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Abstract 
Building an infrastructure for exascale applications requires, in addition to many other key components, a stable and effi- 
cient failure detector. This article describes the design and evaluation of a robust failure detector that can maintain and 
distribute the correct list of alive resources within proven and scalable bounds. The detection and distribution of the 
fault information follow different overlay topologies that together guarantee minimal disturbance to the applications. A 
virtual observation ring minimizes the overhead by allowing each node to be observed by another single node, providing 
an unobtrusive behavior. The propagation stage uses a nonuniform variant of a reliable broadcast over a circulant graph 
overlay network and guarantees a logarithmic fault propagation. Extensive simulations, together with experiments on 
the Titan Oak Ridge National Laboratory supercomputer, show that the algorithm performs extremely well and exhibits 
all the desired properties of an exascale-ready algorithm. 
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1. Introduction 
Failure detection (FD) is a prerequisite to failure miti- 
gation and a key component of any infrastructure that 
requires resilience. This article is devoted to the design 
and evaluation of a reliable algorithm that will main- 
tain and distribute the updated list of alive resources 
with a guaranteed maximum delay. We consider a typi- 
cal high-performance computing (HPC) platform in 
steady-state operation mode. Because in such environ- 
ments the transmission time can be considered as 
bounded (although that bound is unknown), it becomes 
possible to provide a perfect failure detector according 
to the classical definition of Chandra and  Toueg 
(1996). A failure detector is a distributed service able to 
return the state of any node, alive or dead (subject to a 
crash).1 A failure detector is perfect if any node death is 
eventually suspected by all surviving nodes and if no 
surviving node ever suspects a node that is still alive. 
Critical fault-tolerant algorithms for HPC and imple- 
mentations of communication middleware for unreli- 
able systems rely on the strong properties of perfect 
failure detectors (see e.g. Bland et al., 2013a, 2013b, 
2015; Egwutuoha et al., 2013; Herault et al.,  2015; 
Katti et al., 2015). Their cost in terms of computation 
and communication overhead, as well as their proper- 
ties in terms of latency to detect and notify failures and 
of reliability, have thus a significant impact on the 

overall performance of a fault-tolerant HPC solution. 
A major factor to assess the efficacy of an FD algo- 
rithm is the trade-off that it achieves between scalabil- 
ity and the speed of information propagation in the 
system. 

Although we focus primarily on the most widely 
used programming paradigms, the message passing 
interface (MPI), the techniques, and algorithms pro- 
posed have a larger scope and are applicable in any 
resilient distributed programming environment. We 
consider the platform as being initially composed of N 
nodes, but with a high probability, some of these 
resources will become unavailable throughout the exe- 
cution. When exposed to the death of a node, tradi- 
tional applications would abort. However, the 
applications that we consider are augmented with fault- 
tolerant extensions that allow them to continue across 
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failures (e.g. Bland et al., 2013), either using a generic 
or an application-specific fault-tolerant model. The 
design of this model is outside the scope of this article, 
but without loss of generality, we can safely assume 
that any fault-tolerant recovery model requires a robust 
fault detection mechanism. Our goal is to design such a 
robust protocol that can detect all failures and enable 
the efficient repair of the execution platform. 

By repairing the platform, we mean that all surviving 
nodes will eventually be notified of all failures and will 
therefore be able to compute the list of surviving nodes. 
The state of the platform where all dead nodes are 
known to all processes is called a stable configuration 
(note that nodes may not be aware that they are in a 
stable configuration). 

By robust, we mean that regardless of the length of 
the execution, if a set of up to f failures disrupt the plat- 
form and precipitate it into an unstable configuration, 
the protocol will bring the platform back into a stable 
configuration within T ( f ) time units—we will  define 
T (f ) later in the article. Note that the goal is not to tol- 
erate up to f failures overall. On the contrary, the pro- 
tocol will tolerate an arbitrary number of failures 
throughout an unbounded-length execution, provided 
that no more than f successive overlapping failures 
strike within the T (f ) time window. Hence, f induces a 
constraint on the frequency of failures, but not on the 
total number of failures. 

By  efficiently,  we  aim  at  a  low-overhead protocol 
that limits the number of messages exchanged to detect 
the faults and repair the platform. Although we assume 
a fully connected platform (any node may communi- 
cate with any other), we use a realistic one-port commu- 
nication model (Bhat et al., 2003) where a node can 
send and/or receive at most one message at any time 
step. Independent communications, involving distinct 
sender/receiver pairs, can take place in parallel; how- 
ever, two messages sent by the same node will be serial- 
ized. Note that the one-port model is only an 
assumption used to model the performance and provide 
an upper bound for the overheads. In real situations 
where platforms support multiport communications, 
our algorithm is capable of taking advantage of such 
capabilities. All these goals seem contradictory, but 
they only call for a carefully designed trade-off. As 
shown in the studies by Ferreira et al. (2008), Hoefler 
et al. (2010), and Kharbas et al. (2012), system noise 
created by the messages and computations of the fault 
detection mechanism can impose significant overheads 
in HPC applications. Here, system noise is broadly 
defined as the impact of operating system and architec- 
tural overheads onto application performance. Hence, 
the efficiency of the approach must be carefully 
assessed. The overhead should be kept minimal in the 
absence of failures, while FD and propagation should 
execute   quickly,   which   usually   implies   a   robust 

broadcast operation that introduces many messages. 
The major contributions of this work are as follows: 

 
• It provides a proven algorithm for FD based on a 

robust protocol that tolerates an arbitrary number 
of failures, provided that no more than f consecu- 
tive failures strike within a time window of duration 
T (f ). 

• The protocol has minimal overhead in failure-free 
operation, with a unique observer per node. 

• The protocol achieves FD and propagation in loga- 
rithmic time for up to fmax =  log n   1 where n is 
the number of alive nodes. More precisely, the 
bound T fmax is deterministic and logarithmic in n, 
even in the worst case. 

• All performance guarantees are expressed within a 
realistic one-port communication model. 

• It provides a detailed theoretical and practical com- 
parison with randomized protocols. 

• Extensive simulations and experiments with user- 
level failure mitigation (ULFM; Bland et al., 2013) 
show very good performance of the algorithm. 

 
The rest of the article is organized as follows: We 

start with an informal description of the algorithm in 
Section 2. We detail the model, the proof of correctness, 
and the time-performance analysis in Section 3. Then, 
we assess the efficiency of the algorithm in a practical 
setting, first by reporting on a comprehensive set of 
simulations in Section 4, and then by discussing experi- 
mental results on the Titan Oak Ridge National 
Laboratory (ORNL) supercomputer in Section 5. 
Section 6 provides an overview of related work. Finally, 
we outline conclusions and directions for future work  
in Section 7. 

 

2. Algorithm 
This section provides an informal description of the 
algorithm (for a list of main notations, see Table 1).  
We refer to Section 3 for a detailed presentation of the 
model, a proof of correctness, and a time-performance 
analysis. We maintain two main invariants in the 
algorithm: 

 
1. Each alive node maintains its own list of known 

dead resources. 
2. Alive nodes are arranged along a ring, and each 

node observes its predecessor in the ring. In other 
words, the successor/observer receives heartbeats 
from its predecessor/emitter (see below). 

 
When a node dies, its observer broadcasts the infor- 

mation and reconnects the ring: From now onward, the 
observer will observe the last known predecessor 
(accounting for locally known failures) of its former 
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Table 1. List of notations. 

 Platform parameters 
Let A be the complement of Di in f0, 1, . .  . , N - 1g 
and let n = jAj. The elements of A are labeled from 0 

   to n - 1, where the source i of the broadcast is labeled 
N Initial number of nodes 
t Upper bound on the time to transfer a message 

Protocol parameters 
h Period for heartbeats 
d Time-out for suspecting a failure 

 
 

 
 

predecessor. The rationale for using a ring for detection 
is to reduce the overhead in the failure-free case: With 
only one observer, a minimal number of heartbeat mes- 
sages have to be sent. We use the protocol suggested by 
Chen et al. (2002) for fault detection. Consider a node  
q observing a node p. The observed node p is also 
called the emitter, because it emits periodic heartbeat 
messages m1, m2, . . .  at time s1, s2, . . .  to its observer 
q, every h time units. Now let s0

i = si + d. At any time 
t      s0i, s0i + 1  , q trusts p if it has received heartbeat mi 
or higher. Here, d is the time-out after which q suspects 
the failure of p. Assume there are initially N alive nodes 
numbered from 0 to N 1, and node i + 1 mod N 
observes node i according to  the  previous  protocol, 
for all 0 i  N  1. Tasks T1 and T2 in algorithm 1  
execute this basic observation node, with the time-out 
delay being reset upon reception of a heartbeat. Note 
that Chen et al. (2002) show that this protocol, where 
the emitter spontaneously sends heartbeats to its obser- 
ver, exhibits better performance than the variant where 
observers reply to heartbeat requests. 

What happens when an observer (node i) suspects 
the death of its predecessor in the ring? Task T3 in algo- 
rithm 2 implements two actions. First, it updates the 
local list i of dead nodes with the identity of its emitter 
and then reconnects the ring (lines 19–23); and second, 
it initiates a reliable broadcast informing all nodes in its 
current list of alive nodes about the death of its prede- 
cessor (line 24). 

The first action, namely the reconnection of the ring, 
is taken care of by the procedure FindEmitter(Di):  
Node i searches its list of dead resources i  and finds  
the first (believed) alive node, j, preceding it in the ring. 
It assigns j as its new emitter and sends a message 
NEWOBSERVER informing j that i has become its obser- 
ver. Node i also sets a time-out to 2d time units, a 
period after which it will suspect its new emitter, j, if it 
has not received any heartbeat. Task T4  implements  
the corresponding action at the emitter side. 

The second action for node i is the broadcast of the 
death to all alive nodes (according to its current list). A 
message BCASTMSG(dead, i, i) containing the identity 
of the dead node dead, the source of the broadcast i, 
and the locally known list of dead nodes i is broadcast 
to all alive nodes (according to the current knowledge 
of node i). We now detail how this procedure works. 

0. The broadcast is tagged with a unique identifier and 
involves only nodes of the labeled list A (this list is 
computable at each participant as i is part of the mes- 
sage). Because n is not necessarily a power of 2, we have 
a complication.2 Letting k = log n (all logarithms are in 
base 2), we have 2k     n\2k + 1. We use twice the reli- 
able hypercube broadcast algorithm (HBA) of 
Ramanathan and Shin (1988). The first HBA call is 
from the source (label 0) to the subcube of nodes j, 
where 0 j 2k, and the second HBA call is from the  
same  source   (label   0)   to   the   subcube   of   nodes 
n j mod n, where 0 j 2k.  Each  HBA  call  thus  
involves a complete hypercube of 2k nodes, and their 
union covers all n nodes (with some overlap). The HBA 
algorithm delivers multiple copies of the broadcast mes- 
sage through disjoint paths to all the nodes in the sys- 
tem. Each node executes a recursive  doubling 
algorithm and propagates the received information to 
up to k participants ahead of it, located at distance 2k for 
0 j 2k. For  simplicity,  we  refer  to  both  HBA calls as 
a single broadcast in our algorithm. 

Upon reception of a broadcast message including a 
source s and a list of dead nodes   , any alive node i   
can reconnect the complement list   of nodes involved 
in the broadcast operation and their labels, and then 
compute the ordered set of  neighbors Neighbors(s,  )  
to which it will then forward the message. We stress 
that the same list , or equivalently the same set of 
participating nodes, is used throughout the broadcast 
operation, even though some intermediate nodes might 
have a different knowledge of dead and alive nodes. 
This feature is essential to preserving fault tolerance in 
the algorithm of Ramanathan and Shin (1988). Indeed, 
we know from Ramanathan and Shin (1988) that each 
hypercube broadcast is guaranteed to complete pro- 
vided that there are no more than k 1  dead nodes  
within participating nodes (set ) while the broadcast 
executes. 

 

3. Model and performance analysis 
This section provides a detailed presentation of the 
model and a proof of correctness of the algorithm, 
together with a worst-case time-performance analysis. 
We also present a comparison with randomized proto- 
cols for observing processes and detecting failures. 

 

3.1. Model 
3.1.1. General framework. Nodes can communicate by 
sending messages in communication channels, expected 
to be lossless and not ordered. Any node can send a 
message to any other node. Messages in the 
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communication channel (p, q) take a random time Tp, q 
to be delivered, which has an upper bound t. We con- 
sider executions where nodes can die permanently at 
any time. If a node p dies, then all communication 
channels to p are emptied; p does not send any message 
nor execute any local assignment. 

Note that t is a property of the platform that repre- 
sents the maximal time that separates a process enter- 
ing a send operation and the destination process having 
the corresponding message ready to read in its memory. 
Although the exact value for t is generally unknown, it 
can be bounded in our case using the techniques 
described in Section 5.1.  The algorithm uses d.t as a 
bound to define the limit after which a node is sus- 
pected dead. Tuning the value of d as close as possible 
to t—without underestimating t to guarantee that false 
positives are not detected—is an operation  that  must 
be fitted for each target platform. Thus, in the theoreti- 
cal analysis, we use t to evaluate the worst case of a 
communication that succeeds, while the algorithm must 
rely on d to detect a failure. 

 

3.1.2. Using the one-port model. Although we assume a 
fully connected platform (any node may communicate 
with any other), we use a realistic one-port communica- 
tion model (Bhat et al., 2003) where a node can send 
and/or receive at most one message at any time step. 
Independent communications involving distinct sender/ 
receiver pairs can take place in parallel; however, two 
messages involving the same node will be serialized. 
Using the one-port model while aiming at a low- 
overhead protocol is a key motivation to this work. It   
is not realistic to assume that each node would observe 
any other node, or even a large subset of nodes. While 
this would greatly facilitate the diffusion of knowledge 
about a new death and speed up the transition back to   
a stable configuration, it would also incur a tremen- 
dous overhead in terms of heartbeat messages and in 
the end dramatically impact the throughput of the 
platform. 

Because all messages within our algorithm have a 
small size, we model our communications using a con- 
stant time t to send a message from one node to 
another. We could have used a traditional model such 
as LogP or a start-up overhead plus a time propor- 
tional to the message size, but since we use this only as 
an upper bound, this would unnecessarily complicate 
the analysis. Under the one-port model, the HBA algo- 
rithm (Ramanathan and Shin, 1988) with 2k nodes exe- 
cutes in 2kt, provided that no more than k 1 deaths 
strike during its execution. The time for one complete 
broadcast algorithm in algorithm 1 would then be 
(upper bounded by) 4t log n in the absence of any other 
messages, since we use two HBA calls in sequence. But 
our algorithm also requires heartbeats to be sent along 
the ring, as well as NEWOBSERVER messages when ring 

Algorithm 1. Sketch of the failure detector for node i. 
 

 

1: task Initialization 
2:    emitteri (i 1) mod N 
3:     observeri (i 1) mod N 
4:  HB-TIMEOUT h 
5:  SUSP-TIMEOUT d 
6: i [ 
7: end task 
8: 
9: task T1: When HB-TIMEOUT expires 

10:  HB-TIMEOUT h 
11: Send HEARTBEAT(i) to observeri 
12: end task 
13: 
14: task T2: upon reception of heartbeat(emitteri) 
15:  SUSP-TIMEOUT d 
16: end task 
17: 
18: task T3: When SUSP-TIMEOUT expires 
19:  SUSP-TIMEOUT 2d 
20: i i emitteri 
21:  dead emitteri 
22:    emitteri FindEmitter( i) 
23: Send NEWOBSERVER(i) to emitteri 
24: Send BCASTMSG(dead, i, i) to Neighbors(i, i) 
25: end task 
26: 
27: task T4: upon reception of NEWOBSERVER(j) 
28:     observeri j 
29:  HB-TIMEOUT 0 
30: end task 
31: 
32: task T5: upon reception of BcastMsg(dead, s, ) 
33: i i {dead} 
34: Send BCASTMSG(dead, s, ) to Neighbors(s, ) 
35: end task 
36: 
37: function FindEmitter( i) 
38:  k emitteri 
39:   while k i do 
40: k (k 1) mod N 
41: return k 
42: end function 

 
 

 
 

reconnection is needed. Assuming that h   3t (where h 
is the heartbeat period), we can always insert broadcast 
and NEWOBSERVER messages in between two successive 
heartbeats, thereby guaranteeing that a broadcast in 
algorithm 2 will always execute within B(n)= 8t log n, 
assuming no new failure interrupts the broadcast 
operation. 

 
 

3.1.3. Stable configuration and stabilization time. Here we 
consider executions that, from the initial configuration, 
reached a steady state before a failure hit the system 
and made it leave that steady state. To prove the cor- 
rectness of our algorithm, we show that in a given time 
the system returns to a steady state, assuming that no 
more than a bounded number of failures strike during 
this time. 
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lapping failures in logarithmic time O ( log n)3 . 

 
Connected node. A node p is connected with its successor 
in a configuration, if p is alive and emitterp is the 
closest predecessor of p that is alive (on the ring). It is 
connected with its predecessor if it is alive, and 
observerp is the closest successor of p that is alive in 
that configuration. It is reconnected if it is connected 
with both its successor and predecessor. If all proces- 
sors are reconnected, we say the ring is reconnected. 
Stable configuration. A configuration C is the global 
state of all processes plus the status of the network. A 
configuration is declared as stable, if any alive node p 
is reconnected in C and for any node q, q   p    q is   
dead in C. 
Stabilization time. T (f ), with f being the number of 
overlapping failures, is the duration of the longest 
sequence of nonstable configurations during any execu- 
tion, assuming at most f failures during the sequence. 

 

3.2. Correctness and  performance analysis 
The main result is the following proof of correctness 
that provides a deterministic upper bound on the stabi- 
lization time T (f ) of the algorithm with at most f over- 
lapping faults: 

 
Theorem 1. With n S N alive nodes, and for any 
f S blog nc- 1, we have 

Lemma 1. For 1 S f S blog nc- 1, we have 

 
R(f ) S R(f - 1)+ 2f d + t ð2Þ 

Proof. We first prove equation (2) when f = 1. 
Assume that node p, observed by node q, fails. After 
receiving the last heartbeat, q needs d time units to 
detect the failure (line 2 of algorithm 2). Thus, the worst 
possible scenario is when p fails right after sending a 
heartbeat, which will take t time units to reach q. Thus, 
q detects the failure after t + d time units. Finally, q 
sends the reconnection message to the predecessor of p, 
which will take t, hence R(1) 2t + d. We keep the 
overapproximation R(1) t + 2d to simplify the for- 
mula in the general case. 

Assume  now  that  equation  (2)  holds  for  all  
f log n 2. Now consider an execution with f + 1 
overlapping failures, the first of them striking at time 0 
(see Figure 1). The (f + 1)-th failure strikes at time t. 
Necessarily, t R(f ); otherwise, the ring would have 
been reconnected after f failures, and the last one 
would not be overlapping. There are f dead nodes just 
before time t among the original n alive nodes, which 
define k S f segments Ii, 1 S i S k. Here, segment Ii is 
an interval of di 2 1 consecutive dead nodes (see 

Pk 
 

 
f (f + 1) 

T (f ) S f (f + 1)d + f t + 2 B(n) ð1Þ 

where B(n)= 8t log n. 
This upper bound is pessimistic for many reasons, 

which are discussed after the proof. But the key point 
is  that  the  algorithm  tolerates  up  to(blog nc -) 1  over- 

alive nodes. There are multiple cases depending upon 
which node is struck by the (f + 1)th failure at time t: 

 
• The new failure strikes a node that is neither a pre- 

decessor nor a successor of a segment (e.g. the 

Proof. Starting from a nonstable configuration, the 
next stable configuration will be reached when (i) all 
nodes are informed of the different failures via the 
broadcast and (ii) processes of the ring are reconnected. 
Recall that every time a node has detected a failure, it 
initiates    a    broadcast     that     executes     within  
B = B(n)= 8t log n time units and that is guaranteed 
to reach all alive nodes as long  as  f  log n  1. 
Because we interleave reconnection messages within the 
broadcast, B encompasses both the broadcast and the 
reconnection. However, due to the one-port model, we 
cannot assume anything about the pipelining of several 
consecutive broadcast operations. In this proof, we 
make a first simplification by overapproximating T (f ) 
as the maximum time R(f ) to reconnect the ring after f 
overlapping failures, plus the time to execute all the 
broadcasts that were initiated, in sequence (assuming 
no overlap at all). We prove an upper bound on R(f ) 
by induction, letting R(0)= 0: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Segments of dead nodes after f = 3 failures: n = 9, 
k = 2, I1 = f2, 3g, I2 = f5g, d1 = 2, and d2 = 1. 

i = 1 
Figure 1). Of course, di = f , and there remain n - f 
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failure strikes node 7 in Figure 1). In that case, a 
new segment of length 1 is created, and the ring is 
reconnected at time t + R(1). 

• The new failure strikes a node p that precedes a seg- 
ment Ii. Let q be the successor of the last dead node 
in Ii. By definition, q p. There are two subcases: 

–    (i)    The  predecessor  p0  of  p  is  still  alive  (e.g.  the 
failure strikes node 1 preceding segment I1 in Figure 1, 

is an alive process between q0 and p in the ring. Thus, q 
must fail after p, for p to be discovered once more. 
Since there are at most f faults, pi, the ith dead process 
can thus be discovered dead by at most f i + 1 
processes. 

We immediately have that: 

Corollary 1. At most 
P 

(f - i + 1)= (f (f + 1))=2 
q = 4 and p0 = 0 is alive). Then, the size of segment Ii is 
increased by one. In the worst case, q is not aware of 

broadcasts are initiated. i = 1 

the death of any node in Ii at time t and needs to probe 
all these nodes one after the other before reconnecting 
with p0 (in the example, q = 4 needs to try to reconnect 
with 2 and 1 since it is not aware of their death). This 
costs at most (di + 1)(2d)+ t S 2(f + 1)d + t, because 
di + 1 f + 1, hence the ring is reconnected at time 
t + 2(f + 1)d + t. 
–    (ii)    The predecessor p0 of p is dead (e.g. the failure 
strikes node 4 preceding segment I2 in Figure 1, q = 6 
and p0 = 3 is dead). Then, p0 is the last node of another 
segment Ij. In that case, segments Ii and Ij are merged 
into a new segment of size di + dj + 1 f + 1. Just as 
before, in the worst case, q is not aware of the death of 
any node in that new segment, and the reconnection 
costs at most (di + dj + 1)(2d)+ t 2(f + 1)d + t (for 
an illustration, see Figure 1). Hence, the ring is recon- 
nected at time t + 2(f + 1)d + t. 
• The new failure strikes a node p that follows a seg- 

ment Ii. Let q be the successor of p. If q is alive, it 
now follows a segment of size di + 1. If q is the first 
dead node of segment Ij, let r be the node that fol- 
lows Ij. Now r follows a segment of size di + dj + 1. 
In both cases, we conclude just as before. 

 
This completes the proof of Lemma 1. 
From Lemma 1, we easily derive by induction that 

 
R(f ) S f (f + 1)d + f t 

for all values of f log n 1. During the ring recon- 
nection, processes that discover a dead process initiate a 
broadcast of that information. We need to count, in the 
worst case, how many broadcasts are initiated to com- 
pute how long it takes for the information to be deliv- 
ered to all nodes. 

 
Lemma 2. Let pi, 1   i   f   log n    1 be the ith pro- 
cess subject of a failure. In the worst case, at most     
f - i + 1 processes can detect the death of pi. 

Proof. A process p is discovered dead by process q in 
task T3, if emitterq = p. In that case,  p  is  added  to Dq, 
and emitterq is recomputed using  FindEmitter.  That 
function cannot return any process in Dq, and p is never 
removed from q. Thus, q will never discover the death of 
p again. As long as q lives, no other process q0 will 
execute the task T3 with emitterq0  = p, because q 

Finally, the information on the f dead nodes must 
reach all alive nodes. For each segment Ii, there is a last 
failure after which the broadcast initiated by the obser- 
ving process is not interrupted by new failures. That 
broadcast operation thus succeeds in delivering the list 
of  newly  discovered  dead  processes  to  all  others    
di log n 1 . In  the  worst  case,  that  broadcast 
operation is the last to complete. As already men- 
tioned, we conservatively consider that all the broad- 
cast operations execute in sequence, and since there are 
at most (f (f + 1))=2 broadcast operations initiated 
(Corollary 1), we derive that 

 
f (f + 1) 

T ( f ) S R( f )+ 2 B(n) 

which leads to the upper bound in equation (1) and 
concludes the proof of theorem 1. 

We derive from lemma 2 that at most 
f 

(f i + 1)= (f (f + 1))=2 broadcasts are initiated. 
i = 1 
Finally, the information on the f dead nodes must 
reach all alive nodes. For each segment Ii, there is a last 
failure after which the broadcast initiated by the obser- 
ving process is not interrupted by new failures. That 
broadcast operation thus succeeds in delivering the list 
of newly discovered  dead  processes  to  all  others  
di log n 1 . In the worst case, that  broadcast 
operation is the last to complete. As already men- 
tioned, we conservatively consider that all the broad- 
cast operations execute in sequence. Since there are at 
most (f (f + 1))=2 broadcast operations initiated, we 
obtain T (f ) R(f )+ ((f (f + 1))=2)B(n), which leads to 
the upper bound in equation (1) and concludes the 
proof of theorem 1. 

The bound on T (f ) given by equation (1) is quite 
pessimistic. We can identify three levels of complexity 
with their corresponding bounds on T (f ). In the most 
likely scenario, where the time between two consecutive 
faults is larger than T (1), the system has time to return 
to a stable configuration before the second fault, in 
which case all faults can be considered as independent, 
and  the  average  stabilization   time   is   T (1)=  
R(1)+ B(n)= O( log n). If the system suffers quickly 
overlapping faults, the location of impacted nodes 
becomes important. However, the larger the platform, 
the smaller the probability that successive faults strike 
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Figure 2. From stable configuration C, growing segment I1 of Figure 1: first failure on node 3, next two failures striking its ring 
predecessors. 

 

consecutive nodes (2/n, where n is the number of alive 
nodes). Thus, on large platforms, overlapping failures 
are more likely to strike nonconsecutive nodes in the 
ring. If overlapping faults hit nonconsecutive nodes 
rapidly (i.e. faster than the time needed by the system  
to reach the next stable configuration), each error is 
detected once, but due to the one-port model, the upper 
bound on T (f ) becomes R(1)+ fB(n)= O log2n . 
Finally, in the unlikely scenario where f quickly over- 
lapping faults hit f consecutive nodes in the ring, theo- 
rem  1  provides  the  upper  bound  for  T (f )  R(f )+ 
(f (f + 1))=2)B(n)= O log3n . 

Remark about stabilization time: f =T (f ) is the maxi- 
mum number of faults per time unit that the algorithm 
can tolerate to guarantee that we pass by a stable con- 
figuration infinitely often. However, T (f ) is not a period 
to optimize: T (f ) is just the time it takes, in the worst 
case, after f failures, for the ring to be reconnected, and 
the failure information to be propagated to all alive 
nodes. 

 
 

3.3. Nonstabilization risk control 
To guarantee convergence within T (f ) time units, algo- 
rithm 2 assumes that f log (n)  1. In order to eval- 
uate the risk behind this assumption, consider that 
failures strike following an Exponential distribution of 
parameter l. Let PT (f ) be the probability of the event 
‘‘more than f failures strike within time T .’’ Then, 

Consider a platform of n nodes: if mind is the Mean 
Time Between Failures (MTBF) of a single node, 
then l = n=mind (He ŕault  and  Robert,  2015).  Let 
M = log (n) 1,  the assumption that  there will  not 
be more than M failures before stabilization is then 
true with probability 1 PT(M)(M ). In Figure 2, we rep- 
resent this relation by showing the upper bound of d to 
enforce PT (M)(M )\10-9, at variable machines scale (n), 
and for different values of mind, with a message  time 
bound of t = 1 ms. Figure 2 illustrates that for all val- 
ues of d lower than the bound shown for a given system 
size and individual node reliability, the probability that 
failures strike fast enough to prevent algorithm 2 from 
converging in T (f ) is negligible (less than 0.000000001). 
As already mentioned, this bound on d is a loose upper 
bound, because the bound on T (f ) in equation (1) is 
loose itself. Furthermore, it captures the risk that 
enough failures would strike during stabilization time 
to make the appearance of the worst-case scenario pos- 
sible, even though this worst-case scenario has itself a 
very low probability of happening (as shown in 
Sections  4 and 5). Still, for the largest platforms with  
n = 256, 000 nodes, we find that d S 22 s for the most 
pessimistic       mind = 20 years,       and       d S 60 s  if 
mind = 45 years results in timely convergence.  With 
such large values, the detector generates negligible 
noise to the applications, as shown in Section 5.3. 

 
3.4. FD with randomized protocols 

PT (f )= 1 - 
k

P

= 0 

(
(lT )k

/
 k!

)
e-lT . In this section, we provide a comparison of our algo- 

rithm with randomized protocols such as SWIM (Das 
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et al., 2002; Gupta et al., 2001; Snyder et al., 2014). We 
first provide some background in Section 3.4.1, and 
then proceed to a detailed comparison in Section 3.4.2 

 
 

3.4.1. Background. FD techniques based on randomized 
protocols detect failures through periodic observation 
rounds. Within a round, each node randomly chooses 
another node to observe. This entails the observer send- 
ing an are you alive? message to the observed node and 
waiting for its answer. This pull technique (also called 
pinging) is different from the push technique based on 
heartbeats (Chen et al., 2002) and used in the determi- 
nistic algorithm of Section 2. Pinging is inherent to ran- 
domly choosing the  observed  process  because  this  
latter process does not know  in  advance whom to  send 
its alive message to. Pinging is known to be less effi-  
cient than using heartbeats (Chen et al., 2002) because     
it requires twice as many messages and leads to increas- 
ing the time-out, to accommodate for a round-trip 
message. 

In fact, actual protocols such as SWIM, which 
stands for Scalable Weakly-consistent Infection-style 
Process GroupMembership (Das et  al.,  2002;  Gupta 
et al., 2001; Snyder et al., 2014; for more details, see 
Section 5.4), request that after a time-out, other proces- 
sors are required by the observer, say Pi, to ping the 
nonresponding process, say Pj. Specifically, k randomly 
chosen processors (for details on how to choose k, see 
Das et al., 2002; Gupta et al., 2001) would ping Pj on 
behalf of Pi and forward any answer back to Pi. Only 
after this confirmation step would Pj’s death become 
suspected. This confirmation step is not needed in our 
framework, since we assume that network links are reli- 
able and we place an upper bound, t, on the time to 
transmit a message. 

A single observation round is not enough to detect 
failures with high probability. During a round, some 
nodes will not be observed, while other nodes will 
receive many are you alive? messages from different 
observers, and will need to answer them all. Setting the 
value of the time-out then becomes a complicated task: 
indeed, to avoid false positives (alive nodes unduly sus- 
pected of death), one has to account for the maximum 
number of are you alive? messages that are received by 
the same node. The next section proposes a simplified 
analysis of the number of rounds and time-out values 
needed to limit the risk of such false positives. 

Finally, just as with our algorithm, after detecting a 
failure, the knowledge of that failure must be propa-  
gated to every alive node. In a nutshell, this propaga- 
tion can be done in many ways, including a reliable 
diffusion mechanism similar to the one presented in 
this article. Other solutions include using a gossip 
mechanism flooding the network in logarithmic time or 
piggybacking are you alive? messages with the current 

 
 
 
 
 

Figure 3.  Maximal value for d to ensure that PT(M)(M)\10-9 
with t = 1 ms and M = b log2 (n)c. 

 
knowledge of all dead processes (for details, see Katti 
et al., 2015). 

 
 

3.4.2. Comparison. In this section, we estimate the FD 
time for a randomized protocol. We assume a platform 
with N = 100, 000 nodes and fix the risk of missing the 
death of a node to 10-9. Note that this is the same value 
as the risk PT(M)(M ) used in Section 3.3; however, our 
deterministic algorithm detects a single failure with 
probability 1, as long as the time-out value d is correctly 
set. On the contrary, the worst-case detection time of a 
randomized protocol is infinite, by construction: There 
are some (very unlikely) scenarios in which a dead node 
will never be pinged (Figure 3). 

Consider  a  single   observation   round   with  
N = 100, 000 nodes. The probability that a given node 
is  not  pinged  is  p(N )= ((N - 1)=N )N-1’0:367881.  In 
fact limN!‘ p(N )= 1=e, where e is the Euler constant, 
and  (1=e)’0:367894.  The  expected  number  of  nodes 
that are not pinged within a round tends to N/e. With 
N = 100, 000, expect that 36,788 nodes will be ignored. 
Then how many rounds are needed to guarantee that 
all  nodes  are  pinged  with  probability  1     10-9?  The 
solution is  x  where p(N )x = 10-9,  and by  deriving, we 
obtain x’20:7, so that 21 rounds are needed to achieve 
the desired probability. 

We now have to account for contention within a 
round. As already mentioned, some nodes will not be 
pinged, while some others will be pinged several times. 
What is the largest number L(N ) of ping messages that 
a node will receive? Of course, the largest number is 
L(N )= N 1 if all nodes ping the same one, but this is 
very unlikely, and we need to estimate L(N ) with high 
probability. The problem can be modeled as  a balls 
and bins problem (Mitzenmacher and Upfal, 2005), 
where we throw N balls into N bins randomly and inde- 
pendently. The only difference is that a given node does 
not ping itself, but this does not modify the analysis. It 
is known (Mitzenmacher  and Upfal, 2005: Ch 5) that   
( ln N = ln ln N ) S L(N ) S 3( ln N = ln ln N ) with high 
probability  1 - (1=N ).  Here  we  obtain  4:7 S L 
(100, 000) S 14:1, so we need to account for at least five 
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ping messages being possibly sent to the same node 
(simulations in Section 4.3 show that in fact we need to 
account for up to 11 ping messages to be on the safe  
side). 

Altogether, this calls for multiplying the time-out for 
a round-trip message by (at least) 5 to account for con- 
tention, and then by 21 to account for the number of 
rounds, leading to a 100 3 increase. Altogether, with 
N = 100, 000, we conclude that detection can be 
achieved with probability 10-9  only with a huge time- 
out of magnitude two orders higher than that of our 
deterministic algorithm. 

 
4. Simulations 
We conduct simulations and experiments to evaluate 
the performance of the algorithm under different exe- 
cution scenarios and parameter settings. We instantiate 
the model parameters with realistic values taken from 
the literature. The code for all algorithms and simula- 
tions is publicly available3 so that interested readers  
can build relevant scenarios of their choice. In this sec- 
tion, we report simulation results (for experiments, see 
Section 5). 

 
4.1. Simulation settings 
The discrete-event simulator imitates how the protocol 
of algorithm 2 would behave on a distributed machine 
of size n. Messages between a pair of alive nodes in this 
machine take a uniformly distributed time in the inter- 
val (0, t]. Failures are injected following an exponential 
law of parameter l = n=mind (see Section 3.3). To gen- 
erate  a  manageable  amount  of  events,  each heartbeat 
message and the corresponding time-outs are not simu- 
lated, but the simulator asserts that a time-out should 
have expired on the observer after the death of its emit- 
ter if the observer is alive at that time; otherwise, the 
observer’s observer is going to react, following the pro- 
tocol. The simulator computes (i) the average time to 
reach a stable configuration (all processes know all 
faults) starting from a configuration with a single fail- 
ure injected at  time 0,  (ii) the average  time to reach  a 

configuration where all processes know about the initial 
failure, and (iii) the average number of failures striking 
during the time it takes to reach a stable configuration 
over a set of 10,000 independent runs. 

We consider two main scenarios for the simulations. 
In both scenarios, we target a large-scale machine (up 
to 256,000 computing nodes) with a low-latency inter- 
connect (t = 1 ms). In the scenario LOWNOISE, we set 
the failure detector so as to minimize the overhead in 
the failure-free case: h is set to 10 s and d to 1 min. We 
consider this case significant for platforms where nodes 
are expected to be reliable, or where alternative meth- 
ods to detect most failures exist; the heartbeat mechan- 
ism is then used as a last resort solution (e.g. when 
special hardware providing a Baseboard Management 
Controller and controlled through a protocol like intel- 
ligent platform management interface is connected to 
the application notification system; Wung, 2009). We 
also considered a scenario LOWLAT, with the opposite 
assumptions, where active check through heartbeats is 
the primary method to detect failures, and a low latency 
of detection is required for the application: h = 0:1 s, 
and d = 1 s. 

 
 

4.2. Simulation results 
In Figure 4, we force the simulator to inject the maxi- 
mum number of failures tolerated by the algorithm for  
a  given  platform  size      log2(n)      1   in  a  very short 
time, smaller than d, in order to evaluate the average 
stabilization time in the most volatile environment. 
Varying the system size (n), and the number of injected 
failures simultaneously, we evaluate the time taken for 
the first failure to be notified to all processes and for all 
the processes to be notified of all the failures that struck 
since the last stable configuration. 

The figure considers scenario LOWNOISE. Points on 
the graph show times reported by the simulator, while 
lines represent functions fitted to these points, 
O (1=n)+ log2(n ) for all  know  all  failures  (orange 
lines) and O(1/n) for all know the first failure (green 
lines). 

 
 

 
Figure 4. Average stabilization time, when the maximal number of failures strike a platform of varying size. 
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On average, the first failure, striking at time 0, is 

detected d (h=2) seconds later, and this is  the  
observed baseline for detecting the first failure at all 
nodes. The reliable broadcast overhead in this case is 
negligible, because t d and h. There are a few execu- 
tions in which, within the first d seconds, another fail- 
ure hits the observer of the first failure, introducing 
another d delay to actually detect the first failure and 
broadcast it. As the size of the machine increases, this 
probability decreases. Such overlapping failure cases 
contribute to a longer detection and notification time 
that can be fitted with a function inversely proportional 
to the platform size, but have a low probability to hap- 
pen, introducing a measurable but small overhead at 
small scale. For general stabilization, where all pro- 
cesses need to know all failures, the reliable broadcast 
remains as fast as for the initial failure. However, if any 
failure strikes before that broadcast phase is complete, 
this delays reaching stabilization by another d followed 
by a logarithmic phase. As we observe in both figures, 
this shows at large scale, where failures have a high 
probability of striking successively, each introducing a 
constant overhead. The fitting function thus shows the 
same inversely proportional property in the beginning, 
and then the logarithmic behavior starts to dominate at 
large scale. 

We conducted the same set of simulations on the 
LOWLAT scenario. The evaluation presents the exact 
same characteristics, shifted by the ratio between the 
two values for d. 

We then consider the average case, when failures are 
not forced to strike quasi-simultaneously. We set the 
MTBF of independent components to a very pessimis- 
tic value (mind = 1 year), making the MTBF of the plat- 
form decrease to a couple of minutes at 256,000  nodes. 
Although we do not expect such a pessimistic value in 
real platforms, we evaluate this case in order to ensure 
that failures may occur before the initial one is detected 
and broadcast (or stabilization would be reached imme- 
diately after). Figure 5 presents the average number of 
failures observed at different scales, the average time 
for all nodes to know about the first failure, and the 
average time for all nodes to know about all failures. 
Points represent values given by the simulator, while 
lines represent fitting functions: O(1) for the time for all 
to know the first failure, O(n) for the average number 
of failures and the average time for all to know all fail- 
ures. We present here the scenario LOWNOISE, although 
the result also holds for scenario LOWLAT, at a different 
scale. 

This figure shows that, on average, and even with 
extremely low MTBFs, the probability that two inde- 
pendent failures hit the system in an overlapping 
manner—before the first failure is known by all 
nodes—is very low. This happens when the MTBF of 
the system becomes comparable  to  d.  In that case, the 

 

 
Figure 5. Average stabilization time, with random overlapping 
failures in scenario LOWNOISE (d = 1 min, t = 1 ms, h = 10 s), 
with mind = 1 year. 

 
 

Figure 6. Number of random probing rounds to ensure that all 
nodes have been detected by the randomized pinging protocol. 

 
 

first failure still takes close to a constant time to be 
notified to all. The reason is that t log2(n) remains very 
small compared to d, and once the broadcast is  initi-  
ated, it completes in t log2(n). The successive failures 
may strike anytime between ½0, d], delaying the time to 
reach the stable configuration by another d + t log2(n). 
On average, at 256,000 nodes, this happens in the mid-  
dle of the initial FD  interval,  delaying  the  completion 
by d/2. Each failure, however, is independent in that 
case, and each is detected almost d time units after it 
strikes. 

 
 
4.3. Comparison with randomized protocols 
Finally, in Figures 6 and 7, we use the discrete event 
simulation to expose the quality of detection with ran- 
domized gossiping protocols, such as SWIM. As 
described in Section 3.4.1, these protocols execute suc- 
cessive rounds. During a round, a process randomly 
selects another one to ping and uses a push mechanism 
to check if this selected process is still responsive. 
Determining when a failure will be detected with such 
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Figure 7. Average of the maximum length of queue size L(N) 
during a single round, for the randomized pinging protocol. 

 
an approach is more subtle than for the deterministic 
pull algorithm that we presented in this work. As men- 
tioned in Section 3.4.2, there are two main reasons for 
this: 

 
• The duration of a round must be higher than the 

value of the time-out to detect a failure. That value 
is a function of the network latency and of the 
number of heartbeat requests messages that a single 
target can receive during a single round. Otherwise, 
a process might suspect another one falsely after it 
did not receive a heartbeat in time, not because the 
target is not responsive but because it is busy 
responding to other ping requests. 

• The number of rounds to ensure (with high prob- 
ability) that all processes have been probed needs to 
be determined. As processes select targets indepen- 
dently, it is predictable that two (or more) processes 
select the same target and thus—as each selects a 
single target—that some processes are not observed 
during a single round. 

 
To quantify these two parameters experimentally— 

in complement of the theoretical study of Section 
3.4.2—we have simulated the behavior of a the probing 
part of a randomized gossiping protocol like SWIM. 
We report the following two critical measures: 

 
• During a single probing round, where each alive 

process selects a single target randomly and 
requests for a heartbeat, what is the maximal num- 
ber of processes—denoted as L(N ) in Section 3.4.2, 
where N is the number of processes—that select the 
same target? Figure 7 gives average values for L(N ). 

• Figure 6 shows how many rounds are needed to 
ensure (with high probability) that all processes 
have been targeted at least once. In both  figures,  
we scale the system size, increasing the number of 
nodes, and report these average and maximum 
numbers over 10,000 simulations per parameter. 

In theory, the average largest number of processes 
that select the same target during a single round is 
between ( ln N = ln ln N ) and 3( ln N = ln ln N ), where N 
is the number of processes (see Section 3.4.2). 
Simulations of Figure 7 are consistent with these 
bounds, showing that up to 11 processes have a high 
probability to select the same target during a random 
round at 100,000 nodes and up to 8 processes for a sys- 
tem of 20,000 nodes. This means that the time-out for 
the heartbeat must be set to 16–22 times the maximum 
network latency, to ensure that a nonresponsive pro- 
cess has indeed failed, rather than being too congested 
by messages to answer to the request in time. 
Comparatively, our solution deterministically ensures 
that only one process will be pinged by another,  
thereby eliminating the queue management pressure. 

Similarly, Figure 6 shows that on average, between 
11 rounds at 20,000 nodes and 13 rounds at 100,000 
nodes are necessary to ensure, with high probability, 
that all nodes are targeted by at least one other. If one 
considers the worst case, over the 10,000 simulations 
considered, it is often necessary for at least one of these 
executions to wait until 22 rounds are executed to reach 
all processes. 

Combining both factors, to detect with high prob- 
ability the failure of a single process in a system of 
100,000 elements, on average, 13 rounds of 22 times the 
maximum network latency each would be necessary. 
During this time, on average, 2,599,974 messages would 
have been exchanged over the network. This is in stark 
contrast with the ring algorithm presented in this arti- 
cle, which provides a deterministic bound function of 
the number of failures. It would detect the failure in  
one maximum network latency and see 99,999 heart- 
beat messages (one per alive process). 

 

5. Experimental evaluation 
This section presents an experimental evaluation of an 
operational implementation of the proposed failure 
detector on the Titan ORNL supercomputer. We have 
implemented the FD and propagation service in the ref- 
erence implementation of the ULFM draft MPI stan- 
dard (Bland et al., 2013), provided by OPEN MPI. 
ULFM is an extension of the MPI standard that 
empowers MPI users—applications, library developers, 
or parallel programming languages—to provide their 
own fault-tolerant strategy. ULFM defines a set of 
additional API to MPI that permits (i) the interruption 
of MPI operations that cannot complete due to the 
occurrence of failures through raising appropriate MPI 
error classes; (ii) the continuation of point-to-point  
MPI messaging between nonfailed processes after such 
error classes have been raised; (iii) the interruption of 
MPI operations at all ranks in a particular communica- 
tion handle (e.g. MPI COMM REVOKE, MPI WIN 
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REVOKE, MPI FILE REVOKE), under the explicit con- 
trol of the programmer; (iv) the fault-tolerant valida- 
tion of algorithmic steps (MPI COMM AGREE); and (v) 
the recovery of full operational capabilities (including 
the ability to perform collective communications) by 
constructing replacements for damaged communication 
objects   (with   MPI   COMM   SHRINK   and   MPI   COMM 
SPAWN to recreate isomorphic communicators and then 
derive windows and files as necessary). The general 
design of ULFM relies on local semantics: The user is 
notified of failure only in MPI calls that involve a failed 
process, and a correct ULFM implementation will try  
to make all operations succeed if it can complete 
locally. Although this relaxed design eases the imple- 
mentation requirements and delivers higher failure-free 
performance, the fact that a failure is guaranteed to be 
detected only after an active reception from the dead 
process can lead to an increase of latency during failure 
recovery operations, because the same process failures 
may be detected sequentially by multiple processes, 
possibly at a much later time than when they were first 
reported. Moreover, several routines imply necessarily 
a communicator-wide knowledge of failures. 
Operations like MPI_COMM_AGREE and MPI 
COMM SHRINK need to build consistent knowledge 
on (sub)sets of acknowledged failures; a pending point- 
to-point reception from any source must eventually 
raise an error if it cannot complete because of the death 
of a processor. Therefore, the addition of the FD and 
propagation  service  provides  an  acceleration   to 
such scenarios by eliminating delayed local observation 
of the failure, which can then be immediately reported 
to the upper level, which can in turn act upon it  
quickly. 

 
 
5.1. Implementation 
The failure detector has two components: the observa- 
tion ring and the propagation overlay. The components 
operate on a group of processes that must be MPI con- 
sistent (i.e. identical at all ranks). The propagation 
topology is implemented at the Byte Transport Layer 
(BTL) level, which provides the portable low-level 
transport abstraction in OPEN MPI. 

The propagation overlay takes advantage of the 
Active Message behavior of the OPEN MPI BTL’s.  
Each message, with a size less than the ‘‘eager’’ protocol 
switch point, contains the index of the callback func- 
tion to be analyzed by upon reception. This approach 
provides independence from the MPI semantic (includ- 
ing matching). Upon the reception of a propagation 
message, the message is forwarded according to two 
possible algorithms. In the case where the overlay is not 
corrected to incorporate the knowledge about failed 
processes and thus the group can be considered as an 

invariant during the entire execution, the message is 
forwarded as is through the propagation topology  
which is constructed every time a broadcast is initiated, 
according to the algorithm presented in Section 2, in 
order to guarantee the logarithmic propagation delay. 
When the upper level declares—through a runtime 
parameter—that it repairs its communicators after  
every stabilization phase, the reliable propagation over- 
lay can reduce the size of the messages to include only 
the latest detected failures, and the overlay is then built 
considering all processes of the group. 

The observation ring is also built at the BTL level. 
The emission of the heartbeats poses a particular chal- 
lenge in practice. The timely activation and delivery of 
heartbeats is critically important in enforcing the per- 
fection of the detector and the bound on t. Missing  its 
h emission period deadlines puts the emitter process at 
risk of becoming suspected by its observer, even though 
it is still alive. If the heartbeats are emitted from the 
application context, they can only be sent when the 
application enters MPI routines, and consequently, a 
compute intensive MPI application would often miss 
the h period. In our implementation, the heartbeats are 
emitted from within a separate, library internal thread, 
to render their emission independent from the applica- 
tion’s communication pattern. For ease of implementa- 
tion, the MPI_THREAD_MULTIPLE support is enabled 
by default when the detector thread is enabled; how- 
ever, future software releases will drop this requirement. 
An intricate issue also arises from a negative interaction 
between the emission and the reception of heartbeat 
messages. To check the liveliness of the emitter process 
(after the d time-out), the observer has to see if it has 
received heartbeats. From an implementation perspec- 
tive, if the heartbeats are sent through the eager chan- 
nel, the detector thread (in this case, the receive thread) 
has to be active and poll the BTL engine for progress. 
However, if the application has posted operations on 
large messages, the poll operation may start progressing 
these (long) operations before returning control to the 
detector thread, leading to an unsafe delay in the emis- 
sion of heartbeats from that same thread. To circum- 
vent that difficulty, the detector thread emits heartbeats 
using the ‘‘RDMA put’’ channel. Heartbeats are thus 
directly deposited by raising a flag in the registered 
memory at the receiver, using hardware accelerated put 
operations that do not require active polling. The obser- 
ver can then simply check that the flag has been raised 
during the last d period with a local load operation, and 
reset the flag with a local store, which are mostly imper- 
vious to noise and do not delay the h period. This 
approach also allows the observer to miss d periods 
without endangering the correctness of the protocol 
(only increasing the time to detect and notify the failure, 
but no triggering a false positive). 
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Figure 8. Sensitivity to noise resulting from the failure detector activity for varied workloads. 
 

5.2. Experimental conditions 
The experiments are carried out on the Titan ORNL 
Supercomputer (Titan, 2016), a Cray XK7 machine 
with 16-core AMD Opteron processors, and the Cray 
Gemini interconnect. The ULFM MPI implementation 
is based on a prerelease of Open MPI 2.x 
(r#6e6bbfd), which supports the optimized uGNI  
and shared-memory transports (without XPmem) and 
uses the Tuned collective module. The MPI implemen- 
tation is compiled with the MPI_THREAD_MULTIPLE 
support. Every experiment is repeated 30 times and we 
present the average. The benchmarks are deployed with 
one MPI rank per core, and all threads of an MPI pro- 
cess are bound to that same core (application, detector, 
and driver threads when applicable, i.e. the detector 
thread does not require exclusive compute resources). 

 

5.3. Noise and accuracy 
The first set of experiments investigate the noise gener- 
ated by the detector and its accuracy for different 
workloads when h and d vary, in a method similar to 
(Kharbas et al., 2012) that focused exclusively on mea- 
suring the noise generated by different  FD  strategies.  
The h and d periods are set so that d = 10 3 h. If the  
test is successful (i.e. no failure was detected, since none 
was injected in this experiment), then h is reduced, and 
the experiment is repeated, until a false positive is 
reported. We also collect the number of times an h 
deadline was missed, even when the d time-out is still 
respected. We first considered a noncommunicative, 
compute-only MPI application where each rank calls 
LAPACK DGEMM operations on local matrices, without 
calling MPI routines for extended periods of time. 
Without the detector thread, the noncommunicative 
benchmark reports false detections for all considered 
values of h. With the detector thread, this noncommu- 
nicative benchmark succeeds until h is set to 1 msec. 
However, starting from h\5 msec, messages indicating 

a missed h deadline are occasionally issued (although 
the d time-out is still respected). These observations are 
consistent with the scheduling time quantums (sched_ 
min_granularity is set to 3 ms), and  indicate  that 
the thread scheduling latency is an absolute for the 
minimum h period. Smaller periods could be achieved 
with a real time scheduler, but such capabilities need 
administrative privileges, which is an undesirable 
requirement. 

Next, in Figure 8, we present the noise incurred on a 
variety of communication and computation workloads, 
provided by the Intel MPI Benchmark (version  4.1) 
and HPL (version 2.2), respectively. Accuracy results 
are similar overall in the communicative benchmarks. 
All tests of the IMB-MPI1 suite can run without false 
detection for h 10 ms. Notably, point-to-point only 
benchmarks can succeed with h value as low as 2.5 ms 
but occasionally report false suspicions. Collective com- 
munication benchmarks are more sensitive and report 
occasional heartbeat  emission  deadline  misses  until  
h 25 ms, due to contentions on the access  to hard-  
ware network resources. 

The latency performance (left graph) and bandwidth 
performance (center graph) are barely affected by low 
frequencies of heartbeat emissions. For higher frequen- 
cies, the overhead generated by the noise can reach 
approximately 10%. The bandwidth performance is  
less impacted overall than the latency, especially for 
point-to-point bandwidth, which remains unchanged  
for all but the most extreme values of h. The applica- 
tion performance (Linpack, right graph) exhibits no 
observable performance degradation  for  h  100 ms. 
For higher frequencies, the performance degradation 
remains contained under 2%. 

 
5.4. Comparison with SWIM 
This section compares our failure detector with SWIM 
(Das et al., 2002; Gupta et al., 2001; Snyder et al., 
2014), the random protocol introduced in Section 3.4.1. 
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Figure 9. Detection and propagation delay compared to using the SWIM randomized failure detector from Memberlist. 
 
 

SWIM scales by using a probabilistic approach: Nodes 
randomly choose a subset of neighbors to probe. To 
avoid false suspicions, SWIM relies on a collaborative 
approach. An initiator node invites k other nodes to 
form a group, pings them, and waits for their replies. If 
a node does not reply in time, the initiator then judges 
this node as suspicious and asks the other group mem- 
bers to check the potentially faulty node. 

Figure 9 compares the detection delay (i.e. the stabili- 
zation delay) between the MPI failure detector and the 
SWIM failure detector, after a failure occurs at some 
process. For the MPI benchmark, after  synchronizing, 
the desired number of MPI processes (whose ranks are 
chosen at random) simulate a failure. Any other process 
posts an any-source reception. When the reception raises 
a process failure exception (the only possible  outcome 
for this nonmatched any-source reception), the process 
counts the number of locally known failed  processes, 
and if it does not contain all injected failures, it repeats 
the reception. The SWIM benchmark also employs MPI 
to synchronize before injecting failures; however, the 
SWIM algorithm implementation—we used Go- 
Memberlist  (r#d16b8b73)—is  not  integrated   with 
MPI, and consequently the SWIM benchmark reports 
FDs directly through Go-Memberlist callbacks. In both 
cases (MPI and SWIM), the time at which all failures 
have been locally observed is reported at each rank. On 
the Titan platform, the Memberlist  initialization  over  
the ipogif interface (i.e. the Internaet protocol (IP) 
emulation layer over uGNI) suffers from a connection 
storm (a large group of simultaneous requests) and con- 
sequently often fails to initialize with more than 32 pro- 
cesses. A similar outcome has been observed on a 
different Linux cluster (called Dancer, a 32 nodes, 8 
cores per node Xeon 7550, Ethernet Gigabit platform), 
but on that machine, the issue can be remediated by dis- 
abling the IP connection tracking kernel module (which 
supports iptables rules). With the contrack_nf 
module disabled, the message absorption rate is 

 
sufficient for the Memberlist benchmark to initialize and 
run to completion up to the maximum  256  processes 
that can be tested without oversubscription on that plat- 
form. Note that disabling the connection tracking mod- 
ule requires administrative privileges and severely limits 
the security of the system. Figure 7, therefore, presents 
results on the dancer platform, using Transmission 
Control Protocol (TCP) as the transport layer for both 
Memberlist and MPI. 

The Memberlist implementation presents two var- 
iants of the SWIM protocol. The first one is the pure 
SWIM protocol, which relies exclusively on UDP 
heartbeats for both detecting and propagating the 
known suspected processes. Heartbeats are requested 
from random processes at the beginning of every 
period. The answer contains the list of currently sus- 
pected processes. If no answer is received before the 
time-out, the observed process itself becomes suspect. 
The second one expands on the SWIM protocol with 
the addition of requesting TCP handshakes with pro- 
cesses whose UDP heartbeats are not received in time 
and a periodic gossiping (with a random gossip algo- 
rithm) of the list of suspected processes. We refer this 
optimization as PP&G, for the Push-Pull and Gossip 
optimizations. 

On the left graph in Figure 9, with 256 processes, the 
difference between pure SWIM and SWIM PP&G is 
minor. The PP&G optimization closes the spread 
between the first process suspecting a failure and the fail- 
ure being reported at all processes (shaded area), espe- 
cially for smaller values of h, resulting in marginally 
better stabilization delays. For values of h lower  than 
100 ms (which are, arguably, orders of magnitude more 
demanding than the default values selected for WAN 
SWIM deployments), false positive detections are 
reported for all variants of SWIM; the underlying rea- 
son lies in the loss of UDP messages due to occasional 
collisions; the failover TCP mechanism in the PP&G 
variant takes longer to establish the TCP connexion 



Bosilca et al. 15 
 

- 

 
 

 
Figure 10. Detection and propagation delay and impact on completion time of fault-tolerant agreement operation. 

 
 

than the detection time-out, which negates its advan- 
tages for such aggressive time-outs. 

On the contrary, the ULFM failure detector is accu- 
rate for the entire range of h values (still subject to the 
kernel scheduler time quantum limitation discussed in 
the previous section). The spread between the first pro- 
cess detection and the stabilization delay is insignificant 
except for the smallest h considered, where it remains 
small nonetheless. Thanks to its deterministic behavior, 
the ULFM failure detector can remain accurate while 
reporting failures significantly faster than the SWIM 
algorithm employing the same heartbeat frequency. 
One has to consider that the number of messages 
exchanged for each heartbeat period is double in 
SWIM: After each heartbeat period, each process in  
the SWIM topology sends an observation request to a 
randomly selected process. This random selection pro- 
cess has the potential of creating hot spots, whenever 
many processes select to observe the same neighbor, 
which in turn increases the risk of message loss and 
consequently the risk of a false positive. Meanwhile, in 
our failure detector, a single message is sent, with a 
constant input and output degree of 1. 

On the right graph of Figure 9, we compare the scal- 
ability of the detector with regard to the number of 
deployed processes. We selected the best performing 
PP&P variant for SWIM and employed the smallest 
safe value of h for each detector (which incidentally 
means that the h value for ULFM is smaller, thanks to 
its algorithm reporting fewer false positives). For a 
smaller number of processes, the ULFM failure detec- 
tor is stabilizing in approximately 100 ms, while the 
SWIM algorithm stabilizes in 1.4 s. As the number of 
processes increases, the ULFM failure detector remains 
stable at 100 ms, while the stabilization delay of SWIM 
increases to over 2 s, an effect of the suspicion time- 
out, which is a logarithmic (in number of processes) 
delay added to the SWIM protocol to reduce the num- 
ber of false positives. 

 
5.5. FD time at scale 
Figure 10 presents the behavior observed when inject- 
ing failures at scale. The first graph (left) presents the 
time to reach a stable state when injecting one to eight 
failures for a varying number of nodes. We  observe 
that for small scales, the reported delay is consistently 
close to d. If emitters were sending heartbeats to their 
observer at random starting time, we would expect the 
detection time to be closer to d h=2; however, as all 
processes start sending heartbeats to their observer at 
the  end  of  the  MPI_Init  function,  they  are  almost 
synchronized, and for all runs, we observe a consistent 
delay at small scale. At larger scale, processes leave 
MPI_Init  at  a  more  variable  rate,  and  the  average 
starts to converge toward the theoretical bound. This 
observation matches the model, considering that in this 
scenario, all failures are ‘‘simultaneous,’’ and that the 
random allocation of failures has a low probability of 
hurting observer/emitter pairs. Consequently, the 
detection and propagation of each of these failures 
progress concurrently and do not suffer from the 
cumulative effect of detecting multiple predecessors’ 
failures on the ring. 

The second experiment (center in Figure 10) investi- 
gates the effect of collisions on the reliable broadcast 
propagation delay. The benchmark is similar to the pre- 
vious experiment, except that before a process simulates 
a failure, it sends its observer a special ‘‘trigger heart- 
beat,’’ which initiates an immediate propagation report- 
ing it dead, without waiting for the d time-out. The rest 
of the observation protocol remains unchanged (i.e. 
heartbeats are exchanged between alive processes with 
an h period, and the observer of the injection process 
switches to observing the predecessor). We then present 
the increase in the average duration of the reliable 
broadcast when multiple broadcasts are progressing 
concurrently. To simplify the proof of the upper bound 
on stabilization time (theorem 1), we have considered 
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that successive broadcasts are totally sequential. This is 
an admittedly pessimistic hypothesis, and indeed, per- 
forming two concurrent propagations does not signifi- 
cantly increase the delay, as the two reliable broadcasts 
can actually overlap almost completely. However, start- 
ing from four, and, more prominently, for eight concur- 
rent broadcasts, the average completion time is 
significantly increased. Considering the small size of the 
messages, the bandwidth requirements are small, and 
contention on port access is indeed the major cause of 
the imperfect overlap between these concurrent broad- 
casts, therefore vindicating the importance of consider- 
ing a port-limited model during the design of the failure 
detector and propagation algorithms. 

The last experiment (right in Figure 10) presents the 
performance of the agreement algorithm after failures 
have been injected. Herault et al. (2015) presented a 
similar performance result for their agreement algo- 
rithm. In their results, the agreement performance was 
severely impacted when failure was discovered during 
the agreement (with the  failure-free  performance  of 
80 ms increasing to approximatively 80 ms), an effect 
the authors claim is due to FD overhead. In  their  
work, FD was delegated to an ORTE-based RAS4 ser- 
vice, responsible for detecting and propagating fail- 
ures. In this experiment, we strive to recreate as closely 
as possible this setup, except that we deploy our failure 
detector in lieu of the ORTE RAS service. We consider 
the same implementation of the agreement on 6000 
Titan cores (the same number of cores they deployed 
on the generally similar Cray XC30 Darter system). 
Some in-band detection capabilities are active, in par- 
ticular, failure of shared memory sibling ranks is 
reported by the node’s local operating system. With  
the replacement of the ORTE RAS service by our fail- 
ure detector algorithm, the time to completion of the 
agreement algorithm decreases  to  below  1.5 ms  (a  
50 3 improvement). This is due to the faster propaga- 
tion of failure knowledge among the agreement parti- 
cipants: instead of waiting for (long) in-band time-outs 
or ORTE RAS notification, a process whose parent or 
children have failed can observe the condition much 
earlier, and start the online mending of the fan-in/fan- 
out tree topology at an earlier date. Interestingly, pre- 
viously hidden performance issues become visible, as 
FD is not the dominant cost  anymore:  We  observe 
that the performance of the agreement decreases line- 
arly with the number of detected failures, a behavior 
that can be attributed to the agreement algorithm per- 
forming a linear scanning of the group when a failure  
is reported. 

 

6. Related work 
In this section, we survey related work on failure detec- 
tors and then on fault-tolerant broadcast algorithms. 

6.1. Failure detectors 
A number of FD algorithms have been proposed in the 
literature. Most current implementations of FDs are 
based on an all-to-all communication approach where 
each node periodically sends heartbeat messages to all 
nodes. Because they consider a fully connected set of 
known nodes that communicate in an all-to-all manner, 
these implementations are not appropriate for plat- 
forms equipped with a large number of nodes. 

Several efforts have been made toward scaling up 
failure detectors implementations. Bertier et al. (2003) 
introduced a hierarchical organization suitable for grid 
configurations. They define a two-level organization to 
reduce message overhead. Local groups are cluster 
nodes, bound together by a global intercluster group. 
Every local group elects one leader that is member in 
the global group. Within each group, any member 
monitors all other members. While hierarchical 
approaches provide short local detection time, the cost 
of reconfiguration and the propagation of failure infor- 
mation both remain high. Larrea et al. (2000) also aim 
to diminish the amount of exchanged information in 
order to scale up. To do so, they use a logical ring to 
structure message exchanges. Thus, the number of mes- 
sages to detect failures is minimal, but the time for pro- 
pagating failure information is linear to the number of 
nodes. 

An alternative approach for implementing scalable 
failure detectors is to use gossip-like protocols where 
nodes randomly choose a few other nodes with whom 
they exchange their failure information (Gupta et al., 
2001; van Renesse et al., 1998). The idea is that, with 
high probability, eventually all nodes obtain every piece 
of information. The work of van Renesse et al. (1998) 
is one of the pioneering implementations of gossip-style 
failure detectors. In their basic protocol, each node 
maintains a list with a heartbeat counter for each  
known node. Periodically, every node increments its 
own counter and selects a random node which to send 
its list. A disadvantage is that the size of gossip mes- 
sages grows with the size of the network, which induces 
a high-network traffic. The authors identified a variant 
specifically designed for large-scale distributed systems: 
the multilevel gossiping. They concentrate the traffic 
within subsets of nodes to improve the scalability. 
Hayashibara et al. (2002) explored a hybrid approach 
based on both dynamic clustering to solve the scalabil- 
ity issue and the gossiping technique to remove wrong 
suspicions. Horita et al. (2005) presented another scal- 
able failure detector that creates scattered monitoring 
relations among nodes. Each node is intended to be 
monitored by a small number k of other nodes (with k 
set typically to 4 or 5). When a node dies, one of the 
monitoring nodes will detect the failure and propagate 
this information across the whole system. Similarly, as 
discussed in Section 5.4, SWIM (Das et al., 2002) scales 
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by using a probabilistic approach. More recently, Tock 
et al. (2013) proposed a scalable membership service 
based on a hierarchical fast unreliable FD mechanism, 
where failure information can be lost, combined with a 
slower gossip protocol for eventual information disse- 
mination. Finally, Katti et al. (2015) designed a scal- 
able failure detector based on observing random nodes 
and gossiping information. In their protocol, each ping 
message transmits information on all currently known 
failures, either via a liveness matrix or in compressed 
form. 

Practically, gossip approaches bring along redun- 
dant failure information which degrades their scalabil- 
ity. Furthermore, the randomization used by gossip 
protocols makes the definition of time-out values diffi- 
cult, since the monitoring sets change often over time. 
In order to eventually avoid false detections, these tech- 
niques tend to oversize their time-outs, which results in 
longer detection times. Theoretically, gossip approaches 
introduce random detection and propagation times, 
whose worst case with a prescribed risk factor is hard 
to bound.5 In contrast, our algorithm follows a deter- 
ministic detection and propagation topology with (i) 
constant-size heartbeats and well-defined delays, (ii) a 
single observer, (iii) a logarithmic-time propagation, 
and (iv) a guaranteed worst time to stabilization, 
thereby achieving all the goals of randomized methods 
with a deterministic implementation. 

 
 

6.2. Fault-tolerant  broadcast 
Fault-tolerant broadcasting algorithms have been 
extensively studied, and we refer the reader to the sur- 
veys by Heydemann (1997) and Pelc (1996). A key con- 
cept is the fault-tolerant diameter of the  
interconnection graph, which is defined as the maxi- 
mum length of the longest path in the graph when a 
given number of (arbitrarily chosen) nodes have failed 
(Krishnamoorthy and Krishnamurthy, 1987). The main 
objective in this context is to identify classes of overlay 
networks whose fault-tolerant diameter is close to their 
initial (fault-free) diameter, even when allowing a num- 
ber of failures close to their minimal degree (allowing 
more failures than the minimal degree could disconnect 
the graph). Furthermore, these overlay  networks  
should provide enough vertex-disjoint paths for broad- 
cast algorithms to resist that many failures. 

Research has concentrated on regular graphs 
(where all vertices have the same  degree): 
hypercubes (Fraigniaud, 1992; Krishnamoorthy and 
Krishnamurthy, 1987; Ramanathan and Shin, 1988), 
binomial graphs (Angskun et al., 2007), or circulant 
networks (Liaw et al., 1998). For all these graphs, effi- 
cient broadcast algorithms have been proposed. These 
algorithms tolerate a number of failures up to their 
degree minus 1 and execute within a number of steps 

(in the one-port model) that does not exceed twice their 
original diameter. However, to the best of our knowl- 
edge, such algorithms require the number of nodes in 
the graph to be a power of 2, or a constant times a 
power of 2, while we need an algorithm for an arbitrary 
number of nodes. This motivates our solution based 
upon a double diffusion (see Section 2). 

 
 

7. Conclusion 
FD is a critical service for resilience. The failure detec- 
tor presented in this work relies on heartbeats, time- 
outs, and communication bounds to provide a reliable 
solution that works at scale, independently of the type 
of faults that create permanent node failures. Our study 
reveals a complicated trade-off between system noise, 
detection time, and risks: A low-detection time would 
demand a low latency in the detection of failures, thus  
a tight approximation of the communication bound, 
increasing the risk of a false positive, and a frequent 
emission of heartbeat messages, increasing the system 
noise generated by the failure detector. We proposed a 
scalable algorithm capable of tolerating high-frequency 
failures and proved a theoretical upper bound to the 
time required to reconfigure the system in a state that 
allows new failures to strike; therefore, the algorithm 
can tolerate an arbitrary number of failures, provided 
that they do not strike with higher frequency. The algo- 
rithm was implemented in a resilient MPI distribution, 
which we used to assess its performance and impact on 
applications at large scale. The performance evaluation 
shows that for reasonable values of detection time, the 
ring strategy for detection introduces a negligible or 
nonmeasurable amount of additional noise in the sys- 
tem, while the high-performance reliable broadcast 
strategy for notification allows for quickly disseminat- 
ing the fault information, once detected by the obser- 
ving process. 

Implementation considerations lead us to advocate 
that the detection part of the service should be pro- 
vided at a lower levels of the software stack, either 
inside the operating system or inside the interconnect 
hardware. Active heartbeats to probe the activity of 
remote nodes could be handled by these lower levels 
without measurable noise, and with tighter bounds, 
since the other levels of the software stack would not 
introduce additional components to the noise. Future 
work should focus on providing this capability and on 
evaluating the approach to address the trade-off 
between detection time and risk. 
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Notes 
1. We use the words failure and death indifferently. 
2. Delay-bounded fault-tolerant broadcasts are not easily 

obtained for arbitrary values of n (see the discussion in 
Section 6.3). 

3. http://icl.utk.edu/herault/ijhpca-failure-detector.tgz 
4. ORTE stands for Open Run-Time Environment and RAS 

for Resource Allocation Subsystem. 
5. Absolute worst-case times are infinite, as some nodes 

could be observed only after an unbounded delay (see the 
discussion of Section 3.4). 
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