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Abstract

Recently, considerable research effort has been devoted to developing deep archi-
tectures for topic models to learn topic structures. Although several deep models
have been proposed to learn better topic proportions of documents, how to leverage
the benefits of deep structures for learning word distributions of topics has not yet
been rigorously studied. Here we propose a new multi-layer generative process
on word distributions of topics, where each layer consists of a set of topics and
each topic is drawn from a mixture of the topics of the layer above. As the topics
in all layers can be directly interpreted by words, the proposed model is able to
discover interpretable topic hierarchies. As a self-contained module, our model can
be flexibly adapted to different kinds of topic models to improve their modelling
accuracy and interpretability. Extensive experiments on text corpora demonstrate
the advantages of the proposed model.

1 Introduction

Understanding text has been an important task in machine learning, natural language processing, and
data mining. Text is discrete, unstructured, and often highly sparse. A popular way of analysing texts
is to represent them as a set of latent factors via topic modelling or matrix factorisation. With great
success in modelling text, probabilistic topic models discover a set of latent topics from a collection
of documents. Those topics, as latent factors, can be interpreted by distributions over words and used
to derive low dimensional representations of the documents. Specifically, most existing topic models
are built on top of the following generative process: Each topic is a distribution over the words (i.e.,
word distribution, WD) in the vocabulary; each document is associated with a topic proportion (TP)
vector; and a word in a document is generated by first drawing a topic according to the document’s
TP, then sampling the word according to the topic’s WD.

In a Bayesian setting, TPs and WDs are both imposed on prior distributions. For example, one
commonly-used prior for TP and WD is a Dirichlet distribution, as in Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). Recently, deep hierarchical priors, especially imposed on TPs, have been
developed to generate hierarchical document representations as well as discover interpretable topic
hierarchies. For example, there are hierarchical tree-structured constructions based on the Dirichlet
Process (DP) or Chinese Restaurant Process (CRP), such as the nested CRP (nCRP) (Blei et al.,
2010) and the nested hierarchical DP (Paisley et al., 2015); deep constructions based on restricted
Boltzmann machines and neural networks such as the Replicated Softmax Model (RSM) (Hinton and
Salakhutdinov, 2009), the Neural Autoregressive Density Estimator (NADE) (Larochelle and Lauly,
2012), and the Over-replicated Softmax Model (OSM) (Srivastava et al., 2013); models based on
variational autoencoders (VAE) including Srivastava and Sutton (2017); Miao et al. (2017); Zhang
et al. (2018). Recently, models that generalise the sigmoid belief network (Hinton et al., 2006) have
been proposed, such as Deep Poisson Factor Analysis (DPFA) (Gan et al., 2015), Deep Exponential
Families (DEF) (Ranganath et al., 2015), Deep Poisson Factor Modelling (DPFM) (Henao et al.,
2015), and Gamma Belief Networks (GBNs) (Zhou et al., 2016).
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Compared with the considerable interest in deep models on TPs, to our knowledge, the counterparts
on WDs have not been fully investigated. In this paper, we propose a new multi-layer generative
process on WDs, as a self-contained module and an alternative to the single-layer Dirichlet prior.
In the proposed model, WDs are the output units of the bottom layer in a DBN with hidden layers
parameterised by Dirichlet-distributed hidden units and connected with gamma-distributed weights.
Specifically, each Dirichlet unit in a hidden layer is a probability distribution over the words in the
vocabulary and can be view as a “hidden” topic. In each layer, the Dirichlet prior of a topic is a
mixture of the topics in the layer above. As the hidden units are drawn from Dirichlet, the proposed
model is named the Dirichlet Belief Network, hereafter referred to as DirBN2.

Compared with existing related deep models, DirBN has the following appealing properties: 1)
Interpretability of hidden units: Every hidden unit in every layer of DirBN is a probability dis-
tribution over the words, making them real topics that can be directly interpreted. 2) Discovering
topic hierarchies: The mixture structure of DirBN enables the model to enjoy a straightforward
way of discovering semantic correlations of topics in two adjacent layers, which further form topic
hierarchies with the multi-layer construction of the model. Due to the intrinsic abstraction effect
of DBN, the topics in the higher layers are more abstract and can be treated as the generalisation
of the ones in the lower layers. 3) Better modelling accuracy: It is known that TPs are local
variables (specific to individual document), while WDs are global variables over the target corpus.
Unlike many other hierarchical parallels on TP, DirBN imposes a deep structure on WD, which
“absorbs the information” from the entire corpus. It makes DirBN be able to get better modelling
accuracy especially in the case of sparse texts such as tweets and news abstracts, where the context
information of an individual document is not enough to learn a good model using existing approaches.
4) Adaptability: As many sophisticated models on TPs usually use a simple Dirichlet prior on WDs,
including the well-known ones such as Supervised Topic Model (Mcauliffe and Blei, 2008) and
Author Topic Model (Rosen-Zvi et al., 2004), our DirBN can be easily adapted to them to further
improve modelling accuracy and interpretability.

In conclusion, the contributions of this paper include: 1) We propose DirBN, a deep structure
that can be used as an advanced alternative to the Dirichlet prior on WDs with better modelling
performance and interpretability. 2) We demonstrate our model’s adaptability by applying DirBN
with several well-developed models, including Poisson Factor Analysis (PFA) (Zhou et al., 2012),
MetalLDA (Zhao et al., 2017a), and GBN (Zhou et al., 2016). 3) With proper data augmentation and
marginalisation techniques, DirBN enjoys full local conjugacy, which facilitates the derivation of a
simple and effective inference algorithm.

2 The proposed DirBN

In this section, we introduce the details of the generative and inference processes of DirBN.

2.1 Generative process

We first define the essential notation and review the basic framework of topic modelling, followed by
the details of the proposed DirBN. Assume that the bag-of-words of document d in a corpus with
N documents and V unique words in the vocabulary are stored in a count vector 4 € Ny . A topic
model with K topics is composed of the TP vector 8, € Rf for each document d and the WD vector

¢, € RK for each topic k (k € {1,---, K}). To generate a word in document d, one can first sample
a topic according to its TP, and then sample the word type according to the topic’s WD. Given this
framework, many prior constructions of TPs have been proposed, such as the Dirichlet distribution
in LDA, logistic normal distributions for modelling topic correlations in Correlated Topic Model
(CTM) (Lafferty and Blei, 2006), nonparametric priors like the Hierarchical Dirichlet Process (Teh
et al., 2012), and recently-proposed deep models like DPFA (Gan et al., 2015), DPFM (Henao et al.,
2015), and GBN (Zhou et al., 2016). Unlike the extensive choices for constructing TP, the symmetric
Dirichlet distribution on WDs still dominates in many advanced topic models. Here DirBN is a new
hierarchical approach of constructing WDs, detailed as follows.

2Code available at https://github. com/ethanhezhao/DirBN
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DirBN with 3 layers

Figure 1: Demonstration of the generative process of DirBN with three layers.

A DirBN with T layers leaves the TPs of the basic framework untouched and draws ¢;, according to
the following generative process:

o)) ~ Diry (1),
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where 1) Ga(—, —) is the gamma distribution with shape and scale parameters and Diry (—) is the

Dirichlet distribution®; 2) The superscript with a bracket over a variable indicates which layer it
belongs to and k; € {1,---, K.} is the topic index in the ¢-th layer; 3) The output of DirBN is q’)(l)

which corresponds to ¢, in the basic framework and hereafter, we use (;b,€1 instead; 4) We further

impose gamma priors on the following variables: n ~ Ga(ag, 1/bo), 7,221 ~ Ga(fyét)/Kt, 1/c(gt)),
(t)

v ~ Ga(eo, fo), cét) ~ Ga(go, 1/ho), and ¢¥) ~ Ga(go, 1/ho). The generative process of a topic
model equipped with DirBN is demonstrated in Figure 1.

The idea of our DirBN can be summarised as follows:

1. From a bottom-up view, DirBN is a multi-layer matrix factorisation, which factorises the
matrix of the WDs in the ¢-th layer as: ®() ~ Dir(®(+VB®). Here we define ) ¢

RVXKt ((j)(t) is the k;-th column) and B(®) ¢ RK”I K (ﬁ(f) is the k;-th column). From a
top -down view, the model can be considered as a stochastlc feedforwaxd network (Tang and
Salakhutdinov, 2013), where the input matrix in <I’(T), the output matrix is <I>(1), and the
stochastic units are drawn from the Dirichlet distribution.

2. As DirBN is a Bayesian probabilistic model, consider a DirBN with only two layers as
an example: each first-layer topic qb,(vll) is drawn from a Dirichlet with the topic-specific

asymmetric parameter 1/;,(611), which is a mixture of the second-layer topics. So the statistical
strength is shared via the mixture, which plays an important role in handling sparse texts.

3. In DirBN, not only in the bottom layer, but also in any other layer ¢, each hidden unit is
a distribution over the vocabulary and can be viewed as real topic directly interpreted by
words. Although the bottom layer serves as the actual WDs for generating the words, the
topics in the higher layers are involved with the belief prorogation in the network.

4. The weight /Blgillkt is drawn from a hierarchical gamma prior (i.e., the shape parameter

71(@21 of the gamma prior on 5I(Vtt)+1kt is also drawn from a gamma). It allows topics in
the (¢ + 1)-th layer to contribute differently to those in the ¢-th layer. In addition, the

hierarchical structure on ﬁg)ﬂkt is similar to the one in Zhou (2015), which provides an

3 can be a vector as a set of asymmetric parameters or a scalar as a symmetric parameter of Dirichlet



intrinsic shrinkage mechanism on ,Bl(ft). In other words, each k; is expected to be sparsely
connected by a subset of k;;1. We will demonstrate the shrinkage effect of DirBN in the
experiments.

2.2 Inference process

The learning of DirBN can be done by the inference of its latent variables, i.e., ®*) and B® for
all . With several data augmentation techniques, we are able to derive a layer-wise Gibbs sampling
algorithm facilitated by local conjugacy. Given 8 and ¢ (despite their constructions), a topic model
usually samples the topic assignment of each word in the corpus. After that, each topic k; is associated
with a vector of word counts, denoted as a:,(;l) = [5”(12 - x%},)g ], which encodes the semantic
information of topic k; and is one of the input count vectors of DirBN in the inference process.
Given the input vectors, the inference of DirBN involves two key steps: 1) propagating the semantic
information of the input vectors up to the top layer via latent counts; 2) updating ®(*) and B(*) down
to the bottom given the latent counts. Without loss of generality, we illustrate the inference details
with a two-layer DirBN as follows*:

Propagating the latent counts from the bottom up By integrating qbgl) out from its multinomial
likelihood, we can get the likelihood of 1/; k, as:

2 (w® P P + i)
(1/) ) 1) 1) €] ’
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where I'(—) is the gamma function, w(l) ZV 1/)1()2)1 and x ZV :z:f)lk) By integrating (;5,(;1)
1)

out and introducing two auxiliary variables ¢, °~ and yf}}c) , Eq. (2) can be augmented as (Zhao et al.,

2017a):
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where q( )~ Beta(%,&xf,ii) and yfj? ~ CRT (:cfjlk)l , ¢vk1)- Here CRT stands for the Chinese
Restaurant Table distribution (Zhou and Carin, 2015; Zhao et al., 2017b). Now we can define

y,(:l) [yi k)l SN y$ ,1 |, the latent count vector derived from the input count vector wgl)

With wv = ZkK; Dokes BkQ %,» We can then distribute the latent count yf} k) on z/J | to each second
layer topic ko by:

(2) 5(1)
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where zl()}c)z %, 1s the latent count allocated to k2 and Zfz SC)Z ky = yi}c)l

We now note iE(Q) [argil, - 33&/21)9 | where x E vkzkl sc,(f) can be viewed as one of the

output count vectors of the first layer and also the input count vector of the second layer topic ka.

In conclusion, to propagate the semantic information from the first to the second layer, we fist derive

(1) from xi k) , then distribute y, k) to all the second layer topics (i.e., zg ki, )» and finally aggregate

(1) (2)
Zuk k1 into ka

Updating the latent variables from the top down After the latent counts are propagated, we start
updating the latent variables from the top layer (i.e. the second layer here). Given wg , qb;i) is easy
to sample from its Dirichlet posterior. With zl(}?? k, and ZL/ d),(i)v = 1, we can sample 5,(3,“ from its
gamma posterior given the following likelihood:

oz g™ e
£(Bibh, ) oc e P B (51 s, )

* Omitted details of inference as well as the overall algorithm are given in the supplementary materials.



where z(,:; oy = ZX zﬁﬂl k- Given the newly sampled gbl(i) and Bl(ci)kl’ Wwe can recompute 1/’531) and

sample qb,(cll) from its Dirichlet posterior. Now the inference of a two-layer DirBN is done.

3 Using DirBN in topic modelling

DirBN is a self-contained module on ¢, leaving 8 untouched. Therefore, it can be used as an
alternative to the simple Dirichlet prior on ¢ in many existing models. The adaptability of DirBN
enables us to easily apply it to advanced models so that those models can benefit from the advantages
of DirBN. To demonstrate this, we adapt the proposed DirBN structure to the following models:

PFA+DirBN Poisson Factor Analysis (PFA) is a popular framework for topic analysis (DPFA (Gan
et al., 2015), DPFM (Henao et al., 2015), GBN (Zhou et al., 2016) can be viewed as a deep extension
to PFA). Specifically, we use the Bayesian nonparametric version of PFA named BGGPFA (Zhou
et al., 2012), where 6, is constructed from a negative binomial process and ¢, is drawn from a
Dirichlet distribution. Note that there are close relationships between PFA and LDA, and between
BGGPFA and HDP (Teh et al., 2012), analysed in Zhou (2018). Here we replace the Dirichlet
construction on ¢ with DirBN, yielding a model named PFA+DirBN.

MetaLDA+DirBN Metal.LDA (Zhao et al., 2017a, 2018a) is a supervised topic model that is able
to incorporate document labels to inform the learning of 8,. Keeping the structure on 6 untouched,
we replace the MetaLDA'’s structure on ¢ with our DirBN to get a combined model that discovers
the topic hierarchies informed by the document labels. The proposed model is able to discover the
correlations between labels and topic hierarchies.

GBN+DirBN Recall that GBN (Zhou et al., 2015, 2016) imposes a hierarchical structure on 6,
which is able to learn multi-layer document representations and topic hierarchies. Here we combine
DirBN and GBN together to yield a “dual” deep model, where the GBN part is on 6 and the DirBN
part is on ¢. Both parts discover topic hierarchies and the bottom-layer topics are shared by the two
parts/hierarchies. It would be interesting to see how the two deep structures interact with each other.

4 Related work

As the proposed model introduces a hierarchical architecture on WDs (i.e., ¢) in topic models, we first
review various priors on ¢, starting with the ones on sampling/optimising the Dirichlet parameters in
topic models. The Dirichlet parameters in topic models were studied comprehensively in Wallach
et al. (2009), which showed that Dirichlet with a symmetric parameter sampled from an uninformative
gamma is the best choice. Actually, our DirBN can be reduced to this choice if 7" = 1 (i.e., DirBN-1,
with one layer only). However, unlike the sampling/optimising approaches used in Wallach et al.
(2009), DirBN-1 uses a negative binomial augmentation shown in Eq. (3), which leads to a simpler
inference scheme. Recently, models like Zhao et al. (2017a,c, 2018b) construct informative and
asymmetric Dirichlet priors by taking into account some external knowledge like word embeddings.
Whereas DirBN learns the asymmetric priors purely based on the context of the target corpus.

Instead of Dirichlet, the Pitman-Yor process (PYP) has been used on WDs to model the power-law
distribution of words, as in Sato and Nakagawa (2010); Buntine and Mishra (2014). Chen et al. (2015)
used a transformed PYP prior on ¢ to model multiple document collections. Lindsey et al. (2012)
imposed a hierarchical PYP prior on ¢ to discover word phrases. Besides PYP, the Indian Buffet
Process (IBP) has been used as a prior on ¢ to introduce word focusing on topics, as in Archambeau
et al. (2015). In general, existing models use different priors on ¢ for modelling various linguistic
phenomena, which have different purposes to DirBN. The deep structures induced by DirBN on WDs
have not yet been rigorously studied.

To our knowledge, most existing models explore the structure of topics by imposing a
deep/hierarchical prior on 6. For example, hierarchical PYPs were used for domain adaptation
in language models (Wood and Teh, 2009) and topic models (Du et al., 2012). nCRP (Blei et al.,
2010) models topic hierarchies by introducing a tree-structured prior. Paisley et al. (2015); Kim
et al. (2012); Ahmed et al. (2013) extended nCRP by either softening its constraints or applying it to
different problems. Li and McCallum (2006) proposed the Pachinko Allocation model (PAM), which
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Figure 2: (a): Histograms of the normalised (latent) words counts. (b): B,

captures the topic correlations with a directed acyclic graph. Recently, several deep extensions of
PFA on 6 have been proposed, including DPFA (Gan et al., 2015), DPFM (Henao et al., 2015), and
GBN (Zhou et al., 2016). DPFM and GBN are the most related models to ours, which are also able
to discover topic hierarchies. In DPFM and GBN, the higher-layer topics are not distributions over
words but distributions over the topics in the layer below (they are called “meta-topics” in DPFM).
To interpret those meta-topics, one needs to project them all the way down to the bottom-layer
topics with matrix multiplication. Whereas in our model, the topics on all the layers are directly
interpretable.

5 Experiments

The experiments were conducted on three real-world datasets, detailed as follows: 1) Web Snippets
(WS), containing 12,237 web search snippets labelled with 8 categories. The vocabulary contains
10,052 word types. 2) Tag My News (TMN), consisting of 32,597 RSS news labelled with 7 categories.
Each document contains a title and a description. There are 13,370 word types in the vocabulary. 3)
Twitter, extracted in 2011 and 2012 microblog tracks at Text REtrieval Conference (TREC)?. It has
11,109 tweets in total. The vocabulary size is 6,344.

With the framework of PFA, we compared three options of constructing ¢: (1) The default setting
of PFA, where ¢ is drawn from a symmetric Dirichlet distribution with parameter 0.05, i.e., ¢, ~
Diry,(0.05); (2) PFA+Mallet, where ¢, ~ Diry () and oy is sampled by Mallet ®; (3) PFA+DirBN,
the proposed model, where ¢, is drawn from an asymmetric Dirichlet distribution specific to k,
the parameter of which is constructed with the higher-layer topics. Note that Wallach et al. (2009)
tested the option using specific asymmetric Dirichlet parameter, i.e., ¢, ~ Diry ([, - - , ay]), but
the performance is not as good as the symmetric parameter (the second one above). In addition,
following a similar routine, we compared MetaLDA (Zhao et al., 2017a), and GBN (Zhou et al.,
2016) with/without DirBN. Note that PFA is a widely used Bayesian topic model, MetalLDA is the
state-of-the-art topic model capable of handling sparse texts, and GBN is reported Cong et al. (2017)
to outperform many other deep models including DPFA (Gan et al., 2015), DPFM (Henao et al.,
2015), nHDP (Paisley et al., 2015), and RSM (Hinton and Salakhutdinov, 2009).

For all the models, we ran 3,000 MCMC iterations with 1,500 burnin. For DirBN, we set ag =
bo = go = hp = 1.0 and ey = fy = 0.01. For PFA, MetalLDA, and GBN, we used their original
implementations and settings, except that ¢ is drawn from DirBN in the combined models. For all
the models, the number of topics in each layer of DirBN was set to 100, i.e., K7 = --- = K7 = 100.
For GBN and GBN+DirBN, we set the number of topics in each layer of GBN to 100 as well. Due to
the shrinkage mechanisms of PFA, GBN, and DirBN, the number of active topics will be adjusted
according to the data. In all the experiments, we varied the number of layers of DirBN 7" from 1 to 3.
For GBN+DirBN, the dual deep model, we fixed the number of layers of GBN as 3.

Shttp://trec.nist.gov/data/microblog.html
Shttp://mallet.cs.umass.edu
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Figure 3: Perplexity (the vertical axis) with varied proportion (the horizontal axis) of the words for
training in the training documents. (a-c): Results of the models based on PFA on WS, TMN, Twitter.
(d-f): Results of the models based on GBN on WS, TMN, Twitter. (g,h): Results of the models
based on MetaLDA on WS and TMN. The errorbars indicate the standard deviations of five runs.
The number of a model indicates the number of layers used in DirBN. The results of MetaLDA and
document classification on Twitter are not reported due to the unavailability of labels.

Demonstration of DirBN’s shrinkage effect As previously discussed, DirBN has an intrinsic
shrinkage mechanism that is able to automatically learn the number of active topics in each layer (i.e.,
the network width). We empirically demonstrate the shrinkage effect in Figure 2, with the results
of PFA+DirBN-3 on the TMN dataset. Figure 2a plots the histograms of the normalised (latent)

words counts ) xffk)f /2 ok, xffk)f for all k; where xf)tk)f is the word count for topic k;. The blue and
red bars are for the first- (f = 1) and the second-layer (¢ = 2) topics, respectively. The histogram
indicates the number of topics ( the vertical axis) that are with a specific word count (the horizontal
axis). A topic with a larger word count is more important. The shrinkage effect is that large proportion
of the topics are with very small word counts, indicating that the number of effective topics is less
than the truncation (i.e., Ky = 100). This is more obvious, in the second layer. Moreover, we display
log B(") as an image in Figure 2b. The vertical and horizontal axes are for the second- and first-layer
topics, respectively. We ranked the first- and second-layer topics by their word counts. The sparsity of
B indicates that the first- and second-layer topics are sparsely connected. This also demonstrates
the shrinkage effect of the model.

Quantitative results We report the per-heldout-word perplexity and topic coherence results. To
compute perplexity, we randomly selected 80% of the documents in each dataset to train the models
and 20% for testing. For each testing document, we randomly used one half of its words to infer its
TP, and the other half to calculate perplexity. Topic coherence measures the semantic coherence in
the most significant words (top words) of a topic. Here we used the Normalized Pointwise Mutual
Information (NPMI) (Aletras and Stevenson, 2013; Lau et al., 2014) to calculate topic coherence



Table 1: Topic coherence with varied proportion of the words for training in the training documents.
=+ indicates the standard deviation of five runs. The best result in each column is in boldface.

WS TMN Twitter
Training words | 20% 40% 100% 20% 40% 100% 20% 40% 100%
PFA -0.070£0.010  0.008+0.002 0.062+0.011 | -0.059+0.008 0.064+0.009 0.103+0.006 | -0.003+£0.003 0.031+0.003  0.0461-0.002

PFA+Mallet | 0.0084+0.004  0.0494+0.005 0.06340.003 | 0.035+0.006  0.0834+0.005 0.10840.005 | 0.0224+0.003  0.03740.002  0.045+0.003
PFA+DirBN-1 | 0.013+£0.003  0.052+0.004  0.060+0.006 | 0.031+0.003  0.080+0.001  0.108+0.008 | 0.019+0.004  0.037+0.004  0.049+0.007
PFA+DirBN-3 | 0.021+£0.005  0.059+0.002  0.068+0.004 | 0.046+0.003  0.090+0.003  0.11140.004 | 0.0244+0.001  0.03840.002  0.0494-0.002

GBN -0.072+£0.013  0.007+0.005 0.069+0.009 | -0.065+0.008 0.063+£0.006 0.106+0.004 | -0.005+0.005 0.032+0.002 0.04740.00
GBN+DirBN-1 | 0.01540.005  0.0574+0.002  0.06940.005 | 0.032+0.002  0.08640.002 0.11240.007 | 0.021£0.004  0.04040.005 0.050+0.005
GBN+DirBN-3 | 0.01840.006  0.061+0.004  0.07540.002 | 0.048+0.003  0.094+0.004  0.11340.004 | 0.025+0.003  0.04040.002  0.051+0.003

Table 2: Topic hierarchy comparison in GBN+DirBN. Each row in boldface is the top 10 words in a
first-layer topic. Each of these topics is associated with three most correlated topics in the second
layer of DirBN (left) and GBN (right), respectively. The number associated with a second-layer topic
is its (normalised) link weight to the first-layer topic.
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score from the top 10 words of each topic and reported scores averaged over top 50 topics with
highest NPMI, where “rubbish” topics are eliminated, following Yang et al. (2015). In the training
documents, we further varied the proportion of the words used in training to mimic the case of sparse
texts. All the models ran five times with different random seeds and we reported the averaged value
with standard deviations.

The results of perplexity and topic coherence are shown in Figure 3 and Table 1, respectively. We
have the following remarks on the results: (1) In general, for the models with DirBN, the performance
is significantly improved compared with the counterparts without DirBN, especially in terms of
perplexity and topic coherence and with low proportion of the training words. (2) In terms of all the
measures, DirBN-2/3 always has better results than DirBN-1. Whereas if we compare GBN with PFA,
its perplexity is worse than PFA’s, especially for sparse texts. This demonstrates that hierarchical
structures on 6 (i.e., GBN) may not perform as well as hierarchical structures on ¢ (i.e., DirBN) on
sparse texts. (3) Although PFA+DirBN-1 and PFA+Mallet both impose a symmetric Dirichlet on ¢,
the former usually has better perplexity. (4) The dual deep model (GBN+DirBN-3) usually performs
the best on topic coherence, which demonstrates the benefits of the deep structures.

Qualitative analysis on topic hierarchies 3 GBN+DirBN is a dual deep model that discovers two
sets of hierarchies, one induced by GBN on 0 and the other induced by DirBN on ¢. The topics in the

"We used the Palmetto package (http://palmetto.aksw.org) with a large Wikipedia dump.
$More visualisations of topic hierarchies are shown in the supplementary material.
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Figure 4: Topic hierarchies discovered by MetaLDA+DirBN. The topics in the yellow and blue
rectangles are the second and first layer topics in DirBN and the correlated labels to the first-layer
topics are shown at the bottom of each figure. Thicker arrows indicate stronger correlations.

first layer of DirBN connect the two sets of hierarchies. In Table 2, we show the first-layer topics and
the correlated second-layer topics in the two hierarchies. It is interesting to see that the second-layer
topics of DirBN are more abstract. For example, the second topic is about teams and player in NBA,
while its correlated second-layer topics are more general words for sports. Moreover, DirBN is able
to discover layer-wise semantically meaningful topic correlations with fewer overlapping top words.
This is because GBN combines the words in the first-layer topics to form the second-layer topics,
whereas DirBN decomposes the first-layer topics into the second-layer ones.

In MetaLDA+DirBN, the MetalLDA part is able to use document labels to construct TPs (Zhao et al.,
2017a), by learning a correlation matrix between the labels and topics, while the DirBN part learns
the topic hierarchy. The first-layer topics of DirBN link the correlation matrix and the topic hierarchy
together. Figure 4 shows the sample linkages between topic hierarchies and labels on TMN, where
the documents are labelled with 7 categories: 1 sport, 2 business, 3 us, 4 entertainment, 5 world, 6
health, 7 sci-tech. One can observe that there is a well correspondence between the topic hierarchies
and the labels.

6 Conclusions

We have presented DirBN, a multi-layer process generating word distributions of topics. With
real topics in each layer, DirBN is able to discover interpretable topic hierarchies. As a flexible
module, DirBN can be adapted to other advanced topic models and improve the performance and
interpretability, especially on sparse texts. We have demonstrated DirBN’s advantages by equipping
PFA, MetalLDA, and GBN, with DirBN. With the help of data augmentation, the inference of DirBN
can be done by a layer-wise Gibbs sampling, as a full conjugate model.

Future directions include deriving alternative inference algorithms, such as variational inference (Hoff-
man et al., 2013), conditional density filtering (Guhaniyogi et al., 2018), and stochastic gradient-based
approaches (Chen et al., 2014; Ding et al., 2014; Welling and Teh, 2011).
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