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Abstract: Residues in proteins that are in close spatial proximity are more prone to covariate as their
interactions are likely to be preserved due to structural and evolutionary constraints. If we can detect
and quantify such covariation, physical contacts may then be predicted in the structure of a protein
solely from the sequences that decorate it. To carry out such predictions, and following the work
of others, we have implemented a multivariate Gaussian model to analyze correlation in multiple
sequence alignments. We have explored and tested several numerical encodings of amino acids within
this model. We have shown that 1D encodings based on amino acid biochemical and biophysical
properties, as well as higher dimensional encodings computed from the principal components of
experimentally-derived mutation/substitution matrices do not perform as well as a simple twenty
dimensional encoding with each amino acid represented with a vector of one along its own dimension
and zero elsewhere. The optimum obtained from representations based on substitution matrices
is reached by using 10 to 12 principal components; the corresponding performance is less than the
performance obtained with the 20-dimensional binary encoding. We highlight also the importance of
the prior when constructing the multivariate Gaussian model of a multiple sequence alignment.

Keywords: Multiple sequence alignment; Covariation; Contact predictions

1. Introduction

The current understanding of the relation between the sequence of a protein and its structure
remains limited. As of November 2018, we know a lot about protein sequences (more than
hundred twenty millions of them, if one refers to RefSeq, the NCBI Reference Sequence Database,
https://www.ncbi.nlm.nih.gov/refseq/, [1]), more and more about their structures (there are
more than 130,000 structures of proteins in the Protein Data Bank, PDB, http://www.rcsb.org, [2]),
but we still have difficulties in deciphering the rules that relate a sequence to its corresponding
three-dimensional structure, a challenge usually referred to as the “holy grail" of computational
structural molecular biology [3]. In this paper, we focus on one of those rules, namely the prediction of
geometric proximity of residues (also called residue contacts) in a protein structure from the variability
of the amino acid sequence of that protein within its family.

The protein sequences of the same protein from different species vary much more than the
three-dimensional structure they all adopt. For residues in such a protein to remain in close proximity,
one hypothesis that has been put forward is that the corresponding positions in the protein sequences
experience correlated mutations throughout evolution: in the event that one residue of such a pair
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mutates, the effect of this mutation is likely to be accommodated by a corresponding mutation of
the other residue of this pair. This hypothesis, however, might not be true, as discussed in details by
Talavera et al. [4]. In their studies, they have shown that coordinated substitutions require unfeasibly
long times. They do find that pairs of residues with strong covariation signals tend to have low
evolutionary rates, with such residues being located primarily in the cores of proteins, thereby in close
proximity. Hence, it remains that, in both scenarios, i.e. co-variations due to molecular co-evolution or
due to low evolutionary rates within the protein core, if we can detect co-variation between positions
within a multiple sequence alignment (MSA), we should be able to predict geometric contacts between
residues in the corresponding protein structure. We should note also that co-variations do not always
mean spatial proximity; this was discussed in length in the recent analysis of coevolution between
distant residues by Baker and co-workers [5].

The possibility to detect co-variations within a MSA has significantly increased with the surge
in the number of protein sequences that are available. The related search for an inference between
those co-variations and actual contacts in protein has been the focus of decades of research, and recent
breakthroughs have lead to increased precision in predicting contacts from sequence alone (for recent
reviews on this topic, see [6-9]. It should be noted that analyses of covariation have been used with
success outside the protein structure prediction problem, from the prediction of the structure of protein
complexes [8,10], and protein conformational transitions [11,12], RNA structure prediction [13-15],
and prediction of ordered states for disordered proteins [16] to the prediction of mutation effects in
proteins [17].

The idea of inferring spatial proximity from direct covariance of amino acid distributions in pairs
of position within a MSA originated from the early 1980s as it was used then for predicting virus
functions[18] and a little later (in the 1990s) to predict contacts in proteins [19,20]. Success, however,
was limited, possibly for a reason that can be characterized as follows [7,21]: when a residue i is in close
proximity to a residue j, and j itself is in contact with another residue k, then i and k are likely to exhibit
covariation, even if they are not close in space. Prediction of spatial proximity from co-variations
therefore require that direct interactions (between i and j, and between j and k) be distinguished from
possible indirect interactions (between i and k). Two approaches are currently being developed for this
task: those that generate a statistical model for protein sequences by using techniques from statistics or
physics and those that learn this model directly from the data by using machine-learning techniques.
Among the statistical techniques used for analyzing co-variations in MSA, we can cite sequence-based
probabilistic formalisms, proposed as early as 2002 [22], message-passing algorithms [23], mean-field
methods [21], and pseudo-likelihood [24,25] or multivariate Gaussian [26,27] approximations. Here
we focus on the latter, namely a representation of covariations using a multivariate Gaussian model.

The multivariate Gaussian modeling of a MSA is an approximation. It relies on a Gaussian
interaction model in which amino acids are represented by small real-valued vectors. The covariance
matrix of this Gaussian model is estimated from the observed covariance matrix computed from the
MSA, and its inverse, namely the precision or concentration matrix is used to predict the direct contacts
in the corresponding protein structure [26]. In its current implementations, namely PSICOV [26], and
GaussDCA [27], the vector r(a) representing an amino acid of type a is defined by a binary encoding,
with r(i) = 1ifi = a, and zero otherwise. This is a vector of size 20, to account for the 20 types of amino
acids. A sequence S in an MSA of length N is then represented with an array of numerical values of
size 20N, and the corresponding observed covariance matrix for the MSA is of size 20N x 20N. The
large size of this matrix leads to a problem of under-sampling: not every amino-acid will be observed
at every site of the MSA, leading to a covariance matrix that is singular. To compute the inverse of
this singular covariance matrix, Jones et al proposed a constrained sparse inverse estimation using the
graphical Lasso method [26], while Baldassi et al added a prior distribution to remove the singularity,
much akin to the concept of pseudo counts [27]. In this paper, we propose complementary approaches
to tackle the problem of under-sampling, in which the size of the vector representing an amino acid is
reduced and numerical components are introduced.
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When writing down a protein sequence, amino acids are usually pictured either with a one-letter
code, or a three-letter code. Both encodings are simply representations of the amino acid name, and
therefore do not contain any information per se. Alternately, encoding amino acids as vectors of
numerical values has the advantage of increasing the information content of a protein sequence, should
those numerical values represent physico-chemical, or other properties of the amino acids. Such
representations are expected to allow finer analyses of the functions of the proteins they represent.
French and Robson [28], Swanson [29], and Kidera et al [30] may have been the first to implement
this concept in the early 1980s. Swanson observed that the 20x20 Dayhoff substitution matrix [31] is
akin to mapping amino acids into a 20 dimensional feature space. By applying dimension reduction
techniques, three lower dimensional representations of amino acids were proposed in 1D, 2D, and
3D spaces, with the 2D version expected to be the most reasonable as it was consistent with other
amino acid properties [29]. In parallel, Kidera et al proposed to encode each amino acid with ten
independent factors obtained by principal component analyses (PCA) of more than one hundred and
eighty properties of the twenty amino acids [30]. Such a representation has been used to analyze
protein sequences using Fourier analysis [32-34], with applications to fold recognition for homology
modeling [35]. It should be noted also that a numerical encoding of amino acids enables the definition
of sophisticated metrics for comparing sequences [36]. It also leads to the concept of geometric
representations of protein sequences, and their applications for sequence classification and protein
fold recognition (see [37] and references therein).

This paper draws from this concept and describes a feature-based representation of protein
sequences. In this representation, each amino acid is encoded by a unique vector of features that
are derived either from the physico-chemical properties of the amino acid considered or from a
lower dimensional representation of an amino substitution matrix. We analyze how those reduced
representations compare to the binary encoding currently used in multivariate Gaussian models for
residue contact prediction, with respect to the need for correction for under-sampling, as well as with
respect to their prediction accuracy.

The paper is organized as follows. The following section covers the concept of a multidimensional
Gaussian model of an MSA and its application to contact prediction. The result section describes
applications of different encoding of amino acids for protein contact prediction, using a test set of 150
multiple sequence alignments originally developed as a test set for PSICOV [26]. We then conclude
with a discussion of future research directions.

2. A Gaussian model for protein contact prediction

The multivariate Gaussian model is well-studied in statistics; it has been introduced independently
for analyzing multiple sequence alignments by Jones et al. [26] and Baldassi et al. [27]. Here we
briefly review the main ideas behind this model with respect to its application for contact prediction in
proteins from sequence information contained in MSAs.

2.1. A multiple sequence alignment and its numeric representation

The input data is the MSA generated from multiple homologous sequences for the same protein.
Such a MSA is described by N aligned protein sequences of length L. Each sequence S, in the alignment
is a string of characters taken from an alphabet of size 21 including the 20 standard amino acids plus
one character for gaps. An amino acid of type i is then represented by a vector r; whose size s and
component values depend on the encoding that is chosen. In the work of Jones et al. [26] and Baldassi
etal. [27], s is set to 20, and r;(k) = 6;; where § is the Kronecker delta. Namely, r; is a vector whose
components are 0, except for the component index corresponds to the type i, in which case it is 1. The
vector representing a gap is always set to 0. In this study, we will explore different encodings for r;.

Once the encoding is defined, the letter-based sequence S, of length L is represented by a
real-valued sequence X;;, of length Ls, obtained by replacing each letter by its corresponding vector in
the encoding.
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The empirical mean sequence over the MSA is then computed as:

_ 1 XN
:Nn;lxn (1)

Similarly, the empirical covariance matrix C for the MSA is computed as:

N P
Y (X —-X) )

n=1

C = C(MSA,X)

Z\H

C is a matrix of size Ls x Ls.

2.2. A Gaussian model for the alignment

The main assumption in this approach is that each sequence X;, in the MSA is drawn from a
multivariate Gaussian distribution characterized by a mean vector y and a covariance matrix X, with
the probability:

POl ) = (27) 5 2 Fexp |5 (X — )2 (X — ) ©

in which |%| is the determinant of X.
Assuming that the N sequences in the MSA are statistical independent, the probability, or
likelihood of the data under this model is given by

N
P(MsAlT) = T[POGIAZ)

NLs

= @) F[zl Y exp |- tr(ZTIC(MSA, ) )

with C(MSA, u) the empirical covariance matrix given by equation 10, but computed with the
(unknown) true mean of the population of sequences, y, instead of the empirical mean X. Using the
maximum likelihood estimator for P(MSA|u, ), the mean vector and the covariance matrix of the
multivariate model can be estimated as = Xand & = C = C(MSA, X), where the over line highlights
that these are empirically-derived values [38].

We note that the independence of the sequences in the alignment is a strong assumption that is
usually not satisfied in a MSA, due to phylogenic relationships between the sequences. To alleviate this
problem, a weight is usually associated with each sequence S, [25,27]. We use the definitions of the
weights proposed by Baldassi et al. [27], see Material and Methods below for how they are computed.

2.3. Extracting coupling information from the parameters of the Gaussian model

In the mean-field approximation, there is a simple relationship between the coupling matrix |
and the empirical covariance matrix C, namely that | = —C . A similar relationship has been used
under the Gaussian model. We can see why the inverse is used instead of the direct covariance from
two perspectives. Notice first that the term in the exponential of the Gaussian model (equation 3) can
be rewritten as:

1=
=

Il
—_

(X =) T2 X — ) = ) Y2 (Xi = ) (BT () (X — ) )

Il
_

]

This shows that (£71)(i,j) serves as a coupling between positions i and j in the MSA. From a
more statistical point of view, Y 1isthe precision, also called concentration, matrix of the Gaussian
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model. The precision matrix captures conditional dependencies, which is expected to help differentiate
direct from indirect couplings that cannot be achieved from the covariance matrix directly.

Computation of | = C ' however assumes that the matrix C is full rank. This is unlikely with
a 20 letter alphabet, as not every amino acid will be observed at every site of the MSA, even in very
large protein families. There are many methods to alleviate this problem, from the computation of a
pseudo inverse, the estimation of a sparse inverse using Lasso methods [26], to the addition of a prior
distribution. In this work, we use the latter, following the original idea of Baldassi et al. [27]. Briefly,
we generate a prior as follows. If 1; is the vector representing an amino acid of type i, we generate
the mean vector ¥ and covariance Cr for a distribution sampled uniformly over the 20 types of amino
acids,

. 1 &
r = % ; I
i=1
1 20 .
Cr = 20 i:1(ri —1)" (1; — 1) (6)

The prior P(up, Cp) for the whole MSA is then defined by setting its mean pp = [r...7]T (with L
copies of the mean ¥), and its covariance Cp such that Cp(i,i) = Cr for any position i in the MSA, and
Cp(i,j) = 0 for any pairs of position i and j in the MSA. This prior is specific to the MSA, and derived
from a uniform distribution of amino acids at each position in the MSA. The corrected covariance Cy;
for the MSA is then defined as:

Cv=ACp+ (1=A)C+A(1—=A)(X—up)" (X~ pp) )

where X and C are the empirical mean sequence and covariance of the MSA, as defined by
equations 9 and 10, respectively, and A is a parameter that controls the weight given to the prior.

The coupling matrix | is computed from the corrected covariance matrix by matrix inversion. It
should be noted that | is a matrix of size Ls x Ls, i.e. that the “coupling” between a position i and j in
the MSA is given by a s x s matrix. Each of these small matrices are then transformed into an actual
score 5C;;, using the Frobenius norm of J(7,j), and the matrix SC is then corrected by applying an
average-product-correction, (APC) [25,39]. Details on those two steps are provided in the Material and
Methods section.

3. Results

We have implemented the multivariate Gaussian model described above in a program called
GaussCovar, following the algorithm described in the Material and Methods section. GaussCovar
mimics the program GaussDCA proposed by Baldassi et al. [27], with the significant difference that
we explore different vector representations of the amino acid, when converting a multiple sequence
alignment into a numerical matrix from which contacts can be predicted. In this section, we describe
and apply some of those representations, from the binarized 20-dimensional vectors originally used
by Baldassi et al [27] and by Jones et al [26], a single value for each amino acid, derived from the
AAindex database [40,41], to vectors derived from projections of BLOSUM matrices onto their principal
components. We are particularly interested in assessing the balance between performance, and the
need to add prior information to the Gaussian model.

GaussCovar takes as input a multiple sequence alignment and outputs a list of predicted contacts,
in decreasing order of scores. Just like GaussDCA, GaussCovar is fast: its most computer intensive
parts are the computations of the sequence weights, of order N2 where N is the number of sequence in
the MSA, and the computation of the inverse of the correct covariance matrix, of order L3 where L is
the length of the sequences in the MSA.
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We have tested GaussCovar with different amino acid encodings on two different datasets, each
with 150 families. We used two different datasets to assess whether the results we obtain are consistent
over those datasets, in which case they are likely indicators of the properties of GaussCovar and of
the amino acid encodings, or different on those datasets, in which case they are more likely to be
indicators of confounding effects specific to the construction of the datasets. The first dataset, PSICOV,
was originally used for assessing the performance of the namesake program PSICOV [26]. The MSAs
in PSICOV have a number of sequences N between 511 and 74836, and a length L between 50 and
266. In parallel, we have used NOUMENON, a more recent dataset based also on 150 protein families,
significantly different however in its conception than PSICOV [42]. NOUMENON is designed to be as
bias-free as possible, by only considering protein sequences whose homologues in the MSAs have little,
or no structural information available in the database of protein structures. As such, NOUMENON is
expected to mimic more realistic applications of residue contact predictions. NOUMENON contains
MSAs with a more diverse number of sequences than PSICOV, ranging from N = 2 to N = 513407,
but with similar lengths L, between 64 and 275. Note that the actual number of sequences may be
misleading and that a better measure of the information content of a MSA is its effective number of
sequences, M,s. This will be discussed below. PSICOV and NOUMENON are described in more
details in the Material and Methods section below, with links to where their authors have made them
available.

Results are presented as averages over the 150 protein families for each dataset, unless specified.
In particular, we generate the precision or positive predictive value (PPV) curves as functions of the
number of predicted contacts considered. More specifically, PP (k) is the rate of true positive contacts
among the top k predicted contacts, where “true" refers to a contact that exists in a gold standard
protein structure, i.e. a contact between two residues that are close in space (see Material and Methods
for details). As an overall measure of quality, we compute the area under the PPV curve from k = 1 to
k = 200, referred to as AUC200. Note that the higher the AUC200, the better the prediction. The best
possible value for AUC200 is 200.

3.1. Amino acid representation 1: 20 dimensional binarized vectors

As a first test, we ran GaussCovar on the two datasets of 150 protein families presented above
using a simple twenty dimensional (20D) representation of amino acids. To emphasize that we have
used a 20D representation, we refer to these experiments as Gauss20. In this representation, an amino
acid of type i is represented with a vector of 20 zeros, except at position i where it is given the value
1. In figure 1, we compare the performances of Gauss20 for two different values of A (the weight
of the prior, see equation 7), namely A = 0.8 and A = 0.2, against the performance of the PSICOV
program, which uses the same representation of amino acids. Results for PSICOV on its namesake
dataset were kindly provided by its authors [26], along with the dataset itself. In parallel, we obtained
the program PSICOV (http:/ /bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV /), and ran it over all 150
MSAs in the NOUMENON dataset. Following the advices provided in the original PSICOV paper [26],
we set the lasso regularization parameter p to a constant value of 0.001 for all MSAs with more than
100 sequences. We found that PSICOV struggles to converge on a solution for MSAs with a smaller
number of sequences; for all of those, we increased the p parameter to 0.01.

We observe similar levels of performance between PSICOV and Gauss20 with A = 0.8 (the
two-tailed t-probabilities computed when comparing the distributions of Gauss20(A = 0.8) and
PSICOV results over the 150 families are always greater than 0.05 at all levels of contacts considered),
and significantly lower performance for the latter when A is set to 0.2 (where “significance" comes from
the fact that the two-tailed t-probabilities computed when comparing the distributions of Gauss20(A =
0.8) and Gauss20(A = 0.8) results over the 150 families are smaller than 0.05 at all levels of contacts
considered, with the exception of the first few data points, when the number of contacts is below 5).
Similar relative differences between the performances of Gauss20(A = 0.8) and Gauss20(A = 0.2),
and between the performances of Gauss20(A = 0.8) and PSICOV are observed between the two
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datasets considered. Of interest, however, we note that their absolute performances vary greatly
from one dataset to the other, with all three methods performing better on the PSICOV dataset, with
approximately a 50% performance drop on the NOUMENON dataset. This behavior was already
reported [42] for the PSICOV program on the same datasets, and for the program CCMpred that
implements a method derived from statistical mechanics [43]. The drop is assumed to be related to
over-estimation of the performances of contact prediction methods on the PSICOV dataset due to bias
in the selection of the protein families it contains, a bias that was presumably removed when designing
the NOUMENON dataset.

PSICOV NOUMENON
1 ‘ ‘ 1 : , ,
\ Gauss20 ( 1=0.8) Gauss20 ( 1=0.8)
09PN Gauss20 (1=0.2) | | 09l Gauss20 (1=0.2) | |
RN \ — PsiCOV : — PsiCOV

0.8F

0.7t

PPV
PPV

0.6f

0.4+

0.3 : : ‘ 0.3 : : ‘
0 50 100 150 200 0 50 100 150 200

Contact # Contact #

Figure 1. Precision Positive Values (PPV) plotted against the number of predicted contacts for the
PSICOV dataset (left) and the NOUMENON dataset (right). PPV (k) is the rate of correctly predicted
contacts within the first k contacts. Data for the Gaussian models were generated with GaussCovar,
with a 20 dimensional binarized vector representing amino acids, with A = 0.8 (black curve), or A = 0.2
(red curve). Data for the PSICOV predictions (blue curve) on the PSICOV dataset were obtained
from the data provided by the authors [26], while the similar data on the NOUMENON dataset were
generated by running directly PSICOV (see text for details). All PPV curves are arithmetic means over
150 protein families. The shaded areas represent standard deviations.

To further investigate the impact of A, we explored the whole range of its values between 0 and 1,
with a step size of 0.1. Results are shown in figure 2. The performance of the Gaussian model Gauss20
is clearly improved as A is increased, with a peak at A = 0.8, for both the PSICOV dataset and the
NOUMENON dataset. As above, we see a drop of performance on the latter. The need for a large
value for A was already described for GaussDCA and is therefore not a surprise here as GaussCovar is
equivalent to GaussDCA when a 20D binarized representation of amino acids. The need for a high
value for A can be assigned to the large sparsity of the numerical representation of MSAs with this
amino acid representation. Even for MSA with a large number of sequences, it is unlikely that all
amino acids have been observed at each position of the MSA. It is interesting however that the addition
of a very simple prior improves significantly the performance of GaussCovar. This prior by itself has
no predictive power, as observed in figure 2 for A = 1.0.

The 150 protein families included in each of the two datasets considered are quite diverse,
within the dataset themselves, and between the datasets. They include alignments with a number of
sequences N varying from 511 to 74836 for PSICOV, and between 2 and 513407 for NOUMENON.
We note, however, that N is not a good measure of the information content of a multiple sequence
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alignment: a MSA with a large number of very similar sequences will likely not be more informative
(with respect to contact prediction) than a MSA with a smaller number of sequences, but with more
diversity. One way to account for this effect is to consider the effective number M,¢r of sequences
of a MSA. There are many ways to define this effective number (see for example [44]). Here we
rely on the definition provided by Baldassi et al [27]; we briefly explain how it is computed in the
Material and Methods section. To assess whether the need to add the prior differs for alignments
with different information contents, we repeated the analyses presented above on three subsets of
the families, namely those with M, < 500 (small MSAs), with 500 < M,s; < 1000 (medium MSAs),
and with 1000 < M,f (large MSAs). We note that the splitting up of the two datasets into those three
groups are very different, with approximately equal sized subgroups for PSICOV, with 56, 47, and 47
as small, medium, and large MSAs, respectively, and skewed distributions for NOUMENON, with 97,
14, and 39 as small, medium, and large MSAs, respectively, i.e. with many more small MSAs. Results
of the analyses of the importance of the parameter A on all three groups of MSAs, for the two datasets
we consider are shown in the same figure 2. We observe the same behavior over all groups of MSAs,
namely that the performance of the Gaussian model is improved as A is increased, with a peak at
A = 0.8. These results do mirror those presented in [27] that were computed using the same method,
but on a different dataset of protein families. The overall performances however differ in the different
groups, with a significant improvement in the large MSAs group compared to the small MSAs group,
as intuitively expected. The same behavior is observed on the two datasets, however with much larger
differences between the three groups of MSAs for the NOUMENON dataset. Results for the large
MSA are very similar over the two datasets, indicating that a large information content in a MSA is
usually sufficient to generate good contact prediction results, independent of additional structural
information.

PSICOV NOUMENON
200 , : 200 , ,
180} ~ 180} ]
160} It ] 160} | |
140} 11 ~ 140} T T 1.1 1
—-——
it
S 120¢ | S 120¢ I ¥ ]
3 3
S 1001 S 100t e \ B
< 0| < sof ]
60 | < 60 | A\
40 . 40
20 }{ 20
0 : : : : 0 : : : :
0 02 04 06 08 I 0 02 04 06 08 1
A A

=—f— ALL =—f=— Small: Meff < 500 ==}== Medium: 500 < Meff < 1000 === Large: Meff > 1000

Figure 2. AUC200 plotted against A, the weight of the prior in the Gaussian model for the PSICOV
dataset (left) and the NOUMENON dataset (right). AUC200, with values between 0 and 200, is a
measure of performance, with higher values indicating better performance. The 150 MSAs in the
datasets are broken down into 3 groups, small (M, ¢ < 500, medium (500 < M,ss < 1000), and large
(1000 < M,fy).
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PSICOV NOUMENON
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Figure 3. AUC200 plotted against the lengths of the multiple sequence alignments, for different
groups of sizes of those alignments, for the PSICOV dataset (left) and the NOUMENON dataset
(right). All computations are done with Gauss20, with A = 0.8. Results are shown over all three groups
of MSAs with respect to size (see legend of figure 2 for their definitions), as well as over four groups of
MSA lengths (x-axis).

The MSAs in our dataset are characterized by two parameters, namely their size, N (or more
appropriately their effective size, M, (), and their length, L. We have seen above that the larger M,f,
the better the performance of GaussCovar. To assess the importance of L, we compared the averaged
AUC200 values for GaussCovar over different ranges of L, over the three groups of MSA effective
sizes defined above, and over the two datasets PSICOV and NOUMENON, with A set to 0.8. Results
are shown in figure 3. The performance of GaussCovar improves as the lengths of the alignments
increases, for the two datasets. This effect is more important for large MSAs, especially for the PSICOV
dataset for which performances increase from an average AUC200 of 138 for short sequences, to an
average AUC200 of 186 for long sequences. One possible explanation is that large proteins have larger
cores; as co-variations seem to be concentrated in those cores (see [4]), it may explain the improvement
observed as sequence length increases. Note however that these are averaged behaviors over specific
groups of MSA lengths. When we plot the AUC200 directly versus the sequence length L, we find
linear correlations between those two variables of 0.4, 0.49, 0.43, and 0.39 for the PSICOV MSAs in
the small, medium, and large groups, and for all MSAs, respectively, and of 0.22, 0.54, 0.44, and 0.26
for the NOUMENON MSAs in the small, medium, and large groups, and for all MSAs, respectively.
Those correlation coefficients are not significant.

As Gauss20 with A = 0.8 performs best on the two datasets of 150 protein families considered, it
will serve as a reference in the following.

3.2. Amino acid representation 2: one dimensional property-based vectors

The 20D representation of amino acids described above only accounts for their alphabetic symbols
and does not consider their physico-chemical properties. An alternate representation is to consider
directly one such properties. With this representation in mind, we have considered AAindex, a database
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of numerical indices representing various physicochemical and biochemical properties of amino acids
[40,41]. The section AAindex1 of this database contains 566 different options for representing each
amino acid as one numerical value, with each option corresponding to one property of amino acids.
Out of those 566 indices, the 402 first originally assembled by Tomii and Kanehisa [45] have been
clustered into six groups using single-linkage hierarchical cluster analysis. Those six groups, which
we will refer to as clusters A, B, C, H, P, and O, mostly map with structural or physical properties
of the amino acids: cluster A relates to alpha helix and turn propensities (118 indices), cluster B to
beta sheet propensities (37 indices), cluster C to amino acid composition (24 indices), cluster H to
hydrophobicity (149 indices), cluster P to physicochemical properties of the amino acids (46 members),
and cluster O to other properties, such as the frequency of left-handed helices (28 members). The
whole AAindex1 database, including the partitioning of the indices into these 6 clusters, is available at
https:/ /www.genome.jp/aaindex/.

We have analyzed the performance of GaussCovar with such a 1D representation of the amino
acids over the two datasets PSICOV and NOUMENON, testing each of the 402 properties of AAindex1
for which cluster information is available separately. Each of those tests use a 1D encoding and is
referred to as Gauss1D. Results are shown in figure 4.

PSICOV NOUMENON
50 T T T T 50 T T T T
45 + . 45 + 4
40 + 1 40 + 4
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= 35 ¢ 1 > 35 ¢ 1
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30F 1 30F 1
25+ 1 25 ¢ 1
20 L L L L 20 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A A
=——f— ClusterA === ClusterB === ClusterC ==} ClusterH ClusterP ==} ClusterO

Figure 4. Performance of GaussCovar with 1D representations of amino acids over the PSICOV
dataset (left) and the NOUMENON dataset (right). The predictive power of GaussCovar was tested
using one of 402 amino acid properties available in the database AAindex [40,41]. Results are presented
as averages over 6 groups of AAIndex1 scales, as originally defined in [45]. The 6 clusters A, B, C, H, P,
and O correspond to indices related to alpha helix and turn propensities, beta sheet propensities, amino
acid composition, hydrophobicity , physicochemical properties, and other properties, respectively.

For each amino acid index, we explored the whole range of A values between 0 and 1, with a step
size of 0.1. The corresponding 402 curves of AUC200 as a function of A were then regrouped based on
the cluster id of the index, and summarized for each cluster by simple averaging. The conclusions from
those experiments are three folds. First, the performance of GaussCovar with such a 1D representation
is poor, with AUC200 around 40 for the PSICOV dataset, and around 35 for the NOUMENON dataset
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(those numbers should be compared to AUC200 values around 140 and around 100 for GaussCovar
with the 20D amino acid representation, averaged over the PSICOV and NOUMENON datasets,
respectively). GaussCovar with a 1D encoding still performs best on PSICOV, as observed for the 20D
encoding. Clearly, a 1D representation decreases the differences between the amino acids, thereby
reducing the performance of the method. Second, Gauss1D seems relatively insensitive to the choice
of the weight of the prior A when tested over the PSICOV dataset, while showing a clear trend of
decrease in performance when the weight of the prior is increased for the tests on the NOUMENON
datasets. Finally, it seems that the indices from cluster O, i.e. those based on “other" properties of
amino acids, perform best both for the PSICOV and the NOUMENON datasets. It is unclear why this
should be the case. We do note that the differences with the other clusters are small.

3.3. Amino acid representation 3: k dimensional BLOSUM-based vectors

BLOSUM30: 2D Projection BLOSUM30: 3D Projection
10 ‘
TV F
5 L
O L
-5
-10 P ‘
-10 0 10 20
BLOSUMBG62: 2D Projection BLOSUM®62: 3D Projection
10 W . . .
5 L
O L
.10 10

Figure 5. These plots represent the 2D (left panels) and 3D (right panels) vector representations of
amino acids as derived from the BLOSUMS30 (top), and BLOSUMS62 (bottom) matrices. The proximity
of these vectors relate to the chemical similarities of the amino acids they represent. To highlight this
fact, we show the known polar amino acids (Q, R, E, K, H, N, D, T, P, and S) in red, the hydrophobic
amino acids (M, V, L, I and C) in blue, and the aromatic amino acids (Y, F, and W) in magenta. Note
that the two small amino acids, A and G (in green), stand out.

Not all contacts in proteins are specific. While hydrogen bonds are formed between residues
within secondary structures, there are many non-specific hydrophobic contacts in the core of a protein,
between those secondary structures. Hydrophobic contacts with an isoleucine, or with a leucine residue,
for example, are very similar to each other. It is therefore natural to account for such similarities when
identifying co-variations for residues in cores of proteins. Similarities between amino acids are usually
derived from reference multiple sequence alignments and available under the format of a substitution
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matrix. Such a matrix stores the odds that any given amino acid can be replaced by any other. The
BLOSUM matrices are among the most popular of those matrices [46,47]. They have been derived
from reference BLOCKSs sequence alignments, using different cutoffs in the sequence identity within a
BLOCK. For example, the BLOSUMS62 matrix is derived from alignments with sequences that are at
most 62% identical; this matrix is considered to lead to good performance for database search [46].

Substitution matrices describe each amino acid with a set of twenty numerical values, henceforth
defining a twenty-dimensional space. Swanson was the first to embed this space into a plane, using a
principal component analysis (PCA) approach. Following others (see [37] and references therein), we
expand this concept and consider projections of BLOSUM substitution matrices on different spaces
with varying dimensions. In the space of dimension k for example, amino acids are assigned k
“coordinates" along the k principal components of the BLOSUM matrix considered. In Figure 5, we
show the corresponding vectors in two and three dimensions for BLOSUM30 and BLOSUMS®62. For
both matrices, the 3D representations of hydrophobic (in blue) and hydrophilic (in red) amino acids are
well separated. There is however more overlap in the projections of the BLOSUM30 matrix between
hydrophobic and aromatic amino acids (in magenta), and between hydrophilic amino acids and the
two small amino acids A and G (in green).
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Figure 6. Parameterizing GaussCovar using a BLOSUMS62-based encoding of amino acids. (a) and
(b) The value of A, the parameter controlling the amount of uniform prior included in the Gaussian
model (see equation 7) that leads to optimal performance is plotted against the number of components
for the vector representation of amino acids derived from the BLOSUMS62 matrix, based on the PSICOV
dataset (a), and based on the NOUMENON dataset (b). (c) and (d) The optimal AUC200 (over all
predicted contacts) is given against the same number of components for the PSICOV dataset (c) and
the NOUMENON dataset (d).
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We have analyzed the performance of GaussCovar using the BLOSUM62-based encoding of
amino acids over the two datasets PSICOV and NOUMENON. We refer to this version of GaussCovar
as BLO62. Results are shown in figures 6 and 7.

For each projection of BLOSUMS62 onto spaces whose dimensions vary from 1 to 20, we have
explored the whole range of A values between 0.1 and 0.9, with a step size of 0.1. The corresponding
Apest are shown in figure 6a and b for the PSICOV and NOUMENON datasets, respectively. Not too
surprisingly, the optimal A value increases as the number of components k increases: large values
of k lead to large covariance matrices for which the effects of under sampling are more important.
Interestingly, while the performance of GaussCovar increases as the number of principal components
k of the BLOSUM matrix considered increases between 2 and 11, the best performance is obtained for
k =11, and not for larger k values, as observed on figure 6b and d for the PSICOV and NOUMENON
datasets, respectively. We note that larger values of k may have required larger values of A (we stopped
at 0.9). We did not explore this option, as it is unclear whether larger contributions of the prior in the
Gaussian model are meaningful.

In figure 7, we compare the PPV plots for GaussCovar based on BLOSUMS62 vector representations
of size k = 3 (green), k = 7 (blue), and k = 11 (red), to the reference of using the binarized
20D representation of amino acids (black), over the two datasets PSICOV and NOUMENON. As
expected from figure 6, the BLOSUM-derived PPV plots get closer to the reference as the number of
components increases, but never show improvements compared to this reference. As already observed
for the Gauss20 and Gauss1D versions of GaussCovar, BLO62 performs better on PSICOV than on
NOUMENON, highlighting again the possibilities of biases in the former.

PSICOV

_NOUMENON

09 1

PPV

0 50 100 150 200 0 50 100 150 200

Contact # Contact #
Gauss20 (1=0.8) B162 (k=11,1=0.8)

BI62 (k=7,A=0.5) BI62 (k=3,=0.5)

Figure 7. Precision Positive Values (PPV) plotted against the number of predicted contacts or the
PSICOV dataset (left) and the NOUMENON dataset (right). Data were generated with GaussCovar,
with amino acids represented with coordinates derived from the k principal components of the
BLOSUMS62 matrix. We show results for k = 3, A = 0.5 (green), k = 5,A = 0.5 (blue),and k = 11,A = 0.7
(red). Data for GaussCovar with the 20D binarized encoding are shown in black for comparison. All
PPV curves are arithmetic means over 150 protein families (see caption of figure 1 for details). Shaded
areas represent standard deviations.



403

404

405

Version June 3, 2019 submitted to Molecules 14 of 20

The BLOSUMS62 matrix, intermediate between a more permissive matrix such as BLOSUMB30
(computed over BLOCKS with a low sequence identity of 30%), and a restrictive matrix such
as BLOSUM90 (from BLOCKS with up to 90% sequence identity) has become a standard in
protein database searches and sequence alignments (see for example references [46,48] in which
the performances of multiple substitution matrices were assessed). It was therefore natural to consider
it for testing GaussCovar; it is unclear however if it would lead to the best results compared to other
substitution matrices. We have repeated the analyses described above for BLOSUM matrices with
IDs between 30 and 100. Note that BLOSUMI100 is not the identity matrix: it is computed from
BLOCKS with sequence similarities up to 100%. It is used however to detect sequences with very
high similarities. The corresponding best performances of GaussCovar, as measured by AUC200
computed over all contacts from the mean PPV curves over all 150 protein families for the PSICOV
and NOUMENON datasets, are plotted against the BLOSUM ID in figure 8. Overall, it is observed
that performance increases as the BLOSUM ID increases, for both datasets. There results are consistent
with the fact that the 20D binarized encoding performs best, as this encoding can be seen as derived
from the identity matrix, i.e. a BLOSUM like matrix that focuses on perfect match, thereby closer to
BLOSUM matrices with high IDs.
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Figure 8. Influence of the BLOSUM matrix ID on the performance of GaussCovar based on
BLOSUM encodings of amino acids. The optimal AUC200 (over all predicted contacts) for
GaussCovar is plotted against the BLOSUM ID for the PSICOV dataset (left) and the NOUMENON
dataset (right).

4. Discussion

In this work we have tested multiple numerical encodings of amino acids within the framework of
contact predictions in proteins from a multivariate Gaussian analysis of multiple sequence alignments.
We have shown that 1D encodings based on amino acid properties (from the AAindex databases), as
well as higher dimension encodings computed from the principal components of BLOSUM substitution
matrices do not perform as well as a simple 20 dimensional binarized encoding in which each amino
acid in represented as a vector of zeros, except at the position corresponding to its type, where
the encoding is 1. We have also highlighted the importance of the prior when constructing the
Gaussian model of a multiple sequence alignment, and have shown that as the dimension of the
vectors representing the amino acids increases, more importance should be given to this prior in the
model, even if it is based on a simple uniform distribution. In the original derivation of the Gaussian
model [27], it was suggested that more informative priors could improve the prediction power of the
Gaussian model. Our results indicate that this is not the case, at least when the information is based on
substitution matrices.

The Gaussian model considered shares one similarity with the Potts model usually considered
for covariation analyses in that it implicitly defines an energy for a sequence that is a sum of pairwise
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interactions between its residues, where those interactions are directly proportional to the “states" of
those residues, their encodings using the terminology considered in this work. It is unclear however if
a direct proportionality is optimal. We are currently testing other formats for the energy of a sequence,
still within the context of numerical encodings of amino acids.

Finally, we note that progress in geometric contact predictions in proteins based on sequence
information only may not come solely from improvements of the models used to analyze MSAs. The
multivariate Gaussian model considered here, just like the Potts Hamiltonian model [6,21] summarizes
all forms of interactions between positions in the MSA into pairwise contacts. As the information
content of an MSA goes beyond those simple interactions, it was natural to see attempts to combine
such additional information to pairwise co-variation measures by using machine-learning techniques.
It is interesting, for example, that out of the 23 methods that have been used for contact predictions in
CASP12, at least 21 are clearly based on machine learning, using different versions of deep learning
methods or combinations of such methods [9]. Those methods were reported to be strikingly successful,
and precisions above 90% were achieved by the best predictors in more than half the targets in CASP12
[9], a result considered to be a highly significant improvement compared with the results obtained
during CASP11 [49].

5. Materials and Methods

5.1. Vector representations of amino acids

In addition to the common 20 dimensional binarized representation of amino acids (in which
an amino acid of type i is represented with a vector of 20 zeros, except at position i where the vector
component is 1), we have used two different vector representations of amino acids in this work, one
based on their physical properties, and one based on substitution matrices.

In our first representation, each amino acid is encoded by one real index value, as defined in
AAindex [40,41]. AAindex is a database of numerical indices representing various physicochemical
and biochemical properties of amino acids and pairs of amino acids. We have used the former, and
have tested the 402 properties that were available in 1996 [45]. Those are the first indices available in
AAindex and accessible online at https://www.genome.jp/aaindex/. We have used those 402 values,
and not all 566 currently available in AAindex, as the classifications of those 402 into six groups of
properties is available. Those six properties are « and turn propensities (Group 1), B propensity (Group
2), composition (Group 3), hydrophobicity (Group 4), physico-chemical properties (Group 5), and
other properties (Group 6), as defined in Ref. [45].

Common measures of similarities between amino acids are usually presented in the form of a
substitution matrix, which stores the odds that any given amino acid can be replaced by any other.
Substitution matrices can be compiled based on substitutions observed in protein sequence families
(for review, see [47], or directly from amino acids physico-chemical properties (see, for example, [45]).
Substitution matrices describe each amino acid with a set of twenty real values, thereby defining a
twenty-dimensional space. Swanson was the first to embed the space corresponding to the original
PAM matrix [50] into a plane, using a principal component analysis (PCA) approach [29]. Since then,
different embedding of the BLOSUMS62 matrix [46] into feature spaces of reduced dimensions have been
proposed, usually noticing that three dimensions already produce a reasonably good approximation
of the high dimensional amino acid space (see [37] and reference therein). We have used the same
scheme to generate embeddings of different BLOSUM matrices, with different dimensions, using the
same PCA strategy applied in the studies mentioned above.

5.2. GaussCovar: Residue contact predictions from a MSA

GaussCovar, our implementation of the Gaussian modeling of multiple sequence alignment
mirrors the algorithm described in [27]. For sake of completeness, we provide an outline of this
algorithm, briefly describe its main steps, and highlight the differences with the published method.
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Algorithm 1 GaussCovar: extracting residue contacts from a multiple sequence alignment

Input: a MSA with N sequences, of length L, £, the type of amino acid encoding, and A, the weight

of the prior;
(1) Preprocess MSA:

a) Cleanup: remove sequences with more than 90% of gaps

b) Assign weight w(n) to each sequence S, in the MSA

(2) Convert each letter-based sequence S, of length L into a real-valued vector X, of length Ls, as

defined by the encoding scheme ¢
(3) Compute empirical mean X and covariance matrix C using weighted versions of equations 9 and

10
(4) Compute corrected covariance matrix Cy; by adding a prior, using equation 7. The weight of the

prior is controlled by A

(5) Compute | = CI\_/I1

(6) For each pair of positions i and j in the MSA, compute a score P;; as the Frobenius norm of the
submatrix J; of size s X s.

(7) Apply APC correction to the score matrix P

(8) Rank all pairs (7, ) with j — i > 4 in decreasing order of corrected scores PS‘P €. The top 200 pairs

defined the predicted contacts.

Step 1b) is required to remove (to some extent) the dependencies between the sequences in the
MSA. We use the same re-weighting scheme as the one used in PSICOV [26], which was inspired
by similar re-weighting schemes proposed in Refs. [21,23]. The procedure is fully described in the
Supplemental material of [27]. We only provide basic details here, as they are needed to clarify the
concept of effective number of sequences in a MSA, M, ¢, used in the Results section. To generate the
weights, we first compute a similarity cutoff r. This cutoff is defined as being inversely proportional
to the average sequence identity over all pairs of sequences in the MSA. Once this cutoff r has been
computed, it is used to define groups of similar sequences around each sequence: only sequences with
less than rL identical amino-acids are considered to carry independent information. For each sequence
Sy in the MSA we count the number m,, of sequences with at least rL identical amino-acids; the weight
of the sequence is then defined as w(n) = 1/m,. The effective number M, ¢f of sequences is the sum of

the weights over all sequences:
N

Mepr =Y w(n) ®)

n=1
The main difference between our algorithm and the original algorithm described in [27] is step 2,
in which we allow for a broader range of possible encodings of amino acids into vectors. As described
above, we have considered encoding an amino acid as a single real value, as defined in one of the
scales available in the AAindex database [40,41], projected version of BLOSUM matrices onto spaces
of varying dimensions, as well as the original binarized representation used by Baldassi et al.
In step 3, the weighted empirical mean and covariance over the MSA are computed as:

ZnNzl wiXy

i =
22121 Wy

)

and
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_ 1 N _ _
C=—— Y w, (X = X)Xy — X) (10)
R !

The score P(i, j) between two positions i and j is computed from the Frobenius norm of the
submatrix [ (i, ) of side s x s, where s is the size of the vector representing amino acids. (step 6 of the
algorithm). The Frobenius norm is not independent of the gauge choice (see [25] for a full discussion
of this point). We apply the following two steps to compute P;;:

S = Jilk 1) = Jils) (k) = (1) (D) + (17 Ji1s)
Py = \JrU509T) =

where 14 is a vector of s ones.

Step 7 applies an average-product correction (APC) to the score matrix, initially introduced in
[39] to supper effects from phylogenetic biases, and introduced by Jones et al for covariation analyses
[26]. The APC-corrected score is computed as:

(P1.)(PT1p)"

PAPC —p_
1fp1,

(12)
where 1; is a vector of L ones.

5.3. Assessing the performance of GaussCovar

In order to assess the correctness of the contacts predicted by GaussCovar, we need in addition
to the MSA a “gold standard", or reference protein structure that best represent the proteins in this
MSA . A contact predicted by GaussCovar between two positions i and j is deemed correct if the two
corresponding residues k and [ in the reference protein structure are distant by less than 8 A, where
the inter-residue distance is defined as the minimum distance between any heavy atoms of the two
residues. Note that this corresponds to the definition of success proposed by Morcos et al [21]. Other
definition of success are possible (see for example [26]). Each predicted contact is then assigned as true
or false positives based on this criterium.

The precision or positive predictive value (PPV) of GaussCovar on a given MSA is a discrete
function determined by computing PPV (k) = (true positives)/(true positives + false positives) where k
is the number of predicted contacts. A perfect prediction would generate a curve such that PPV (k) =1
for all k, while a poor prediction would see PP(k) close to zero for all k. We quantify the overall quality
of the prediction as the area below this curve, which we write AUC200, as it is computed over the
first 200 predicted contacts. We note that the larger the AUC200 score, the better the prediction. The
AUC200 score for a perfect prediction is 200.

To assess the significance of the performances of GaussCovar with different amino acid encodings
over a dataset, we generated a mean curve PPV, averaged over all families included in the MSA. At
each contact level k, we computed a mean value and a standard deviation. To compare two such curves
(say when comparing the performance of GaussCovar under certain conditions with the performance
of the program PSICOV), we applied a two tailed Student’s t-test at each level of contact k. The
two underlying distributions contain the same number of samples (i.e. 150 families). The difference
between the two curves at a given k value is assumed to be statistically significant if the corresponding
p—value is smaller than 0.05. if all p—values over all levels k are smaller than 0.05, the two curves
themselves are considered statistically different.
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5.4. Test datasets

We have used two test sets for assessing the predictive abilities of GaussCovar under different
representations of amino acids, namely the original PSICOV dataset [26] and the recent NOUMENON
dataset [42].

The PSICOV set is a carefully designed dataset composed of 150 protein families, originally
generated as a test set for the namesake program PSICOV (Protein Sparse Inverse COVariance). It
was designed as follows (for full details, see [26]). 150 proteins whose structures are available in the
Protein Data Bank (PDB, htt:/ /www.pdb.org) [2] and lengths between 75 residues and 275 residues
were selected. All the structures of those proteins were of high resolution (< 1.9 A) and all are known
to be biological monomers, to eliminate the risks of detecting inter-chain contacts. The sequences of
those proteins are dissimilar. For any pair of sequences, a sequence alignment using the SSEARCH
package from the FASTA package (https:/ /fasta.bioch.virginia.edu/) has a E-value greater than 1075,
and usually greater than 0.1. For each sequence, multiple sequence alignments were generated using
the jackhammer program from the HMMER 3.0 package (http:hmmer.org). The sequence was checked
against, and aligned with, homologues from the UNIREF100 data bank, using three iterations of
jackhammer. The resulting alignments contain between 511 and 74836 sequences. Those alignments,
as well as the corresponding reference PDB structures, and the results of running PSICOV on them,
are available at http:/ /bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ as Supplementary Materials of
the original PSICOV paper [26].

The NOUMENON set is a more recent dataset that was designed to provide a bias-free test set for
assessing the performance of residue contact prediction methods [42]. It also contains 150 proteins and
was derived in a similar manner that PSICOV was built. Namely, 150 sequences of proteins with known
highly resolved structures (< 2 A) were selected. The lengths of these proteins also vary between 75
residues and 275 residues. It was also ensured that their structures have at least N contacts, where
N is the length of the protein. Each of those sequences was then checked against, and aligned with
homologues from the UNIREF100 data bank, using three iterations of jackhammer. The key difference
with the PSICOV dataset is how the initial 150 proteins are selected. This selection is constrained such
that their homologues have no, or little evolutionary relationship with proteins whose structures are
available in the PDB. The NOUMENON dataset can be retrieved at http:/ /ibsquare.be/noumenon.
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