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Summary

Many approaches for solving stochastic inverse problems suffer from both
stochastic and deterministic sources of error. The finite number of samples used
to construct a solution is a common source of stochastic error. When computa-
tional models are expensive to evaluate, surrogate response surfaces are often
employed to increase the number of samples available for approximating the
solution. This leads to a reduction in finite sampling errors while the determinis-
tic error in the evaluation of each sample is potentially increased. The pointwise
accuracy of sampling the surrogate is primarily impacted by two sources of deter-
ministic error: the local order of accuracy in the surrogate and the numerical
error from the numerical solution of the model. In this work, we use adjoints
to simultaneously give a posteriori error and derivative estimates in order to
construct low-order, piecewise-defined surrogates on sets of unstructured sam-
ples. Several examples demonstrate the computational gains of this approach
in obtaining accurate estimates of probabilities for events in the design space
of model input parameters. This lays the groundwork for future studies on
goal-oriented adaptive refinement of such surrogates.
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1 INTRODUCTION

One of the most important problems in computational modeling is the identification and estimation of events associated
with quantities of interest (QoIs) computed from the solution to a model, eg, conditions for a QoI corresponding to sys-
tem failure. This represents a type of predictive (ie, forward) modeling problem. When using computational models to
analyze the reliability or robustness of a system, we are often tasked with solving the inverse problem of identifying sets
of model input parameters that map to such QoI events. Generally speaking, any limitations that exist in solving the for-
ward problem impact the accuracy of the solution to the inverse problem. For example, if the computational model is
expensive to evaluate, it may only be possible to evaluate the model at a small number of parameter samples impacting
the accuracy of set approximations based on these samples. Moreover, there are often several sources of uncertainties and
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errors in the identification of QoI events to be inverted, eg, due to modeling errors of the system and measurement errors
of system outputs used to define QoI events.

When probabilities are used to represent uncertainties of QoI events, we solve a type of stochastic inverse problem where
the objective is to estimate the probabilities of parameter events defined by applying the inverse of the (vector-valued)
QoI map to the QoI events. In the uncertainty quantification (UQ) community, the problem of efficient and accurate
propagation of probabilistic uncertainty through QoI maps has received significant attention over the last few decades.1,2

Monte Carlo techniques3,4 and their variants (eg, Markov chain Monte Carlo5,6) are commonly used to solve UQ prob-
lems due to their relative ease of implementation and the fact that they can circumvent, with various degrees of success,
the so-called curse of dimensionality. However, convergence is typically slow, and the number of samples required to
accurately estimate probabilistic quantities may be prohibitively large for models of even moderate computational cost.

One way to reduce the impact of finite sampling error is to construct a surrogate to the QoI response surface such that
sampling has a lower computational cost. The past several decades have witnessed tremendous advancement in the devel-
opment and use of surrogates to propagate uncertainties, making a full review of such techniques virtually impossible.
While it is possible to trace back the roots of much of the work involving stochastic finite element approaches1,7 for build-
ing surrogates to the seminal papers of Wiener8 and Cameron and Martin,9 there are now many accessible starting points
that use similar ideas for building global polynomial approximations based on stochastic spectral methods.2,10-16 Tensor
grid and sparse grid stochastic collocation methods for building surrogates have also gained in popularity.17,18 There is also
interesting new research on using dimension reduction techniques and reduced-order models for building surrogates.19

The surrogate modeling approach considered in this work most closely resembles techniques that exploit derivative infor-
mation or error estimates using adjoints for building piecewise low-order surrogate approximations to improve pointwise
accuracy in propagations of uncertainties.13,20,21

The surrogate response surface is polluted by two sources of error affecting the accuracy of all samples15,16,20: (1) the
approximation error of the choice of surrogate and (2) the numerical error in evaluation of the samples used to construct
the surrogate. We refer to both these types of error as discretization errors. Thus, using a surrogate can represent a trade-off
between reduction in finite sampling error since more samples may be used, but at the expense of an overall increase
in discretization error due to the use of the surrogate in obtaining these samples. The end result is that our ability to
utilize the solution of a stochastic inverse problem to accurately quantify uncertainties may be compromised by the use
of surrogates unless additional steps are taken to reduce the discretization errors.

The derivation of computable and accurate a posteriori estimates of discretization errors based on variational techniques
and adjoints dates back several decades.22-27 Such techniques served as the basis of the error estimates for polynomial chaos
and pseudospectral-based surrogates derived in the works of Butler et al.14,28 Subsequently, in the works of Prudhomme
and Bryant15 and Butler et al,20 such error estimates were used as part of a Bayesian inference to quantify uncertainties
on parameters to evolutionary partial differential equations (PDEs) where QoI response surfaces were approximated with
polynomial chaos techniques and enhanced by the error estimates. Recently, such techniques have been applied in a
reduced-order setting, giving error estimates for QoIs calculated with full models and reduced-order models29 and for the
development of adaptive schemes for mesh refinement for reduced-order models.30

This motivates the major contributions of this work, which are the use of adjoint-based techniques to estimate and
correct for numerical error in the surrogate while simultaneously increasing the local order of the surrogate response
surface. The use of the resulting enhanced surrogates is 2-fold, where we observe an increase in accuracy and decrease
in computational complexity in the computation of probabilities of specified events. To highlight the impact this type
of surrogate construction may have on other UQ problems, we consider a nonintrusive sample-based method for con-
structing pullback measures that require global accuracy in the surrogate and a significant number of samples. Moreover,
we define the surrogates, implicitly, on unstructured sets of random samples within the parameter space defining a type
of Voronoi piecewise surrogate. This lays the groundwork for future studies that focus on adaptive refinement of such
surrogates and extensions to other UQ problems and algorithms. For example, Voronoi piecewise surrogates (without
adjoint-based enhancement) were recently used31 for high-dimensional data fitting and applied to several interesting, but
distinct, UQ problems than those considered here. Additional studies32,33 provide templates for both adaptivity techniques
and constructing Voronoi piecewise surrogates in arbitrary dimensions.

This paper is organized as follows. We provide some general notation, terminology, and assumptions used in this work in
Section 2. A brief review of adjoint-based a posteriori error and derivative estimates along with a list of useful references are
provided in Section 3. In Section 3, we also describe how we use such error estimates to enhance surrogates by correcting
for persistent local biases due to discretization errors. In Section 4, we provide a brief summary of the theory behind
the formulation and solution of the type of stochastic inverse problem considered in this work, summarize the random
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FIGURE 1 Schematic of mappings between relevant spaces. QoI, quantity of interest [Colour figure can be viewed at
wileyonlinelibrary.com]

sample-based approximation to pullback measures, and identify sources of errors. We provide some numerical examples
in Section 5, and concluding remarks follow in Section 6.

2 NOTATION AND TERMINOLOGY

2.1 Spaces and mappings
We assume that a (deterministic) model (u; 𝜆) = 0 of a physical system is given, where u denotes a vector of state
variables determined by the solution of the model for a specified vector of (model) parameters 𝜆, which may include
initial conditions, boundary data, or source terms. In other words, specification of 𝜆 determines the setup of the system
being modeled. We assume that the space of possible parameters, denoted by 𝚲, is also known. Then, for each 𝜆 ∈ 𝚲,
the solution operator of (u; 𝜆) = 0 determines a particular u(𝜆), where we make the dependence of the solution on
the model parameters explicit. In Figure 1, we illustrate the mapping by connecting a particular sample, labeled 𝜆, in the
parameter space to a particular solution, u(𝜆), by the arrow labeled with (u; 𝜆).

The vector of (linear) functionals corresponding to model observables defines a (vector-valued) QoI map, denoted by
Q, and Q(u(𝜆)) represents a particular output datum associated to a particular choice of parameters defined by 𝜆. We then
write Q(𝜆) ∶ = Q(u(𝜆)) to emphasize both the dependence of the output data on the model parameters and the fact that,
in an experimental setting, we may be able to control 𝜆 to observe Q(𝜆) without fully observing u(𝜆). We let  ∶= Q(𝚲)
denote the space of model observables. This is illustrated in Figure 1, where a particular solution u(𝜆) in the middle is
mapped by the arrow labeled by the QoI map to a model observable on the right denoted by Q(u(𝜆)). Oftentimes, we only
record information of the map between 𝚲 and  defined by Q(𝜆), as illustrated by the longer arrow labeled by Q(𝜆) in
Figure 1. This is often true in cases where it is not possible to store the entire numerical state space of the model.

We assume that (𝚲,𝚲, 𝜇𝚲) and (, , 𝜇) are measure spaces where 𝜇𝚲 and 𝜇 are measures used to describe sizes of
events in the 𝜎-algebras 𝚲 and  , respectively. We also assume that Q is at least piecewise differentiable, which implies
measurability of the QoI map. Unless otherwise stated, we assume that 𝚲 ⊂ ℝn and  ⊂ ℝd and that 𝜇𝚲 and 𝜇 are the
“volume” measures defined by the Lebesgue measures on these spaces.

In the case where the model is solved numerically, we generally compute Qh(𝜆) ∶ = Q(uh(𝜆))) ≈ Q(𝜆). Here, uh(𝜆)
denotes a numerical approximation to u(𝜆), and h denotes a discretization parameter (eg, determined by the mesh size or
number of maximum iterations in the solution method). Then,

uh(𝜆) = u(𝜆) + 𝜖u,h(𝜆),

where 𝜖u,h(𝜆) is the numerical error in uh(𝜆). We also write

Qh(𝜆) = Q(𝜆) + 𝜖Q,h(𝜆),

where 𝜖Q,h(𝜆) is the numerical error in Qh(𝜆). We may view these errors as a type of perturbation from the exact solution or
data. An a priori error analysis often can be used to determine bounds on 𝜖u,h(𝜆) and 𝜖Q,h(𝜆), which define the maximum
perturbations to the exact solutions and data we can expect from numerically solving the model. This is illustrated by the
shaded areas around the exact solutions and QoI data in the middle and right spaces of Figure 1, indicating the magnitude
of possible perturbations defined by such an a priori error analysis.

http://wileyonlinelibrary.com
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2.2 Surrogate modeling
Let Qs(𝜆) denote a computationally inexpensive surrogate approximation to Q(𝜆); thus,

Qs(𝜆) = Q(𝜆) + 𝜖s(𝜆),

where 𝜖s(𝜆) is the error in the surrogate due to limited approximation properties of the surrogate. We use Qs(𝜆) to more
efficiently map large numbers of samples between 𝚲 and  as indicated by the dotted-arrow mapping between these
spaces in Figure 1. However, constructing Qs(𝜆) often requires using some particular set of samples of Qh(𝜆) based on
a specific type of sampling in 𝚲, eg, using a possibly different set of random samples or using deterministic sampling
approaches such as sparse grids.17,18 We let Qs,h(𝜆) denote this numerically constructed surrogate and 𝜖s,h(𝜆) denote its
error. We decompose the error as

𝜖s,h(𝜆) ∶= 𝜖s(𝜆) + 𝜖h(𝜆),

where 𝜖h(𝜆) is the error in the surrogate from the numerical solution of the model. In other words, the dotted arrow in
Figure 1 is replaced by a mapping that is polluted by multiple sources of error that affect all sets of propagated samples
between the spaces.

2.2.1 Voronoi-based piecewise surrogate
Consider the surrogate Qs,p(𝜆) defined as a local pth-order polynomial function on a set of Voronoi cells {k}1≤k≤Ns,p

implicitly defined by a sample set {𝜆(k)}1≤k≤Ns,p , ie,

Qs,p(𝜆) =
∑

1≤k≤Ns,p

𝑓p(𝜆)𝜒k (𝜆), (1)

where fp(𝜆) denotes a pth-order polynomial approximating Qh(𝜆) on k. If p = 0, then (1) represents a simple function
approximation to Q, and it is possible to prove error bounds and adaptive sampling schemes for improving probabilistic
quantities computed using Qs,0.34

We emphasize that we never construct the Voronoi cells in order to evaluate Qs,p for any p. Instead, when evaluating Qs,p
at a 𝜆 not belonging to the sample set, we rely upon nearest-neighbor searches (and in this work, we use the standard
Euclidean metric for all examples). We discuss the computational cost of this below.

2.2.2 Computational considerations
We are interested in problems where evaluation of Qh(𝜆) is expensive (eg, involving the solution of a finite element model
for a PDE). Therefore, the size of the sample set

{𝜆(k)}1≤k≤Ns,p ,

for which we numerically solve the model to determine Qh(𝜆) and construct Qs,p, may be constrained by a computa-
tional budget. However, to reduce finite sampling error in computing a probabilistic quantity, we often require N ≫ Ns,p
approximations of the QoI on a different sample set

{𝜆( 𝑗)}1≤𝑗≤N .

The following a priori analysis can determine if constructing and utilizing the surrogate is efficient on such a set of N
samples. A nearest-neighbor search of𝜆( j) to {𝜆(k)}1≤k≤Ns,p has an initial cost of Ns,p metric computations (eg, approximately
2Ns,pn FLOPS, where n is the dimension of 𝚲) followed by a sort (at a cost of O(Ns,p) FLOPS using a linear search). Let C
denote the number of FLOPS required in evaluating Qh at a single parameter. Whenever

C > 2Ns,pn + O(Ns,p),

it is generally computationally cheaper to construct and evaluate the surrogate than the full computational model to
approximate Qh at a set of N samples. However, while this may make finite sampling error negligible by allowing for
significantly larger N, the deterministic error is likely significantly worse since each sample is now polluted by both the
errors 𝜖s(𝜆) and 𝜖h(𝜆) present in the surrogate.
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3 ADJOINT-BASED A POSTERIORI ERROR ESTIMATION AND
SURROGATE ENHANCEMENT

We summarize the general variational analysis and use of adjoint problems to derive a posteriori error estimates for QoI.
The interested reader should refer to other works for more information on the theory and implementation of adjoint-based
a posteriori error estimates in general22-27 and on the application to certain classes of surrogate models.14-16,20,28 For a
more thorough introduction to the theory and application of adjoints in general, the reader is also referred to other
recommended works.35-38

3.1 Adjoint-based a posteriori error estimates and derivatives
For the sake of simplicity, we initially assume that the solution to the model (u; 𝜆) = 0 is defined by the solution to the
parameterized linear system

A(𝜆)u = b(𝜆), (2)

where, for each 𝜆 ∈ 𝚲 ⊂ ℝn, b(𝜆) ∈ ℝm and A(𝜆) ∈ ℝm×m are invertible. Then, for each 𝜆 ∈ 𝚲, there exists a solution
u(𝜆) ∈ ℝm. We also initially assume that the QoI map is given by a single scalar functional defined by Q(𝜆) = ⟨u(𝜆),𝝍⟩,
where 𝝍 ∈ ℝm and ⟨·, ·⟩ denotes the standard Euclidean inner product. We emphasize that even for a linear model and
linear functional defining the QoI, the response of the map Q(𝜆) is often nonlinear over𝚲 as we demonstrate in an example
below. The adjoint problem to Equation (2) is

A(𝜆)⊤𝝓 = 𝝍 , (3)

where 𝝓(𝜆) is the solution to the adjoint problem (often called generalized Green's vector), and 𝝍 is determined by the
QoI and independent of 𝜆. Suppose, for a fixed 𝜆 ∈ 𝚲, we numerically solve Equation (2) to obtain uh(𝜆) ≈ u(𝜆) and
subsequently compute Qh(𝜆) ≈ Q(𝜆). Recall that

𝜖Q,h(𝜆) ∶= Qh(𝜆) − Q(𝜆).

Without the exact value of Q(𝜆), 𝜖Q,h(𝜆) is uncomputable. Using a standard variational analysis and properties of inner
products and linear operators, we have

𝜖Q,h(𝜆) = ⟨uh(𝜆) − u(𝜆),𝝍⟩
=
⟨

uh(𝜆) − u(𝜆),A(𝜆)⊤𝝓(𝜆)
⟩

= ⟨A(𝜆)uh(𝜆) − Au(𝜆),𝝓(𝜆)⟩
= ⟨A(𝜆)uh(𝜆) − b(𝜆),𝝓(𝜆)⟩ . (4)

When 𝝓(𝜆) is given, then Equation (4) is computable and gives the exact error 𝜖Q,h(𝜆). Generally, 𝝓(𝜆) is approximated
by 𝝓h(𝜆), and replacement of 𝝓(𝜆) with 𝝓h(𝜆) in Equation (4) gives a computable a posteriori error estimate, which we
denote by eQ,h(𝜆). Typically, we compute 𝝓h(𝜆) using a higher-order method than used to compute uh(𝜆).

Let 𝜆i denote the ith component of the vector 𝜆 for 1 ≤ i ≤ n. Then, differentiating Equation (2) with respect to 𝜆i and
following a similar set of steps, we arrive at

𝜕𝜆i Qh(𝜆) =
⟨
𝜕𝜆i b(𝜆) −

[
𝜕𝜆i A(𝜆)

]
uh(𝜆),𝝓(𝜆)

⟩
. (5)

The partial derivatives of b(𝜆) and A(𝜆) can often be determined by algorithmic/automatic differentiation.39 Subsequently,
this implies that the gradient of the QoI with respect to the parameter 𝜆, denoted by ∇𝜆Q(𝜆), can be approximated
by solving both the model and adjoint exactly once and then computing a finite number of inner products given by
Equation (5).

3.1.1 Generalization to other models and computational costs
The above approach can be applied to most models defined by a linear operator where only a few specific details
change. Two excellent and comprehensive works on this subject are those by Bangerth and Rannacher40 and Becker and
Rannacher.41 When the operator defining the model is nonlinear, we must linearize the model operator prior to defining
the adjoint problem. One approach uses the same linear operator that is used in computing a step of Newton's method,
in which case the remainder term is typically a higher-order perturbation term that is often neglected.41 The methodology
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presented above is also applicable to problems framed in continuous settings after making some suitable adjustments to
the derivations. In a continuous setting, the forward and adjoint solution spaces are infinite dimensional (eg, L2 spaces).
There is an a posteriori error estimate with a similar form to Equation (4) where the Euclidean inner product is replaced
by a duality pairing. In the interest of both simplicity and generality, we present the process of obtaining the a posteriori
error estimate abstractly for problems of the form

(𝜆)u(𝜆) = 𝑓 (𝜆), (6)

where (𝜆) is a linear differential operator, f(𝜆) is the source data, and both (𝜆) and f(𝜆) may depend independently or
jointly on various components of the model parameter vector 𝜆. We assume that appropriate boundary/initial conditions
are also posted as part of the problem and, for simplicity, that these do not depend on the components of 𝜆. Denote by
∗(𝜆) the adjoint operator, then the adjoint problem is of the form

∗(𝜆)𝜙(𝜆) = 𝜓, (7)

for some appropriate choice of adjoint data 𝜓 that is determined by the choice of the QoI map and is independent of 𝜆.
Suppose the function space for both the forward and adjoint solutions is a Hilbert space X with an inner product ⟨, ⟩X. In
this setting, the 𝜓 coming from the QoI map is often given by the Riesz representation of the QoI function in the dual
space of X. For example, when X = H1

0(Ω) (where Ω is some spatial domain), it is common for a QoI to be represented by
𝜓 ∈ L2(Ω) ⊂ H−1(Ω), where H−1(Ω) is the dual space of H1

0(Ω).
In a posteriori error analysis for finite elements, it is common to use different finite element spaces Vf,Va ⊂ X for

the forward and adjoint problems. If Vf = Va, an error estimate is likely zero due to Galerkin orthogonality; hence, it
is preferable to use a more refined finite element space for the adjoint problem. A common choice is to use a polyno-
mial approximation one order higher for Va than for Vf using the same mesh. In this type of formulation of the adjoint
problem, the adjoint is often called the continuous adjoint. In this setting, the 𝜓 used in computations often comes from
an L2-projection or interpolation of the exact 𝜓 onto the mesh, and the approximate QoI map is defined by

Qh(𝜆) = ⟨uh(𝜆), 𝜓⟩X . (8)

Then, the error representation in Equation (4) becomes

𝜖Q,h(𝜆) = ⟨(𝜆)uh(𝜆) − 𝑓 (𝜆), 𝜙h(𝜆)⟩X , (9)

where uh ∈ Vf and 𝜙h ∈ Va and similar changes are made for the derivative calculation in Equation (5). It is also common
to formulate an adjoint problem of a PDE system after discretization, which is often called the discrete adjoint and is
equivalent to the adjoint in the finite-dimensional setting discussed in the previous section, where the operator A is the
discretized PDE operator and b is the discretized right-hand side. If an accurate linear solver is used to solve the linear
system for the forward problem, it is preferable to pose the adjoint problem in a continuous setting with a refined space
in order to obtain a more accurate error estimate. We discuss some of these details in the numerical examples of Section
5, including a detailed derivation of the adjoint operator ∗(𝜆) for a contaminant transport problem.

A few remarks about the computational costs of using adjoints for differential equations are in order. First, if only
derivative information is required, then we do not need to avoid Galerkin orthogonality, and the adjoint has the same
general computational complexity and cost as the forward problem. In this work, we solve all adjoints to differential
equations by increasing the local polynomial order of the finite element methods by exactly one instead of refining the
mesh to avoid Galerkin orthogonality and obtain both error and derivative estimates. Thus, in this work, the solution to
the adjoint is approximately 4 to 8 times as expensive as the solution to the forward problem depending on if the solver
requires either (n2) or (n3) FLOPS, where n denotes the degrees of freedom (which are generally doubled when going
from linear to quadratic order as done in this work).

3.1.2 Example
We present an illustrative example of a parameterized linear system. Suppose in Equation (2) that

A(𝜆) =
[

e𝜆 cos(𝜋𝜆)
sin(𝜋𝜆) 2e𝜆

]
(10)

and
b(𝜆) =

[
sin(10𝜋𝜆) 2e𝜆

]T
, (11)
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FIGURE 2 The quantity of interest map for Example 1 solved exactly (Q(𝜆)) and approximately (Qh(𝜆)) and enhanced with the error
estimate (Qh(𝜆) + 𝜖Q,h(𝜆)) [Colour figure can be viewed at wileyonlinelibrary.com]

for 𝜆 ∈ 𝚲 = [−0.5, 1]. The QoI map Q is defined as the average of the solution u as follows:

Q(𝜆) = 𝝍⊤u, (12)

where 𝝍 = [0.5, 0.5]⊤, defining a nonlinear 1D-to-1D map from 𝚲 to  = Q(𝚲). The approximate map Qh(𝜆) is evaluated
by approximately solving the system defined by Equations (10) and (11) for uh using two Gauss-Seidel iterations and
evaluating the QoI function using Equation (12).

Figure 2 shows that the QoI map is highly nonlinear with respect to 𝜆. The reference Q(𝜆) is calculated by solving
Equation (2) using direct numerical inversion. The approximate QoI map Qh(𝜆) is calculated for several values of 𝜆. We see
that, in some regions of𝚲, Qh(𝜆) is a very good approximation, and, in some places, it is a very bad approximation. Without
performing error estimation, such behavior of the error often cannot be predicted. We solve the discrete adjoint system
using direct numerical inversion to compute error estimates given by Equation (4). Using the adjoint-based computed
error estimates at the samples in 𝚲, we can improve the pointwise accuracy of the Qh(𝜆) estimates at each sample, as
shown in Figure 2.

3.2 Enhancing surrogates with solutions to adjoint problems
Traditionally, a posteriori error estimates of QoI from differential equation models derived by a variational analysis and
adjoints were used to guide local h- or p-adaptivity, ie, mesh or order refinement, respectively, in the numerical solution to
the model (eg, see the work of Becker and Rannacher41 and the references therein). We consider using the adjoint solutions
to enhance the surrogate model Qs,p given by Equation (1) using a two-stage approach that leaves the computational
method for solving the model intact (ie, we do not engage in mesh refinement or other alterations to the numerical
evaluation of Qh at any sample point).

For simplicity, we demonstrate p-enhancement of Qs,0 to Qs,1 and note that there are other ways to perform local
p-refinement than what is considered here using adjoints, eg, by using nets of nearby samples to perform regression or
interpolation in a particular Voronoi cell.31 Future research will focus on melding adjoint-based derivative estimates along
with other approaches such as those considered in the work of Rushdi et al31 to enrich p-refinement further and either
mitigate or avoid extrapolation errors in the surrogate that can become significant in higher dimensions.

3.2.1 p-Enhancement
In the first stage, let Ns,1 ≤ Ns,0 denote the number of numerical solutions to the model (u; 𝜆) = 0 such that we can also
solve Ns,1 adjoint problems and compute the necessary inner products to construct ∇𝜆Qh(𝜆) for each of the Ns,1 samples in

http://wileyonlinelibrary.com
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𝚲. For simplicity, we order the samples in 𝚲 so that for 𝜆(k) with 1 ≤ k ≤ Ns,1 corresponds to a sample where we solved
the adjoint problem. Then, we construct the piecewise-defined surrogate

Qs,1(𝜆) =
∑

1≤k≤Ns,1

[
Qh(𝜆(k)) + ∇𝜆Qh(𝜆(k))(𝜆 − 𝜆(k))

]
𝜒 (k) (𝜆) +

∑
Ns,1<k≤Ns,0

Qh(𝜆(k))𝜒 (k) (𝜆). (13)

This represents a local p-adaptive refinement to the piecewise-constant surrogate Qs,0. If Ns,1 = Ns,0, then we drop the
rightmost term in Equation (13). For simplicity below, we assume that Ns,1 = Ns,0.

3.2.2 Error-enhancement
Assuming we solve the Ns,1 adjoint problems with a higher-order method to produce a set of reliable a posteriori error
estimates,

{eQ,h(𝜆(k))}1≤k≤Ns,1 ,

and then, we proceed to stage 2. In this stage, we correct for the persistent local bias due to the error 𝜖Q,h(𝜆(k)) polluting
the evaluation of any 𝜆 ∈ k by using the enhanced surrogate

Q̂s,1(𝜆) =
∑

1≤k≤Ns,1

[
Qh(𝜆(k)) + eQ,h(𝜆(k)) + ∇𝜆Qh(𝜆(k))(𝜆 − 𝜆(k))

]
𝜒 (k) (𝜆). (14)

In some cases, calculating the derivatives in stage 1 may be computationally expensive or difficult to implement, whereas
the error estimates for stage 2 may be more easily computable. In such cases, an enhanced piecewise-constant surrogate
can be constructed by only performing stage 2 by

Q̂s,0(𝜆) =
∑

1≤k≤Ns,1

[
Qh(𝜆(k)) + eQ,h(𝜆(k))

]
𝜒 (k) (𝜆). (15)

It is possible to also correct for numerical errors in the approximation of∇𝜆Qh(𝜆). However, this generally requires solving
adjoints to the approximate adjoint in order to estimate such errors. While many computational models are now being
developed with adjoint capabilities, they are generally developed without this type of sensitivity error estimation in mind;
hence, we neglect errors in the sensitivity computations here.

3.2.3 Example
Recall the linear system and QoI map discussed in Section 3.1.2. Below, for simplicity, we use Ns = Ns,1 = Ns,0 = 121
uniform samples. Figure 3 shows the surrogate models where derivative estimates for the piecewise linear surrogates are
computing using Equation (5) with

𝜕𝜆A(𝜆) =
[

e𝜆 −𝜋 sin(𝜋𝜆)
𝜋 cos(𝜋𝜆) 2e𝜆

]
(16)

and

𝜕𝜆b(𝜆) =
[

10𝜋 cos(10𝜋𝜆) 2e𝜆
]⊤
. (17)

The error-enhanced surrogates Q̂s,0(𝜆) and Q̂s,1(𝜆) are clearly better pointwise approximations of Q(𝜆) than the surrogates
Qs,0(𝜆) and Qs,1(𝜆). This underscores the importance of estimating and correcting for any underlying numerical error,
𝜖h(𝜆), since it can create significant biases that persist even if both the number of samples Ns,p or order p is increased.

4 STOCHASTIC INVERSE PROBLEM FORMULATION

We highlight only the main ideas behind the formulation and solution of a general stochastic inverse problem with
pullback measures under minimal assumptions. For more information on the theoretical underpinnings related to the
existence and uniqueness of pullback measures using the disintegration theorem, we direct the interested reader to the
work of Butler et al42 and the references therein.
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FIGURE 3 Exact quantity of interest (QoI) map (Q(𝜆)), surrogate QoI map (Qs,p(𝜆)), and error-enhanced surrogate QoI map (Q̂s,p(𝜆)),
labeled in the legends as True, Uncorrected, and Corrected, respectively, using Ns = 101. The left plot is with p = 0. The right plot is with
p = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

4.1 Pullback measures
Specification of a probability measure P on (,) (eg, modeling uncertainty in the observed data) defines a particular
stochastic inverse problem of determining a pullback (probability) measure P𝚲 on (𝚲,𝚲) such that the push-forward
measure of P𝚲 matches P , ie,

P𝚲(Q−1(E)) = P(E), ∀E ∈  . (18)

When P is absolutely continuous with respect to 𝜇 , then, by an application of the Radon-Nikodym theorem, we can
rewrite Equation (18) in terms of probability density functions and integrals. We refer to any measure P𝚲 satisfying
Equation (18) a solution to the stochastic inverse problem.

Note that Equation (18) implies that any solution is uniquely determined on the induced 𝜎-algebra

𝚲 = {Q−1(E) ∶ E ∈ } ⊂ 𝚲.

However, for A ∈ 𝚲∖𝚲, we require more information than Equation (18) provides for computing P𝚲(A).
There are several ways that we may determine a specific and unique pullback measure. Here, we consider the use of

the disintegration theorem, which requires specification of a family of conditional probabilities on the family of sets

{Q−1(q) ⊂ 𝚲}q∈.

In the absence of prior information, we proceed as follows. First, we consider a disintegration of the volume measure 𝜇𝚲
to define (lower-dimensional) volume measures on Q−1(q) for almost every q ∈ . Then, we use the standard Ansatz
introduced in the work of Butler et al42 to proportion probabilities/densities along events that are subsets of each Q−1(q)
according to their relative (lower-dimensional) volume measures. The algorithm shown in Appendix A uses a discretiza-
tion of this standard Ansatz, but we note that we can easily incorporate any other choice of Ansatz (eg, due to specification
of a prior) as discussed in the work of Butler et al.42

4.2 Identifying and reducing sources of error
For a fixed discretization of P , the main sources of error in Algorithm 1 are from (1) the number of samples N ≫ Ns,p
used to discretize 𝚲 and (2) the evaluation of the QoI map (or its surrogate) on each of these N samples. Obviously, the
use of a surrogate QoI map may allow for significantly larger N in the algorithm. However, errors in evaluation of the
surrogate QoI map can result in incorrect binning of output samples, which can lead to persistent errors even in the limit
of infinite N. A combination of p- and error-enhancing of the surrogate QoI map can reduce the overall errors such that
we may approximate the probability of an arbitrary event in 𝚲 accurately as illustrated in the example below.

http://wileyonlinelibrary.com
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4.3 Example
Recall the linear system, QoI map, surrogate QoI map, and enhanced surrogate QoI map discussed in Sections 3.1.2
and 3.2.3. We now pose a stochastic inverse problem for this model. Suppose the probability measure P on the output
space (,) is uniform on the interval [−0.25, 0.25]. Since the distribution is uniform, we choose a rather simple dis-
cretization of P , where the interval [−0.25, 0.25] defines one cell to bin output samples. We use both Qs,0 and Qs,1 in
Algorithm 1 with and without error-enhancement for a range of numbers Ns of uniform independent and identically
distributed (i.i.d.) generating samples in . The resulting probability measures are subsequently used to generate approx-
imations of the probability of the set A = [−1, 0] ∈ 𝚲. In applying Algorithm 1, we use N = 106 uniform i.i.d. samples
in 𝚲 to evaluate the surrogates.

The reference value of P(A) is calculated by evaluating Q(𝜆) with a high-fidelity method (using direct numerical inver-
sion) at 107 i.i.d. uniform samples in 𝚲 and Algorithm 1. It should be noted that this value still has a small amount
of numerical error due to error in Monte Carlo integration. Table 1 shows the average (over 20 batches) relative errors
in calculated probabilities using piecewise-constant and linear surrogates with and without enhancement for the vari-
ous regularly spaced values of Ns used to construct these surrogates. Notice that for both error-enhanced surrogates, the
average error decreases rapidly, and apparently at the same rate, as the number of generating samples increases. It is
also apparent that error-enhancement using the surrogate is more important in this example than p-enhancement since
p-enhancement alone fails to produce converging estimates of the probability of A. The similarity in the errors using
either the p = 0 or p = 1 surrogates (with or without error-enhancement, respectively) is explained in an analogous way
to why the trapezoidal and midpoint rules for integration in one dimension generally give similar results. Specifically, in
Figure 3, we observe that Qs,0 and Q̂s,0 are similar to the simple function approximations obtained by evaluation of Qs,1
and Q̂s,1, respectively, at the midpoints of each subinterval defined by the implicit Voronoi decomposition on which they

TABLE 1 Average (over 20 batches) of the relative error in
probabilities of the set A calculated using Qs,p and error-
enhanced Q̂s,p for p = 0 and p = 1. The errors are calculated
with respect to the reference value P𝚲(A) = 0.4256

Ns Qs,0 Q̂s,𝟎 Qs,1 Q̂s,𝟏

10 51.2% 34.8% 44.8% 24.2%
100 36.4% 5.45% 34.7% 6.23%
1000 37.8% 0.45% 38.1% 0.60%
10 000 37.8% 0.06% 37.6% 0.07%
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are defined. This is only an approximation since the sample generating a particular Voronoi cell is not necessarily the
midpoint of the subinterval it defines (although the distance between these points goes to zero as Ns increases). Subse-
quently, since exact integrals (and, thus, probability computations) involving Qs,1 and Q̂s,1 can be obtained by applying
either the trapezoidal or midpoint rule on each subinterval, the errors in computed probabilities using either p = 0 or
p = 1 will be similar for sufficiently large Ns.

5 NUMERICAL RESULTS

The example in the previous section involves a simple discretized linear system, and the adjoint problem, error represen-
tation, and derivative calculations are all framed in a discrete setting using the Euclidean inner product. The methods
presented can be used for more interesting problems in a continuous setting, as discussed in Section 3.1.1. Such techniques
are also often used when dealing with either nonlinear differential equations or situations where the numerical scheme
requires stabilization (see, eg, the work of Cyr et al43 for an excellent review of this topic). We present two examples based
on PDEs where an approximation to the continuous adjoint is used. The first is a time-dependent model for contaminant
transport in a groundwater aquifer, and the second is an elliptic PDE with a large number of parameters. In these prob-
lems, finite element methods are used to discretize the spaces of forward solutions and adjoint solutions. Higher-order
spaces are used for adjoint problems, as discussed in Section 3.1.1. In addition, functions 𝜓 , which are determined by the
QoI (ie, the Riesz representations of components of QoI maps), are interpolated onto high-order finite spaces for the cal-
culation of Qh, as in Equation (8). Hence, some discretization error is present due to the representation of 𝜓 on the mesh;
however, this error should be relatively small.

In the examples below, we construct pullback measures for uniform probability distributions on the data space as a type
of stress test on how the pointwise accuracy of the piecewise surrogates around a “QoI event of interest” impacts the error
in computed probabilities in the parameter space. In practice, observed data probability measures are often determined by
parametric estimates using available data often resulting in unimodal distributions (eg, Gaussian, chi-squared, or beta).
If uncertainty is due to variability in input parameters and the response is strongly nonlinear, then multimodal distribu-
tions defined by Gaussian mixture models are commonly used. In either case, these distributions are often “peaked” over
relatively small portions of the response surface so that the pointwise accuracy of the surrogate model is only required
near the maximum likelihood points of the observed density. This suggests that we may only need to solve adjoints at
specific samples used to construct the surrogate or that we adaptively refine the surrogate using adjoints at some subset
of the samples meeting threshold criteria. This is outside the scope of this work and is left for future research.

Calculated probabilities of events are compared to reference values that are calculated using p- and error-enhanced
versions of the surrogate model presented in this paper using finite element spaces, time discretizations, and/or Voronoi
tessellations that are much more refined than the ones that are being analyzed. The computational method for construct-
ing pullback measures (see Appendix A) requires a surrogate model, and as shown in Section 3, this class of surrogates
using highly refined spaces is extremely accurate. The relative errors of the computed probability of the QoI event of
interest using enhanced and unenhanced surrogates are calculated with respect to the reference value and are analyzed.

5.1 Contaminant transport problem
This example is a time-dependent PDE modeling groundwater contaminant transport. It has the form of an
advection-dispersion problem with an initial approximate point source. Similar systems have been used for performing
parameter estimation based on field data with the stochastic inversion framework discussed in Section 4.44

5.1.1 The forward problem, adjoint, and QoI
The forward problem is

⎧⎪⎨⎪⎩
𝜃
𝜕u
𝜕t

+ v · ∇u − ∇ · (𝜃D∇u) = 0, t ∈ (0,T], (x, 𝑦) ∈ Ω
𝜃D∇u · n = 0, t ∈ (0,T], (x, 𝑦) ∈ 𝜕Ω

u = u0, t = 0, (x, 𝑦) ∈ Ω,
(19)
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where the unknown u is the concentration of a contaminant, 𝜃 is porosity, v = [vx, vy]T is the Darcy velocity, and D is the
dispersion matrix. D is a symmetric positive-definite matrix defined by

Dxx = 𝛼L
v2

x|v| + 𝛼T
v2
𝑦|v| + D∗, (20)

D𝑦𝑦 = 𝛼L
v2
𝑦|v| + 𝛼T

v2
x|v| + D∗, (21)

and Dxy = Dyx = 0, where 𝛼L is the lateral dispersion, 𝛼T is the transverse dispersion, and D∗ is the underlying molecular
diffusion. The domain is Ω = [497000.0, 502000.0] × [537000.0, 541000.0]. The initial condition u0 is defined as an
approximate point source at (xs, ys) = (498250.0, 538000.0) by

u0 = M 400
𝜋

exp(−400(x − xs)2 − 400(𝑦 − 𝑦s)2), (22)

where M is the source magnitude. Suppose that the components of the Darcy velocity vx and vy are uncertain and all of
the other model parameters are known. Let the space of unknown values of [vx, vy] be 𝚲 = [10, 50]2. Suppose we have
geophysically reasonable parameters 𝜃 = 0.25, 𝛼L = 70, 𝛼T = 7, D∗ = 0.01, and M = 1000. The QoI is an approximate
solution at some point (xr, yr) at time T = 10 defined by ⟨u, 𝜓⟩, with 𝜓(x, y, t) = 𝜓Ω(x, y)𝛿T(t), where

𝜓Ω = 400
𝜋

exp(−400(x − xr)2 − 400(𝑦 − 𝑦r)2),

𝛿T is the Dirac delta in time centered at t = T, and ⟨, ⟩ is a space-time inner product defined below. Let the measurement
location be (xr, yr) = (499563.69, 538995.82).

We use the open-source software FEniCS45,46 to solve the system using the space-time continuous Galerkin method with
linear elements in space and time on a 50× 50 spatial mesh with a time step of 0.1.

The duality pairing between the adjoint and forward problem solutions is given by ⟨, ⟩: X × Y → ℝ, where X =
L2(Ω, [0,T]) ∪ L2(Ω, 0) and Y = L2(Ω, [0,T]) ∪ L2(Ω,T) are spaces for the forward and adjoint solutions, respectively. The
derivation of the adjoint operator ∗ follows:

< u, 𝜙 > =

T

∫
0
∫
Ω

(
𝜃

du
dt
𝜙 + (v · ∇u)𝜙 − (∇ · (𝜃D∇u))𝜙

)
dΩdt + ∫

Ω

𝜃u(0)𝜙(0)dΩ

=

T

∫
0
∫
Ω

(
−𝜃u d𝜙

dt

)
dΩdt +

⎡⎢⎢⎣∫Ω 𝜃u𝜙dΩ
⎤⎥⎥⎦

T

0

+

T

∫
0
∫
Ω

(−u(v · ∇𝜙)) dΩdt +

T

∫
0
∫
𝜕Ω

(u(𝜙v · n)) dsdt

=

T

∫
0
∫
Ω

(
−𝜃u d𝜙

dt

)
dΩdt +

T

∫
0
∫
Ω

(−u(v · ∇𝜙)) dΩdt +

T

∫
0
∫
Ω

(−u∇ · (𝜃D∇𝜙)) dΩdt

+ 𝜃 ∫
Ω

u(T)𝜓dΩ +

T

∫
0
∫
𝜕Ω

(u(𝜙v · n)) dsdt +

T

∫
0
∫
𝜕Ω

(−𝜃D∇u · n)𝜙dsdt +

T

∫
0
∫
𝜕Ω

u(𝜃D∇𝜙 · n)dsdt

=

T

∫
0
∫
Ω

(
−𝜃u d𝜙

dt
− u(v · ∇𝜙) − u∇ · (𝜃D∇𝜙)

)
dΩdt + ∫

Ω

𝜃u(T)𝜙(T)dΩ =< u,∗𝜙 > .

Because of the Dirac delta in the definition of 𝜓 , the adjoint problem is specified as the following initial boundary value
problem47: ⎧⎪⎨⎪⎩

−𝜃 𝜕𝜙
𝜕t

− v · ∇𝜙 − ∇ · (𝜃D∇𝜙) = 0, t ∈ [0,T), (x, 𝑦) ∈ Ω
(𝜙v + 𝜃D∇𝜙) · n = 0, t ∈ [0,T), (x, 𝑦) ∈ 𝜕Ω

𝜙 = 𝜓Ω, t = T, (x, 𝑦) ∈ Ω.
(23)

The adjoint problem (23) is solved backward in time on the same 50× 50 mesh as the forward problem, but with quadratic
elements in space (required for calculating error estimates) while keeping linear elements in time with the same time
step of 0.1. The QoI map is evaluated approximately by projecting 𝜓Ω onto the finite element space used for the adjoint
problem and calculating the L2(Ω) inner product with uh(T). Error estimates are computed as described in Equation (4),
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TABLE 2 Average (over 20 batches) of the relative error in
probabilities of the set A calculated using Qs,p and error-
enhanced Q̂s,p for p = 0 and p = 1. The errors are calculated
with respect to the reference value P𝚲(A) = 0.2220

Ns Qs,0 Q̂s,𝟎 Qs,1 Q̂s,𝟏

50 16.58% 17.43% 20.18% 22.12%
500 3.52% 3.73% 3.21% 3.61%
5000 3.43% 0.43% 3.84% 0.50%

and derivatives are computed as described in Equation (5). For the forward and adjoint problems, the discretized linear
systems for both are solved directly with the adjoint computed backward in time. We then have

eQ,h =

T

∫
0
∫
Ω

(
−𝜃 𝜕uh

𝜕t
𝜙h − (v · ∇uh)𝜙h − (𝜃D∇uh · ∇𝜙h)

)
dΩdt + ∫

Ω

𝜃(u0 − uh(0))𝜙h(0)dΩ.

5.1.2 The stochastic inverse problem and surrogate setup
Suppose the probability measure P on (,) is uniform on the interval [0.005, 0.021], which we discretize into three
uniform intervals to bin QoI samples and produce more variation in the pullback measure. We numerically solve the
stochastic inverse problem using Qs,p and Q̂s,p for a range of numbers Ns of uniform i.i.d. generating samples in 𝚲. We then
approximate the probability measure of a set A ∶= [25, 35]2 ⊂ 𝚲, using the computed approximation of P𝚲 by Algorithm 1
with N = 107 uniform i.i.d. samples.

5.1.3 Numerical computations and discussion
Higher-fidelity solutions to the forward problem are calculated by solving the model on a 100× 100 mesh with time steps
of 0.05 with the same type of time and finite element discretizations. Corresponding adjoint problems (using quadratic
finite elements) are also solved and used to calculate both error estimates and derivatives to generate a highly accurate
piecewise linear surrogate. A reference value of P𝚲(A) = 0.2220 is subsequently calculated using an enhanced piecewise
linear surrogate generated from these high-fidelity results.

Table 2 shows the average (over 20 batches) of the relative error calculated using piecewise-constant and linear surro-
gates with and without enhancement. The model was run for 104 uniformly sampled points in 𝚲, and the values in each
batch used to compute values in Table 2 were randomly sampled from these 104 samples without replacement. As with
the other cases, the errors from using surrogates without error-enhancement level off at a certain point because of the
persistent deterministic error polluting all values. Both enhanced surrogates (ie, Q̂s,0 and Q̂s,1) produce estimates whose
error is reduced relatively quickly as seen in the simple 1D example. Moreover, the similarities between the errors when
using the piecewise-constant or linear surrogates (with or without enhancement, respectively) suggest that the response
surface is approximately linear so that the piecewise-constant surrogate allows for local cancellation of errors in the solu-
tion in a way similar to how the midpoint rule gives exact integrals for linear functions. However, we do not expect this
to hold in higher dimensions, as both the previous and next examples demonstrate.

5.2 A 100-dimensional example
This example involves solving a stochastic inverse problem for a higher-dimensional (n = 100) parameter space. The
model is an elliptic PDE defined in a continuous setting. This example also demonstrates a common feature involving QoI
computed from high-dimensional spaces, which we briefly mention here since, at first glance, it may seem that performing
stochastic inversion into such a high-dimensional space of parameters is not possible with the types of surrogates con-
sidered so far, which often suffer from the curse of dimensionality. However, in many cases, there exist lower-dimension
manifolds in the parameter space on which the QoI is predominately sensitive, which are commonly referred to in the liter-
ature as active subspaces.19 While this literature provides a framework for identifying and exploiting this low-dimensional
structure explicitly, we instead opt to perform the inversion in this example on the full 100-dimensional parameter space
to demonstrate how the p-enhancement effectively improves results in the directions of the active subspace without hav-
ing to explicitly construct the subspace. This example also demonstrates the benefits of using adjoints for estimating errors
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and gradients simultaneously since only one adjoint calculation is required for the QoI for each sample. In other words,
the estimation of error and derivatives by adjoints is a computation that is (almost) independent of the dimension of the
parameter space. The actual computational cost of calculating error estimates and gradients of QoI only depends on the
number of parameters in that it requires an inner-product calculation for each parameter (see Equations (4) and (5)).
The computational cost of performing an inner product is usually extremely small compared to performing model solves.
Hence, both p- and error-enhancement are not considerably more computationally expensive for higher-dimensional
parameter spaces compared to lower-dimensional ones.

5.2.1 The forward problem, adjoint, and the QoI
We consider the elliptic boundary value problem on the unit square

⎧⎪⎪⎨⎪⎪⎩

−∇ · (K(x, 𝑦)∇u(x, 𝑦)) = 0, (x, 𝑦) ∈ (0, 1) × (0, 1)
u(0, 𝑦) = 0, 𝑦 ∈ (0, 1)
u(1, 𝑦) = 1, 𝑦 ∈ (0, 1)

K(x, 0)∇u(x, 0) · n = K(x, 1)∇u(x, 1) · n = 0, x ∈ (0, 1),

(24)

where K(x, y) is a conductivity field that we treat as a random function. K belongs to an infinite-dimensional space, but
truncating a Karhunen-Loève (K-L) expansion is a classical option for deriving finite-dimensional parameterizations for
log(K). We construct the K-L expansion of Y(x, y), where Y (x, 𝑦) ∶= log[K(x, 𝑦)]. Let Ȳ (x, 𝑦) be the mean value of Y(x), and
suppose that it has an exponential covariance

CY (x, 𝑦) = 𝜎2
Y exp(−|x1 − 𝑦1|∕𝜂1 − |x2 − 𝑦2|∕𝜂2), (25)

where the variance is 𝜎Y = 1.0 and the correlation lengths are 𝜂1 = 0.08 and 𝜂2 = 0.07. Hence, Y(x, y) can be written as

Y (x, 𝑦) = Ȳ (x, 𝑦) +
∞∑

n=0
𝜉n
√
𝜆n𝑓n(x, 𝑦), (26)

where 𝜆n and fn(x, y) are eigenpairs determined by CY, and 𝜉n are standard normal random variables. In other words, we
shift notation slightly in this example to align more closely with the K-L literature so that 𝜆n is now an eigenvalue and 𝜉n
is now used as the variable for an uncertain parameter. Truncating the series in Equation (26) at the Nth term gives the
finite-dimensional approximation

Y (x, 𝑦) ≈ Ȳ (x, 𝑦) +
N∑

n=0
𝜉n
√
𝜆n𝑓n(x, 𝑦). (27)

For the given unit square domain and covariance, we can calculate the eigenpairs analytically.48 We use the first 100 K-L
terms (ie, N = 100) because the eigenvalues above this are observed to be negligible for this correlation length and take
Ȳ (x, 𝑦) = 1. Suppose we have a scalar QoI, Q, representing an approximation to the solution of Equation (24) at (0.5, 0.5),
using the inner product ⟨u, 𝜓⟩L2 with a steep Gaussian, ie,

𝜓 = 400
𝜋

exp(−400(x − 0.5)2 − 400(𝑦 − 0.5)2).

The forward model is solved on a 20× 20 finite element mesh with linear finite elements, and the adjoint problem is
solved on the same mesh with quadratic finite elements. Using 1000 samples from a 100-dimensional standard normal
distribution (representing prior knowledge of the K-L expansion), solving the forward and adjoint problems, and calcu-
lating gradients, the corresponding active subspace is calculated. Figure 4 shows the first 20 eigenvalues of the sensitivity
matrix with bootstrap intervals. The small bootstrap intervals indicate that this structure of the eigenvalues is accurate.
Notice the large gap between the first and second eigenvalues, which indicates the presence of a one-dimensional active
subspace for the QoI.

5.2.2 The stochastic inverse problem and surrogate setup
Suppose the probability measure P is uniform on the interval [0.3, 0.4]. As mentioned above, we solve the stochastic
inverse problem on the 100-dimensional space of coefficients {𝜉i}100

i=1 instead of the active subspace. Furthermore, to ensure
that we built the surrogate over “low-probability” conductivity fields, we chose to uniformly sample from a truncation of
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FIGURE 4 First 20 eigenvalues of the sensitivity matrix of the high-dimensional example with bootstrap intervals [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 3 Average (over 10 batches) of the relative error in
probabilities of the set A calculated using Qs,p and error-
enhanced Q̂s,p for p = 0 and p = 1. The errors are calculated
with respect to the reference value P𝚲(A) = 0.608

Ns Qs,0 Q̂s,𝟎 Qs,1 Q̂s,𝟏

25 100% 100% 25.0% 25.82%
250 100% 100% 6.76% 6.6%
2500 100% 75.99% 2.94% 2.06%
25 000 100% 38.82% 1.63% 1.24%

the 100-dimensional Gaussian cube so that conductivity fields sufficiently different from the mean field would be used to
define the QoI map. Specifically, we truncated the Gaussian cube in each dimension by three standard deviations away
from the mean to define a 100-dimensional hypercube 𝚲 = [−3, 3]100. The stochastic inverse problem is then solved using
Qs,p and Q̂s,p for various choices of Ns uniform i.i.d. generating samples in𝚲. We then approximate the probability measure
of a cylinder set A = [−3, 0.2] × [−3, 3]99 ⊂ 𝚲 using the computed approximation of P𝚲 by Algorithm 1 with N = 105

uniform i.i.d. samples.

5.2.3 Numerical computations and discussion
To compute a reference probability of P(A) = 0.608, we implemented Algorithm 1 using a p- and error-enhanced sur-
rogate generated using the forward model and adjoint solutions (to correct for the deterministic error) on the full set of
N = 105 uniform i.i.d. samples. Table 3 shows the average relative error in estimating P(A) over 10 batches for the surro-
gates constructed with 25, 250, 2500, and 25 000 samples, where the samples in each batch were randomly sampled from
the 105 samples without replacement. We see that when using Qs,0, there is 100% error, and by error-enhancement to
Q̂s,0, the error is only slightly reduced by using larger Ns. However, with both Qs,1 and Q̂s,1, the error decreases quickly as
more samples are used. We believe the stark difference in these results is attributed to the presence of the active subspace.
Thus, this approach to constructing low-order error-enhanced surrogates on unstructured methods appears to apply to
high-dimensional problems in which active subspaces are present.

6 CONCLUSIONS AND FUTURE WORK

We described an approach to constructing and enhancing piecewise-defined low-order surrogates on unstructured sets
of samples using adjoints. The two types of enhancement considered here are p-enhancement (ie, improving the local
order of the surrogate) and error-enhancement. The utility of these surrogates for solving stochastic inverse problems

http://wileyonlinelibrary.com
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is studied in the context of constructing pullback measures and estimating particular events in the parameter space.
A simple finite-dimensional linear example is used throughout to illustrate the various concepts presented. Two PDE
examples, commonly studied in the literature, demonstrated various aspects of the ideas. Specifically, an elliptic PDE
example demonstrated that p-enhancement is required to achieve a steady reduction of errors in higher dimensions.
The contaminant transport example demonstrated the benefits of h-enhancement for a more computationally complex
problem where the response surface is likely more linear around the event of interest in the parameter domain, which
allows for cancellation of errors when using the piecewise-constant surrogates.

There are many interesting future directions to take this work. Perhaps the most obvious direction is to examine
piecewise Voronoi surrogate approximations with higher-order polynomial approximations suggested by the work of
Rushdi et al.31 Another direction would be to study piecewise-defined surrogates based on global surrogate approaches as
discussed below. While there is much work on the use of polynomial chaos expansions to construct global surrogates,1,10,11

in order to ensure the error 𝜖s(𝜆) is bounded by some threshold so that results are useful, a high-order polynomial approxi-
mation may be required, which subsequently implies that the value of Ns may be prohibitively large and beyond the limits
provided by the computational budget. For example, in polynomial chaos approaches, the total number of coefficients
we need to compute a general p-order surrogate over an m-dimensional parameter space is given by (m + p)!∕(m!p!).10,28

Computation of the polynomial coefficients, in turn, requires computation of integrals over the parameter space, which
is often done with numerical quadrature. If a QoI is particularly sensitive to 𝜆, then a large order p of the global poly-
nomial chaos surrogate approximation may be required to control 𝜖s(𝜆). This, in turn, requires higher-order numerical
quadrature, which increases the total number N of numerical solutions to the model. In the work of Marzouk et al,13 for
a Bayesian inference problem of parameters to a contaminant transport model with relatively few parameters, it is sug-
gested that a piecewise polynomial chaos surrogate be constructed on a regular partitioning of 𝚲 to improve accuracy. The
general idea is that 𝜖s(𝜆) can be made small if the surrogate is defined by localized low-order surrogate approximations
to the QoI response surface and that this is computationally feasible since it is often easier to solve several lower-order
problems than a significantly higher-order problem. Accuracy in the global posterior of the Bayesian solution from such
a surrogate is subsequently observed. This provides a motivation for future work in the design of low-order polynomial
surrogates constructed by other means than those shown in this work for goal-oriented measure-theoretic inversion.
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APPENDIX A

COMPUTATIONAL ALGORITHM FOR CONSTRUCTING PULLBACK MEASURES

Algorithm 1 describes a nonintrusive sample-based approach to approximating pullback measures, which proceeds in
four stages defined by four separate non-nested for-loops and uses the standard Ansatz. There is a more recently developed
algorithm for solving this type of inverse problem applied to multiscale characterization of composite materials,49 but we
focus on the plain version of the algorithm to focus our attention on the accuracy of the surrogate. We note that Algorithm 1
applies to any discretizing set of samples in 𝚲 no matter how the samples are generated. The authors are codevelopers
of BET,50 an open-source Python package for stochastic measure-theoretic problems, which includes implementations of
Algorithm 1.

In the first for-loop, we use a partition {Di}1≤ i≤M of to construct an M-dimensional vector of probabilities with the ith
component given by p,i corresponding to the probability of P(Di). In the second for-loop, we use the QoI map to build a
pointer vector between a set of N samples {𝜆( 𝑗)}N

𝑗=1 implicitly defining a partition of 𝚲 into Voronoi cells and the partition
{Di}1≤ i≤M of . We also compute approximations of the volumes of the implicitly defined Voronoi cells (eg, using Monte
Carlo approximations). Then, in the third for-loop, we again use the QoI map to construct a pointer vector between each
Di and the set of all samples (and, thus, Voronoi cells) approximating Q−1(Di). Finally, in the fourth for-loop, we use the
standard Ansatz and the two pointer vectors to distribute the probabilities p,i, for each i, across all Voronoi cells that
approximate Q−1(Di). The output of the algorithm is an N-dimensional vector of probabilities with the jth component
given by p𝚲,𝑗 corresponding to the jth sample 𝜆(j) ∈ 𝚲 used to approximate the pullback measure for all A ∈ 𝚲 using
either a counting measure,

P𝚲(A) ≈
∑
𝜆( 𝑗)∈A

p𝚲,𝑗 , (A1)

or the approximate volumes of the Voronoi cells,

P𝚲(A) ≈
∑

1≤𝑗≤N
p𝚲,𝑗𝜇𝚲(𝑗 ∩ A). (A2)
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