

Article

A failure detector for HPC platforms

George Bosilca1, Aurelien Bouteiller1, Amina Guermouche2,
Thomas Herault1, Yves Robert1,3, Pierre Sens4
and Jack Dongarra1,5,6

The International Journal of High
Performance Computing Applications
1–20
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342017711505
journals.sagepub.com/home/hpc

Abstract
Building an infrastructure for exascale applications requires, in addition to many other key components, a stable and effi-
cient failure detector. This article describes the design and evaluation of a robust failure detector that can maintain and
distribute the correct list of alive resources within proven and scalable bounds. The detection and distribution of the
fault information follow different overlay topologies that together guarantee minimal disturbance to the applications. A
virtual observation ring minimizes the overhead by allowing each node to be observed by another single node, providing
an unobtrusive behavior. The propagation stage uses a nonuniform variant of a reliable broadcast over a circulant graph
overlay network and guarantees a logarithmic fault propagation. Extensive simulations, together with experiments on
the Titan Oak Ridge National Laboratory supercomputer, show that the algorithm performs extremely well and exhibits
all the desired properties of an exascale-ready algorithm.

Keywords
MPI, failure detection, fault tolerance

1. Introduction
Failure detection (FD) is a prerequisite to failure miti-
gation and a key component of any infrastructure that
requires resilience. This article is devoted to the design
and evaluation of a reliable algorithm that will main-
tain and distribute the updated list of alive resources
with a guaranteed maximum delay. We consider a typi-
cal high-performance computing (HPC) platform in
steady-state operation mode. Because in such environ-
ments the transmission time can be considered as
bounded (although that bound is unknown), it becomes
possible to provide a perfect failure detector according
to the classical definition of Chandra and Toueg
(1996). A failure detector is a distributed service able to
return the state of any node, alive or dead (subject to a
crash).1 A failure detector is perfect if any node death is
eventually suspected by all surviving nodes and if no
surviving node ever suspects a node that is still alive.
Critical fault-tolerant algorithms for HPC and imple-
mentations of communication middleware for unreli-
able systems rely on the strong properties of perfect
failure detectors (see e.g. Bland et al., 2013a, 2013b,
2015; Egwutuoha et al., 2013; Herault et al., 2015;
Katti et al., 2015). Their cost in terms of computation
and communication overhead, as well as their proper-
ties in terms of latency to detect and notify failures and
of reliability, have thus a significant impact on the

overall performance of a fault-tolerant HPC solution.
A major factor to assess the efficacy of an FD algo-
rithm is the trade-off that it achieves between scalabil-
ity and the speed of information propagation in the
system.

Although we focus primarily on the most widely
used programming paradigms, the message passing
interface (MPI), the techniques, and algorithms pro-
posed have a larger scope and are applicable in any
resilient distributed programming environment. We
consider the platform as being initially composed of N
nodes, but with a high probability, some of these
resources will become unavailable throughout the exe-
cution. When exposed to the death of a node, tradi-
tional applications would abort. However, the
applications that we consider are augmented with fault-
tolerant extensions that allow them to continue across

1ICL, University of Tennessee Knoxville, Knoxville, TN, USA
2Telecom SudParis, Évry, France
3LIP, École Normale Supérieure de Lyon, Lyon, France
4LIP6, Université Paris 6, Paris, France
5Oak Ridge National Lab, Oak Ridge, TN, USA
6Manchester University, Manchester, UK

Corresponding author:
Yves Robert, ICL, University of Tennessee Knoxville, Knoxville, TN, USA;
LIP, École Normale Supérieure de Lyon, Lyon, France.
Email: Yves.Robert@ens-lyon.fr

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1094342017711505
mailto:Yves.Robert@ens-lyon.fr

2 The International Journal of High Performance Computing Applications 00(0)

ð Þ

b c-

failures (e.g. Bland et al., 2013), either using a generic
or an application-specific fault-tolerant model. The
design of this model is outside the scope of this article,
but without loss of generality, we can safely assume
that any fault-tolerant recovery model requires a robust
fault detection mechanism. Our goal is to design such a
robust protocol that can detect all failures and enable
the efficient repair of the execution platform.

By repairing the platform, we mean that all surviving
nodes will eventually be notified of all failures and will
therefore be able to compute the list of surviving nodes.
The state of the platform where all dead nodes are
known to all processes is called a stable configuration
(note that nodes may not be aware that they are in a
stable configuration).

By robust, we mean that regardless of the length of
the execution, if a set of up to f failures disrupt the plat-
form and precipitate it into an unstable configuration,
the protocol will bring the platform back into a stable
configuration within T (f) time units—we will define
T (f) later in the article. Note that the goal is not to tol-
erate up to f failures overall. On the contrary, the pro-
tocol will tolerate an arbitrary number of failures
throughout an unbounded-length execution, provided
that no more than f successive overlapping failures
strike within the T (f) time window. Hence, f induces a
constraint on the frequency of failures, but not on the
total number of failures.

By efficiently, we aim at a low-overhead protocol
that limits the number of messages exchanged to detect
the faults and repair the platform. Although we assume
a fully connected platform (any node may communi-
cate with any other), we use a realistic one-port commu-
nication model (Bhat et al., 2003) where a node can
send and/or receive at most one message at any time
step. Independent communications, involving distinct
sender/receiver pairs, can take place in parallel; how-
ever, two messages sent by the same node will be serial-
ized. Note that the one-port model is only an
assumption used to model the performance and provide
an upper bound for the overheads. In real situations
where platforms support multiport communications,
our algorithm is capable of taking advantage of such
capabilities. All these goals seem contradictory, but
they only call for a carefully designed trade-off. As
shown in the studies by Ferreira et al. (2008), Hoefler
et al. (2010), and Kharbas et al. (2012), system noise
created by the messages and computations of the fault
detection mechanism can impose significant overheads
in HPC applications. Here, system noise is broadly
defined as the impact of operating system and architec-
tural overheads onto application performance. Hence,
the efficiency of the approach must be carefully
assessed. The overhead should be kept minimal in the
absence of failures, while FD and propagation should
execute quickly, which usually implies a robust

broadcast operation that introduces many messages.
The major contributions of this work are as follows:

• It provides a proven algorithm for FD based on a

robust protocol that tolerates an arbitrary number
of failures, provided that no more than f consecu-
tive failures strike within a time window of duration
T (f).

• The protocol has minimal overhead in failure-free
operation, with a unique observer per node.

• The protocol achieves FD and propagation in loga-
rithmic time for up to fmax = log n 1 where n is
the number of alive nodes. More precisely, the
bound T fmax is deterministic and logarithmic in n,
even in the worst case.

• All performance guarantees are expressed within a
realistic one-port communication model.

• It provides a detailed theoretical and practical com-
parison with randomized protocols.

• Extensive simulations and experiments with user-
level failure mitigation (ULFM; Bland et al., 2013)
show very good performance of the algorithm.

The rest of the article is organized as follows: We

start with an informal description of the algorithm in
Section 2. We detail the model, the proof of correctness,
and the time-performance analysis in Section 3. Then,
we assess the efficiency of the algorithm in a practical
setting, first by reporting on a comprehensive set of
simulations in Section 4, and then by discussing experi-
mental results on the Titan Oak Ridge National
Laboratory (ORNL) supercomputer in Section 5.
Section 6 provides an overview of related work. Finally,
we outline conclusions and directions for future work
in Section 7.

2. Algorithm
This section provides an informal description of the
algorithm (for a list of main notations, see Table 1).
We refer to Section 3 for a detailed presentation of the
model, a proof of correctness, and a time-performance
analysis. We maintain two main invariants in the
algorithm:

1. Each alive node maintains its own list of known

dead resources.
2. Alive nodes are arranged along a ring, and each

node observes its predecessor in the ring. In other
words, the successor/observer receives heartbeats
from its predecessor/emitter (see below).

When a node dies, its observer broadcasts the infor-

mation and reconnects the ring: From now onward, the
observer will observe the last known predecessor
(accounting for locally known failures) of its former

Bosilca et al. 3

-

D

D

D

D

2 ½ Þ

S S -

D

S

A
D

D

D

A
-

b c

S S

S S

- S S

Table 1. List of notations.

 Platform parameters
Let A be the complement of Di in f0, 1, . . . , N - 1g
and let n = jAj. The elements of A are labeled from 0

 to n - 1, where the source i of the broadcast is labeled
N Initial number of nodes
t Upper bound on the time to transfer a message

Protocol parameters
h Period for heartbeats
d Time-out for suspecting a failure

predecessor. The rationale for using a ring for detection
is to reduce the overhead in the failure-free case: With
only one observer, a minimal number of heartbeat mes-
sages have to be sent. We use the protocol suggested by
Chen et al. (2002) for fault detection. Consider a node
q observing a node p. The observed node p is also
called the emitter, because it emits periodic heartbeat
messages m1, m2, . . . at time s1, s2, . . . to its observer
q, every h time units. Now let s0

i = si + d. At any time
t s0i, s0i + 1 , q trusts p if it has received heartbeat mi
or higher. Here, d is the time-out after which q suspects
the failure of p. Assume there are initially N alive nodes
numbered from 0 to N 1, and node i + 1 mod N
observes node i according to the previous protocol,
for all 0 i N 1. Tasks T1 and T2 in algorithm 1
execute this basic observation node, with the time-out
delay being reset upon reception of a heartbeat. Note
that Chen et al. (2002) show that this protocol, where
the emitter spontaneously sends heartbeats to its obser-
ver, exhibits better performance than the variant where
observers reply to heartbeat requests.

What happens when an observer (node i) suspects
the death of its predecessor in the ring? Task T3 in algo-
rithm 2 implements two actions. First, it updates the
local list i of dead nodes with the identity of its emitter
and then reconnects the ring (lines 19–23); and second,
it initiates a reliable broadcast informing all nodes in its
current list of alive nodes about the death of its prede-
cessor (line 24).

The first action, namely the reconnection of the ring,
is taken care of by the procedure FindEmitter(Di):
Node i searches its list of dead resources i and finds
the first (believed) alive node, j, preceding it in the ring.
It assigns j as its new emitter and sends a message
NEWOBSERVER informing j that i has become its obser-
ver. Node i also sets a time-out to 2d time units, a
period after which it will suspect its new emitter, j, if it
has not received any heartbeat. Task T4 implements
the corresponding action at the emitter side.

The second action for node i is the broadcast of the
death to all alive nodes (according to its current list). A
message BCASTMSG(dead, i, i) containing the identity
of the dead node dead, the source of the broadcast i,
and the locally known list of dead nodes i is broadcast
to all alive nodes (according to the current knowledge
of node i). We now detail how this procedure works.

0. The broadcast is tagged with a unique identifier and
involves only nodes of the labeled list A (this list is
computable at each participant as i is part of the mes-
sage). Because n is not necessarily a power of 2, we have
a complication.2 Letting k = log n (all logarithms are in
base 2), we have 2k n\2k + 1. We use twice the reli-
able hypercube broadcast algorithm (HBA) of
Ramanathan and Shin (1988). The first HBA call is
from the source (label 0) to the subcube of nodes j,
where 0 j 2k, and the second HBA call is from the
same source (label 0) to the subcube of nodes
n j mod n, where 0 j 2k. Each HBA call thus
involves a complete hypercube of 2k nodes, and their
union covers all n nodes (with some overlap). The HBA
algorithm delivers multiple copies of the broadcast mes-
sage through disjoint paths to all the nodes in the sys-
tem. Each node executes a recursive doubling
algorithm and propagates the received information to
up to k participants ahead of it, located at distance 2k for
0 j 2k. For simplicity, we refer to both HBA calls as
a single broadcast in our algorithm.

Upon reception of a broadcast message including a
source s and a list of dead nodes , any alive node i
can reconnect the complement list of nodes involved
in the broadcast operation and their labels, and then
compute the ordered set of neighbors Neighbors(s,)
to which it will then forward the message. We stress
that the same list , or equivalently the same set of
participating nodes, is used throughout the broadcast
operation, even though some intermediate nodes might
have a different knowledge of dead and alive nodes.
This feature is essential to preserving fault tolerance in
the algorithm of Ramanathan and Shin (1988). Indeed,
we know from Ramanathan and Shin (1988) that each
hypercube broadcast is guaranteed to complete pro-
vided that there are no more than k 1 dead nodes
within participating nodes (set) while the broadcast
executes.

3. Model and performance analysis
This section provides a detailed presentation of the
model and a proof of correctness of the algorithm,
together with a worst-case time-performance analysis.
We also present a comparison with randomized proto-
cols for observing processes and detecting failures.

3.1. Model
3.1.1. General framework. Nodes can communicate by
sending messages in communication channels, expected
to be lossless and not ordered. Any node can send a
message to any other node. Messages in the

4 The International Journal of High Performance Computing Applications 00(0)

-

2

D

 -
 -

 D

D D

D D

 -
2 D

D

D D [

D D [
D

communication channel (p, q) take a random time Tp, q
to be delivered, which has an upper bound t. We con-
sider executions where nodes can die permanently at
any time. If a node p dies, then all communication
channels to p are emptied; p does not send any message
nor execute any local assignment.

Note that t is a property of the platform that repre-
sents the maximal time that separates a process enter-
ing a send operation and the destination process having
the corresponding message ready to read in its memory.
Although the exact value for t is generally unknown, it
can be bounded in our case using the techniques
described in Section 5.1. The algorithm uses d.t as a
bound to define the limit after which a node is sus-
pected dead. Tuning the value of d as close as possible
to t—without underestimating t to guarantee that false
positives are not detected—is an operation that must
be fitted for each target platform. Thus, in the theoreti-
cal analysis, we use t to evaluate the worst case of a
communication that succeeds, while the algorithm must
rely on d to detect a failure.

3.1.2. Using the one-port model. Although we assume a
fully connected platform (any node may communicate
with any other), we use a realistic one-port communica-
tion model (Bhat et al., 2003) where a node can send
and/or receive at most one message at any time step.
Independent communications involving distinct sender/
receiver pairs can take place in parallel; however, two
messages involving the same node will be serialized.
Using the one-port model while aiming at a low-
overhead protocol is a key motivation to this work. It
is not realistic to assume that each node would observe
any other node, or even a large subset of nodes. While
this would greatly facilitate the diffusion of knowledge
about a new death and speed up the transition back to
a stable configuration, it would also incur a tremen-
dous overhead in terms of heartbeat messages and in
the end dramatically impact the throughput of the
platform.

Because all messages within our algorithm have a
small size, we model our communications using a con-
stant time t to send a message from one node to
another. We could have used a traditional model such
as LogP or a start-up overhead plus a time propor-
tional to the message size, but since we use this only as
an upper bound, this would unnecessarily complicate
the analysis. Under the one-port model, the HBA algo-
rithm (Ramanathan and Shin, 1988) with 2k nodes exe-
cutes in 2kt, provided that no more than k 1 deaths
strike during its execution. The time for one complete
broadcast algorithm in algorithm 1 would then be
(upper bounded by) 4t log n in the absence of any other
messages, since we use two HBA calls in sequence. But
our algorithm also requires heartbeats to be sent along
the ring, as well as NEWOBSERVER messages when ring

Algorithm 1. Sketch of the failure detector for node i.

1: task Initialization
2: emitteri (i 1) mod N
3: observeri (i 1) mod N
4: HB-TIMEOUT h
5: SUSP-TIMEOUT d
6: i [
7: end task
8:
9: task T1: When HB-TIMEOUT expires

10: HB-TIMEOUT h
11: Send HEARTBEAT(i) to observeri
12: end task
13:
14: task T2: upon reception of heartbeat(emitteri)
15: SUSP-TIMEOUT d
16: end task
17:
18: task T3: When SUSP-TIMEOUT expires
19: SUSP-TIMEOUT 2d
20: i i emitteri
21: dead emitteri
22: emitteri FindEmitter(i)
23: Send NEWOBSERVER(i) to emitteri
24: Send BCASTMSG(dead, i, i) to Neighbors(i, i)
25: end task
26:
27: task T4: upon reception of NEWOBSERVER(j)
28: observeri j
29: HB-TIMEOUT 0
30: end task
31:
32: task T5: upon reception of BcastMsg(dead, s,)
33: i i {dead}
34: Send BCASTMSG(dead, s,) to Neighbors(s,)
35: end task
36:
37: function FindEmitter(i)
38: k emitteri
39: while k i do
40: k (k 1) mod N
41: return k
42: end function

reconnection is needed. Assuming that h 3t (where h
is the heartbeat period), we can always insert broadcast
and NEWOBSERVER messages in between two successive
heartbeats, thereby guaranteeing that a broadcast in
algorithm 2 will always execute within B(n)= 8t log n,
assuming no new failure interrupts the broadcast
operation.

3.1.3. Stable configuration and stabilization time. Here we
consider executions that, from the initial configuration,
reached a steady state before a failure hit the system
and made it leave that steady state. To prove the cor-
rectness of our algorithm, we show that in a given time
the system returns to a steady state, assuming that no
more than a bounded number of failures strike during
this time.

Bosilca et al. 5

2 D ,

S
S

S

S -

S b c-

lapping failures in logarithmic time O (log n)3 .

Connected node. A node p is connected with its successor
in a configuration, if p is alive and emitterp is the
closest predecessor of p that is alive (on the ring). It is
connected with its predecessor if it is alive, and
observerp is the closest successor of p that is alive in
that configuration. It is reconnected if it is connected
with both its successor and predecessor. If all proces-
sors are reconnected, we say the ring is reconnected.
Stable configuration. A configuration C is the global
state of all processes plus the status of the network. A
configuration is declared as stable, if any alive node p
is reconnected in C and for any node q, q p q is
dead in C.
Stabilization time. T (f), with f being the number of
overlapping failures, is the duration of the longest
sequence of nonstable configurations during any execu-
tion, assuming at most f failures during the sequence.

3.2. Correctness and performance analysis
The main result is the following proof of correctness
that provides a deterministic upper bound on the stabi-
lization time T (f) of the algorithm with at most f over-
lapping faults:

Theorem 1. With n S N alive nodes, and for any
f S blog nc- 1, we have

Lemma 1. For 1 S f S blog nc- 1, we have

R(f) S R(f - 1)+ 2f d + t ð2Þ

Proof. We first prove equation (2) when f = 1.
Assume that node p, observed by node q, fails. After
receiving the last heartbeat, q needs d time units to
detect the failure (line 2 of algorithm 2). Thus, the worst
possible scenario is when p fails right after sending a
heartbeat, which will take t time units to reach q. Thus,
q detects the failure after t + d time units. Finally, q
sends the reconnection message to the predecessor of p,
which will take t, hence R(1) 2t + d. We keep the
overapproximation R(1) t + 2d to simplify the for-
mula in the general case.

Assume now that equation (2) holds for all
f log n 2. Now consider an execution with f + 1
overlapping failures, the first of them striking at time 0
(see Figure 1). The (f + 1)-th failure strikes at time t.
Necessarily, t R(f); otherwise, the ring would have
been reconnected after f failures, and the last one
would not be overlapping. There are f dead nodes just
before time t among the original n alive nodes, which
define k S f segments Ii, 1 S i S k. Here, segment Ii is
an interval of di 2 1 consecutive dead nodes (see

Pk

f (f + 1)

T (f) S f (f + 1)d + f t + 2 B(n) ð1Þ

where B(n)= 8t log n.
This upper bound is pessimistic for many reasons,

which are discussed after the proof. But the key point
is that the algorithm tolerates up to(blog nc -) 1 over-

alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)th failure at time t:

• The new failure strikes a node that is neither a pre-

decessor nor a successor of a segment (e.g. the

Proof. Starting from a nonstable configuration, the
next stable configuration will be reached when (i) all
nodes are informed of the different failures via the
broadcast and (ii) processes of the ring are reconnected.
Recall that every time a node has detected a failure, it
initiates a broadcast that executes within
B = B(n)= 8t log n time units and that is guaranteed
to reach all alive nodes as long as f log n 1.
Because we interleave reconnection messages within the
broadcast, B encompasses both the broadcast and the
reconnection. However, due to the one-port model, we
cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we
make a first simplification by overapproximating T (f)
as the maximum time R(f) to reconnect the ring after f
overlapping failures, plus the time to execute all the
broadcasts that were initiated, in sequence (assuming
no overlap at all). We prove an upper bound on R(f)
by induction, letting R(0)= 0:

Figure 1. Segments of dead nodes after f = 3 failures: n = 9,
k = 2, I1 = f2, 3g, I2 = f5g, d1 = 2, and d2 = 1.

i = 1
Figure 1). Of course, di = f , and there remain n - f

6 The International Journal of High Performance Computing Applications 00(0)

6
¼

-

f

S

S

S

D

S -

S S S b c-

P
-

S

ð S b c- Þ

ð S b c- Þ

failure strikes node 7 in Figure 1). In that case, a
new segment of length 1 is created, and the ring is
reconnected at time t + R(1).

• The new failure strikes a node p that precedes a seg-
ment Ii. Let q be the successor of the last dead node
in Ii. By definition, q p. There are two subcases:

– (i) The predecessor p0 of p is still alive (e.g. the
failure strikes node 1 preceding segment I1 in Figure 1,

is an alive process between q0 and p in the ring. Thus, q
must fail after p, for p to be discovered once more.
Since there are at most f faults, pi, the ith dead process
can thus be discovered dead by at most f i + 1
processes.

We immediately have that:

Corollary 1. At most
P

(f - i + 1)= (f (f + 1))=2
q = 4 and p0 = 0 is alive). Then, the size of segment Ii is
increased by one. In the worst case, q is not aware of

broadcasts are initiated. i = 1

the death of any node in Ii at time t and needs to probe
all these nodes one after the other before reconnecting
with p0 (in the example, q = 4 needs to try to reconnect
with 2 and 1 since it is not aware of their death). This
costs at most (di + 1)(2d)+ t S 2(f + 1)d + t, because
di + 1 f + 1, hence the ring is reconnected at time
t + 2(f + 1)d + t.
– (ii) The predecessor p0 of p is dead (e.g. the failure
strikes node 4 preceding segment I2 in Figure 1, q = 6
and p0 = 3 is dead). Then, p0 is the last node of another
segment Ij. In that case, segments Ii and Ij are merged
into a new segment of size di + dj + 1 f + 1. Just as
before, in the worst case, q is not aware of the death of
any node in that new segment, and the reconnection
costs at most (di + dj + 1)(2d)+ t 2(f + 1)d + t (for
an illustration, see Figure 1). Hence, the ring is recon-
nected at time t + 2(f + 1)d + t.
• The new failure strikes a node p that follows a seg-

ment Ii. Let q be the successor of p. If q is alive, it
now follows a segment of size di + 1. If q is the first
dead node of segment Ij, let r be the node that fol-
lows Ij. Now r follows a segment of size di + dj + 1.
In both cases, we conclude just as before.

This completes the proof of Lemma 1.
From Lemma 1, we easily derive by induction that

R(f) S f (f + 1)d + f t

for all values of f log n 1. During the ring recon-
nection, processes that discover a dead process initiate a
broadcast of that information. We need to count, in the
worst case, how many broadcasts are initiated to com-
pute how long it takes for the information to be deliv-
ered to all nodes.

Lemma 2. Let pi, 1 i f log n 1 be the ith pro-
cess subject of a failure. In the worst case, at most
f - i + 1 processes can detect the death of pi.

Proof. A process p is discovered dead by process q in
task T3, if emitterq = p. In that case, p is added to Dq,
and emitterq is recomputed using FindEmitter. That
function cannot return any process in Dq, and p is never
removed from q. Thus, q will never discover the death of
p again. As long as q lives, no other process q0 will
execute the task T3 with emitterq0 = p, because q

Finally, the information on the f dead nodes must
reach all alive nodes. For each segment Ii, there is a last
failure after which the broadcast initiated by the obser-
ving process is not interrupted by new failures. That
broadcast operation thus succeeds in delivering the list
of newly discovered dead processes to all others
di log n 1 . In the worst case, that broadcast
operation is the last to complete. As already men-
tioned, we conservatively consider that all the broad-
cast operations execute in sequence, and since there are
at most (f (f + 1))=2 broadcast operations initiated
(Corollary 1), we derive that

f (f + 1)

T (f) S R(f)+ 2 B(n)

which leads to the upper bound in equation (1) and
concludes the proof of theorem 1.

We derive from lemma 2 that at most
f

(f i + 1)= (f (f + 1))=2 broadcasts are initiated.
i = 1
Finally, the information on the f dead nodes must
reach all alive nodes. For each segment Ii, there is a last
failure after which the broadcast initiated by the obser-
ving process is not interrupted by new failures. That
broadcast operation thus succeeds in delivering the list
of newly discovered dead processes to all others
di log n 1 . In the worst case, that broadcast
operation is the last to complete. As already men-
tioned, we conservatively consider that all the broad-
cast operations execute in sequence. Since there are at
most (f (f + 1))=2 broadcast operations initiated, we
obtain T (f) R(f)+ ((f (f + 1))=2)B(n), which leads to
the upper bound in equation (1) and concludes the
proof of theorem 1.

The bound on T (f) given by equation (1) is quite
pessimistic. We can identify three levels of complexity
with their corresponding bounds on T (f). In the most
likely scenario, where the time between two consecutive
faults is larger than T (1), the system has time to return
to a stable configuration before the second fault, in
which case all faults can be considered as independent,
and the average stabilization time is T (1)=
R(1)+ B(n)= O(log n). If the system suffers quickly
overlapping faults, the location of impacted nodes
becomes important. However, the larger the platform,
the smaller the probability that successive faults strike

Bosilca et al. 7

()

-

b c-

S b c-

f

() S

Figure 2. From stable configuration C, growing segment I1 of Figure 1: first failure on node 3, next two failures striking its ring
predecessors.

consecutive nodes (2/n, where n is the number of alive
nodes). Thus, on large platforms, overlapping failures
are more likely to strike nonconsecutive nodes in the
ring. If overlapping faults hit nonconsecutive nodes
rapidly (i.e. faster than the time needed by the system
to reach the next stable configuration), each error is
detected once, but due to the one-port model, the upper
bound on T (f) becomes R(1)+ fB(n)= O log2n .
Finally, in the unlikely scenario where f quickly over-
lapping faults hit f consecutive nodes in the ring, theo-
rem 1 provides the upper bound for T (f) R(f)+
(f (f + 1))=2)B(n)= O log3n .

Remark about stabilization time: f =T (f) is the maxi-
mum number of faults per time unit that the algorithm
can tolerate to guarantee that we pass by a stable con-
figuration infinitely often. However, T (f) is not a period
to optimize: T (f) is just the time it takes, in the worst
case, after f failures, for the ring to be reconnected, and
the failure information to be propagated to all alive
nodes.

3.3. Nonstabilization risk control
To guarantee convergence within T (f) time units, algo-
rithm 2 assumes that f log (n) 1. In order to eval-
uate the risk behind this assumption, consider that
failures strike following an Exponential distribution of
parameter l. Let PT (f) be the probability of the event
‘‘more than f failures strike within time T .’’ Then,

Consider a platform of n nodes: if mind is the Mean
Time Between Failures (MTBF) of a single node,
then l = n=mind (He ŕault and Robert, 2015). Let
M = log (n) 1, the assumption that there will not
be more than M failures before stabilization is then
true with probability 1 PT(M)(M). In Figure 2, we rep-
resent this relation by showing the upper bound of d to
enforce PT (M)(M)\10-9, at variable machines scale (n),
and for different values of mind, with a message time
bound of t = 1 ms. Figure 2 illustrates that for all val-
ues of d lower than the bound shown for a given system
size and individual node reliability, the probability that
failures strike fast enough to prevent algorithm 2 from
converging in T (f) is negligible (less than 0.000000001).
As already mentioned, this bound on d is a loose upper
bound, because the bound on T (f) in equation (1) is
loose itself. Furthermore, it captures the risk that
enough failures would strike during stabilization time
to make the appearance of the worst-case scenario pos-
sible, even though this worst-case scenario has itself a
very low probability of happening (as shown in
Sections 4 and 5). Still, for the largest platforms with
n = 256, 000 nodes, we find that d S 22 s for the most
pessimistic mind = 20 years, and d S 60 s if
mind = 45 years results in timely convergence. With
such large values, the detector generates negligible
noise to the applications, as shown in Section 5.3.

3.4. FD with randomized protocols

PT (f)= 1 -
k

P

= 0

(
(lT)k

/
 k!

)
e-lT . In this section, we provide a comparison of our algo-

rithm with randomized protocols such as SWIM (Das

8 The International Journal of High Performance Computing Applications 00(0)

-

-

et al., 2002; Gupta et al., 2001; Snyder et al., 2014). We
first provide some background in Section 3.4.1, and
then proceed to a detailed comparison in Section 3.4.2

3.4.1. Background. FD techniques based on randomized
protocols detect failures through periodic observation
rounds. Within a round, each node randomly chooses
another node to observe. This entails the observer send-
ing an are you alive? message to the observed node and
waiting for its answer. This pull technique (also called
pinging) is different from the push technique based on
heartbeats (Chen et al., 2002) and used in the determi-
nistic algorithm of Section 2. Pinging is inherent to ran-
domly choosing the observed process because this
latter process does not know in advance whom to send
its alive message to. Pinging is known to be less effi-
cient than using heartbeats (Chen et al., 2002) because
it requires twice as many messages and leads to increas-
ing the time-out, to accommodate for a round-trip
message.

In fact, actual protocols such as SWIM, which
stands for Scalable Weakly-consistent Infection-style
Process GroupMembership (Das et al., 2002; Gupta
et al., 2001; Snyder et al., 2014; for more details, see
Section 5.4), request that after a time-out, other proces-
sors are required by the observer, say Pi, to ping the
nonresponding process, say Pj. Specifically, k randomly
chosen processors (for details on how to choose k, see
Das et al., 2002; Gupta et al., 2001) would ping Pj on
behalf of Pi and forward any answer back to Pi. Only
after this confirmation step would Pj’s death become
suspected. This confirmation step is not needed in our
framework, since we assume that network links are reli-
able and we place an upper bound, t, on the time to
transmit a message.

A single observation round is not enough to detect
failures with high probability. During a round, some
nodes will not be observed, while other nodes will
receive many are you alive? messages from different
observers, and will need to answer them all. Setting the
value of the time-out then becomes a complicated task:
indeed, to avoid false positives (alive nodes unduly sus-
pected of death), one has to account for the maximum
number of are you alive? messages that are received by
the same node. The next section proposes a simplified
analysis of the number of rounds and time-out values
needed to limit the risk of such false positives.

Finally, just as with our algorithm, after detecting a
failure, the knowledge of that failure must be propa-
gated to every alive node. In a nutshell, this propaga-
tion can be done in many ways, including a reliable
diffusion mechanism similar to the one presented in
this article. Other solutions include using a gossip
mechanism flooding the network in logarithmic time or
piggybacking are you alive? messages with the current

Figure 3. Maximal value for d to ensure that PT(M)(M)\10-9
with t = 1 ms and M = b log2 (n)c.

knowledge of all dead processes (for details, see Katti
et al., 2015).

3.4.2. Comparison. In this section, we estimate the FD
time for a randomized protocol. We assume a platform
with N = 100, 000 nodes and fix the risk of missing the
death of a node to 10-9. Note that this is the same value
as the risk PT(M)(M) used in Section 3.3; however, our
deterministic algorithm detects a single failure with
probability 1, as long as the time-out value d is correctly
set. On the contrary, the worst-case detection time of a
randomized protocol is infinite, by construction: There
are some (very unlikely) scenarios in which a dead node
will never be pinged (Figure 3).

Consider a single observation round with
N = 100, 000 nodes. The probability that a given node
is not pinged is p(N)= ((N - 1)=N)N-1’0:367881. In
fact limN!‘ p(N)= 1=e, where e is the Euler constant,
and (1=e)’0:367894. The expected number of nodes
that are not pinged within a round tends to N/e. With
N = 100, 000, expect that 36,788 nodes will be ignored.
Then how many rounds are needed to guarantee that
all nodes are pinged with probability 1 10-9? The
solution is x where p(N)x = 10-9, and by deriving, we
obtain x’20:7, so that 21 rounds are needed to achieve
the desired probability.

We now have to account for contention within a
round. As already mentioned, some nodes will not be
pinged, while some others will be pinged several times.
What is the largest number L(N) of ping messages that
a node will receive? Of course, the largest number is
L(N)= N 1 if all nodes ping the same one, but this is
very unlikely, and we need to estimate L(N) with high
probability. The problem can be modeled as a balls
and bins problem (Mitzenmacher and Upfal, 2005),
where we throw N balls into N bins randomly and inde-
pendently. The only difference is that a given node does
not ping itself, but this does not modify the analysis. It
is known (Mitzenmacher and Upfal, 2005: Ch 5) that
(ln N = ln ln N) S L(N) S 3(ln N = ln ln N) with high
probability 1 - (1=N). Here we obtain 4:7 S L
(100, 000) S 14:1, so we need to account for at least five

Bosilca et al. 9

ð b c Þ

ðb c- Þ

ping messages being possibly sent to the same node
(simulations in Section 4.3 show that in fact we need to
account for up to 11 ping messages to be on the safe
side).

Altogether, this calls for multiplying the time-out for
a round-trip message by (at least) 5 to account for con-
tention, and then by 21 to account for the number of
rounds, leading to a 100 3 increase. Altogether, with
N = 100, 000, we conclude that detection can be
achieved with probability 10-9 only with a huge time-
out of magnitude two orders higher than that of our
deterministic algorithm.

4. Simulations
We conduct simulations and experiments to evaluate
the performance of the algorithm under different exe-
cution scenarios and parameter settings. We instantiate
the model parameters with realistic values taken from
the literature. The code for all algorithms and simula-
tions is publicly available3 so that interested readers
can build relevant scenarios of their choice. In this sec-
tion, we report simulation results (for experiments, see
Section 5).

4.1. Simulation settings
The discrete-event simulator imitates how the protocol
of algorithm 2 would behave on a distributed machine
of size n. Messages between a pair of alive nodes in this
machine take a uniformly distributed time in the inter-
val (0, t]. Failures are injected following an exponential
law of parameter l = n=mind (see Section 3.3). To gen-
erate a manageable amount of events, each heartbeat
message and the corresponding time-outs are not simu-
lated, but the simulator asserts that a time-out should
have expired on the observer after the death of its emit-
ter if the observer is alive at that time; otherwise, the
observer’s observer is going to react, following the pro-
tocol. The simulator computes (i) the average time to
reach a stable configuration (all processes know all
faults) starting from a configuration with a single fail-
ure injected at time 0, (ii) the average time to reach a

configuration where all processes know about the initial
failure, and (iii) the average number of failures striking
during the time it takes to reach a stable configuration
over a set of 10,000 independent runs.

We consider two main scenarios for the simulations.
In both scenarios, we target a large-scale machine (up
to 256,000 computing nodes) with a low-latency inter-
connect (t = 1 ms). In the scenario LOWNOISE, we set
the failure detector so as to minimize the overhead in
the failure-free case: h is set to 10 s and d to 1 min. We
consider this case significant for platforms where nodes
are expected to be reliable, or where alternative meth-
ods to detect most failures exist; the heartbeat mechan-
ism is then used as a last resort solution (e.g. when
special hardware providing a Baseboard Management
Controller and controlled through a protocol like intel-
ligent platform management interface is connected to
the application notification system; Wung, 2009). We
also considered a scenario LOWLAT, with the opposite
assumptions, where active check through heartbeats is
the primary method to detect failures, and a low latency
of detection is required for the application: h = 0:1 s,
and d = 1 s.

4.2. Simulation results
In Figure 4, we force the simulator to inject the maxi-
mum number of failures tolerated by the algorithm for
a given platform size log2(n) 1 in a very short
time, smaller than d, in order to evaluate the average
stabilization time in the most volatile environment.
Varying the system size (n), and the number of injected
failures simultaneously, we evaluate the time taken for
the first failure to be notified to all processes and for all
the processes to be notified of all the failures that struck
since the last stable configuration.

The figure considers scenario LOWNOISE. Points on
the graph show times reported by the simulator, while
lines represent functions fitted to these points,
O (1=n)+ log2(n) for all know all failures (orange
lines) and O(1/n) for all know the first failure (green
lines).

Figure 4. Average stabilization time, when the maximal number of failures strike a platform of varying size.

10 The International Journal of High Performance Computing Applications 00(0)

-

«

On average, the first failure, striking at time 0, is

detected d (h=2) seconds later, and this is the
observed baseline for detecting the first failure at all
nodes. The reliable broadcast overhead in this case is
negligible, because t d and h. There are a few execu-
tions in which, within the first d seconds, another fail-
ure hits the observer of the first failure, introducing
another d delay to actually detect the first failure and
broadcast it. As the size of the machine increases, this
probability decreases. Such overlapping failure cases
contribute to a longer detection and notification time
that can be fitted with a function inversely proportional
to the platform size, but have a low probability to hap-
pen, introducing a measurable but small overhead at
small scale. For general stabilization, where all pro-
cesses need to know all failures, the reliable broadcast
remains as fast as for the initial failure. However, if any
failure strikes before that broadcast phase is complete,
this delays reaching stabilization by another d followed
by a logarithmic phase. As we observe in both figures,
this shows at large scale, where failures have a high
probability of striking successively, each introducing a
constant overhead. The fitting function thus shows the
same inversely proportional property in the beginning,
and then the logarithmic behavior starts to dominate at
large scale.

We conducted the same set of simulations on the
LOWLAT scenario. The evaluation presents the exact
same characteristics, shifted by the ratio between the
two values for d.

We then consider the average case, when failures are
not forced to strike quasi-simultaneously. We set the
MTBF of independent components to a very pessimis-
tic value (mind = 1 year), making the MTBF of the plat-
form decrease to a couple of minutes at 256,000 nodes.
Although we do not expect such a pessimistic value in
real platforms, we evaluate this case in order to ensure
that failures may occur before the initial one is detected
and broadcast (or stabilization would be reached imme-
diately after). Figure 5 presents the average number of
failures observed at different scales, the average time
for all nodes to know about the first failure, and the
average time for all nodes to know about all failures.
Points represent values given by the simulator, while
lines represent fitting functions: O(1) for the time for all
to know the first failure, O(n) for the average number
of failures and the average time for all to know all fail-
ures. We present here the scenario LOWNOISE, although
the result also holds for scenario LOWLAT, at a different
scale.

This figure shows that, on average, and even with
extremely low MTBFs, the probability that two inde-
pendent failures hit the system in an overlapping
manner—before the first failure is known by all
nodes—is very low. This happens when the MTBF of
the system becomes comparable to d. In that case, the

Figure 5. Average stabilization time, with random overlapping
failures in scenario LOWNOISE (d = 1 min, t = 1 ms, h = 10 s),
with mind = 1 year.

Figure 6. Number of random probing rounds to ensure that all
nodes have been detected by the randomized pinging protocol.

first failure still takes close to a constant time to be
notified to all. The reason is that t log2(n) remains very
small compared to d, and once the broadcast is initi-
ated, it completes in t log2(n). The successive failures
may strike anytime between ½0, d], delaying the time to
reach the stable configuration by another d + t log2(n).
On average, at 256,000 nodes, this happens in the mid-
dle of the initial FD interval, delaying the completion
by d/2. Each failure, however, is independent in that
case, and each is detected almost d time units after it
strikes.

4.3. Comparison with randomized protocols
Finally, in Figures 6 and 7, we use the discrete event
simulation to expose the quality of detection with ran-
domized gossiping protocols, such as SWIM. As
described in Section 3.4.1, these protocols execute suc-
cessive rounds. During a round, a process randomly
selects another one to ping and uses a push mechanism
to check if this selected process is still responsive.
Determining when a failure will be detected with such

Bosilca et al. 11

Figure 7. Average of the maximum length of queue size L(N)
during a single round, for the randomized pinging protocol.

an approach is more subtle than for the deterministic
pull algorithm that we presented in this work. As men-
tioned in Section 3.4.2, there are two main reasons for
this:

• The duration of a round must be higher than the

value of the time-out to detect a failure. That value
is a function of the network latency and of the
number of heartbeat requests messages that a single
target can receive during a single round. Otherwise,
a process might suspect another one falsely after it
did not receive a heartbeat in time, not because the
target is not responsive but because it is busy
responding to other ping requests.

• The number of rounds to ensure (with high prob-
ability) that all processes have been probed needs to
be determined. As processes select targets indepen-
dently, it is predictable that two (or more) processes
select the same target and thus—as each selects a
single target—that some processes are not observed
during a single round.

To quantify these two parameters experimentally—

in complement of the theoretical study of Section
3.4.2—we have simulated the behavior of a the probing
part of a randomized gossiping protocol like SWIM.
We report the following two critical measures:

• During a single probing round, where each alive

process selects a single target randomly and
requests for a heartbeat, what is the maximal num-
ber of processes—denoted as L(N) in Section 3.4.2,
where N is the number of processes—that select the
same target? Figure 7 gives average values for L(N).

• Figure 6 shows how many rounds are needed to
ensure (with high probability) that all processes
have been targeted at least once. In both figures,
we scale the system size, increasing the number of
nodes, and report these average and maximum
numbers over 10,000 simulations per parameter.

In theory, the average largest number of processes
that select the same target during a single round is
between (ln N = ln ln N) and 3(ln N = ln ln N), where N
is the number of processes (see Section 3.4.2).
Simulations of Figure 7 are consistent with these
bounds, showing that up to 11 processes have a high
probability to select the same target during a random
round at 100,000 nodes and up to 8 processes for a sys-
tem of 20,000 nodes. This means that the time-out for
the heartbeat must be set to 16–22 times the maximum
network latency, to ensure that a nonresponsive pro-
cess has indeed failed, rather than being too congested
by messages to answer to the request in time.
Comparatively, our solution deterministically ensures
that only one process will be pinged by another,
thereby eliminating the queue management pressure.

Similarly, Figure 6 shows that on average, between
11 rounds at 20,000 nodes and 13 rounds at 100,000
nodes are necessary to ensure, with high probability,
that all nodes are targeted by at least one other. If one
considers the worst case, over the 10,000 simulations
considered, it is often necessary for at least one of these
executions to wait until 22 rounds are executed to reach
all processes.

Combining both factors, to detect with high prob-
ability the failure of a single process in a system of
100,000 elements, on average, 13 rounds of 22 times the
maximum network latency each would be necessary.
During this time, on average, 2,599,974 messages would
have been exchanged over the network. This is in stark
contrast with the ring algorithm presented in this arti-
cle, which provides a deterministic bound function of
the number of failures. It would detect the failure in
one maximum network latency and see 99,999 heart-
beat messages (one per alive process).

5. Experimental evaluation
This section presents an experimental evaluation of an
operational implementation of the proposed failure
detector on the Titan ORNL supercomputer. We have
implemented the FD and propagation service in the ref-
erence implementation of the ULFM draft MPI stan-
dard (Bland et al., 2013), provided by OPEN MPI.
ULFM is an extension of the MPI standard that
empowers MPI users—applications, library developers,
or parallel programming languages—to provide their
own fault-tolerant strategy. ULFM defines a set of
additional API to MPI that permits (i) the interruption
of MPI operations that cannot complete due to the
occurrence of failures through raising appropriate MPI
error classes; (ii) the continuation of point-to-point
MPI messaging between nonfailed processes after such
error classes have been raised; (iii) the interruption of
MPI operations at all ranks in a particular communica-
tion handle (e.g. MPI COMM REVOKE, MPI WIN

12 The International Journal of High Performance Computing Applications 00(0)

REVOKE, MPI FILE REVOKE), under the explicit con-
trol of the programmer; (iv) the fault-tolerant valida-
tion of algorithmic steps (MPI COMM AGREE); and (v)
the recovery of full operational capabilities (including
the ability to perform collective communications) by
constructing replacements for damaged communication
objects (with MPI COMM SHRINK and MPI COMM
SPAWN to recreate isomorphic communicators and then
derive windows and files as necessary). The general
design of ULFM relies on local semantics: The user is
notified of failure only in MPI calls that involve a failed
process, and a correct ULFM implementation will try
to make all operations succeed if it can complete
locally. Although this relaxed design eases the imple-
mentation requirements and delivers higher failure-free
performance, the fact that a failure is guaranteed to be
detected only after an active reception from the dead
process can lead to an increase of latency during failure
recovery operations, because the same process failures
may be detected sequentially by multiple processes,
possibly at a much later time than when they were first
reported. Moreover, several routines imply necessarily
a communicator-wide knowledge of failures.
Operations like MPI_COMM_AGREE and MPI
COMM SHRINK need to build consistent knowledge
on (sub)sets of acknowledged failures; a pending point-
to-point reception from any source must eventually
raise an error if it cannot complete because of the death
of a processor. Therefore, the addition of the FD and
propagation service provides an acceleration to
such scenarios by eliminating delayed local observation
of the failure, which can then be immediately reported
to the upper level, which can in turn act upon it
quickly.

5.1. Implementation
The failure detector has two components: the observa-
tion ring and the propagation overlay. The components
operate on a group of processes that must be MPI con-
sistent (i.e. identical at all ranks). The propagation
topology is implemented at the Byte Transport Layer
(BTL) level, which provides the portable low-level
transport abstraction in OPEN MPI.

The propagation overlay takes advantage of the
Active Message behavior of the OPEN MPI BTL’s.
Each message, with a size less than the ‘‘eager’’ protocol
switch point, contains the index of the callback func-
tion to be analyzed by upon reception. This approach
provides independence from the MPI semantic (includ-
ing matching). Upon the reception of a propagation
message, the message is forwarded according to two
possible algorithms. In the case where the overlay is not
corrected to incorporate the knowledge about failed
processes and thus the group can be considered as an

invariant during the entire execution, the message is
forwarded as is through the propagation topology
which is constructed every time a broadcast is initiated,
according to the algorithm presented in Section 2, in
order to guarantee the logarithmic propagation delay.
When the upper level declares—through a runtime
parameter—that it repairs its communicators after
every stabilization phase, the reliable propagation over-
lay can reduce the size of the messages to include only
the latest detected failures, and the overlay is then built
considering all processes of the group.

The observation ring is also built at the BTL level.
The emission of the heartbeats poses a particular chal-
lenge in practice. The timely activation and delivery of
heartbeats is critically important in enforcing the per-
fection of the detector and the bound on t. Missing its
h emission period deadlines puts the emitter process at
risk of becoming suspected by its observer, even though
it is still alive. If the heartbeats are emitted from the
application context, they can only be sent when the
application enters MPI routines, and consequently, a
compute intensive MPI application would often miss
the h period. In our implementation, the heartbeats are
emitted from within a separate, library internal thread,
to render their emission independent from the applica-
tion’s communication pattern. For ease of implementa-
tion, the MPI_THREAD_MULTIPLE support is enabled
by default when the detector thread is enabled; how-
ever, future software releases will drop this requirement.
An intricate issue also arises from a negative interaction
between the emission and the reception of heartbeat
messages. To check the liveliness of the emitter process
(after the d time-out), the observer has to see if it has
received heartbeats. From an implementation perspec-
tive, if the heartbeats are sent through the eager chan-
nel, the detector thread (in this case, the receive thread)
has to be active and poll the BTL engine for progress.
However, if the application has posted operations on
large messages, the poll operation may start progressing
these (long) operations before returning control to the
detector thread, leading to an unsafe delay in the emis-
sion of heartbeats from that same thread. To circum-
vent that difficulty, the detector thread emits heartbeats
using the ‘‘RDMA put’’ channel. Heartbeats are thus
directly deposited by raising a flag in the registered
memory at the receiver, using hardware accelerated put
operations that do not require active polling. The obser-
ver can then simply check that the flag has been raised
during the last d period with a local load operation, and
reset the flag with a local store, which are mostly imper-
vious to noise and do not delay the h period. This
approach also allows the observer to miss d periods
without endangering the correctness of the protocol
(only increasing the time to detect and notify the failure,
but no triggering a false positive).

Bosilca et al. 13

2

2

2

Figure 8. Sensitivity to noise resulting from the failure detector activity for varied workloads.

5.2. Experimental conditions
The experiments are carried out on the Titan ORNL
Supercomputer (Titan, 2016), a Cray XK7 machine
with 16-core AMD Opteron processors, and the Cray
Gemini interconnect. The ULFM MPI implementation
is based on a prerelease of Open MPI 2.x
(r#6e6bbfd), which supports the optimized uGNI
and shared-memory transports (without XPmem) and
uses the Tuned collective module. The MPI implemen-
tation is compiled with the MPI_THREAD_MULTIPLE
support. Every experiment is repeated 30 times and we
present the average. The benchmarks are deployed with
one MPI rank per core, and all threads of an MPI pro-
cess are bound to that same core (application, detector,
and driver threads when applicable, i.e. the detector
thread does not require exclusive compute resources).

5.3. Noise and accuracy
The first set of experiments investigate the noise gener-
ated by the detector and its accuracy for different
workloads when h and d vary, in a method similar to
(Kharbas et al., 2012) that focused exclusively on mea-
suring the noise generated by different FD strategies.
The h and d periods are set so that d = 10 3 h. If the
test is successful (i.e. no failure was detected, since none
was injected in this experiment), then h is reduced, and
the experiment is repeated, until a false positive is
reported. We also collect the number of times an h
deadline was missed, even when the d time-out is still
respected. We first considered a noncommunicative,
compute-only MPI application where each rank calls
LAPACK DGEMM operations on local matrices, without
calling MPI routines for extended periods of time.
Without the detector thread, the noncommunicative
benchmark reports false detections for all considered
values of h. With the detector thread, this noncommu-
nicative benchmark succeeds until h is set to 1 msec.
However, starting from h\5 msec, messages indicating

a missed h deadline are occasionally issued (although
the d time-out is still respected). These observations are
consistent with the scheduling time quantums (sched_
min_granularity is set to 3 ms), and indicate that
the thread scheduling latency is an absolute for the
minimum h period. Smaller periods could be achieved
with a real time scheduler, but such capabilities need
administrative privileges, which is an undesirable
requirement.

Next, in Figure 8, we present the noise incurred on a
variety of communication and computation workloads,
provided by the Intel MPI Benchmark (version 4.1)
and HPL (version 2.2), respectively. Accuracy results
are similar overall in the communicative benchmarks.
All tests of the IMB-MPI1 suite can run without false
detection for h 10 ms. Notably, point-to-point only
benchmarks can succeed with h value as low as 2.5 ms
but occasionally report false suspicions. Collective com-
munication benchmarks are more sensitive and report
occasional heartbeat emission deadline misses until
h 25 ms, due to contentions on the access to hard-
ware network resources.

The latency performance (left graph) and bandwidth
performance (center graph) are barely affected by low
frequencies of heartbeat emissions. For higher frequen-
cies, the overhead generated by the noise can reach
approximately 10%. The bandwidth performance is
less impacted overall than the latency, especially for
point-to-point bandwidth, which remains unchanged
for all but the most extreme values of h. The applica-
tion performance (Linpack, right graph) exhibits no
observable performance degradation for h 100 ms.
For higher frequencies, the performance degradation
remains contained under 2%.

5.4. Comparison with SWIM
This section compares our failure detector with SWIM
(Das et al., 2002; Gupta et al., 2001; Snyder et al.,
2014), the random protocol introduced in Section 3.4.1.

14 The International Journal of High Performance Computing Applications 00(0)

Figure 9. Detection and propagation delay compared to using the SWIM randomized failure detector from Memberlist.

SWIM scales by using a probabilistic approach: Nodes
randomly choose a subset of neighbors to probe. To
avoid false suspicions, SWIM relies on a collaborative
approach. An initiator node invites k other nodes to
form a group, pings them, and waits for their replies. If
a node does not reply in time, the initiator then judges
this node as suspicious and asks the other group mem-
bers to check the potentially faulty node.

Figure 9 compares the detection delay (i.e. the stabili-
zation delay) between the MPI failure detector and the
SWIM failure detector, after a failure occurs at some
process. For the MPI benchmark, after synchronizing,
the desired number of MPI processes (whose ranks are
chosen at random) simulate a failure. Any other process
posts an any-source reception. When the reception raises
a process failure exception (the only possible outcome
for this nonmatched any-source reception), the process
counts the number of locally known failed processes,
and if it does not contain all injected failures, it repeats
the reception. The SWIM benchmark also employs MPI
to synchronize before injecting failures; however, the
SWIM algorithm implementation—we used Go-
Memberlist (r#d16b8b73)—is not integrated with
MPI, and consequently the SWIM benchmark reports
FDs directly through Go-Memberlist callbacks. In both
cases (MPI and SWIM), the time at which all failures
have been locally observed is reported at each rank. On
the Titan platform, the Memberlist initialization over
the ipogif interface (i.e. the Internaet protocol (IP)
emulation layer over uGNI) suffers from a connection
storm (a large group of simultaneous requests) and con-
sequently often fails to initialize with more than 32 pro-
cesses. A similar outcome has been observed on a
different Linux cluster (called Dancer, a 32 nodes, 8
cores per node Xeon 7550, Ethernet Gigabit platform),
but on that machine, the issue can be remediated by dis-
abling the IP connection tracking kernel module (which
supports iptables rules). With the contrack_nf
module disabled, the message absorption rate is

sufficient for the Memberlist benchmark to initialize and
run to completion up to the maximum 256 processes
that can be tested without oversubscription on that plat-
form. Note that disabling the connection tracking mod-
ule requires administrative privileges and severely limits
the security of the system. Figure 7, therefore, presents
results on the dancer platform, using Transmission
Control Protocol (TCP) as the transport layer for both
Memberlist and MPI.

The Memberlist implementation presents two var-
iants of the SWIM protocol. The first one is the pure
SWIM protocol, which relies exclusively on UDP
heartbeats for both detecting and propagating the
known suspected processes. Heartbeats are requested
from random processes at the beginning of every
period. The answer contains the list of currently sus-
pected processes. If no answer is received before the
time-out, the observed process itself becomes suspect.
The second one expands on the SWIM protocol with
the addition of requesting TCP handshakes with pro-
cesses whose UDP heartbeats are not received in time
and a periodic gossiping (with a random gossip algo-
rithm) of the list of suspected processes. We refer this
optimization as PP&G, for the Push-Pull and Gossip
optimizations.

On the left graph in Figure 9, with 256 processes, the
difference between pure SWIM and SWIM PP&G is
minor. The PP&G optimization closes the spread
between the first process suspecting a failure and the fail-
ure being reported at all processes (shaded area), espe-
cially for smaller values of h, resulting in marginally
better stabilization delays. For values of h lower than
100 ms (which are, arguably, orders of magnitude more
demanding than the default values selected for WAN
SWIM deployments), false positive detections are
reported for all variants of SWIM; the underlying rea-
son lies in the loss of UDP messages due to occasional
collisions; the failover TCP mechanism in the PP&G
variant takes longer to establish the TCP connexion

Bosilca et al. 15

-

Figure 10. Detection and propagation delay and impact on completion time of fault-tolerant agreement operation.

than the detection time-out, which negates its advan-
tages for such aggressive time-outs.

On the contrary, the ULFM failure detector is accu-
rate for the entire range of h values (still subject to the
kernel scheduler time quantum limitation discussed in
the previous section). The spread between the first pro-
cess detection and the stabilization delay is insignificant
except for the smallest h considered, where it remains
small nonetheless. Thanks to its deterministic behavior,
the ULFM failure detector can remain accurate while
reporting failures significantly faster than the SWIM
algorithm employing the same heartbeat frequency.
One has to consider that the number of messages
exchanged for each heartbeat period is double in
SWIM: After each heartbeat period, each process in
the SWIM topology sends an observation request to a
randomly selected process. This random selection pro-
cess has the potential of creating hot spots, whenever
many processes select to observe the same neighbor,
which in turn increases the risk of message loss and
consequently the risk of a false positive. Meanwhile, in
our failure detector, a single message is sent, with a
constant input and output degree of 1.

On the right graph of Figure 9, we compare the scal-
ability of the detector with regard to the number of
deployed processes. We selected the best performing
PP&P variant for SWIM and employed the smallest
safe value of h for each detector (which incidentally
means that the h value for ULFM is smaller, thanks to
its algorithm reporting fewer false positives). For a
smaller number of processes, the ULFM failure detec-
tor is stabilizing in approximately 100 ms, while the
SWIM algorithm stabilizes in 1.4 s. As the number of
processes increases, the ULFM failure detector remains
stable at 100 ms, while the stabilization delay of SWIM
increases to over 2 s, an effect of the suspicion time-
out, which is a logarithmic (in number of processes)
delay added to the SWIM protocol to reduce the num-
ber of false positives.

5.5. FD time at scale
Figure 10 presents the behavior observed when inject-
ing failures at scale. The first graph (left) presents the
time to reach a stable state when injecting one to eight
failures for a varying number of nodes. We observe
that for small scales, the reported delay is consistently
close to d. If emitters were sending heartbeats to their
observer at random starting time, we would expect the
detection time to be closer to d h=2; however, as all
processes start sending heartbeats to their observer at
the end of the MPI_Init function, they are almost
synchronized, and for all runs, we observe a consistent
delay at small scale. At larger scale, processes leave
MPI_Init at a more variable rate, and the average
starts to converge toward the theoretical bound. This
observation matches the model, considering that in this
scenario, all failures are ‘‘simultaneous,’’ and that the
random allocation of failures has a low probability of
hurting observer/emitter pairs. Consequently, the
detection and propagation of each of these failures
progress concurrently and do not suffer from the
cumulative effect of detecting multiple predecessors’
failures on the ring.

The second experiment (center in Figure 10) investi-
gates the effect of collisions on the reliable broadcast
propagation delay. The benchmark is similar to the pre-
vious experiment, except that before a process simulates
a failure, it sends its observer a special ‘‘trigger heart-
beat,’’ which initiates an immediate propagation report-
ing it dead, without waiting for the d time-out. The rest
of the observation protocol remains unchanged (i.e.
heartbeats are exchanged between alive processes with
an h period, and the observer of the injection process
switches to observing the predecessor). We then present
the increase in the average duration of the reliable
broadcast when multiple broadcasts are progressing
concurrently. To simplify the proof of the upper bound
on stabilization time (theorem 1), we have considered

16 The International Journal of High Performance Computing Applications 00(0)

that successive broadcasts are totally sequential. This is
an admittedly pessimistic hypothesis, and indeed, per-
forming two concurrent propagations does not signifi-
cantly increase the delay, as the two reliable broadcasts
can actually overlap almost completely. However, start-
ing from four, and, more prominently, for eight concur-
rent broadcasts, the average completion time is
significantly increased. Considering the small size of the
messages, the bandwidth requirements are small, and
contention on port access is indeed the major cause of
the imperfect overlap between these concurrent broad-
casts, therefore vindicating the importance of consider-
ing a port-limited model during the design of the failure
detector and propagation algorithms.

The last experiment (right in Figure 10) presents the
performance of the agreement algorithm after failures
have been injected. Herault et al. (2015) presented a
similar performance result for their agreement algo-
rithm. In their results, the agreement performance was
severely impacted when failure was discovered during
the agreement (with the failure-free performance of
80 ms increasing to approximatively 80 ms), an effect
the authors claim is due to FD overhead. In their
work, FD was delegated to an ORTE-based RAS4 ser-
vice, responsible for detecting and propagating fail-
ures. In this experiment, we strive to recreate as closely
as possible this setup, except that we deploy our failure
detector in lieu of the ORTE RAS service. We consider
the same implementation of the agreement on 6000
Titan cores (the same number of cores they deployed
on the generally similar Cray XC30 Darter system).
Some in-band detection capabilities are active, in par-
ticular, failure of shared memory sibling ranks is
reported by the node’s local operating system. With
the replacement of the ORTE RAS service by our fail-
ure detector algorithm, the time to completion of the
agreement algorithm decreases to below 1.5 ms (a
50 3 improvement). This is due to the faster propaga-
tion of failure knowledge among the agreement parti-
cipants: instead of waiting for (long) in-band time-outs
or ORTE RAS notification, a process whose parent or
children have failed can observe the condition much
earlier, and start the online mending of the fan-in/fan-
out tree topology at an earlier date. Interestingly, pre-
viously hidden performance issues become visible, as
FD is not the dominant cost anymore: We observe
that the performance of the agreement decreases line-
arly with the number of detected failures, a behavior
that can be attributed to the agreement algorithm per-
forming a linear scanning of the group when a failure
is reported.

6. Related work
In this section, we survey related work on failure detec-
tors and then on fault-tolerant broadcast algorithms.

6.1. Failure detectors
A number of FD algorithms have been proposed in the
literature. Most current implementations of FDs are
based on an all-to-all communication approach where
each node periodically sends heartbeat messages to all
nodes. Because they consider a fully connected set of
known nodes that communicate in an all-to-all manner,
these implementations are not appropriate for plat-
forms equipped with a large number of nodes.

Several efforts have been made toward scaling up
failure detectors implementations. Bertier et al. (2003)
introduced a hierarchical organization suitable for grid
configurations. They define a two-level organization to
reduce message overhead. Local groups are cluster
nodes, bound together by a global intercluster group.
Every local group elects one leader that is member in
the global group. Within each group, any member
monitors all other members. While hierarchical
approaches provide short local detection time, the cost
of reconfiguration and the propagation of failure infor-
mation both remain high. Larrea et al. (2000) also aim
to diminish the amount of exchanged information in
order to scale up. To do so, they use a logical ring to
structure message exchanges. Thus, the number of mes-
sages to detect failures is minimal, but the time for pro-
pagating failure information is linear to the number of
nodes.

An alternative approach for implementing scalable
failure detectors is to use gossip-like protocols where
nodes randomly choose a few other nodes with whom
they exchange their failure information (Gupta et al.,
2001; van Renesse et al., 1998). The idea is that, with
high probability, eventually all nodes obtain every piece
of information. The work of van Renesse et al. (1998)
is one of the pioneering implementations of gossip-style
failure detectors. In their basic protocol, each node
maintains a list with a heartbeat counter for each
known node. Periodically, every node increments its
own counter and selects a random node which to send
its list. A disadvantage is that the size of gossip mes-
sages grows with the size of the network, which induces
a high-network traffic. The authors identified a variant
specifically designed for large-scale distributed systems:
the multilevel gossiping. They concentrate the traffic
within subsets of nodes to improve the scalability.
Hayashibara et al. (2002) explored a hybrid approach
based on both dynamic clustering to solve the scalabil-
ity issue and the gossiping technique to remove wrong
suspicions. Horita et al. (2005) presented another scal-
able failure detector that creates scattered monitoring
relations among nodes. Each node is intended to be
monitored by a small number k of other nodes (with k
set typically to 4 or 5). When a node dies, one of the
monitoring nodes will detect the failure and propagate
this information across the whole system. Similarly, as
discussed in Section 5.4, SWIM (Das et al., 2002) scales

Bosilca et al. 17

by using a probabilistic approach. More recently, Tock
et al. (2013) proposed a scalable membership service
based on a hierarchical fast unreliable FD mechanism,
where failure information can be lost, combined with a
slower gossip protocol for eventual information disse-
mination. Finally, Katti et al. (2015) designed a scal-
able failure detector based on observing random nodes
and gossiping information. In their protocol, each ping
message transmits information on all currently known
failures, either via a liveness matrix or in compressed
form.

Practically, gossip approaches bring along redun-
dant failure information which degrades their scalabil-
ity. Furthermore, the randomization used by gossip
protocols makes the definition of time-out values diffi-
cult, since the monitoring sets change often over time.
In order to eventually avoid false detections, these tech-
niques tend to oversize their time-outs, which results in
longer detection times. Theoretically, gossip approaches
introduce random detection and propagation times,
whose worst case with a prescribed risk factor is hard
to bound.5 In contrast, our algorithm follows a deter-
ministic detection and propagation topology with (i)
constant-size heartbeats and well-defined delays, (ii) a
single observer, (iii) a logarithmic-time propagation,
and (iv) a guaranteed worst time to stabilization,
thereby achieving all the goals of randomized methods
with a deterministic implementation.

6.2. Fault-tolerant broadcast
Fault-tolerant broadcasting algorithms have been
extensively studied, and we refer the reader to the sur-
veys by Heydemann (1997) and Pelc (1996). A key con-
cept is the fault-tolerant diameter of the
interconnection graph, which is defined as the maxi-
mum length of the longest path in the graph when a
given number of (arbitrarily chosen) nodes have failed
(Krishnamoorthy and Krishnamurthy, 1987). The main
objective in this context is to identify classes of overlay
networks whose fault-tolerant diameter is close to their
initial (fault-free) diameter, even when allowing a num-
ber of failures close to their minimal degree (allowing
more failures than the minimal degree could disconnect
the graph). Furthermore, these overlay networks
should provide enough vertex-disjoint paths for broad-
cast algorithms to resist that many failures.

Research has concentrated on regular graphs
(where all vertices have the same degree):
hypercubes (Fraigniaud, 1992; Krishnamoorthy and
Krishnamurthy, 1987; Ramanathan and Shin, 1988),
binomial graphs (Angskun et al., 2007), or circulant
networks (Liaw et al., 1998). For all these graphs, effi-
cient broadcast algorithms have been proposed. These
algorithms tolerate a number of failures up to their
degree minus 1 and execute within a number of steps

(in the one-port model) that does not exceed twice their
original diameter. However, to the best of our knowl-
edge, such algorithms require the number of nodes in
the graph to be a power of 2, or a constant times a
power of 2, while we need an algorithm for an arbitrary
number of nodes. This motivates our solution based
upon a double diffusion (see Section 2).

7. Conclusion
FD is a critical service for resilience. The failure detec-
tor presented in this work relies on heartbeats, time-
outs, and communication bounds to provide a reliable
solution that works at scale, independently of the type
of faults that create permanent node failures. Our study
reveals a complicated trade-off between system noise,
detection time, and risks: A low-detection time would
demand a low latency in the detection of failures, thus
a tight approximation of the communication bound,
increasing the risk of a false positive, and a frequent
emission of heartbeat messages, increasing the system
noise generated by the failure detector. We proposed a
scalable algorithm capable of tolerating high-frequency
failures and proved a theoretical upper bound to the
time required to reconfigure the system in a state that
allows new failures to strike; therefore, the algorithm
can tolerate an arbitrary number of failures, provided
that they do not strike with higher frequency. The algo-
rithm was implemented in a resilient MPI distribution,
which we used to assess its performance and impact on
applications at large scale. The performance evaluation
shows that for reasonable values of detection time, the
ring strategy for detection introduces a negligible or
nonmeasurable amount of additional noise in the sys-
tem, while the high-performance reliable broadcast
strategy for notification allows for quickly disseminat-
ing the fault information, once detected by the obser-
ving process.

Implementation considerations lead us to advocate
that the detection part of the service should be pro-
vided at a lower levels of the software stack, either
inside the operating system or inside the interconnect
hardware. Active heartbeats to probe the activity of
remote nodes could be handled by these lower levels
without measurable noise, and with tighter bounds,
since the other levels of the software stack would not
introduce additional components to the noise. Future
work should focus on providing this capability and on
evaluating the approach to address the trade-off
between detection time and risk.

Acknowledgements
The authors would like to thank the reviewers for their
insightful comments. Yves Robert is with the Institut
Universitaire de France.

18 The International Journal of High Performance Computing Applications 00(0)

Authors’ note
A shorter version of this work has been published in the pro-
ceedings of SC’16 [1]. Preprint submitted to IJHPCA April
15, 2017.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding
The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This research is partially supported by the CREST
project of the Japan Science and Technology Agency (JST),
by NSF grant #1339820, by the PIA ELCI (Bull Inria) project
and partially supported by the NSF (award \#1564133).

Notes
1. We use the words failure and death indifferently.
2. Delay-bounded fault-tolerant broadcasts are not easily

obtained for arbitrary values of n (see the discussion in
Section 6.3).

3. http://icl.utk.edu/herault/ijhpca-failure-detector.tgz
4. ORTE stands for Open Run-Time Environment and RAS

for Resource Allocation Subsystem.
5. Absolute worst-case times are infinite, as some nodes

could be observed only after an unbounded delay (see the
discussion of Section 3.4).

References
Angskun T, Bosilca G and Dongarra J (2007) Binomial

graph: a scalable and fault-tolerant logical network topol-
ogy. In: Stojmenovic I, Thulasiram RK, Yang LT, Jia W,
Guo M and de Mello RF (eds) Parallel and Distributed
Processing and Applications ISPA, Berlin: Springer, pp.
471–482.

Bertier M, Marin O and Sens P (2003) Performance analysis
of a hierarchical failure detector. In: Proceedings of
the International Conference on Dependable Systems and
Networks, 22–25 June 2003 San Francisco, CA, 2003, pp.
635–644.

Bhat PB, Raghavendra CS and Prasanna VK (2003) Efficient
collective communication in distributed heterogeneous sys-
tems. Journal Parallel and Distributed Computing 63(3):
251–263.

Bland W, Bouteiller A, Herault T, et al. (2013a) An evalua-
tion of user-level failure mitigation support in MPI. Com-
puting 95(12): 1171–1184.

Bland W, Bouteiller A, Herault T, et al. (2013b) Post-failure
recovery of MPI communication capability: design and
rationale. International Journal of High Performance Com-
puting Applications 27(3): 244–254. arXiv: http://hpc.sage
pub.com/content/27/3/244.full.pdf + html, doi:10.1177/

1094342013488238. URL http://hpc.sagepub.com/content
/27/3/244.abstract

Bland W, Lu H, Seo S, et al. (2015) Lessons Learned Imple-
menting User-Level Failure Mitigation in MPICH. In:
Proceeding CCGrid, 2015. 4–7 May 2015 IEEE. Shenzhen,
China, DOI: 10.1109/CCGrid.2015.51

Chandra TD and Toueg S (1996) Unreliable failure detectors
for reliable distributed systems. Journal of the ACM 43(2):
225–267.

Chen W, Toueg S and Aguilera MK (2002) On the quality of
service of failure detectors. IEEE Transactions Computers
51(5): 561–580.

Das A, Gupta I and Motivala A (2002) Swim: Scalable
weakly-consistent infection-style process group member-
ship protocol. In: International Conference on Dependable
Systems and Networks, 23–26 June 2002 Washington, DC,
USA, 2002, pp. 303–312.

Egwutuoha IP, Levy D, Selic B, et al. (2013) A survey of fault
tolerance mechanisms and checkpoint/restart implementa-
tions for high performance computing systems. The Jour-
nal of Supercomputing 65(3): 1302–1326.

Ferreira KB, Bridges P and Brightwell R (2008) Characterizing
application sensitivity to OS interference using kernel-level
noise injection. In: Proceeding SC‘08, IEEE Computer Society
Press, 2008. 15–21 Nov. 2008, Austin, TX, USA: IEEE.

Fraigniaud P (1992) Asymptotically optimal broadcasting
and gossiping in faulty hypercube multicomputers. IEEE
Transactions Computers 41(11): 1410–1419.

Gupta I, Chandra TD and Goldszmidt GS (2001) On
scalable and efficient distributed failure detectors. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on
Principles of Distributed Computing, PODC’01, New York,
NY, USA, 2001, pp. 170–179. ACM. DOI: 10.1145/
383962.384010.

Hayashibara N, Cherif A and Katayama T (2002) Failure
detectors for large-scale distributed systems. In: 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002),
Osaka, Japan, 13–16 October 2002, pp. 404–409.
DOI:10.1109/RELDIS.2002.1180218.

Herault T, Bouteiller A, Bosilca G, et al. (2015) Practical scal-
able consensus for pseudo-synchronous distributed sys-
tems. In: Proceeding. SC’15, IEEE Computer Society Press,
2015. Austin, Texas — November 15–20, 2015.

Hé rault T and Robert Y (2015) Fault-tolerance techniques for
high-performance computing. In: Hé rault T and Robert Y
(eds) Computer Communications and Networks. Verlag:
Springer, 2015.

Heydemann MC (1997) Cayley graphs and interconnection
networks. In: Hahn G and Sabidussi G (eds) Graph Sym-
metry: Algebraic Methods and Applications, Springer, 1997,
pp. 167–224.

Hoefler T, Schneider T and Lumsdaine A (2010) Characteriz-
ing the influence of system noise on large-scale applications
by simulation. In: Proceeding. SC‘10, IEEE Computer
Society Press, 2010.

Horita Y, Taura K and Chikayama T (2005) A scalable and
efficient self-organizing failure detector for grid applica-
tions. In: Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, GRID’05, Washington, DC,
USA, 2005, pp. 202–210. IEEE Computer Society.

http://icl.utk.edu/herault/ijhpca-failure-detector.tgz
http://hpc.sage/
http://hpc.sagepub.com/content

Bosilca et al. 19

Katti A, Di Fatta G, Naughton T, et al. (2015) Scalable and

fault tolerant failure detection and consensus. In: Proceed-
ing. EuroMPI’15, 2015. ACM.

Kharbas K, Kim D, Hoefler T, et al. (2012) Assessing HPC
failure detectors for MPI jobs. In: Proceeding. PDP’12,
IEEE Computer Society, 2012.

Krishnamoorthy M and Krishnamurthy B (1987) Fault dia-
meter of interconnection networks. Computers & Mathe-
matics with Applications 13(5–6): 577–582.

Larrea M, Ferna´ndez A and Aré valo S (2000) Optimal imple-
mentation of the weakest failure detector for solving con-
sensus. In: Proceedings, 2000, 19th IEEE Symposium on
Reliable Distributed Systems, SRDS’00, Nu r̈nberg, Ger-
many, 16–18 October 2000, pp. 52–59.

Liaw SC, Chang GJ, Cao F, et al. (1998) Fault-tolerant rout-
ing in circulant networks and cycle prefix networks. Annals
of Combinatorics 2(2): 165–172.

Mitzenmacher M and Upfal E (2005) Probability and Com-
puting: Randomized Algorithms and Probabilistic Analysis.
Cambridge: Cambridge University Press.

Pelc A (1996) Fault-tolerant broadcasting and gossiping in
communication networks. Networks 28(3): 143–156.

Ramanathan P and Shin KG (1988) Reliable broadcast in
hypercube multicomputers. IEEE Transactions Computers
37(12): 1654–1657.

Snyder S, Carns PH, Jenkins J, et al. (2014) A case for epi-
demic fault detection and group membership in HPC stor-
age systems. In: 5th Int. Workshop on Performance
Modeling, Benchmarking, and Simulation (PMBS), LNCS
8966, 2014, pp. 237–248. Springer.

Titan (2016) Oak Ridge National Laboratory. https://
www.olcf.ornl.gov/titan/ (accessed 2016).

Tock Y, Mandler B, Moreira JE, et al. (2013) Design and
implementation of a scalable membership service for
supercomputer resiliency-aware runtime. In: Proceedings,
2013, Processing – 19th International Conference Euro-Par
2013 Parallel, Aachen, Germany, 26–30 August 2013, pp.
354–366. DOI:10.1007/978-3-642-40047-6_37.

van Renesse R, Minsky Y and Hayden M (1998) A gossip-
style failure detection service. In: Proceedings of the IFIP
International Conference on Distributed Systems Platforms
and Open Distributed Processing, Middleware ‘98, London,
UK, 1998, pp. 55–70. Springer-Verlag. URL http://dl.acm.
org/citation.cfm?id=1659232.1659238.

Wung DS (2009) Intelligent platform management interface
(IPMI). PhD Thesis, SLAC National Accelerator
Laboratory.

Author biographies
George Bosilca is a research director and an adjunct
assistant professor at the Innovative Computing
Laboratory at University of Tennessee, Knoxville. His
research interests evolve around distributed algorithms,
parallel programming paradigms, and performance
modeling and optimization, both from a theoretical
and practical perspective. He is also interested in pro-
viding scalable and portable constructs for building
resilience directly into the programming models.

Aurelien Bouteiller is a researcher at the University of
Tennessee’s Innovative Computing Laboratory. His
research is focused on improving performance and
reliability of distributed memory systems, mechanisms
to improve communication speed and balance of many
core clusters, one-sided communication on threaded
systems, recoverable communication libraries to sup-
port fault tolerance, and emerging dataflow program-
ming models.

Amina Guermouche received her PhD degree from
University of Paris-Sud. She is currently an assistant
professor at Telecom Paris-Sud. Her research interests
evolve around fault-tolerance algorithms and energy
minimization for large-scale platforms.

Thomas Herault is a research scientist at the Innovative
Computing Laboratory at University of Tennessee,
Knoxville. His research interests include fault toler-
ance, distributed algorithms, parallel programming
paradigms, and performance modeling and optimiza-
tions. He focuses on bridging the gap between theoreti-
cal distributed systems and high-performance
computing as it is practiced.

Yves Robert received the PhD degree from Institut
National Polytechnique de Grenoble. He is currently a
full-time professor in the Computer Science
Laboratory LIP at ENS Lyon. He is the author of 7
books, 150 papers published in international journals,
and 230 papers published in international conferences.
He is the editor of 11 book proceedings and 13 journal
special issues. He is the advisor of 30 PhD theses. His
main research interests are scheduling techniques and
resilient algorithms for large-scale platforms. He served
on many editorial boards and currently is an editor of
IEEE TPDS, JPDC, JoCS, and IJHPCA. He is a fel-
low of the IEEE. He has been elected a senior member
of Institut Universitaire de France in 2007 and renewed
in 2012. He has been awarded the 2014 IEEE TCSC
Award for Excellence in Scalable Computing and the
2016 IEEE TCPP Outstanding Service Award. He
holds a visiting scientist position at the University of
Tennessee Knoxville since 2011.

Pierre Sens received his PhD in computer science in
1994 and the Habilitation à diriger des recherches in
2000 from Paris 6 University (UPMC), France.
Currently, he is a full-time professor at UPMC. His
research interests include distributed systems and algo-
rithms, large-scale data storage, fault tolerance, and
cloud computing. Since 2005, he is heading the Regal
group which is a joint research team between LIP6 and
Inria. He was member of the Program Committee of
major conferences in the areas of distributed systems

http://www.olcf.ornl.gov/titan/
http://dl.acm/

20 The International Journal of High Performance Computing Applications 00(0)

and parallelism (ICDCS, IPDPS, OPODIS, ICPP,
Europar, etc.) and serves as general chair of SBAC and
EDCC. Overall, he has published over 130 papers in
international journals and conferences and has acted
for advisor of 19 PhD theses.

Jack Dongarra received a bachelor of science in mathe-
matics from Chicago State University in 1972 and a
master of science in computer science from the Illinois
Institute of Technology in 1973. He received his PhD
in applied mathematics from the University of New
Mexico in 1980. He worked at the Argonne National
Laboratory until 1989, becoming a senior scientist. He
now holds an appointment as University Distinguished
Professor of Computer Science in the Electrical
Engineering and Computer Science Department at the
University of Tennessee and holds the title of
Distinguished Research Staff in the Computer Science
and Mathematics Division at Oak Ridge National
Laboratory (ORNL); turing fellow at Manchester
University; an adjunct professor in the Computer
Science Department at Rice University; and a faculty
fellow of the Texas A&M University’s Institute for
Advanced Study. He is the director of the Innovative
Computing Laboratory at the University of Tennessee.
He is also the director of the Center for Information
Technology Research at the University of Tennessee
which coordinates and facilitates IT research efforts at
the University. He specializes in numerical algorithms

in linear algebra, parallel computing, the use of
advanced computer architectures, programming meth-
odology, and tools for parallel computers. His research
includes the development, testing, and documentation
of high-quality mathematical software. He has con-
tributed to the design and implementation of the
following open source software packages and
systems: EISPACK, LINPACK, the BLAS, LAPACK,
ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500,
ATLAS, and PAPI. He has published approximately
200 articles, papers, reports, and technical memoranda
and, he is coauthor of several books. He was awarded
the IEEE Sid Fernbach Award in 2004 for his contri-
butions in the application of high-performance com-
puters using innovative approaches; in 2008, he
was the recipient of the first IEEE Medal of Excellence
in Scalable Computing; in 2010, he was the first
recipient of the SIAM Special Interest Group on
Supercomputing’s award for Career Achievement; in
2011, he was the recipient of the IEEE Charles
Babbage Award; and in 2013, he was the recipient of
the ACM/IEEE Ken Kennedy Award for his leader-
ship in designing and promoting standards for mathe-
matical software used to solve numerical problems
common to high-performance computing. He is a fel-
low of the AAAS, ACM, IEEE, and SIAM, as well as
a foreign member of the Russian Academy of Sciences
and a member of the US National Academy of
Engineering.

	George Bosilca1, Aurelien Bouteiller1, Amina Guermouche2,
	1. Introduction
	2. Algorithm
	3. Model and performance analysis
	3.1. Model
	3.2. Correctness and performance analysis
	3.3. Nonstabilization risk control
	3.4. FD with randomized protocols

	4. Simulations
	4.1. Simulation settings
	4.2. Simulation results
	4.3. Comparison with randomized protocols

	5. Experimental evaluation
	5.1. Implementation
	5.2. Experimental conditions
	5.3. Noise and accuracy
	5.4. Comparison with SWIM
	5.5. FD time at scale

	6. Related work
	6.1. Failure detectors
	6.2. Fault-tolerant broadcast

	7. Conclusion

