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Abstract: Residues in proteins that are in close spatial proximity are more prone to covariate as their1

interactions are likely to be preserved due to structural and evolutionary constraints. If we can detect2

and quantify such covariation, physical contacts may then be predicted in the structure of a protein3

solely from the sequences that decorate it. To carry out such predictions, and following the work4

of others, we have implemented a multivariate Gaussian model to analyze correlation in multiple5

sequence alignments. We have explored and tested several numerical encodings of amino acids within6

this model. We have shown that 1D encodings based on amino acid biochemical and biophysical7

properties, as well as higher dimensional encodings computed from the principal components of8

experimentally-derived mutation/substitution matrices do not perform as well as a simple twenty9

dimensional encoding with each amino acid represented with a vector of one along its own dimension10

and zero elsewhere. The optimum obtained from representations based on substitution matrices11

is reached by using 10 to 12 principal components; the corresponding performance is less than the12

performance obtained with the 20-dimensional binary encoding. We highlight also the importance of13

the prior when constructing the multivariate Gaussian model of a multiple sequence alignment.14

Keywords: Multiple sequence alignment; Covariation; Contact predictions15

1. Introduction16

The current understanding of the relation between the sequence of a protein and its structure17

remains limited. As of November 2018, we know a lot about protein sequences (more than18

hundred twenty millions of them, if one refers to RefSeq, the NCBI Reference Sequence Database,19

https://www.ncbi.nlm.nih.gov/refseq/, [1]), more and more about their structures (there are20

more than 130,000 structures of proteins in the Protein Data Bank, PDB, http://www.rcsb.org, [2]),21

but we still have difficulties in deciphering the rules that relate a sequence to its corresponding22

three-dimensional structure, a challenge usually referred to as the “holy grail" of computational23

structural molecular biology [3]. In this paper, we focus on one of those rules, namely the prediction of24

geometric proximity of residues (also called residue contacts) in a protein structure from the variability25

of the amino acid sequence of that protein within its family.26

The protein sequences of the same protein from different species vary much more than the27

three-dimensional structure they all adopt. For residues in such a protein to remain in close proximity,28

one hypothesis that has been put forward is that the corresponding positions in the protein sequences29

experience correlated mutations throughout evolution: in the event that one residue of such a pair30
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mutates, the effect of this mutation is likely to be accommodated by a corresponding mutation of31

the other residue of this pair. This hypothesis, however, might not be true, as discussed in details by32

Talavera et al. [4]. In their studies, they have shown that coordinated substitutions require unfeasibly33

long times. They do find that pairs of residues with strong covariation signals tend to have low34

evolutionary rates, with such residues being located primarily in the cores of proteins, thereby in close35

proximity. Hence, it remains that, in both scenarios, i.e. co-variations due to molecular co-evolution or36

due to low evolutionary rates within the protein core, if we can detect co-variation between positions37

within a multiple sequence alignment (MSA), we should be able to predict geometric contacts between38

residues in the corresponding protein structure. We should note also that co-variations do not always39

mean spatial proximity; this was discussed in length in the recent analysis of coevolution between40

distant residues by Baker and co-workers [5].41

The possibility to detect co-variations within a MSA has significantly increased with the surge42

in the number of protein sequences that are available. The related search for an inference between43

those co-variations and actual contacts in protein has been the focus of decades of research, and recent44

breakthroughs have lead to increased precision in predicting contacts from sequence alone (for recent45

reviews on this topic, see [6–9]. It should be noted that analyses of covariation have been used with46

success outside the protein structure prediction problem, from the prediction of the structure of protein47

complexes [8,10], and protein conformational transitions [11,12], RNA structure prediction [13–15],48

and prediction of ordered states for disordered proteins [16] to the prediction of mutation effects in49

proteins [17].50

The idea of inferring spatial proximity from direct covariance of amino acid distributions in pairs51

of position within a MSA originated from the early 1980s as it was used then for predicting virus52

functions[18] and a little later (in the 1990s) to predict contacts in proteins [19,20]. Success, however,53

was limited, possibly for a reason that can be characterized as follows [7,21]: when a residue i is in close54

proximity to a residue j, and j itself is in contact with another residue k, then i and k are likely to exhibit55

covariation, even if they are not close in space. Prediction of spatial proximity from co-variations56

therefore require that direct interactions (between i and j, and between j and k) be distinguished from57

possible indirect interactions (between i and k). Two approaches are currently being developed for this58

task: those that generate a statistical model for protein sequences by using techniques from statistics or59

physics and those that learn this model directly from the data by using machine-learning techniques.60

Among the statistical techniques used for analyzing co-variations in MSA, we can cite sequence-based61

probabilistic formalisms, proposed as early as 2002 [22], message-passing algorithms [23], mean-field62

methods [21], and pseudo-likelihood [24,25] or multivariate Gaussian [26,27] approximations. Here63

we focus on the latter, namely a representation of covariations using a multivariate Gaussian model.64

The multivariate Gaussian modeling of a MSA is an approximation. It relies on a Gaussian65

interaction model in which amino acids are represented by small real-valued vectors. The covariance66

matrix of this Gaussian model is estimated from the observed covariance matrix computed from the67

MSA, and its inverse, namely the precision or concentration matrix is used to predict the direct contacts68

in the corresponding protein structure [26]. In its current implementations, namely PSICOV [26], and69

GaussDCA [27], the vector r(a) representing an amino acid of type a is defined by a binary encoding,70

with r(i) = 1 if i = a, and zero otherwise. This is a vector of size 20, to account for the 20 types of amino71

acids. A sequence S in an MSA of length N is then represented with an array of numerical values of72

size 20N, and the corresponding observed covariance matrix for the MSA is of size 20N × 20N. The73

large size of this matrix leads to a problem of under-sampling: not every amino-acid will be observed74

at every site of the MSA, leading to a covariance matrix that is singular. To compute the inverse of75

this singular covariance matrix, Jones et al proposed a constrained sparse inverse estimation using the76

graphical Lasso method [26], while Baldassi et al added a prior distribution to remove the singularity,77

much akin to the concept of pseudo counts [27]. In this paper, we propose complementary approaches78

to tackle the problem of under-sampling, in which the size of the vector representing an amino acid is79

reduced and numerical components are introduced.80
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When writing down a protein sequence, amino acids are usually pictured either with a one-letter81

code, or a three-letter code. Both encodings are simply representations of the amino acid name, and82

therefore do not contain any information per se. Alternately, encoding amino acids as vectors of83

numerical values has the advantage of increasing the information content of a protein sequence, should84

those numerical values represent physico-chemical, or other properties of the amino acids. Such85

representations are expected to allow finer analyses of the functions of the proteins they represent.86

French and Robson [28], Swanson [29], and Kidera et al [30] may have been the first to implement87

this concept in the early 1980s. Swanson observed that the 20x20 Dayhoff substitution matrix [31] is88

akin to mapping amino acids into a 20 dimensional feature space. By applying dimension reduction89

techniques, three lower dimensional representations of amino acids were proposed in 1D, 2D, and90

3D spaces, with the 2D version expected to be the most reasonable as it was consistent with other91

amino acid properties [29]. In parallel, Kidera et al proposed to encode each amino acid with ten92

independent factors obtained by principal component analyses (PCA) of more than one hundred and93

eighty properties of the twenty amino acids [30]. Such a representation has been used to analyze94

protein sequences using Fourier analysis [32–34], with applications to fold recognition for homology95

modeling [35]. It should be noted also that a numerical encoding of amino acids enables the definition96

of sophisticated metrics for comparing sequences [36]. It also leads to the concept of geometric97

representations of protein sequences, and their applications for sequence classification and protein98

fold recognition (see [37] and references therein).99

This paper draws from this concept and describes a feature-based representation of protein100

sequences. In this representation, each amino acid is encoded by a unique vector of features that101

are derived either from the physico-chemical properties of the amino acid considered or from a102

lower dimensional representation of an amino substitution matrix. We analyze how those reduced103

representations compare to the binary encoding currently used in multivariate Gaussian models for104

residue contact prediction, with respect to the need for correction for under-sampling, as well as with105

respect to their prediction accuracy.106

The paper is organized as follows. The following section covers the concept of a multidimensional107

Gaussian model of an MSA and its application to contact prediction. The result section describes108

applications of different encoding of amino acids for protein contact prediction, using a test set of 150109

multiple sequence alignments originally developed as a test set for PSICOV [26]. We then conclude110

with a discussion of future research directions.111

2. A Gaussian model for protein contact prediction112

The multivariate Gaussian model is well-studied in statistics; it has been introduced independently113

for analyzing multiple sequence alignments by Jones et al. [26] and Baldassi et al. [27]. Here we114

briefly review the main ideas behind this model with respect to its application for contact prediction in115

proteins from sequence information contained in MSAs.116

2.1. A multiple sequence alignment and its numeric representation117

The input data is the MSA generated from multiple homologous sequences for the same protein.118

Such a MSA is described by N aligned protein sequences of length L. Each sequence Sn in the alignment119

is a string of characters taken from an alphabet of size 21 including the 20 standard amino acids plus120

one character for gaps. An amino acid of type i is then represented by a vector ri whose size s and121

component values depend on the encoding that is chosen. In the work of Jones et al. [26] and Baldassi122

et al. [27], s is set to 20, and ri(k) = δik where δ is the Kronecker delta. Namely, ri is a vector whose123

components are 0, except for the component index corresponds to the type i, in which case it is 1. The124

vector representing a gap is always set to 0. In this study, we will explore different encodings for ri.125

Once the encoding is defined, the letter-based sequence Sn of length L is represented by a126

real-valued sequence Xn, of length Ls, obtained by replacing each letter by its corresponding vector in127

the encoding.128
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The empirical mean sequence over the MSA is then computed as:129

X =
1
N

N

∑
n=1

Xn (1)

Similarly, the empirical covariance matrix C for the MSA is computed as:130

C = C(MSA, X) =
1
N

N

∑
n=1

(Xn − X)T(Xn − X) (2)

C is a matrix of size Ls × Ls.131

2.2. A Gaussian model for the alignment132

The main assumption in this approach is that each sequence Xn in the MSA is drawn from a133

multivariate Gaussian distribution characterized by a mean vector µ and a covariance matrix Σ, with134

the probability:135

P(Xn|µ, Σ) = (2π)−
Ls
2 |Σ|−

1
2 exp

[

−
1
2
(Xn − µ)TΣ−1(Xn − µ)

]

(3)

in which |Σ| is the determinant of Σ.136

Assuming that the N sequences in the MSA are statistical independent, the probability, or137

likelihood of the data under this model is given by138

P(MSA|µ, Σ) =
N

∏
n=1

P(Xn|µ, Σ)

= (2π)−
NLs

2 |Σ|−
N
2 exp

[

−
N

2
tr(Σ−1C(MSA, µ))

]

(4)

with C(MSA, µ) the empirical covariance matrix given by equation 10, but computed with the139

(unknown) true mean of the population of sequences, µ, instead of the empirical mean X. Using the140

maximum likelihood estimator for P(MSA|µ, Σ), the mean vector and the covariance matrix of the141

multivariate model can be estimated as µ = X and Σ = C = C(MSA, X), where the over line highlights142

that these are empirically-derived values [38].143

We note that the independence of the sequences in the alignment is a strong assumption that is144

usually not satisfied in a MSA, due to phylogenic relationships between the sequences. To alleviate this145

problem, a weight is usually associated with each sequence Sn [25,27]. We use the definitions of the146

weights proposed by Baldassi et al. [27], see Material and Methods below for how they are computed.147

2.3. Extracting coupling information from the parameters of the Gaussian model148

In the mean-field approximation, there is a simple relationship between the coupling matrix J149

and the empirical covariance matrix C, namely that J = −C
−1. A similar relationship has been used150

under the Gaussian model. We can see why the inverse is used instead of the direct covariance from151

two perspectives. Notice first that the term in the exponential of the Gaussian model (equation 3) can152

be rewritten as:153

(Xn − µ)TΣ−1(Xn − µ) =
N

∑
i=1

N

∑
j=1

(Xi − µi)(Σ
−1)(i, j)(Xj − µj) (5)

This shows that (Σ−1)(i, j) serves as a coupling between positions i and j in the MSA. From a154

more statistical point of view, Σ−1 is the precision, also called concentration, matrix of the Gaussian155
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model. The precision matrix captures conditional dependencies, which is expected to help differentiate156

direct from indirect couplings that cannot be achieved from the covariance matrix directly.157

Computation of J = C
−1 however assumes that the matrix C is full rank. This is unlikely with158

a 20 letter alphabet, as not every amino acid will be observed at every site of the MSA, even in very159

large protein families. There are many methods to alleviate this problem, from the computation of a160

pseudo inverse, the estimation of a sparse inverse using Lasso methods [26], to the addition of a prior161

distribution. In this work, we use the latter, following the original idea of Baldassi et al. [27]. Briefly,162

we generate a prior as follows. If ri is the vector representing an amino acid of type i, we generate163

the mean vector r and covariance Cr for a distribution sampled uniformly over the 20 types of amino164

acids,165

r =
1
20

20

∑
i=1

ri

Cr =
1
20

20

∑
i=1

(ri − r)T(ri − r) (6)

The prior P(µP, CP) for the whole MSA is then defined by setting its mean µP = [r . . . r]T (with L166

copies of the mean r), and its covariance CP such that CP(i, i) = Cr for any position i in the MSA, and167

CP(i, j) = 0 for any pairs of position i and j in the MSA. This prior is specific to the MSA, and derived168

from a uniform distribution of amino acids at each position in the MSA. The corrected covariance CM169

for the MSA is then defined as:170

CM = λCp + (1 − λ)C + λ(1 − λ)(X − µP)
T(X − µP) (7)

where X and C are the empirical mean sequence and covariance of the MSA, as defined by171

equations 9 and 10, respectively, and λ is a parameter that controls the weight given to the prior.172

The coupling matrix J is computed from the corrected covariance matrix by matrix inversion. It173

should be noted that J is a matrix of size Ls × Ls, i.e. that the “coupling" between a position i and j in174

the MSA is given by a s × s matrix. Each of these small matrices are then transformed into an actual175

score SCij, using the Frobenius norm of J(i, j), and the matrix SC is then corrected by applying an176

average-product-correction, (APC) [25,39]. Details on those two steps are provided in the Material and177

Methods section.178

3. Results179

We have implemented the multivariate Gaussian model described above in a program called180

GaussCovar, following the algorithm described in the Material and Methods section. GaussCovar181

mimics the program GaussDCA proposed by Baldassi et al. [27], with the significant difference that182

we explore different vector representations of the amino acid, when converting a multiple sequence183

alignment into a numerical matrix from which contacts can be predicted. In this section, we describe184

and apply some of those representations, from the binarized 20-dimensional vectors originally used185

by Baldassi et al [27] and by Jones et al [26], a single value for each amino acid, derived from the186

AAindex database [40,41], to vectors derived from projections of BLOSUM matrices onto their principal187

components. We are particularly interested in assessing the balance between performance, and the188

need to add prior information to the Gaussian model.189

GaussCovar takes as input a multiple sequence alignment and outputs a list of predicted contacts,190

in decreasing order of scores. Just like GaussDCA, GaussCovar is fast: its most computer intensive191

parts are the computations of the sequence weights, of order N2 where N is the number of sequence in192

the MSA, and the computation of the inverse of the correct covariance matrix, of order L3 where L is193

the length of the sequences in the MSA.194
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We have tested GaussCovar with different amino acid encodings on two different datasets, each195

with 150 families. We used two different datasets to assess whether the results we obtain are consistent196

over those datasets, in which case they are likely indicators of the properties of GaussCovar and of197

the amino acid encodings, or different on those datasets, in which case they are more likely to be198

indicators of confounding effects specific to the construction of the datasets. The first dataset, PSICOV,199

was originally used for assessing the performance of the namesake program PSICOV [26]. The MSAs200

in PSICOV have a number of sequences N between 511 and 74836, and a length L between 50 and201

266. In parallel, we have used NOUMENON, a more recent dataset based also on 150 protein families,202

significantly different however in its conception than PSICOV [42]. NOUMENON is designed to be as203

bias-free as possible, by only considering protein sequences whose homologues in the MSAs have little,204

or no structural information available in the database of protein structures. As such, NOUMENON is205

expected to mimic more realistic applications of residue contact predictions. NOUMENON contains206

MSAs with a more diverse number of sequences than PSICOV, ranging from N = 2 to N = 513407,207

but with similar lengths L, between 64 and 275. Note that the actual number of sequences may be208

misleading and that a better measure of the information content of a MSA is its effective number of209

sequences, Me f f . This will be discussed below. PSICOV and NOUMENON are described in more210

details in the Material and Methods section below, with links to where their authors have made them211

available.212

Results are presented as averages over the 150 protein families for each dataset, unless specified.213

In particular, we generate the precision or positive predictive value (PPV) curves as functions of the214

number of predicted contacts considered. More specifically, PP(k) is the rate of true positive contacts215

among the top k predicted contacts, where “true" refers to a contact that exists in a gold standard216

protein structure, i.e. a contact between two residues that are close in space (see Material and Methods217

for details). As an overall measure of quality, we compute the area under the PPV curve from k = 1 to218

k = 200, referred to as AUC200. Note that the higher the AUC200, the better the prediction. The best219

possible value for AUC200 is 200.220

3.1. Amino acid representation 1: 20 dimensional binarized vectors221

As a first test, we ran GaussCovar on the two datasets of 150 protein families presented above222

using a simple twenty dimensional (20D) representation of amino acids. To emphasize that we have223

used a 20D representation, we refer to these experiments as Gauss20. In this representation, an amino224

acid of type i is represented with a vector of 20 zeros, except at position i where it is given the value225

1. In figure 1, we compare the performances of Gauss20 for two different values of λ (the weight226

of the prior, see equation 7), namely λ = 0.8 and λ = 0.2, against the performance of the PSICOV227

program, which uses the same representation of amino acids. Results for PSICOV on its namesake228

dataset were kindly provided by its authors [26], along with the dataset itself. In parallel, we obtained229

the program PSICOV (http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/), and ran it over all 150230

MSAs in the NOUMENON dataset. Following the advices provided in the original PSICOV paper [26],231

we set the lasso regularization parameter ρ to a constant value of 0.001 for all MSAs with more than232

100 sequences. We found that PSICOV struggles to converge on a solution for MSAs with a smaller233

number of sequences; for all of those, we increased the ρ parameter to 0.01.234

We observe similar levels of performance between PSICOV and Gauss20 with λ = 0.8 (the235

two-tailed t-probabilities computed when comparing the distributions of Gauss20(λ = 0.8) and236

PSICOV results over the 150 families are always greater than 0.05 at all levels of contacts considered),237

and significantly lower performance for the latter when λ is set to 0.2 (where “significance" comes from238

the fact that the two-tailed t-probabilities computed when comparing the distributions of Gauss20(λ =239

0.8) and Gauss20(λ = 0.8) results over the 150 families are smaller than 0.05 at all levels of contacts240

considered, with the exception of the first few data points, when the number of contacts is below 5).241

Similar relative differences between the performances of Gauss20(λ = 0.8) and Gauss20(λ = 0.2),242

and between the performances of Gauss20(λ = 0.8) and PSICOV are observed between the two243
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datasets considered. Of interest, however, we note that their absolute performances vary greatly244

from one dataset to the other, with all three methods performing better on the PSICOV dataset, with245

approximately a 50% performance drop on the NOUMENON dataset. This behavior was already246

reported [42] for the PSICOV program on the same datasets, and for the program CCMpred that247

implements a method derived from statistical mechanics [43]. The drop is assumed to be related to248

over-estimation of the performances of contact prediction methods on the PSICOV dataset due to bias249

in the selection of the protein families it contains, a bias that was presumably removed when designing250

the NOUMENON dataset.251
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Figure 1. Precision Positive Values (PPV) plotted against the number of predicted contacts for the

PSICOV dataset (left) and the NOUMENON dataset (right). PPV(k) is the rate of correctly predicted
contacts within the first k contacts. Data for the Gaussian models were generated with GaussCovar,
with a 20 dimensional binarized vector representing amino acids, with λ = 0.8 (black curve), or λ = 0.2
(red curve). Data for the PSICOV predictions (blue curve) on the PSICOV dataset were obtained
from the data provided by the authors [26], while the similar data on the NOUMENON dataset were
generated by running directly PSICOV (see text for details). All PPV curves are arithmetic means over
150 protein families. The shaded areas represent standard deviations.

To further investigate the impact of λ, we explored the whole range of its values between 0 and 1,252

with a step size of 0.1. Results are shown in figure 2. The performance of the Gaussian model Gauss20253

is clearly improved as λ is increased, with a peak at λ = 0.8, for both the PSICOV dataset and the254

NOUMENON dataset. As above, we see a drop of performance on the latter. The need for a large255

value for λ was already described for GaussDCA and is therefore not a surprise here as GaussCovar is256

equivalent to GaussDCA when a 20D binarized representation of amino acids. The need for a high257

value for λ can be assigned to the large sparsity of the numerical representation of MSAs with this258

amino acid representation. Even for MSA with a large number of sequences, it is unlikely that all259

amino acids have been observed at each position of the MSA. It is interesting however that the addition260

of a very simple prior improves significantly the performance of GaussCovar. This prior by itself has261

no predictive power, as observed in figure 2 for λ = 1.0.262

The 150 protein families included in each of the two datasets considered are quite diverse,263

within the dataset themselves, and between the datasets. They include alignments with a number of264

sequences N varying from 511 to 74836 for PSICOV, and between 2 and 513407 for NOUMENON.265

We note, however, that N is not a good measure of the information content of a multiple sequence266
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alignment: a MSA with a large number of very similar sequences will likely not be more informative267

(with respect to contact prediction) than a MSA with a smaller number of sequences, but with more268

diversity. One way to account for this effect is to consider the effective number Me f f of sequences269

of a MSA. There are many ways to define this effective number (see for example [44]). Here we270

rely on the definition provided by Baldassi et al [27]; we briefly explain how it is computed in the271

Material and Methods section. To assess whether the need to add the prior differs for alignments272

with different information contents, we repeated the analyses presented above on three subsets of273

the families, namely those with Me f f < 500 (small MSAs), with 500 < Me f f < 1000 (medium MSAs),274

and with 1000 < Me f f (large MSAs). We note that the splitting up of the two datasets into those three275

groups are very different, with approximately equal sized subgroups for PSICOV, with 56, 47, and 47276

as small, medium, and large MSAs, respectively, and skewed distributions for NOUMENON, with 97,277

14, and 39 as small, medium, and large MSAs, respectively, i.e. with many more small MSAs. Results278

of the analyses of the importance of the parameter λ on all three groups of MSAs, for the two datasets279

we consider are shown in the same figure 2. We observe the same behavior over all groups of MSAs,280

namely that the performance of the Gaussian model is improved as λ is increased, with a peak at281

λ = 0.8. These results do mirror those presented in [27] that were computed using the same method,282

but on a different dataset of protein families. The overall performances however differ in the different283

groups, with a significant improvement in the large MSAs group compared to the small MSAs group,284

as intuitively expected. The same behavior is observed on the two datasets, however with much larger285

differences between the three groups of MSAs for the NOUMENON dataset. Results for the large286

MSA are very similar over the two datasets, indicating that a large information content in a MSA is287

usually sufficient to generate good contact prediction results, independent of additional structural288

information.289
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Figure 2. AUC200 plotted against λ, the weight of the prior in the Gaussian model for the PSICOV

dataset (left) and the NOUMENON dataset (right). AUC200, with values between 0 and 200, is a
measure of performance, with higher values indicating better performance. The 150 MSAs in the
datasets are broken down into 3 groups, small (Me f f < 500, medium (500 ≤ Me f f < 1000), and large
(1000 ≤ Me f f ).
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Figure 3. AUC200 plotted against the lengths of the multiple sequence alignments, for different

groups of sizes of those alignments, for the PSICOV dataset (left) and the NOUMENON dataset

(right). All computations are done with Gauss20, with λ = 0.8. Results are shown over all three groups
of MSAs with respect to size (see legend of figure 2 for their definitions), as well as over four groups of
MSA lengths (x-axis).

The MSAs in our dataset are characterized by two parameters, namely their size, N (or more290

appropriately their effective size, Me f f ), and their length, L. We have seen above that the larger Me f f ,291

the better the performance of GaussCovar. To assess the importance of L, we compared the averaged292

AUC200 values for GaussCovar over different ranges of L, over the three groups of MSA effective293

sizes defined above, and over the two datasets PSICOV and NOUMENON, with λ set to 0.8. Results294

are shown in figure 3. The performance of GaussCovar improves as the lengths of the alignments295

increases, for the two datasets. This effect is more important for large MSAs, especially for the PSICOV296

dataset for which performances increase from an average AUC200 of 138 for short sequences, to an297

average AUC200 of 186 for long sequences. One possible explanation is that large proteins have larger298

cores; as co-variations seem to be concentrated in those cores (see [4]), it may explain the improvement299

observed as sequence length increases. Note however that these are averaged behaviors over specific300

groups of MSA lengths. When we plot the AUC200 directly versus the sequence length L, we find301

linear correlations between those two variables of 0.4, 0.49, 0.43, and 0.39 for the PSICOV MSAs in302

the small, medium, and large groups, and for all MSAs, respectively, and of 0.22, 0.54, 0.44, and 0.26303

for the NOUMENON MSAs in the small, medium, and large groups, and for all MSAs, respectively.304

Those correlation coefficients are not significant.305

As Gauss20 with λ = 0.8 performs best on the two datasets of 150 protein families considered, it306

will serve as a reference in the following.307

3.2. Amino acid representation 2: one dimensional property-based vectors308

The 20D representation of amino acids described above only accounts for their alphabetic symbols309

and does not consider their physico-chemical properties. An alternate representation is to consider310

directly one such properties. With this representation in mind, we have considered AAindex, a database311
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of numerical indices representing various physicochemical and biochemical properties of amino acids312

[40,41]. The section AAindex1 of this database contains 566 different options for representing each313

amino acid as one numerical value, with each option corresponding to one property of amino acids.314

Out of those 566 indices, the 402 first originally assembled by Tomii and Kanehisa [45] have been315

clustered into six groups using single-linkage hierarchical cluster analysis. Those six groups, which316

we will refer to as clusters A, B, C, H, P, and O, mostly map with structural or physical properties317

of the amino acids: cluster A relates to alpha helix and turn propensities (118 indices), cluster B to318

beta sheet propensities (37 indices), cluster C to amino acid composition (24 indices), cluster H to319

hydrophobicity (149 indices), cluster P to physicochemical properties of the amino acids (46 members),320

and cluster O to other properties, such as the frequency of left-handed helices (28 members). The321

whole AAindex1 database, including the partitioning of the indices into these 6 clusters, is available at322

https://www.genome.jp/aaindex/.323

We have analyzed the performance of GaussCovar with such a 1D representation of the amino324

acids over the two datasets PSICOV and NOUMENON, testing each of the 402 properties of AAindex1325

for which cluster information is available separately. Each of those tests use a 1D encoding and is326

referred to as Gauss1D. Results are shown in figure 4.327
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Figure 4. Performance of GaussCovar with 1D representations of amino acids over the PSICOV

dataset (left) and the NOUMENON dataset (right). The predictive power of GaussCovar was tested
using one of 402 amino acid properties available in the database AAindex [40,41]. Results are presented
as averages over 6 groups of AAIndex1 scales, as originally defined in [45]. The 6 clusters A, B, C, H, P,
and O correspond to indices related to alpha helix and turn propensities, beta sheet propensities, amino
acid composition, hydrophobicity , physicochemical properties, and other properties, respectively.

For each amino acid index, we explored the whole range of λ values between 0 and 1, with a step328

size of 0.1. The corresponding 402 curves of AUC200 as a function of λ were then regrouped based on329

the cluster id of the index, and summarized for each cluster by simple averaging. The conclusions from330

those experiments are three folds. First, the performance of GaussCovar with such a 1D representation331

is poor, with AUC200 around 40 for the PSICOV dataset, and around 35 for the NOUMENON dataset332
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(those numbers should be compared to AUC200 values around 140 and around 100 for GaussCovar333

with the 20D amino acid representation, averaged over the PSICOV and NOUMENON datasets,334

respectively). GaussCovar with a 1D encoding still performs best on PSICOV, as observed for the 20D335

encoding. Clearly, a 1D representation decreases the differences between the amino acids, thereby336

reducing the performance of the method. Second, Gauss1D seems relatively insensitive to the choice337

of the weight of the prior λ when tested over the PSICOV dataset, while showing a clear trend of338

decrease in performance when the weight of the prior is increased for the tests on the NOUMENON339

datasets. Finally, it seems that the indices from cluster O, i.e. those based on “other" properties of340

amino acids, perform best both for the PSICOV and the NOUMENON datasets. It is unclear why this341

should be the case. We do note that the differences with the other clusters are small.342

3.3. Amino acid representation 3: k dimensional BLOSUM-based vectors343
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Figure 5. These plots represent the 2D (left panels) and 3D (right panels) vector representations of
amino acids as derived from the BLOSUM30 (top), and BLOSUM62 (bottom) matrices. The proximity
of these vectors relate to the chemical similarities of the amino acids they represent. To highlight this
fact, we show the known polar amino acids (Q, R, E, K, H, N, D, T, P, and S) in red, the hydrophobic
amino acids (M, V, L, I and C) in blue, and the aromatic amino acids (Y, F, and W) in magenta. Note
that the two small amino acids, A and G (in green), stand out.

Not all contacts in proteins are specific. While hydrogen bonds are formed between residues344

within secondary structures, there are many non-specific hydrophobic contacts in the core of a protein,345

between those secondary structures. Hydrophobic contacts with an isoleucine, or with a leucine residue,346

for example, are very similar to each other. It is therefore natural to account for such similarities when347

identifying co-variations for residues in cores of proteins. Similarities between amino acids are usually348

derived from reference multiple sequence alignments and available under the format of a substitution349
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matrix. Such a matrix stores the odds that any given amino acid can be replaced by any other. The350

BLOSUM matrices are among the most popular of those matrices [46,47]. They have been derived351

from reference BLOCKs sequence alignments, using different cutoffs in the sequence identity within a352

BLOCK. For example, the BLOSUM62 matrix is derived from alignments with sequences that are at353

most 62% identical; this matrix is considered to lead to good performance for database search [46].354

Substitution matrices describe each amino acid with a set of twenty numerical values, henceforth355

defining a twenty-dimensional space. Swanson was the first to embed this space into a plane, using a356

principal component analysis (PCA) approach. Following others (see [37] and references therein), we357

expand this concept and consider projections of BLOSUM substitution matrices on different spaces358

with varying dimensions. In the space of dimension k for example, amino acids are assigned k359

“coordinates" along the k principal components of the BLOSUM matrix considered. In Figure 5, we360

show the corresponding vectors in two and three dimensions for BLOSUM30 and BLOSUM62. For361

both matrices, the 3D representations of hydrophobic (in blue) and hydrophilic (in red) amino acids are362

well separated. There is however more overlap in the projections of the BLOSUM30 matrix between363

hydrophobic and aromatic amino acids (in magenta), and between hydrophilic amino acids and the364

two small amino acids A and G (in green).365
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Figure 6. Parameterizing GaussCovar using a BLOSUM62-based encoding of amino acids. (a) and
(b) The value of λ, the parameter controlling the amount of uniform prior included in the Gaussian
model (see equation 7) that leads to optimal performance is plotted against the number of components
for the vector representation of amino acids derived from the BLOSUM62 matrix, based on the PSICOV
dataset (a), and based on the NOUMENON dataset (b). (c) and (d) The optimal AUC200 (over all
predicted contacts) is given against the same number of components for the PSICOV dataset (c) and
the NOUMENON dataset (d).
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We have analyzed the performance of GaussCovar using the BLOSUM62-based encoding of366

amino acids over the two datasets PSICOV and NOUMENON. We refer to this version of GaussCovar367

as BLO62. Results are shown in figures 6 and 7.368

For each projection of BLOSUM62 onto spaces whose dimensions vary from 1 to 20, we have369

explored the whole range of λ values between 0.1 and 0.9, with a step size of 0.1. The corresponding370

λbest are shown in figure 6a and b for the PSICOV and NOUMENON datasets, respectively. Not too371

surprisingly, the optimal λ value increases as the number of components k increases: large values372

of k lead to large covariance matrices for which the effects of under sampling are more important.373

Interestingly, while the performance of GaussCovar increases as the number of principal components374

k of the BLOSUM matrix considered increases between 2 and 11, the best performance is obtained for375

k = 11, and not for larger k values, as observed on figure 6b and d for the PSICOV and NOUMENON376

datasets, respectively. We note that larger values of k may have required larger values of λ (we stopped377

at 0.9). We did not explore this option, as it is unclear whether larger contributions of the prior in the378

Gaussian model are meaningful.379

In figure 7, we compare the PPV plots for GaussCovar based on BLOSUM62 vector representations380

of size k = 3 (green), k = 7 (blue), and k = 11 (red), to the reference of using the binarized381

20D representation of amino acids (black), over the two datasets PSICOV and NOUMENON. As382

expected from figure 6, the BLOSUM-derived PPV plots get closer to the reference as the number of383

components increases, but never show improvements compared to this reference. As already observed384

for the Gauss20 and Gauss1D versions of GaussCovar, BLO62 performs better on PSICOV than on385

NOUMENON, highlighting again the possibilities of biases in the former.386
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Figure 7. Precision Positive Values (PPV) plotted against the number of predicted contacts or the

PSICOV dataset (left) and the NOUMENON dataset (right). Data were generated with GaussCovar,
with amino acids represented with coordinates derived from the k principal components of the
BLOSUM62 matrix. We show results for k = 3, λ = 0.5 (green), k = 5, λ = 0.5 (blue), and k = 11, λ = 0.7
(red). Data for GaussCovar with the 20D binarized encoding are shown in black for comparison. All
PPV curves are arithmetic means over 150 protein families (see caption of figure 1 for details). Shaded
areas represent standard deviations.
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The BLOSUM62 matrix, intermediate between a more permissive matrix such as BLOSUM30387

(computed over BLOCKS with a low sequence identity of 30%), and a restrictive matrix such388

as BLOSUM90 (from BLOCKS with up to 90% sequence identity) has become a standard in389

protein database searches and sequence alignments (see for example references [46,48] in which390

the performances of multiple substitution matrices were assessed). It was therefore natural to consider391

it for testing GaussCovar; it is unclear however if it would lead to the best results compared to other392

substitution matrices. We have repeated the analyses described above for BLOSUM matrices with393

IDs between 30 and 100. Note that BLOSUM100 is not the identity matrix: it is computed from394

BLOCKS with sequence similarities up to 100%. It is used however to detect sequences with very395

high similarities. The corresponding best performances of GaussCovar, as measured by AUC200396

computed over all contacts from the mean PPV curves over all 150 protein families for the PSICOV397

and NOUMENON datasets, are plotted against the BLOSUM ID in figure 8. Overall, it is observed398

that performance increases as the BLOSUM ID increases, for both datasets. There results are consistent399

with the fact that the 20D binarized encoding performs best, as this encoding can be seen as derived400

from the identity matrix, i.e. a BLOSUM like matrix that focuses on perfect match, thereby closer to401

BLOSUM matrices with high IDs.402
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Figure 8. Influence of the BLOSUM matrix ID on the performance of GaussCovar based on

BLOSUM encodings of amino acids. The optimal AUC200 (over all predicted contacts) for
GaussCovar is plotted against the BLOSUM ID for the PSICOV dataset (left) and the NOUMENON
dataset (right).

4. Discussion403

In this work we have tested multiple numerical encodings of amino acids within the framework of404

contact predictions in proteins from a multivariate Gaussian analysis of multiple sequence alignments.405

We have shown that 1D encodings based on amino acid properties (from the AAindex databases), as406

well as higher dimension encodings computed from the principal components of BLOSUM substitution407

matrices do not perform as well as a simple 20 dimensional binarized encoding in which each amino408

acid in represented as a vector of zeros, except at the position corresponding to its type, where409

the encoding is 1. We have also highlighted the importance of the prior when constructing the410

Gaussian model of a multiple sequence alignment, and have shown that as the dimension of the411

vectors representing the amino acids increases, more importance should be given to this prior in the412

model, even if it is based on a simple uniform distribution. In the original derivation of the Gaussian413

model [27], it was suggested that more informative priors could improve the prediction power of the414

Gaussian model. Our results indicate that this is not the case, at least when the information is based on415

substitution matrices.416

The Gaussian model considered shares one similarity with the Potts model usually considered417

for covariation analyses in that it implicitly defines an energy for a sequence that is a sum of pairwise418
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interactions between its residues, where those interactions are directly proportional to the “states" of419

those residues, their encodings using the terminology considered in this work. It is unclear however if420

a direct proportionality is optimal. We are currently testing other formats for the energy of a sequence,421

still within the context of numerical encodings of amino acids.422

Finally, we note that progress in geometric contact predictions in proteins based on sequence423

information only may not come solely from improvements of the models used to analyze MSAs. The424

multivariate Gaussian model considered here, just like the Potts Hamiltonian model [6,21] summarizes425

all forms of interactions between positions in the MSA into pairwise contacts. As the information426

content of an MSA goes beyond those simple interactions, it was natural to see attempts to combine427

such additional information to pairwise co-variation measures by using machine-learning techniques.428

It is interesting, for example, that out of the 23 methods that have been used for contact predictions in429

CASP12, at least 21 are clearly based on machine learning, using different versions of deep learning430

methods or combinations of such methods [9]. Those methods were reported to be strikingly successful,431

and precisions above 90% were achieved by the best predictors in more than half the targets in CASP12432

[9], a result considered to be a highly significant improvement compared with the results obtained433

during CASP11 [49].434

5. Materials and Methods435

5.1. Vector representations of amino acids436

In addition to the common 20 dimensional binarized representation of amino acids (in which437

an amino acid of type i is represented with a vector of 20 zeros, except at position i where the vector438

component is 1), we have used two different vector representations of amino acids in this work, one439

based on their physical properties, and one based on substitution matrices.440

In our first representation, each amino acid is encoded by one real index value, as defined in441

AAindex [40,41]. AAindex is a database of numerical indices representing various physicochemical442

and biochemical properties of amino acids and pairs of amino acids. We have used the former, and443

have tested the 402 properties that were available in 1996 [45]. Those are the first indices available in444

AAindex and accessible online at https://www.genome.jp/aaindex/. We have used those 402 values,445

and not all 566 currently available in AAindex, as the classifications of those 402 into six groups of446

properties is available. Those six properties are α and turn propensities (Group 1), β propensity (Group447

2), composition (Group 3), hydrophobicity (Group 4), physico-chemical properties (Group 5), and448

other properties (Group 6), as defined in Ref. [45].449

Common measures of similarities between amino acids are usually presented in the form of a450

substitution matrix, which stores the odds that any given amino acid can be replaced by any other.451

Substitution matrices can be compiled based on substitutions observed in protein sequence families452

(for review, see [47], or directly from amino acids physico-chemical properties (see, for example, [45]).453

Substitution matrices describe each amino acid with a set of twenty real values, thereby defining a454

twenty-dimensional space. Swanson was the first to embed the space corresponding to the original455

PAM matrix [50] into a plane, using a principal component analysis (PCA) approach [29]. Since then,456

different embedding of the BLOSUM62 matrix [46] into feature spaces of reduced dimensions have been457

proposed, usually noticing that three dimensions already produce a reasonably good approximation458

of the high dimensional amino acid space (see [37] and reference therein). We have used the same459

scheme to generate embeddings of different BLOSUM matrices, with different dimensions, using the460

same PCA strategy applied in the studies mentioned above.461

5.2. GaussCovar: Residue contact predictions from a MSA462

GaussCovar, our implementation of the Gaussian modeling of multiple sequence alignment463

mirrors the algorithm described in [27]. For sake of completeness, we provide an outline of this464

algorithm, briefly describe its main steps, and highlight the differences with the published method.465
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Algorithm 1 GaussCovar: extracting residue contacts from a multiple sequence alignment

Input: a MSA with N sequences, of length L, t, the type of amino acid encoding, and λ, the weight

of the prior;
(1) Preprocess MSA:

a) Cleanup: remove sequences with more than 90% of gaps

b) Assign weight w(n) to each sequence Sn in the MSA

(2) Convert each letter-based sequence Sn of length L into a real-valued vector Xn of length Ls, as

defined by the encoding scheme t

(3) Compute empirical mean X and covariance matrix C using weighted versions of equations 9 and

10
(4) Compute corrected covariance matrix CM by adding a prior, using equation 7. The weight of the

prior is controlled by λ

(5) Compute J = C−1
M

(6) For each pair of positions i and j in the MSA, compute a score Pij as the Frobenius norm of the

submatrix Jij of size s × s.
(7) Apply APC correction to the score matrix P

(8) Rank all pairs (i, j) with j − i > 4 in decreasing order of corrected scores PAPC
ij . The top 200 pairs

defined the predicted contacts.

Step 1b) is required to remove (to some extent) the dependencies between the sequences in the
MSA. We use the same re-weighting scheme as the one used in PSICOV [26], which was inspired
by similar re-weighting schemes proposed in Refs. [21,23]. The procedure is fully described in the
Supplemental material of [27]. We only provide basic details here, as they are needed to clarify the
concept of effective number of sequences in a MSA, Me f f , used in the Results section. To generate the
weights, we first compute a similarity cutoff r. This cutoff is defined as being inversely proportional
to the average sequence identity over all pairs of sequences in the MSA. Once this cutoff r has been
computed, it is used to define groups of similar sequences around each sequence: only sequences with
less than rL identical amino-acids are considered to carry independent information. For each sequence
Sn in the MSA we count the number mn of sequences with at least rL identical amino-acids; the weight
of the sequence is then defined as w(n) = 1/mn. The effective number Me f f of sequences is the sum of
the weights over all sequences:

Me f f =
N

∑
n=1

w(n) (8)

The main difference between our algorithm and the original algorithm described in [27] is step 2,466

in which we allow for a broader range of possible encodings of amino acids into vectors. As described467

above, we have considered encoding an amino acid as a single real value, as defined in one of the468

scales available in the AAindex database [40,41], projected version of BLOSUM matrices onto spaces469

of varying dimensions, as well as the original binarized representation used by Baldassi et al.470

In step 3, the weighted empirical mean and covariance over the MSA are computed as:471

X =
∑

N
n=1 wnXn

∑
N
n=1 wn

(9)

and472
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C =
1

∑
N
n=1 wn

N

∑
n=1

wn(Xn − X)T(Xn − X) (10)

The score P(i, j) between two positions i and j is computed from the Frobenius norm of the473

submatrix J(i, j) of side s × s, where s is the size of the vector representing amino acids. (step 6 of the474

algorithm). The Frobenius norm is not independent of the gauge choice (see [25] for a full discussion475

of this point). We apply the following two steps to compute Pij:476

Jc
ij(k, l) = Jij(k, l)− (Jij1s)(k)− (JT

ij 1s)(l) + (1T
s Jij1s)

Pij =
√

tr(Jc
ij(Jc

ij)
T) (11)

where 1s is a vector of s ones.477

Step 7 applies an average-product correction (APC) to the score matrix, initially introduced in478

[39] to supper effects from phylogenetic biases, and introduced by Jones et al for covariation analyses479

[26]. The APC-corrected score is computed as:480

PAPC = P −
(P1L)(PT1L)

T

1T
L P1L

(12)

where 1L is a vector of L ones.481

5.3. Assessing the performance of GaussCovar482

In order to assess the correctness of the contacts predicted by GaussCovar, we need in addition483

to the MSA a “gold standard", or reference protein structure that best represent the proteins in this484

MSA . A contact predicted by GaussCovar between two positions i and j is deemed correct if the two485

corresponding residues k and l in the reference protein structure are distant by less than 8 Å, where486

the inter-residue distance is defined as the minimum distance between any heavy atoms of the two487

residues. Note that this corresponds to the definition of success proposed by Morcos et al [21]. Other488

definition of success are possible (see for example [26]). Each predicted contact is then assigned as true489

or false positives based on this criterium.490

The precision or positive predictive value (PPV) of GaussCovar on a given MSA is a discrete491

function determined by computing PPV(k) = (true positives)/(true positives + false positives) where k492

is the number of predicted contacts. A perfect prediction would generate a curve such that PPV(k) = 1493

for all k, while a poor prediction would see PP(k) close to zero for all k. We quantify the overall quality494

of the prediction as the area below this curve, which we write AUC200, as it is computed over the495

first 200 predicted contacts. We note that the larger the AUC200 score, the better the prediction. The496

AUC200 score for a perfect prediction is 200.497

To assess the significance of the performances of GaussCovar with different amino acid encodings498

over a dataset, we generated a mean curve PPV, averaged over all families included in the MSA. At499

each contact level k, we computed a mean value and a standard deviation. To compare two such curves500

(say when comparing the performance of GaussCovar under certain conditions with the performance501

of the program PSICOV), we applied a two tailed Student’s t-test at each level of contact k. The502

two underlying distributions contain the same number of samples (i.e. 150 families). The difference503

between the two curves at a given k value is assumed to be statistically significant if the corresponding504

p−value is smaller than 0.05. if all p−values over all levels k are smaller than 0.05, the two curves505

themselves are considered statistically different.506
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5.4. Test datasets507

We have used two test sets for assessing the predictive abilities of GaussCovar under different508

representations of amino acids, namely the original PSICOV dataset [26] and the recent NOUMENON509

dataset [42].510

The PSICOV set is a carefully designed dataset composed of 150 protein families, originally511

generated as a test set for the namesake program PSICOV (Protein Sparse Inverse COVariance). It512

was designed as follows (for full details, see [26]). 150 proteins whose structures are available in the513

Protein Data Bank (PDB, htt://www.pdb.org) [2] and lengths between 75 residues and 275 residues514

were selected. All the structures of those proteins were of high resolution (≤ 1.9 Å) and all are known515

to be biological monomers, to eliminate the risks of detecting inter-chain contacts. The sequences of516

those proteins are dissimilar. For any pair of sequences, a sequence alignment using the SSEARCH517

package from the FASTA package (https://fasta.bioch.virginia.edu/) has a E-value greater than 10−5,518

and usually greater than 0.1. For each sequence, multiple sequence alignments were generated using519

the jackhammer program from the HMMER 3.0 package (http:hmmer.org). The sequence was checked520

against, and aligned with, homologues from the UNIREF100 data bank, using three iterations of521

jackhammer. The resulting alignments contain between 511 and 74836 sequences. Those alignments,522

as well as the corresponding reference PDB structures, and the results of running PSICOV on them,523

are available at http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ as Supplementary Materials of524

the original PSICOV paper [26].525

The NOUMENON set is a more recent dataset that was designed to provide a bias-free test set for526

assessing the performance of residue contact prediction methods [42]. It also contains 150 proteins and527

was derived in a similar manner that PSICOV was built. Namely, 150 sequences of proteins with known528

highly resolved structures (≤ 2 Å) were selected. The lengths of these proteins also vary between 75529

residues and 275 residues. It was also ensured that their structures have at least N contacts, where530

N is the length of the protein. Each of those sequences was then checked against, and aligned with531

homologues from the UNIREF100 data bank, using three iterations of jackhammer. The key difference532

with the PSICOV dataset is how the initial 150 proteins are selected. This selection is constrained such533

that their homologues have no, or little evolutionary relationship with proteins whose structures are534

available in the PDB. The NOUMENON dataset can be retrieved at http://ibsquare.be/noumenon.535
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