness-of-fit of the model, so each pathway is important. This
model is particularly valuable and robust because it explicitly
accounts for spatial patterns that do not depend on environmental
variables (see Methods). For example, some areas could be richer
in species simply because they are located in regions that receive a
higher supply of immigrants supporting local populations even
when conditions are not favorable. The‘total effects’(i.e., sums of
direct and indirect effects) of each environmental variable on each
biotic variable (Multicellular Taxa S, Cyano S, and Fungal S)
indicate that elevation, slope, aspect, distance to coast, and wetness
index all have significant total effects on richness and composition
of multicellular taxon and microbial assemblages (Supplementary
Table 1).

Importance of biotic interactions. It is also important to note
that the positive links among the richness of multicellular taxon
and microbial assemblages were essential to the model;
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Map, ArcGIS Online, Esri);bthe McMurdo Dry Valleys (nzTABS study area denoted by black rectangle) relative to southern Victoria Land;cwestward

view of the Miers Valley toward the Royal Society Range; anddthe nzTABS study area, including Miers, Marshall, and Garwood Valleys (sampling sites

denoted by red dots) (Image Credit: the Landsat Image Mosaic of Antarctica [LIMA] Project)
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removing these pathways yielded very poor model-fit indices.
The chosen directions of these pathways were guided by both
empirical data and theory. There were eight possible combi-
nations of directed paths among three variables, and after
arriving at thefinal model (Fig.2a), we tested all eight com-
binations to evaluate the sensitivity to the directions of these
pathways. Four of these eight models yielded poor-fitting
models (P< 0.05, specific models not shown), and each of these
poor models included a pathway from multicellular taxa to
fungi, which is strong evidence against that particular pathway.
However, the other four models were indistinguishable from a
model-fitting perspective (allP> 0.05, specific models not
shown), and so we relied on theory to specify the direction of
these pathways. Ecological theory supports pathways from

cyanobacterial richness to fungal richness and from cyano-
bacterial richness to multicellular taxon richness, given the
foundational contribution of these autotrophic single-celled
organisms to this extreme ecosystem. Importantly, the positive
covariance among the biota is not simply due to similar
responses to abiotic conditions because each group responds
individually to the sets of abiotic variables in the model
(Fig.2a). This implies that processes other than abioticfiltering
drive the positive covariance among the three groups of biota.

Relative contributions of abiotic and biotic factors. Overall,
environmentalfiltering imposed the strongest net effects on biotic
richness (Table1). Spatial processes were the second most
important set of richness drivers, with nearly the same magnitude
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of effect as environmentalfiltering for cyanobacteria (Table1).
Biotic interactions were important in determining fungal and
multicellular taxon richness, and their impact on multicellular
taxa was comparable to that of spatial processes (Table1). Finally,
the SEM was used to generate spatially explicit predictions of
biodiversity across the study area (Fig.2b–d) to demonstrate its
potential as a tool for understanding the spatial heterogeneity of
soil biota in the Dry Valleys for both scientific investigation and
environmental management.

Discussion
Earlier investigators had suggested that the species richness of
Antarctic terrestrial vegetation south of 72°S35and the structure
of Dry Valley invertebrate communities26,36are determined by
local conditions. Our data and model show the prominence of
abiotic drivers (in particular total soil N, soil wetness index,
elevation, and distance to the coast) and support the general view
that abiotic factors are the most important ecologicalfilter in
extreme environments2,20. However, there is a notable and large
amount of variance in the species richness of major functional
groups and their reciprocal correlations that is not accounted for
by abiotic factors. Notably, soil ATP level (a proxy for biomass)
was not significantly correlated with any of the other variables
measured and removed from thefinal model (Fig.2a). In the
absence of other practical measures of biotic variables, we believe
that species richness (which is significantly correlated with
composition, see Methods) effectively captures biotic variables
within this study.
Our model shows that the spatial autocorrelation vectors (i.e.,

independent of variation in abiotic factors) are the second
strongest correlate of richness (Table1). The spatial patterns
accounted for by these autocorrelation vectors can be caused by
both unmeasured biological processes (e.g., dispersal limitation)
and legacy effects (e.g., historic distribution of glaciers and pro-
glacial lakes)20. It is very unlikely that these spatial patterns are
caused by major unmeasured environmental variables, given the
quantity and quality of the environmental measurements col-
lected in this study. It is possible that an unmeasured soil attri-
bute (e.g., soil bulk density, water-holding capacity) could
account for some of the patterns observed. However, given the
variety of biotic variables captured in this study, it is unlikely that
any single unmeasured abiotic variable will show strong corre-
lation with measured biotic influences. Legacy effects are
important in establishing and maintaining ice-free refugia for
terrestrial biota20,37, and the importance of the spatial vectors in
the SEM thus potentially supports a role for legacies linked to
glacial geomorphology in shaping distributions of biota in the
Dry Valleys36,38.
Our model also shows that, besides spatial vectors and abiotic

factors, a notable amount of variance in the species richness of
each group is explained by correlations between biotic groups. As
we further explain below, we hypothesize that these correlations
reflect variation in the biological complexity of the ecosystem.
Specifically, our model highlights some of the major linkages in
the Dry Valleys ecosystem: in this system, cyanobacteria provide
the energetic foundation of food webs, and their species richness
does not appear to be influenced by the richness of fungi and
multicellular taxa (Table1). However, fungal richness was highest
where cyanobacterial richness was high, and multicellular taxon
richness was highest where both cyanobacterial and fungal rich-
ness was high (Fig.2b–d), highlighting the fundamental impor-
tance of autotrophic cyanobacteria as the primary producers in
this extreme ecosystem. We are confident that the positive cov-
ariance among the groups of organisms considered here is not
confounded by covariation with abiotic conditions because the

model explicitly allowed each group to respond to a unique
combination of abiotic variables. Conversely, the set of correla-
tions that link the species richness of the three groups are
essential to thefit of the model; removing them from the model
produces models thatfit the data very poorly.
The Dry Valleys are arguably the simplest large-scale (4500

km2of ice-free area39) ecosystem on the Earth. Therefore, a
small increase in the richness of any of the three major groups
in this system may imply a disproportionate increase in the
biotic complexity of the system because every added species can
bring in a new set of interactions between the three functional
groups. This is consistent with the trophic theory of island
biogeography, which is particularly relevant to systems such as
the Dry Valleys because they experience dispersal limitation
and disconnection between local communities37,40–43. Specifi-
cally, trophic constraints (i.e., species need their resource to
establish successfully) alter immigration and extinction
dynamics, which ultimately determine species richness. In the
Dry Valleys, food webs are particularly isolated compared to
other soil food webs, which should reduce the recruitment of
lower trophic level species for their consumers. The low con-
nectivity of the food webs in the Dry Valleys is thus expected to
translate into lower immigration and higher extinction rates.
This is expected to create high spatial and temporal variability
in species composition and richness, and contributes to food
webs dominated by generalist primary consumers with very few
secondary consumers40,41. Overall, the patterns of species
richness we observed are consistent with these dynamics and
suggest that the diversity of the primary producers plays a
central role in driving the diversity of the other organisms. A
further implication is that understanding the drivers of
microbial diversity will be central to predicting higher trophic
level responses to environmental change, which is happening at
marked rates in polar regions44.
The empirical SEM (Fig.2a) incorporated all measured factors,

including soil physicochemical properties that cannot be obtained
through remote sensing. Therefore, an additional SEM was
derived using only unstandardized coefficients associated with
factors that are obtainable through remote sensing and GIS (e.g.,
wetness index, temperature, elevation, aspect, distance to the
coast, and slope) (Supplementary Figure 3). In the future, this
“predictive”SEM can be used to make spatially explicit predic-
tions of biodiversity across the entire Dry Valley landscape.
Ultimately, the model and its future version can be used to
support the development of best management practices for this
unique ecosystem protected by the Antarctic Treaty System
(http://www.ats.aq).
In conclusion, we found that abiotic factors such as soil tem-

perature and topography had important direct effects on richness
as well as indirect effects mediated through physicochemical soil
properties (Fig.2a). However, contrary to our expectations, we
also found that the correlations between the functional groups
and spatial autocorrelation in the variation of the richness of the

Table 1 Net effects of various parameters on biological
richness

Abiotic Spatial Biotic

Cyanobacteria 0.45 0.40 0
Fungi 0.42 0.34 0.20
Multicellular Taxa 0.39 0.21 0.21

Net effects of abiotic environmentalfilters, spatial processes, and biotic interactions on
cyanobacterial, fungal, and multicellular taxon richness. Effects were calculated using composite
variables within the SEM and represent the absolute standardized path coefficients (ranging
from 0 to 1).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-018-0274-5 ARTICLE

COMMUNICATIONS BIOLOGY|            (2019) 2:62  | https://doi.org/10.1038/s42003-018-0274-5 | www.nature.com/commsbio 5

http://www.ats.aq
www.nature.com/commsbio
www.nature.com/commsbio


functional groups are a major determinant of the biological
diversity of the system. This result suggests that biotic factors are
an underestimated control on the complexity of the Dry Valley
ecosystem and raises the question of whether biotic interactions
and processes have been similarly underappreciated in other
simple and/or extreme ecosystems. Furthermore, ourfindings
highlight the fundamental importance of incorporating biotic
factors and spatial constraints when forecasting community
responses to changing environmental conditions. This has direct
relevance to more complex ecosystems where biotic interactions
play a markedly greater role in shaping community structure and
ecosystem functioning.

Methods
Study area. Approximately 0.4% of Antarctica is permanently ice-free, and the
main ice-free areas are the Antarctic Peninsula, the McMurdo Dry Valleys, and
various mountains and nunataks along the Transantarctic Mountains21. Of these,
the McMurdo Dry Valleys contain the largest contiguously ice-free areas (~4500 -
km2) and have been the focus of terrestrial biology research on the continent for the
past 50 years21,39. The McMurdo Dry Valleys are situated in southern Victoria Land
along the western coast of McMurdo Sound (between 160–164°E and 76–78°S) and
contain markedly complex surface geology and topography that result in highly
heterogeneous physicochemical conditions in soils across the landscape. The area
chosen for this study comprises 220 km2of largely ice-free terrain that includes
Garwood, Marshall, and Miers Valleys as well as Shangri-La, an area west of
Marshall Valley and enclosed by Joyce Glacier, Mt. Pams, and Mt. Lama (Fig.1).
In addition to the extreme cold (mean annual air temperature of approximately

−20 °C), the McMurdo Dry Valleys are characterized by strong winds, extreme
aridity (precipitation of <10 cm per year water equivalent), and lack of appreciable
solar input for much of the year21. Despite the extreme selective pressure, the Dry
Valleys appear to sustain a functional but simple ecosystem comprised of
prokaryotes, invertebrate fauna, and non-vascularflora21. Cyanobacteria (both
aquatic and edaphic) appear to be the main primary producers, although important
photosynthetic activity occurs in lithic communities (i.e., endoliths, hypoliths, and
chasmoendoliths) as well as mosses and lichens23.
The invertebrate fauna consists of the microarthropods Collembola (i.e.,

springtails) and Acari (i.e., mites), as well as a range of microinvertebrates
including nematodes, tardigrades, and rotifers. Nematodes are the dominant
invertebrate taxon across much of the landscape, and their distribution and
abundance primarily correlate with the presence of liquid water, pH, salinity, and
inorganic carbon45,46. Taxonomic diversity for nematodes is low (five species), but
abundances can be as high as hot desert soils23,46. Rotifers (four species) and
tardigrades (eight species) are present but more restricted to ephemerally wetted
areas23,46. A single species of Collembola (Gomphiocephalus hodgsoni) represents
the largest (albeit only <1.4 mm in length) terrestrial animal in the Dry Valleys,
whereas two species of Acari (Stereotydeus mollisandNanorchestes antarcticus) are
known within the region. The microarthropods share similar distributional
patterns and are more commonly found in soils under rocks on stable and sunny
slopes close to water sources. Soil microbial communities are composed of
predominantly heterotrophic bacteria27,47(archaeal abundance and diversity
appear to be very limited48) and fungi49, and constitute by far the largest biomass
in the ecosystem21.

Tile delineation. Using a digital elevation model (DEM) based on LIDAR data for
the area50,51, slope (in degrees), elevation (in meters above sea level), and aspect (N,
S, E, and W) were generated as the primary inputs for the nzTABS GIS model. The
GIS model also included geological (i.e., major bedrock lithologies) and geomor-
phological (i.e.,fluvial, aeolian, and glacial) datasets from published sources52–54,
augmented by analyses of ALOS, LandSat, and MODIS satellite imagery, aerial
photographs, and subsequentfield mapping (Table2). Using the GIS model, the
study area (excluding areas covered by ice, snow, and water) was divided into more
than 600 geographically and geologically distinct polygons (hereinafter“tiles”,
minimum 1.5 km2). Tile boundaries were delineated where the combination of
topographic and geologic attributes changed (Table2& Supplementary Figure 4).
Majorityfiltering was used to smooth spatial variability and avoid the creation of
large numbers of small tiles unsuitable for sampling. On-the-ground assessments
were carried out in November 2008 to confirm the reliability of delineations, and
554 tiles were chosen for sampling to encompass the entire range of geographical
and geological heterogeneity (Fig.1c) with replications for most common com-
binations of tile-defining characteristics. However, we acknowledge that there may
be a systematic bias against habitats that cannot be accessed safely (e.g., steep scree
slopes).

Tile sampling. Sampling of soils and biological communities was carried out
over two successive austral summers (January 2009 and January 2010). Within
each tile, a sampling site was chosen based on feasibility (a safety consideration)
as well as sampling route planning. Each sampling site had to be inside its

corresponding tile and representative of the geographic and geologic attributes
forthetile.Ateachsamplinglocation(GPScoordinatesandelevation
were recorded), the top 10 cm (top 2 cm for prokaryotes) of soil was collected
aseptically using a trowel from multiple spots within a 1 m2area for the fol-
lowing subsamples (Fig.3): bulk soil (~400 g) with large pebbles (>2 cm dia-
meter) removed aseptically and homogenized in a sterile 42 oz. Whirl-Pak; soil
(~20 g) for moisture content measurement, subsampled from homogenized bulk
soil into a sterile 15 mL centrifuge tube sealed with Parafilm; soil (~300 g) for
microinvertebrate count, stored in a sterile 18 oz. Whirl-Pak (pebbles not
removed to minimize disturbance).
A microarthropod survey (i.e., springtails and mites) was carried out by examining

the underside of small (5–10 cm dia.),flat (<2 cm thickness), and preferably dark
rocks within a 20 m radius of the soil sampling location for 10 min55.Thenumber
and types of microarthropods observed were recorded, and the organisms were
collected using an aspirator and preserved in a vial containing 100% ethanol for later
analyses55. A survey of vegetation (i.e., lichens, mosses, algae, and cyanobacterial
mats) and lithic communities (i.e., hypoliths and endoliths) was carried out along a
transect (20 m long and 2 m wide, 40 m2) adjacent to the soil sampling location.
Vegetation presence was recorded quantitatively in 100 cm2units for each taxon, and
the numbers of observed lithic communities were recorded. All our activities were
conducted in accordance with the McMurdo Dry Valley Antarctic Specially Managed
Area manual and were deemed to have limited and transient impact to the
environment according to the Preliminary Environmental Evaluation from the New
Zealand Ministry of Foreign Affairs and Trade. All soil samples collected are stored at
−60 °C or−80 °C at the International Centre for Terrestrial Antarctic Research at the
University of Waikato.
Soil samples were subsequently aliquoted and analyzed for total ATP, pH,

conductivity, water activity (AW), total moisture content, microinvertebrate (i.e.,
nematodes, tardigrades, and rotifers) richness and abundance, and organic carbon
and total nitrogen content (Fig.3and Supplementary Methods), as well as used for
bulk DNA extraction (Supplementary Methods). All extracted DNA samples are
available from the Antarctic Genetic Archive (AGAr,https://ictar.aq/antarctic-
genetic-archive/) at the University of Waikato.

DNA-based analysis of microbial communities. After quantification and quality
check (Supplementary Methods), extracted DNA samples were used for molecular
fingerprinting of bacterial (total and cyanobacteria-only) and fungal communities
based on automated ribosomal intergenic spacer analysis (ARISA)56–58. Briefly, the
intergenic spacer between the 16S and 23S rRNA genes of the bacterial/cyano-
bacterial ribosomal operon and the intergenic spacer between the 18S and 23S
rRNA genes of the fungal ribosomal operon were amplified using PCR for each
sample (Supplementary Methods).
ARISA fragment length profiles (Supplementary Data 1) were analyzed using

an in-house pipeline (a combination of Applied Biosystem Peak Scanner and

Table 2 Landscape-scale variables captured by nzTABS

Category Variables

Remote Sensing and GIS (Satellite
and LIDAR)

Elevationa

Slopea

Aspecta

Snow/Ice/Water Presencea

Distance to the Coast
Soil Surface Temperature
Wetness Index60

Geology Bedrock Geologya53

Glacial Geomorphologya

Biology Lichen and Moss (Abundance and
Size)
Endolith and Hypolith (Abundance)
Cyanobacterial Mat (Abundance
and Size)
Invertebrates (Abundance and
Taxonomy)
ATP Level
Bacterial Richness (ARISA)
Cyanobacterial Richness (ARISA)
Fungal Richness (ARISA)

Geochemistry pH
Conductivity
Water Activity (Aw)
Total Soil Moisture Content
Total Soil C & N

aVariables used for tile delineation
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custom R and Python scripts, see Supplementary Data 2) that examines all peaks
between 100 and 1200 base pairs for cyanobacterial electropherograms and 100
and 1400 base pairs for fungal electropherograms57. Peaks in these size ranges
that made up greater than 0.3% of all peaks over 30 relativefluorescence units in
each electropherogram were accepted as true peaks. The total number of true
peaks was taken as a measure of taxon richness for each sample. Peaks within
onebasepairofoneanotherwerebinnedforthepurposeofcomparing
electropherograms between samples.
ARISA was used to measure richness due to its proven ability to detect and

discern diversity of edaphic cyanobacteria signals in the Dry Valleys over 16S
rRNA gene PCR amplicons27,57and its proven ability to capture fungal diversity
patterns in Dry Valley soils in a consistent and cost-effective manner.

Environmental metadata. A number of key environmental attributes were derived
from satellite imagery and the DEM, including surface soil temperature, a topo-
graphically derived“wetness index”, and distance to the coast. Soil surface tem-
peratures were obtained from Landsat 7 ETM+using band 6 (at 60 m resolution),
which captured the up-welling thermal infrared spectrum (in the 10.4–12.5μm
band). Landsat 7-derived temperature data corresponding to locations of forty-five
on-the-ground temperature loggers (DS1921G iButtons, Maxim Integrated, San
Jose, CA) were compared with records from the iButtons, and significant positive
correlations between the two data sets were found59.
Wetness index, which produces a relative index of liquid water availability in

summer, was calculated using a GIS-based model using variables that influence the
volume and distribution of water. Remote sensing images from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor collected over several
years were used to calculate an average index of snow cover, which was then
combined with other water sources such as glaciers and lakes. This resulted in a
probable water source model representing the highly heterogeneous distribution of
water sources in the Dry Valleys60. The water source model was used to weight a
hydrologicalflow accumulation model61that used slope derived from LIDAR
elevation data captured for most parts of the Dry Valleys50. These data were then
used to calculate a Compound Topographic Index (CTI), a steady-state wetness
index based on both slope and upstream contributing area62. CTI takes the form:
CTI¼lnAs

tanβ whereAsis the upslope contributing area in m
2per unit width

orthogonal to theflow direction, andßis the slope angle in radians63. The resultant
model is a relative index of potential water availability, given the availability of melt
water sources and topographical features.
Distance to the coast value was calculated as the Euclidean distance (in meters)

from the sampling point to the closest point on coastline, which in turn was
defined by cells with zero elevation in the DEM. Specifically, the shortest distance
was determined by the perpendicular from the coastline to the sampling point.
After quality control (removal of tiles with missing or questionable information,

such as unintended duplicates and incorrect GPS location), data for 490 samples
were included in the analysis.

Data analysis. A broad suite of geological, geographical, geochemical, hydro-
logical, and biological variables (Table2and Supplementary Data 3) were collected
and evaluated to derive the most parsimonious set of predictors of biodiversity in
our study area. Biodiversity is represented by the richness of key autotrophic and
heterotrophic groups and the presence of known taxa. Specifically, species richness
of cyanobacteria and fungi was estimated using the number of ribosomal intergenic
spacer length-polymorphic fragments observed from communityfingerprinting
analyses. These intergenic spacers exhibit length polymorphism across species and
even at the intra-species level, and the length profiles of PCR fragments are
therefore indicative of the diversity and abundance of microbial communities. We
note that these techniques do not resolve richness at a consistent taxonomic level;
however, given that they can both over- and under-estimate species-level richness,
we do not believe the results were influenced by systematic biases. Taxon richness
for multicellular taxa was represented by the number of the following supraspecific
taxa present in a sample: nematodes, rotifers, tardigrades, springtails, mites, cya-
nobacterial mats, mosses, lichens, and hypolithic consortia. These taxonomic
groups also correspond to distinct trophic/functional groups in the system. Spe-
cifically, the animals are all primary consumers of both bacteria and fungi, cya-
nobacteria are the main primary producers besides mosses, and fungi represent the
major microbial decomposer group. Given the very low number of metazoan
(Supplementary Figure 1), cyanobacterial57, and fungal49species in the Dry Val-
leys, relatively small increase in the species richness of each compartment may
imply a marked increase in the complexity of the system in terms of increased
number of ecological interactions.
To verify that inferences made from patterns in species richness apply similarly

to community composition, richness was correlated with community composition
in all three groups of organisms (i.e., cyanobacteria, fungi, and multicellular taxa)
based on an analysis ofnestedness(R script available upon request). Nestedness
occurs when species-poor communities are generally subsets of species-rich
communities, and when rare species tend to only occur in species-rich
communities. The nestedness of each of the three community matrices was
evaluated by calculating their respective“temperatures”, which determine whether
species-poor communities are subsets of species-rich ones. The“temperatures”
were calculated using the“nestedtemp”function64in the“vegan”library of R65,
and their significance was assessed via permutation using the“oecosimu”function.
The relationship between richness and non-metric multidimensional scaling
(NMS) ordinations (based on Bray–Curtis similarity) of community composition
(obtained using the“metaMDS”function in“vegan”)65was quantified using
correlation analysis.
Overall, all these preliminary analyses supported the assumption that in the

specific system analyzed in this work, species richness of major functional groups is
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Fig. 3Flow diagram for nzTABS sample analysis.“S”represents the richness and composition of multicellular taxon and microbial assemblages. Solid lines

represent transfer or utilization of physical samples (including DNA), and dashed lines represent analysis of information. Colored components areincluded

in the present study
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the best metric to describe the richness of each group as well as the correlations
between groups and the relationship between biota and abiotic factors.
Cyanobacterial richness, rather than total bacterial richness, was included in our

analysis for the following reasons. First, including both would effectively be
“double-counting”since total bacterial richness includes cyanobacteria as well.
Second, cyanobacteria are arguably the most critical group of bacteria, given their
large proportional input to primary production in this extreme environment.
Finally, cyanobacterial richness was significantly and positively correlated with
total bacterial richness (r=0.31,P< 0.0001), so knowing the richness of one group
provides reasonable estimates about the richness of the other.
Biological communities closer in space are likely to be more similar in species

richness and community composition. However, historical population- and
landscape-level processes that are relatively independent of environmental conditions
can also be a driver of Antarctic biodiversity13,20,66,67. Thus, environmentally
independent spatial variables were computed to account for spatial patterns linked to
intrinsic population- and landscape-level processes, such as dispersal limitation or
source-sink dynamics8(see Supplementary Methods). Competition- and predation-
related direct biotic interactions were not explicitly considered due to limited evidence
for such interactions among Dry Valley biota23,28.
To represent spatial patterns driven by intrinsic population- and community-

level processes (e.g., limited dispersal), environmentally independent spatial
variables were obtained as follows. First, optimal (in terms of describing spatial
autocorrelation) combinations of Principal Coordinates of Neighbor Matrices
(PCNM) were calculated8. To explicitly model spatial patterns that are independent
of environmental gradients, the PCNMs were regressed against all environmental
variables to allow extraction of the residuals (aka“spatial residuals”). The“spatial
residuals”were then used in a linear regression model to predict the three biotic
richness variables, and their predicted values were derived. This was followed by a
principal component analysis (PCA) on these predicted values, allowing spatial
patterns to be summarized in the multivariate distribution of the three biotic
richness variables. Thefirst two components (“s1”and“s2”) accounted for 90% of
the environmentally independent spatial patterns. Finally, the net effect of spatial
variation (s1+s2) was captured through the use of a composite variable (diamond
shape)30. These two spatial vectors thus account for all the spatial variation that is
not explainable in terms of measured biotic and abiotic variables. This variation
also implicitly account for the effects of spatial variation in unmeasured variables,
which contribute to autocorrelation in measured variables.
Structural equation modelling (SEM) with composite latent variables was used to

determine the relative importance of abiotic conditions, biotic interactions, and spatial
patterns due to population- and community-level processes. Based upon previous
work known at the time the model wasfit22,29,66–68,anaprioriSEM of biodiversity
was built, in which topographic properties and surface temperature (summer average)
are mediated through the effects of soil properties and indirectly influence the
richness of cyanobacteria (which positively correlates with total bacterial richness as
described above), fungi, and multicellular taxa (Supplementary Figure 2). To identify
variables to be included in thea priorimodel, the entire set of predictors was
evaluated to determine which variables were most likely to be important for reasons of
parsimony, thereby eliminating soil age, geology, soil C, and conductivity.
To derive afinal model with goodfit to the data from thea prioriSEM, non-

significant pathways were removed, and theoretically justifiable pathways were
added that were deemed to be important through inspecting the residual
covariance matrices and modification indices. The relationship between biotic
richness and geology was analyzed using ANOVA, and thefinal SEM was found to
explain more variation than geology alone. The“total effects”of each variable on
each biotic variable were calculated (Supplementary Table 1), which provides an
order to which factors are most important by taking into account both direct and
indirect effects (total effects=direct+indirect effects; indirect effects=sum of the
products along each pathway). Finally, composite variables were used to estimate
the net effects of three constructs (abiotic environmentalfilters, spatial processes,
and biotic interactions) on each of three biotic response variables (cyanobacterial,
fungal, and multicellular taxon richness)30.

Code availability. Python, R, and Mplus scripts used to analyze the data are
available in Supplementary Data 2 and 4.

Data availability
Thefinal environmental and biological datasets generated and analyzed during the
current study are available as Supplementary Data 1 through 3.
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