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Abstract

We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequen-
tially observed multivariate count data, improving previously proposed models by
not only mining deep hierarchical latent structure from the data, but also capturing
both first-order and long-range temporal dependencies. Using sophisticated but
simple-to-implement data augmentation techniques, we derived closed-form Gibbs
sampling update equations by first backward and upward propagating auxiliary
latent counts, and then forward and downward sampling latent variables. More-
over, we develop stochastic gradient MCMC inference that is scalable to very
long multivariate count time series. Experiments on both synthetic and a variety
of real-world data demonstrate that the proposed model not only has excellent
predictive performance, but also provides highly interpretable multilayer latent
structure to represent hierarchical and temporal information propagation.

1 Introduction

The need to model time-varying count vectors x1, ...,xT appears in a wide variety of settings,
such as text analysis, international relation study, social interaction understanding, and natural
language processing [1–9]. To model these count data, it is important to not only consider the
sparsity of high-dimensional data and robustness to over-dispersed temporal patterns, but also
capture complex dependencies both within and across time steps. In order to move beyond linear
dynamical systems (LDS) [10] and its nonlinear generalization [11] that often make the Gaussian
assumption [12], the gamma process dynamic Poisson factor analysis (GP-DPFA) [5] factorizes
the observed time-varying count vectors under the Poisson likelihood as xt ∼ Poisson(Φθt), and
transmit temporal information smoothly by evolving the factor scores with a gamma Markov chain
as θt ∼ Gamma(θt−1,β), which has highly desired strong non-linearity. To further capture cross-
factor temporal dependence, a transition matrix Π is further used in Poisson–gamma dynamical
system (PGDS) [7] as θt ∼ Gamma(Πθt−1,β). However, these shallow models may still have
shortcomings in capturing long-range temporal dependencies [8]. For example, if given θt, then θt+1

no longer depends on θt−k for all k ≥ 1.

Deep probabilistic models are widely used to capture the relationships between latent variables across
multiple stochastic layers [4, 8, 13–16]. For example, deep dynamic Poisson factor analysis (DDPFA)

∗Corresponding author

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



[8] utilizes recurrent neural networks (RNN) [3] to capture long-range temporal dependencies of
the factor scores. The latent variables and RNN parameters, however, are separately inferred. Deep
temporal sigmoid belief network (DTSBN) [4] is a deep dynamic generative model defined as a
sequential stack of sigmoid belief networks (SBNs), whose hidden units are typically restricted to be
binary. Although a deep structure is designed to describe complex long-range temporal dependencies,
how the layers in DTSBN are related to each other lacks an intuitive interpretation, which is of
paramount interest for a multilayer probabilistic model [15].

In this paper, we present deep Poisson gamma dynamical systems (DPGDS), a deep probabilistic
dynamical model that takes the advantage of the hierarchical structure to efficiently incorporate
both between-layer and temporal dependencies, while providing rich interpretation. Moving beyond
DTSBN using binary hidden units, we build a deep dynamic directed network with gamma distributed
nonnegative real hidden units, inferring a multilayer contextual representation of multivariate time-
varying count vectors. Consequently, DPGDS can handle highly overdispersed counts, capturing
the correlations between the visible/hidden features across layers and over times using the gamma
belief network [15]. Combing the deep and temporal structures shown in Fig. 1(a), DPGDS breaks
the assumption that given θt, θt+1 no longer depends on θt−k for k ≥ 1, suggesting that it may
better capture long-range temporal dependencies. As a result, the model can allow more specific
information, which are also more likely to exhibit fast temporal changing, to transmit through lower
layers, while allowing more general information, which are also more likely to slowly evolve over
time, to transmit through higher layers. For example, as shown in Fig. 1(b) that is learned from
GDELT2003 with DPGDS, when analyzing these international events, the factors at lower layers are
more specific to discover the relationships between the different countries, whereas those at higher
layers are more general to reflect the conflicts between the different areas consisting of several related
countries, or the ones occurring simultaneously, and the latent representation θt at a lower layer
varies more intensely than that at a higher layer.

Distinct from DDPFA [8] that adopts a two-stage inference, the latent variables of DPGDS can
be jointly trained with both a Backward-Upward–Forward-Downward (BUFD) Gibbs sampler and
a sophisticated stochastic gradient MCMC (SGMCMC) algorithm that is scalable to very long
multivariate time series [17–21]. Furthermore, the factors learned at each layer can refine the
understanding and analysis of sequentially observed multivariate count data, which, to the best of
our knowledge, may be very challenging for existing methods. Finally, based on a diverse range
of real-world data sets, we show that DPGDS exhibits excellent predictive performance, inferring
interpretable latent structure with well captured long-range temporal dependencies.

2 Deep Poisson gamma dynamic systems

Shown in Fig. 1(a) is the graphical representation of a three-hidden-layer DPGDS. Let us denote
θ ∼ Gam(a, c) as a gamma random variable with mean a/c and variance a/c2. Given a set of
V -dimensional sequentially observed multivariate count vectors x1, ...,xT , represented as a V × T
matrix X, the generative process of a L-hidden-layer DPGDS, from top to bottom, is expressed as

θ
(L)
t ∼ Gam

(
τ0Π

(L)θ
(L)
t−1, τ0

)
, · · · , θ(l)

t ∼ Gam
(
τ0(Φ(l+1)θ

(l+1)
t + Π(l)θ

(l)
t−1), τ0

)
, · · · ,

θ
(1)
t ∼ Gam

(
τ0(Φ(2)θ

(2)
t + Π(1)θ

(1)
t−1), τ0

)
, x

(1)
t ∼Pois

(
δ

(1)
t Φ(1)θ

(1)
t

)
, (1)

where Φ(l) ∈ RKl−1×Kl

+ is the factor loading matrix at layer l, θ(l)
t ∈ RKl

+ the hidden units of
layer l at time t, and Π(l) ∈ RKl×Kl

+ a transition matrix of layer l that captures cross-factor temporal
dependencies. We denote δ(1)

t ∈ R+ as a scaling factor, reflecting the scale of the counts at time t;
one may also set δ(1)

t = δ(1) for t = 1, ..., T . We denote τ0 ∈ R+ as a scaling hyperparameter that
controls the temporal variation of the hidden units. The multilayer time-varying hidden units θ(l)

t are
well suited for downstream analysis, as will be shown below.

DPGDS factorizes the count observation x(1)
t into the product of δ(1)

t , Φ(1), and θ(1)
t under the

Poisson likelihood. It further factorizes the shape parameters of the gamma distributed θ(l)
t of

layer l at time t into the sum of Φ(l+1)θ
(l+1)
t , capturing the dependence between different layers,

and Π(l)θ
(l)
t−1, capturing the temporal dependence at the same layer. At the top layer, θ(L)

t is only
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Figure 1: Graphical model and illustration for a three-hidden-layer deep Poisson Gamma Dynamical
System (DPGDS). (a) The generative model; (b) Visualization of data and latent factors learned
from GDELT2003, with the black, red, blue and green lines denoting the observed data, temporal
trajectories of example latent factors at layer 1, 2, 3, respectively.

dependent on Π(L)θ
(L)
t−1, and at t = 1, θ(l)

1 ∼ Gam
(
τ0Φ

(l+1)θ
(l+1)
1 , τ0

)
for l = 1, . . . , L− 1 and

θ
(L)
1 ∼ Gam

(
τ0ν

(L)
k , τ0

)
. To complete the hierarchical model, we introduce Kl factor weights

ν (l) = (ν
(l)
1 , ..., ν

(l)
Kl

) in layer l to model the strength of each factor, and for l = 1, ..., L, we let

π
(l)
k ∼ Dir(ν(l)

1 ν
(l)
k , ..., ν

(l)
k−1ν

(l)
k , ξ(l)ν

(l)
k , ν

(l)
k+1ν

(l)
k ..., ν

(l)
Kl
ν

(l)
k ), ν

(l)
k ∼ Gam( γ0Kl

, β(l)). (2)

Note that π(l)
k is the kth column of Π(l) and π(l)

k1k2
can be interpreted as the probability of transiting

from topic k2 of the previous time to topic k1 of the current time at layer l.

Finally, we place Dirichlet priors on the factor loadings and draw other parameters from a noninforma-
tive gamma prior: φ(l)

k = (φ
(l)
1k , ..., φ

(l)
Kl−1k

) ∼ Dir(η(l), ..., η(l)), and δ(1)
t , ξ(l), β(l) ∼ Gam(ε0, ε0).

Note that imposing Dirichlet distributions on the columns of Π(l) and Φ(l) not only makes the
latent representation more identifiable and interpretable, but also facilitates inference, as will be
shown in the next section. Clearly when L = 1, DPGDS reduces to PGDS [7]. In real-world
applications, a binary observation can be linked to a latent count using the Bernoulli-Poisson link as
b = 1(n ≥ 1), n ∼ Pois(λ) [22]. Nonnegative-real-valued matrix can also be linked to a latent count
matrix via a Poisson randomized gamma distribution as x ∼ Gam(n, c), n ∼ Pois(λ) [23].

Hierarchical structure: To interpret the hierarchical structure of (1), we notice that
E
[
x

(1)
t |θ

(l)
t , {Φ

(p)}lp=1

]
=
[∏l

p=1 Φ(p)
]
θ

(l)
t if the temporal structure is ignored. Thus it is

straightforward to interpret φ(l)
k by projecting them to the bottom data layer as

[∏l−1
t=1 Φ(t)

]
φ

(l)
k ,

which are often quite specific at the bottom layer and become increasingly more general when moving
upwards, as will be shown below in Fig. 5(a).

Long-range temporal dependencies: Using the law of total expectations on (1), for a three-hidden-
layer DPGDS shown in Fig. 1(a), we have

E[x(1)
t |θ

(1)
t−1,θ

(2)
t−2,θ

(3)
t−3]/δ

(1)
t = Φ(1)Π(1)θ

(1)
t−1 + Φ(1)Φ(2)[Π(2)]2θ

(2)
t−2

+ Φ(1)Φ(2)(Π(2)Φ(3) + Φ(3)Π(3))[Π(3)]2θ
(3)
t−3, (3)

which suggests that {Π(l)}Ll=1 play the role of transiting the latent representation across time and,
different from most existing dynamic models, DPGDS can capture and transmit long-range temporal
information (often general and change slowly over time) through its higher hidden layers.

3 Scalable MCMC inference

In this paper, in each iteration, across layers and times, we first exploit a variety of data augmentation
techniques for count data to “backward” and “upward” propagate auxiliary latent counts, with which
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Figure 2: Graphical representation of the model and data augmentation and marginalization based
inference scheme. (a) An alternative representation of layer l = 1 using the relationships between
the Poisson and multinomial distributions; (b) A negative binomial distribution based representation
that marginalizes out the gamma from the Poisson distributions, corresponding to (4) for t = T ; (c)
An equivalent representation that introduces CRT distributed auxiliary variables, corresponding to
(5); (d) An equivalent representation using P3, corresponding to (6); (e) An equivalent representation
obtained by using P1, corresponding to (7); (f) A representation obtained by repeating the same
augmentation-marginalization steps described in (a).

we then “downward” and “forward” sample latent variables, leading to a Backward-Upward–Forward-
Downward Gibbs sampling (BUFD) Gibbs sampling algorithm.

3.1 Backward and upward propagation of latent counts

Different from PGDS that has only backward propagation for latent counts, DPGDS have both
backward and upward ones due to its deep hierarchical structure. To derive closed-form Gibbs
sampling update equations, we exploit three useful properties for count data, denoted as P1, P2,
and P3 [7, 24], respectively, as presented in the Appendix. Let us denote x ∼ NB(r, p) as the
negative binomial distribution with probability mass function P (x = k) = Γ(k+r)

k!Γ(r) p
k(1 − p)r,

where k ∈ {0, 1, . . .}. First, we can augment each count x(1)
vt in (1) into the summation of K1

latent counts that are smaller or equal as x(1)
vt =

∑K1

k=1A
(1)
vkt, A

(1)
vkt ∼ Pois(δ(1)

t φ
(1)
vk θ

(1)
kt ), with

A
(1)
·kt =

∑V
v=1A

(1)
vkt . Since

∑V
v=1 φ

(1)
vk = 1 by construction, we also have A(1)

·kt ∼ Pois(δ(1)
t θ

(1)
kt ), as

shown in Fig. 2(a). We start with θ(1)
T at the last time point T , as none of the other time-step factors

depend on it in their priors. Via P2, as shown in Fig. 2(b), we can marginalize out θ(1)
kT to obtain

A
(1)
·kT ∼ NB

[
τ0

(∑K2

k2=1
φ

(2)
kk2

θ
(2)
k2T

+
∑K1

k1=1
π

(1)
kk1

θ
(1)
k1,T−1

)
, g(ζ

(1)
T )

]
, (4)

where ζ(1)
T = ln(1 +

δ
(1)
T

τ0
) and g (ζ) = 1− exp (−ζ).

In order to marginalize out θ(1)
T−1, as shown in Fig. 2(c), we introduce an auxiliary variable following

the Chines restaurant table (CRT) distribution [24] as

x
(2)
kT ∼ CRT

[
A

(1)
·kT , τ0

(∑K2

k2=1
φ

(2)
kk2

θ
(2)
k2T

+
∑K1

k1=1
π

(1)
kk1

θ
(1)
k1,T−1

)]
. (5)

As shown in Fig. 2(d), we re-express the joint distribution over A(1)
·kT and x(2)

kT according to P3 as

A
(1)
·kT ∼ SumLog(x(2)kT , g(ζ

(1)
T )), x

(2)
kT ∼ Pois

[
ζ
(1)
T τ0

(∑K2

k2=1
φ
(2)
kk2

θ
(2)
k2T

+
∑K1

k1=1
π
(1)
kk1

θ
(1)
k1,T−1

)]
, (6)
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where the sum-logarithmic (SumLog) distribution is defined as in Zhou and Carin [24]. Via P1, as in
Fig. 2(e), the Poisson random variable x(2)

kT in (6) can be augmented as x(2)
kT = x

(2,1)
kT + x

(2,2)
kT , where

x
(2,1)
kT ∼ Pois(ζ(1)

T τ0
∑K1

k1=1
π

(1)
kk1

θ
(1)
k1,T−1), x

(2,2)
kT ∼ Pois(ζ(1)

T τ0
∑K2

k2=1
φ

(2)
kk2

θ
(2)
k2T

). (7)

It is obvious that due to the deep dynamic structure, the count at layer two x(2)
kT is divided into two

parts: one from time T − 1 at layer one, while the other from time T at layer two. Furthermore, ζ(1)
T

is the scaling factor at layer two, which is propagated from the one at layer one δ(1)
T . Repeating the

process all the way back to t = 1, and from l = 1 up to l = L, we are able to marginalize out all
gamma latent variables {Θ}T,Lt=1,l=1 and provide closed-form conditional posteriors for all of them.

3.2 Backward-upward–forward-downward Gibbs sampling

Sampling auxiliary counts: This step is about the “backward” and “upward” pass. Let us denote
Z

(l)
·kt =

∑Kl

kl=1 Z
(l)
klkt

, Z
(l)
·k,T+1 = 0, and x(1,1)

kt = x
(1)
vt . Working backward for t = T, ..., 2 and

upward for l = 1, ..., L, we draw

(A
(l)
k1t, ..., A

(l)
kKlt

) ∼ Multi

(
x

(l,l)
kt ;

φ
(l)
k1θ

(l)
1t∑Kl

kl=1 φ
(l)
kkl
θ

(l)
klt

, ...,
φ

(l)
kKl

θ
(l)
Klt∑Kl

kl=1 φ
(l)
kkl
θ

(l)
klt

)
, (8)

x
(l+1)
kt ∼ CRT

[
A

(l)
·kt + Z

(l)
·k,t+1, τ0

(∑Kl+1

kl+1=1
φ

(l+1)
kkl+1

θ
(l+1)
kl+1t

+
∑Kl

kl=1
π

(l)
kk1

θ
(l)
k1,t−1

)]
. (9)

Note that via the deep structure, the latent counts x(l+1)
kt will be influenced by the effects from

both of time t − 1 at layer l and time t at layer l + 1. With p1 :=
∑Kl

kl=1 π
(l)
kkl
θ

(l)
kl,t−1 and p2 :=∑Kl+1

kl+1=1 φ
(l+1)
kkl+1

θ
(l+1)
kl+1t

, we can sample the latent counts at layer l and l + 1 by

(x
(l+1,l)
kt , x

(l+1,l+1)
kt ) ∼ Multi

(
x

(l+1)
kt , p1/(p1 + p2), p2/(p1 + p2)

)
, (10)

and then draw

(Z
(l)
k1t, ..., Z

(l)
kKlt

) ∼ Multi

(
x

(l+1,l)
kt ;

π
(l)
k1θ

(l)
1,t−1∑Kl

kl=1 π
(l)
kkl
θ

(l)
kl,t−1

, ...,
π

(l)
kKl

θ
(l)
Kl,t−1∑Kl

kl=1 π
(l)
kkl
θ

(l)
kl,t−1

)
. (11)

Sampling hidden units θ(l)
t and calculating ζ(l)

t : Given the augmented latent count variables,
working forward for t = 1, ..., T and downward for l = L, ..., 1, we can sample

θ
(l)
kt ∼ Gamma

[
A

(l)
·kt + Z

(l)
·k(t+1) + τ0

(∑Kl+1

kl+1=1
φ

(l+1)
kkl+1

θ
(l+1)
kl+1t

+
∑Kl

kl=1
π

(l)
kkl
θ

(l)
k2,t−1

)
,

τ0
(
1 + ζ

(l−1)
t + ζ

(l)
t+1

)]
, (12)

where ζ(0)
t =

δ
(1)
t

τ0
and ζ(l)

t = ln
(

1 + ζ
(l−1)
t + ζ

(l)
t+1

)
. Note if δ(1)

t = δ(1) for t = 1, ..., T , then we

may let ζ(l) = −W−1(− exp(−1− ζ(l−1)))−1− ζ(l−1), where the function W−1 is the lower real
part of the Lambert W function [7, 25]. From (12), we can find that the conditional posterior of θ(l)

t

is parameterized by not only both Φ(l+1)θ
(l+1)
t and Π(l)θ

(l)
t−1, which represent the information from

layer l+ 1 (downward) and time t− 1 (forward), respectively, but also both A(l)
·,:,t and Z(l)

·,:,t+1, which
record the message from layer l − 1 (upward) in (8) and time t+ 1 (backward) in (11), respectively.
We describe the BUFD Gibbs sampling algorithm for DPGDS in Algorithm 1 and provide more
details in the Appendix.

3.3 Stochastic gradient MCMC inference

Although the proposed BUFD Gibbs sampling algorithm for DPGDS has closed-form update equa-
tions, it requires processing all time-varying vectors at each iteration and hence has limited scala-
bility [26]. To allow for scalable inference, we apply the topic-layer-adaptive stochastic gradient
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Theaveragepredictionerrorsasafunctionofthesequencelengthforvariousalgorithms.

Riemannian(TLASGR)MCMCalgorithmdescribedinCongetal.[27]andZhangetal.[26],which
canbeusedtosamplesimplex-constrainedglobalparameters[28]inamini-batchbasedmanner.
ItimprovesitssamplingefficiencyviatheuseoftheFisherinformationmatrix(FIM)[29],with
adaptivestep-sizesforthelatentfactorsandtransitionmatricesofdifferentlayers.Morespecifically,

forπ
(l)
k,columnkofthetransitionmatrixΠ

(l)oflayerl,itssamplingcanbeefficientlyrealizedas

π
(l)
k

n+1
= π

(l)
k

n
+
εn

M
(l)
k

ρ̃z
(l)
:k·+η

(l)
:k − ρ̃z

(l)
·k·+η

(l)
·k π

(l)
k

n

+N 0,
2εn

M
(l)
k

diag(π
(l)
k)n−(π

(l)
k)n(π

(l)
k)
T
n

∠

, (13)

whereM
(l)
k iscalculatedusingtheestimatedFIM,both̃z

(l)
:k·and̃z

(l)
·k·comefromtheaugmentedlatent

countsZ(l),[.]∠denotesasimplexconstraint,andη
(l)
:kdenotesthepriorofπ

(l)
k.TheupdateofΦ

(l)

isthesamewithCongetal.[27],andalltheotherglobalparametersaresampledusingSGNHT[20].
WeprovidethedetailsoftheSGMCMCforDPGDSinAlgorithm2intheAppendix.

4 Experiments

Inthissection,wepresentexperimentalresultsonasyntheticdatasetandfivereal-worlddatasets.
Forafaircomparison,weconsiderPGDS[7],GP-DPFA[5],DTSBN[4],andGPDM[11]that
canbeconsideredasadynamicgeneralizationoftheGaussianprocesslatentvariablemodelof
Lawrence[30],usingthecodeprovidedbytheauthors.NotethatasshownScheinetal.[7]and
Ganetal.[4],PGDSandDTSBNarestate-of-the-artcounttimeseriesmodelingalgorithmsthat
outperformawidevarietyofpreviouslyproposedones,suchasLDS[12]andDRFM[31].The
hyperparametersettingsofPGDS,GP-DPFA,GPDM,TSBN,andDTSBNarethesameastheir
originalsettings[4,5,7,11].ForDPGDS,wesetτ0=1,γ0=100,η0=0.1and0=0.1. We
use[K(1),K(2),K(3)]=[200,100,50]forbothDPGDSandDTSBNandK =200forPGDS,
GP-DPFA,GPDM,andTSBN.ForPGDS,GP-DPFA,GPDM,andDPGDS,werun2000Gibbs
samplingasburn-inandcollect3000samplesforevaluation.WealsouseSGMCMCtoinferDPGDS,
with5000collectionsamplesafter5000burn-insteps,anduse10000SGMCMCiterationsforboth
TSBNandDTSBNtoevaluatetheirperformance.

4.1 Syntheticdataset

Followingtheliterature[1,4],weconsidersequencesofdifferentlengths,includingT =
10,50,100,200,300,400,500and600,andgenerate50syntheticbouncingballvideosfortraining,
and30onesfortesting.Eachvideoframeisabinary-valuedimagewithsize30×30,describing
thelocationofthreeballswithintheimage.BothTSBNandDTSBNmodelitwiththeBernoulli
likelihood,whilebothPGDSandDPGDSusetheBernoulli-Poissonlink[22].

AsshowninFig.3(b),theaveragepredictionerrorsofallalgorithmsdecreaseasthetrainingsequence
lengthincreases.Ahigher-orderTSBN,TSBN-4,performsmuchbetterthanthefirst-orderTSBN
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Table 1: Top-M results on real-world text data
Model Top-M GDELT (T = 365) ICEWS (T = 365) SOTU (T = 225) DBLP (T = 14) NIPS (T = 17)

GPDPFA
MP 0.611 ±0.001 0.607 ±0.002 0.379 ±0.002 0.435 ±0.009 0.843 ±0.005

MR 0.145 ±0.002 0.235 ±0.005 0.369 ±0.002 0.254 ±0.005 0.050 ±0.001

PP 0.447 ±0.014 0.465 ±0.008 0.617 ±0.013 0.581 ±0.011 0.807 ±0.006

PGDS
MP 0.679 ±0.001 0.658 ±0.001 0.375 ±0.002 0.419 ±0.004 0.864 ±0.004

MR 0.150 ±0.001 0.245 ±0.005 0.373 ±0.002 0.252 ±0.004 0.050 ±0.001

PP 0.420 ±0.017 0.455 ±0.008 0.612 ±0.018 0.566 ±0.008 0.802 ±0.020

GPDM
MP 0.520±0.001 0.530 ±0.002 0.274 ±0.001 0.388 ±0.004 0.355 ±0.008

MR 0.141 ±0.001 0.234 ±0.001 0.261 ±0.002 0.146 ±0.005 0.050 ±0.001

PP 0.362±0.021 0.185±0.017 0.587 ±0.016 0.509 ±0.008 0.384 ±0.028

TSBN
MP 0.594 ±0.007 0.471 ±0.001 0.360 ±0.001 0.403 ±0.012 0.788 ±0.005

MR 0.124 ±0.001 0.158 ±0.001 0.275 ±0.001 0.194 ±0.001 0.050 ±0.001

PP 0.418 ±0.019 0.445 ±0.031 0.611 ±0.001 0.527 ±0.003 0.692 ±0.017

DTSBN-2
MP 0.439 ±0.001 0.475 ±0.002 0.370 ±0.004 0.407 ±0.003 0.756 ±0.001

MR 0.134 ±0.001 0.208 ±0.001 0.361 ±0.001 0.248 ±0.007 0.050 ±0.001

PP 0.391 ±0.001 0.446 ±0.001 0.587 ±0.027 0.522 ±0.005 0.737 ±0.004

DTSBN-3
MP 0.411 ±0.001 0.431 ±0.001 0.450 ±0.008 0.390 ±0.002 0.774 ±0.002

MR 0.141 ±0.001 0.189 ±0.001 0.274 ±0.001 0.252 ±0.004 0.050 ±0.001

PP 0.367 ±0.011 0.451 ±0.026 0.548 ±0.013 0.510 ±0.006 0.715 ±0.009

DPGDS-2
MP 0.688 ±0.002 0.659 ±0.001 0.379 ±0.002 0.430 ±0.009 0.867 ±0.008

MR 0.149 ±0.001 0.242 ±0.007 0.373 ±0.001 0.254 ±0.005 0.050 ±0.001

PP 0.443 ±0.025 0.473 ±0.012 0.622 ±0.014 0.582 ±0.007 0.814 ±0.035

DPGDS-3
MP 0.689 ±0.002 0.660 ±0.001 0.380 ±0.001 0.431 ±0.012 0.887 ±0.002

MR 0.150 ±0.001 0.244 ±0.003 0.374 ±0.002 0.255 ±0.004 0.050 ±0.001

PP 0.456 ±0.015 0.478 ±0.024 0.628 ±0.021 0.600 ±0.001 0.839 ±0.007

does, suggesting that using high-order messages can help TSBN better pass useful information. As
discussed above, since a deep structure provides a natural way to propagate high-order information
for prediction, it is not surprising to find that both DTSBN and DPGDS, which are both multi-
layer models, have exhibited superior performance. Moreover, it is clear that the proposed DPGDS
consistently outperforms DTSBN under all settings.

Another advantage of DPGDS is that its inferred deep latent structure often has meaningful interpre-
tation. As shown in Fig. 3(a), for the bouncing ball data, the inferred factors at layer one represent
points or pixels, those at layer two cover larger spatial contiguous regions, some of which exhibit the
shape of a single bouncing ball, and those at layer three are able to capture multiple bouncing balls.
In addition, we show in Appendix B the one-step prediction frames of different models.

4.2 Real-world datasets

Besides the binary-valued synthetic bouncing ball dataset, we quantitatively and qualitatively evaluate
all algorithms on the following real-world datasets used in Schein et al. [7]. The State-of-the-Union
(SOTU) dataset consists of the text of the annual SOTU speech transcripts from 1790 to 2014. The
Global Database of Events, Language, and Tone (GDELT) and Integrated Crisis Early Warning
System (ICEWS) are both datasets for international relations extracted from news corpora. Note that
ICEWS consists of undirected pairs, while GDELT consists of directed pairs of countries. The NIPS
corpus contains the text of every NIPS conference paper from 1987 to 2003. The DBLP corpus is
a database of computer science research papers. Each of these datasets is summarized as a V × T
count matrix, as shown in Tab. 1. Unless specified otherwise, we choose the top 1000 most frequently
used terms to form the vocabulary, which means we set V = 1000 for all real-data experiments.

4.2.1 Quantitative comparison

For a fair and comprehensive comparison, we calculate the precision and recall at top-M [4,5,31,32],
which are calculated by the fraction of the top-M words that match the true ranking of the words and
appear in the top-M ranking, respectively, with M = 50. We also use the Mean Precision (MP) and
Mean Recall (MR) over all the years appearing in the training set to evaluate different models. As
another criterion, the Predictive Precision (PP) shows the predictive precision for the final year, for
which all the observations are held out. Similar as previous methods [4, 5], for each corpus, the entire
data of the last year is held out, and for the documents in the previous years we randomly partition the
words of each document into 80% / 20% in each trial, and we conduct five random trials to report the
sample mean and standard deviation. Note that to apply GPDM, we have used Anscombe transform
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[33] to preprocess the count data to mitigate the mismatch between the data and model assumption.
The results on all five datasets are summarized in Tab. 1, which clearly show that the proposed
DPGDS has achieved the best performance on most of the evaluation criteria, and again a deep model
often improves its performance by increasing its number of layers. To add more empirical study
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Figure 4: MP as a function of
time for GDELT.

on scalability, we have also tested the efficiency of our model on
a GDELT data (from 2001 to 2005, temporal granularity of 24 hrs,
with a total of 1825 time points), which is not too large so that
we can still run DPGDS-Gibbs and GPDM. As shown in Fig. 4,
we present how various algorithms progress over time, evaluated
with MP. It takes about 1000s for DTSBN and DPGDS-SGMCMC
to converge, 3.5 hrs for DPGDS-Gibbs, 5 hrs for GPDM. Clearly,
our DPGDS-SGMCMC is scalable and clearly outperforms both
DTSBN and GPDM. We also present in Appendix C the results
of DPGDS-SGMCMC on a very long time series, on which it
becomes too expensive to run a batch learning algorithm.

4.2.2 Exploratory data analysis

Compared to previously proposed dynamic systems, the proposed DPGDS, whose inferred latent
structure is simple to visualize, provides much richer interpretation. More specifically, we may not
only exhibit the content of each factor (topic), but also explore both the hierarchical relationships
between them at different layers, and the temporal relationships between them at the same layer.
Based on the results inferred on ICEWS 2001-2003 via a three hidden layer DPGDS, with the size of
200-100-50, we show in Fig. 5 how some example topics are hierarchically and temporally related to
each other, and how their corresponding latent representations evolve over time.

In Fig. 5(a), we select two large-weighted topics at the top hidden layer and move down the network
to include any lower-layer topics that are connected to them with sufficiently large weights. For
each topic, we list all its terms whose values are larger than 1% of the largest element of the topic.
It is interesting to note that topic 2 at layer three is connected to three topics at layer two, which
are characterized mainly by the interactions of Israel (ISR)-Palestinian Territory (PSE), Iraq (IRQ)-
USA-Iran (IRN), and North Korea (PRK)-South Korea (KOR)-USA-China (CHN)-Japan (JPN),
respectively. The activation strength of one of these three interactions, known to be dominant in
general during 2001-2003, can be contributed not only by a large activation of topic 2 at layer three,
but also by a large activation of some other topic of the same layer (layer two) at the previous time.
For example, topic 41 of layer two on “ISR-PSE, IND-PAK, RUS-UKR, GEO-RUS, AFG-PAK,
SYR-USA, MNE-SRB” could be associated with the activation of topic 46 of layer two on “IND-PAK,
RUS-TUR, ISR-PSE, BLR-RUS” at the previous time; and topic 99 of layer two on “PRK-KOR,
JPN-USA, CHN-USA, CHN-KOR, CHN-JPN, USA-RUS” could be associated with the activation of
topic 63 of layer two on “IRN-USA, CHN-USA, AUS-CHN, CHN-KOR” at the previous time.

Another instructive observation is that topic 140 of layer one on “IRQ-USA, IRQ-GBR, IRN-IRQ,
IRQ-KWT, AUS-IRQ” is related not only in hierarchy to topic 34 of the higher layer on “IRQ-USA,
IRQ-GBR, GBR-USA, IRQ-KWT, IRN-IRQ, SYR-USA,” but also in time to topic 166 of the same
layer on “ESP-USA, ESP-GBR, FRA-GBR, POR-USA,” which are interactions between the member
states of the North Atlantic Treaty Organization (NATO). Based on the transitions from topic 13 on
“PRK-KOR” to both topic 140 on “IRQ-USA” and 77 on “ISR-PSE,” we can find that the ongoing
Iraq war and Israeli–Palestinian relations regain attention after the six-party talks [7].

To get an insight of the benefits attributed to the deep structure, how the latent representations of
several representative topics evolve over days are shown in Fig. 5(b). It is clear that relative to
these temporal factor trajectories at the bottom layer, which are specific for the bilateral interactions
between two countries, these from higher layers vary more smoothly, whose corresponding high-
layer topics capture the multilateral interactions between multiple closely related countries. Similar
phenomena have also been demonstrated in Fig. 1(b) on GDELT2003. Moreover, we find that a
spike of the temporal trajectory of topic 166 (NATO) appears right before a one of topic 140 (Iraq
war), matching the above description in Fig. 5(a). Also, topic 14 of layer three and its descendants,
including topic 23 of layer two and topic 48 at layer one are mainly about a breakthrough between
RUS and Azerbaijan (AZE), coinciding with Putin’s visit in January 2001. Additional example results
for the topics and their hierarchical and temporal relationships, inferred by DPGDS on different
datasets, are provided in the Appendix.
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Figure6:LearnedtransitionstructureonICEWS2001-2003fromthesameDPGDSdepictedin
Fig.5.Shownin(a)-(c)aretransitionmatricesforlayers1,2and3,respectively,withadarkercolor
indicatingalargertransitionweight(between0and1).

InFig.6,wealsopresentasubsetofthetransitionmatrixΠ(l)ineachlayer,correspondingtothe

toptentopics,someofwhichhavebeendisplayedinFig.5(b).ThetransitionmatrixΠ(l)captures
thecross-topictemporaldependenceatlayerl.FromFig.6,besidesthetemporaltransitionsbetween
thetopicsatthesamelayer,wecanalsoseethatwiththeincreaseofthelayerindexl,thetransition

matrixΠ(l)morecloselyapproachesadiagonalmatrix,meaningthatthefeaturefactorsbecome
morelikelytotransittothemselves,whichmatchesthecharacteristicofDPGDSthatthetopicsin
higherlayershavetheabilitytocoverlonger-rangetemporaldependenciesandcontainmoregeneral
information,asshowninFig.5(a). Withboththehierarchicalconnectionsbetweenlayersand
dynamictransitionsatthesamelayer,distinctfromtheshallowPGDS,DPGDSisequippedwitha
largercapacitytomodeldiversetemporalpatternswiththehelpofitsdeepstructure.

5 Conclusions

WeproposedeepPoissongammadynamicalsystems(DPGDS)thattaketheadvantageofaprobabilis-
ticdeephierarchicalstructuretoefficientlycapturebothacross-layerandtemporaldependencies.The
inferredlatentstructureprovidesrichinterpretationforbothhierarchicalandtemporalinformation
propagation.ForBayesianinference,wedevelopbothaBackward-Upward–Forward-Downward
GibbssamplerandastochasticgradientMCMC(SGMCMC)thatisscalabletolongmultivariate
count/binarytimeseries.ExperimentalresultsonavarietyofdatasetsshowthatDPGDSnotonly
exhibitsexcellentpredictiveperformance,butalsoprovideshighlyinterpretablelatentstructure.
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