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Abstract: I present theoretical calculations for Higgs-boson and top-quark production, including
high-order soft-gluon corrections. I discuss charged-Higgs production in association with a top
quark or a W boson, as well as single-top and top-antitop production. Total cross sections as well as
transverse-momentum and rapidity distributions of the top quark or the Higgs boson are presented
for various LHC energies.
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1. Introduction

The study of the top quark and of Higgs bosons in the Standard Model and beyond are two
major active areas of fundamental physics and its exporation at the LHC. To make the most of
the physics program at the LHC, we need to be able to predict theoretically the cross sections for
processes involving top quarks and Higgs bosons, including processes beyond the Standard Model.
Perturbative QCD corrections are typically large for these processes and they are needed to reduce the
dependence of the cross sections on factorization and renormalization scales.

Many processes have now been calculated to NLO, and some to NNLO. The complexity of the
calculations increases enormously with each order. It is therefore important to identify the sources of
specific contributions to the cross sections, and whether they are numerically dominant and can be
calculated with alternative techniques. It turns out that soft-gluon corrections, i.e., radiative corrections
calculated in the eikonal approximation where the gluons are low-energy, dominate the cross sections
for many processes at LHC and Tevatron energies. It is thus important and meaningful to calculate
these corrections. See Ref. [1] for a review.

These soft-gluon corrections can be formally resummed in moment space to all orders in the
perturbative series by using factorization of the cross section into different functions that describe the
behavior of hard, collinear, and soft quanta, and renormalization-group evolution of these functions.
However, physical predictions for resummed cross sections need some kind of method or prescription
to avoid Landau singularities in the resummed result, and the record of such prescriptions has been
rather poor in that they typically grossly underestimate the numerical contribution of the corrections.
However, fixed-order expansions of the resummed cross sections bypass such concerns.

Expansions of resummed cross sections have been given at NLO, NNLO, and even N3LO for
numerous top-quark and Higgs processes [1]. The soft-gluon corrections at NLO typically are excellent
approximations to the complete NLO corrections. In cases where the complete NNLO corrections are
known, it is also found that the soft-gluon corrections at NNLO are also very good approximations.
Even higher-order soft-gluon corrections can provide additional significant contributions.

In this presentation, I discuss the latest results with soft-gluon corrections for various processes
involving charged Higgs bosons and top quarks. In particular, I discuss tH− production, H−W+

production, single-top quark production in the t- and s-channels and tW production, tZ production
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via anomalous top-quark couplings, and tt̄ production. Soft-gluon corrections are very important in
all these cases and they approximate exact results very well.

We resum these soft corrections at next-to-next-to-leading logarithm (NNLL) accuracy for the
double-differential cross section, and we use the resummed cross section as a generator of finite-order
expansions to provide approximate NNLO (aNNLO) and approximate N3LO (aN3LO) predictions
for cross sections and differential distributions. We get the aNNLO prediction by adding the aNNLO
soft-gluon corrections to the complete NLO result. The aN3LO prediction is found by adding the
aN3LO soft-gluon corrections to the complete NNLO result if the latter is available (or to the aNNLO
result, if it is not).

2. Higher-Order Soft-Gluon Corrections

We consider partonic processes for charged-Higgs production

f1 + f2 → H− + X

and for top-quark production
f1 + f2 → t + X .

In addition to the usual kinematical variables s, t, u, we define a threshold variable s4 = s+ t+ u−
∑ m2. At partonic threshold s4 → 0, and the soft-gluon corrections are of the form [lnk(s4/m2

H)/s4]+ for
charged-Higgs production, and [lnk(s4/m2

t )/s4]+ for top-quark production, with k ≤ 2n− 1 at order
αn

s . We resum these soft corrections for the double-differential cross section in t and u, or equivalently
in pT and rapidity.

To derive soft-gluon resummation, we take moments of the partonic cross section with moment
variable N, σ̂(N) =

∫
(ds4/s) e−Ns4/sσ̂(s4), and write a factorized expression for the cross section in

4− ε dimensions

σ(N, ε) = HIL (αs(µR)) SLI

(
m

NµF
, αs(µR)

)
∏ Jin (N, µF, ε)∏ Jout (N, µF, ε) ,

where m denotes the charged-Higgs or top-quark masses, depending on the process, and µF and µR
are the factorization and renormalization scales. HIL is the hard function and SLI is the soft function,
both of them matrices in general in the space of color exchanges, and the Jin and Jout collect collinear
and soft-gluon corrections from the incoming and outgoing partons. SLI satisfies the renormalization
group equation (

µ
∂

∂µ
+ β(gs)

∂

∂gs

)
SLI = −(Γ†

S)LKSKI − SLK(ΓS)KI ,

where ΓS is the soft anomalous dimension, thus resulting in the exponentiation of logarithms of N.
At NNLL accuracy, we need two-loop soft anomalous dimensions.

Resummed expressions follow from the evolution of the soft function, as determined by the above
renormalization group equation, as well as of the J functions in the factorized expression.

3. Charged Higgs Production

We begin with the associated production of a top quark and a charged Higgs boson in the
MSSM or other two-Higgs-doublet models [2–4]. The lowest-order cross section for the process
bg→ tH− is proportional to ααs(m2

b tan2 β + m2
t cot2 β) where tan β = v2/v1 is the ratio of the vacuum

expectation values of the two Higgs doublets. The soft anomalous dimension for the process is

Γbg→tH−
S = (αs/π)Γ(1)

S + (αs/π)2Γ(2)
S + · · · , with

Γ(1)
S = CF

[
ln
(

m2
t − t

mt
√

s

)
− 1

2

]
+

CA
2

ln
(

m2
t − u

m2
t − t

)
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T h e a n al yti c al e x p r e s si o n s f o r t h e s oft- gl u o n c o r r e cti o n s t h r o u g h N N L O f o r t H − p r o d u cti o n h a v e

b e e n gi v e n i n [ 2 – 4 ]. T h e a p p r o xi m at e N3 L O ( a N 3 L O) s oft- gl u o n c o r r e cti o n s a r e:

d 2 σ̂
( 3 ) b g → t H −

a N 3 L O

dt d u
= F

b g → t H −

L O

α 3
s

π 3
( C F + C A ) 3 l n5 ( s 4 / m 2

H )

s 4
+

+
5

2
( C F + C A ) 2 2 C F l n

m 2
t − t

m t
√

s
− 2 C F l n

m 2
H − u

m 2
H

− C F

+ C A l n
m 2

t − u

m 2
t − t

− 2 C A l n
m 2

H − t

m 2
H

− ( C F + C A ) l n
µ 2

F

s

−
1 1

9
C A +

2

9
n f

l n4 ( s 4 / m 2
H )

s 4
+

+ O
l n3 ( s 4 / m 2

H )

s 4
+

,

w h e r e, f o r b r e vit y, w e d o n ot s h o w e x pli citl y t h e l o w e r p o w e r s of t h e l o g a rit h m s.

We n o w p r e s e nt t h e a N 3 L O t ot al c r o s s s e cti o n s at L H C e n e r gi e s. We u s e M M H T 2 0 1 4 N N L O

p df [ 5 ] f o r o u r n u m e ri c al r e s ult s. I n t h e l eft pl ot of Fi g u r e 1 , w e s h o w t h e a N3 L O t ot al c r o s s s e cti o n

f o r t H − p r o d u cti o n, wit h t a n β = 3 0, a s a f u n cti o n of c h a r g e d- Hi g g s m a s s at L H C e n e r gi e s of 7, 8, 1 3,

a n d 1 4 Te V. T h e s oft- gl u o n c o r r e cti o n s a r e l a r g e f o r t hi s p r o c e s s, a s s h o w n o n t h e pl ot o n t h e ri g ht.

T o p- q u a r k p T a n d r a pi dit y di st ri b uti o n s i n t hi s p r o c e s s h a v e al s o b e e n p r e s e nt e d i n [ 3 ,4 ].

We n e xt di s c u s s H − W + p r o d u cti o n vi a b b̄ → H − W + [6 ]. I n t h e l eft pl ot of Fi g u r e 2 , w e s h o w

t h e a N N L O c h a r g e d- Hi g g s r a pi dit y di st ri b uti o n d σ / d |Y |, wit h t a n β = 1 a n d m H = 5 0 0 G e V, at 7, 8,

1 3, a n d 1 4 Te V L H C e n e r gi e s wit h M M H T 2 0 1 4 N N L O p df. T h e i n s et pl ot s h o w s t h e a N N L O / L O

K -f a ct o r s. T h e s oft- gl u o n c o r r e cti o n s a r e cl e a rl y v e r y si g ni fi c a nt.
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Fi g ur e 1. (L eft ) a N3 L O t ot al c r o s s s e cti o n s f o r t H − p r o d u cti o n; ( Ri g ht ) K -f a ct o r s f o r t H − p r o d u cti o n.
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Fi g ur e 2. (L eft ) t h e a N N L O r a pi dit y di st ri b uti o n of t h e c h a r g e d Hi g g s b o s o n i n H − W + p r o d u cti o n at

L H C e n e r gi e s; ( Ri g ht ) t h e a N N L O t ot al c r o s s s e cti o n f o r t h e p r o c e s s g c → t Z.

4. t Z Pr o d u cti o n vi a A n o m al o u s C o u pli n g s

I n p h y si c s b e y o n d t h e St a n d a r d M o d el, t o p- q u a r k p r o d u cti o n m a y o c c u r vi a a n o m al o u s c o u pli n g s

of t h e t o p q u a r k. H e r e, w e di s c u s s s oft- gl u o n c o r r e cti o n s i n t Z p r o d u cti o n wit h a n o m al o u s t-q -Z

c o u pli n g s vi a t h e p r o c e s s e s g u → t Z a n d g c → t Z [7 ]. T h e c o m pl et e N L O c o r r e cti o n s [8 ] a r e v e r y w ell

a p p r o xi m at e d b y t h e s oft- gl u o n c o r r e cti o n s at t h at o r d e r.

I n t h e ri g ht pl ot of Fi g u r e 2 , w e s h o w t h e a N N L O t ot al c r o s s s e cti o n f o r g c → t Z a s a f u n cti o n

of t o p- q u a r k m a s s at L H C e n e r gi e s of 7, 8, 1 3, a n d 1 4 Te V wit h C T 1 4 p df [ 9 ]. T h e i n s et pl ot di s pl a y s

t h e K -f a ct o r s, w hi c h s h o w t h at t h e a N N L O c o r r e cti o n s a r e l a r g e. T h e f a ct t h at t h e s e c o r r e cti o n s

si g ni fi c a ntl y e n h a n c e t h e N L O c r o s s s e cti o n i s a n i m p o rt a nt t h e o r eti c al i n p ut t o s etti n g e x p e ri m e nt al

li mit s o n t h e c o u pli n g s [1 0 ,1 1 ]. Si mil a r r e s ult s a r e f o u n d f o r t h e p r o c e s s g u → t Z, a n d t o p- q u a r k

diff e r e nti al di st ri b uti o n s f o r b ot h p r o c e s s e s h a v e b e e n p r e s e nt e d i n R ef. [ 7 ].

R el at e d c al c ul ati o n s h a v e m o r e r e c e ntl y b e e n d o n e f o r tγ p r o d u cti o n vi a a n o m al o u s c o u pli n g s i n

R ef. [ 1 2 ], wit h si mil a r fi n di n g s o n t h e i m p o rt a n c e of s oft- gl u o n c o r r e cti o n s.

5. Si n gl e- T o p Pr o d u cti o n

N e xt, w e di s c u s s si n gl e-t o p p r o d u cti o n i n t h e t- c h a n n el, s - c h a n n el, a n d vi a t W p r o d u cti o n.

T h e s e p r o c e s s e s a r e n o w k n o w n at N N L O f o r t h e t- c h a n n el [1 3 – 1 5 ] a n d t h e s - c h a n n el [1 6 ], a n d at N L O

f o r t W p r o d u cti o n [ 1 7 ]. S oft- gl u o n r e s u m m ati o n at N N L L h a s b e e n p e rf o r m e d f o r all c h a n n el s [1 8 – 2 1 ].

We n o w p r e s e nt r e s ult s wit h s oft- gl u o n c o r r e cti o n s at a N N L O [ 1 8 ,2 0 ] f o r t h e t a n d s c h a n n el s, a n d at

a N 3 L O [ 2 1 ] f o r t W p r o d u cti o n.

I n t h e l eft pl ot of Fi g u r e 3 , w e s h o w a N N L O r e s ult s f o r t- c h a n n el c r o s s s e cti o n s, u si n g M M H T 2 0 1 4

N N L O p df [ 5 ], at L H C a n d (i n s et) at Te v at r o n e n e r gi e s. R e s ult s a r e s h o w n s e p a r at el y f o r t h e si n gl e-t o p

c r o s s s e cti o n, t h e si n gl e- a ntit o p c r o s s s e cti o n, a n d t h ei r s u m. We fi n d e x c ell e nt a g r e e m e nt of t h e

a N N L O p r e di cti o n s wit h all d at a f r o m t h e L H C a n d t h e Te v at r o n. T h e a N N L O n o r m ali z e d t o p- q u a r k

p T di st ri b uti o n s al s o d e s c ri b e t h e a v ail a bl e d at a q uit e w ell [ 2 2 ].

We n e xt di s c u s s t W p r o d u cti o n at a N 3 L O. I n t h e ri g ht pl ot of Fi g u r e 3 , w e s h o w t h e t ot al

t W − + t̄ W + c r o s s s e cti o n a s a f u n cti o n of e n e r g y. We o b s e r v e v e r y g o o d a g r e e m e nt wit h L H C d at a at 7,

8, a n d 1 3 Te V e n e r gi e s.

Fi n all y, t h e t h e o r eti c al p r e di cti o n s f o r s - c h a n n el p r o d u cti o n at a N N L O a r e i n g o o d a g r e e m e nt

wit h a v ail a bl e L H C a n d Te v at r o n d at a a s s h o w n i n [ 2 2 ].
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Fi g ur e 3. (L eft ) si n gl e-t o p t- c h a n n el a N N L O c r o s s s e cti o n s c o m p a r e d wit h C M S a n d A T L A S d at a at

7 Te V [ 2 3 ,2 4 ], 8 Te V [2 5 ,2 6 ], a n d 1 3 Te V [2 7 ,2 8 ], a n d wit h C D F a n d D 0 c o m bi n e d d at a at 1. 9 6 Te V [2 9 ];

(Ri g ht ) a N3 L O c r o s s s e cti o n s f o r t W p r o d u cti o n c o m p a r e d t o A T L A S a n d C M S d at a at 7 Te V [ 3 0 ,3 1 ],

8 Te V [ 3 2 ], a n d 1 3 Te V [3 3 ,3 4 ].

6. T o p- A ntit o p P air Pr o d u cti o n

T o p- a ntit o p p ai r p o d u cti o n i s t h e d o mi n a nt m o d e at b ot h t h e Te v at r o n a n d t h e L H C.

T h e t h e o r eti c al st at e- of-t h e- a rt i s c u r r e ntl y a N 3 L O [ 3 5 – 3 7 ]. T h e s oft a n o m al o u s di m e n si o n s a r e

k n o w n at t w o l o o p s a n d t h e y a r e 2 × 2 m at ri c e s i n c ol o r s p a c e f o r t h e q q̄ → tt̄ c h a n n el, a n d 3 × 3

m at ri c e s f o r t h e g g → tt̄ c h a n n el.

T h e s oft- gl u o n c o r r e cti o n s h a v e b e e n k n o w n at N L O a n d N N L O f o r t ot al a n d diff e r e nti al c r o s s

s e cti o n s f o r s o m e ti m e. T h e s e c o r r e cti o n s a r e l a r g e a n d d o mi n a nt, a n d t h e y p r o vi d e e x c ell e nt

a p p r o xi m ati o n s t o t h e c o m pl et e Q C D c o r r e cti o n s at b ot h N L O a n d N N L O [ 1 ] ( s e e, i n p a rti c ul a r,

Fi g u r e 6 i n [ 1 ]). T h e f u rt h e r c o r r e cti o n s at a N3 L O a r e still si g ni fi c a nt, a n d t h e y n e e d t o b e i n cl u d e d

i n t h e o r eti c al p r e di cti o n s f o r i m p r o v e d a c c u r a c y a n d s m all e r t h e o r eti c al u n c e rt ai nt y. At t h e L H C,

t h e a N3 L O c o r r e cti o n s i n c r e a s e t h e N N L O c r o s s s e cti o n b y a r o u n d 4 % at 7 a n d 8 Te V e n e r gi e s a n d b y

a r o u n d 3 % at 1 3 a n d 1 4 Te V e n e r gi e s ( s e e R ef. [ 3 5 ] f o r d et ail s).

Fi g u r e 4 di s pl a y s t h e a N 3 L O t o p- a ntit o p c r o s s s e cti o n s at L H C a n d Te v at r o n e n e r gi e s u si n g

M M H T 2 0 1 4 N N L O p df. T h e r e i s d at a f r o m t h e Te v at r o n at 1. 8 Te V a n d 1. 9 6 Te V e n e r gi e s, a n d f r o m

t h e L H C at 5. 0 2, 7, 8, a n d 1 3 Te V e n e r gi e s. T h e t h e o r eti c al c u r v e s d e s c ri b e t h e d at a at all e n e r gi e s

r e m a r k a bl y w ell. T h e f a ct t h at a N 3 L O t h e o r y h a s p r e di ct e d a n d a g r e e s wit h t h e d at a o v e r s u c h a wi d e

e n e r g y r a n g e i s hi g hl y si g ni fi c a nt. T h e s oft- gl u o n c o r r e cti o n s a r e i m p o rt a nt b ot h i n e n h a n ci n g t h e

c r o s s s e cti o n a n d i n r e d u ci n g it s d e p e n d e n c e o n r e n o r m ali z ati o n a n d f a ct o ri z ati o n s c al e s.

T o p- q u a r k diff e r e nti al di st ri b uti o n s c a n p r o vi d e a l ot m o r e i nf o r m ati o n t h a n t ot al c r o s s s e cti o n s,

a n d t h e y a r e s e n siti v e t o n e w p h y si c s. T o p- q u a r k t r a n s v e r s e- m o m e nt u m ( p T ) a n d r a pi dit y di st ri b uti o n s

h a v e b e e n c al c ul at e d t o a N 3 L O, a n d t h e s oft- gl u o n c o nt ri b uti o n s a r e v e r y i m p o rt a nt [ 1 ,2 2 ,3 6 ].

T h e a N 3 L O t o p- q u a r k n o r m ali z e d p T di st ri b uti o n s, ( 1 / σ ) d σ / d p T , a n d n o r m ali z e d r a pi dit y

di st ri b uti o n s, ( 1 / σ ) d σ / d Y , a r e s h o w n i n Fi g u r e 5 at 1 3 Te V e n e r g y a n d c o m p a r e d wit h C M S d at a.

A g ai n, w e fi n d e x c ell e nt a g r e e m e nt of t h e a N 3 L O t h e o r eti c al p r e di cti o n s f o r b ot h di st ri b uti o n s wit h

t h e c o r r e s p o n di n g d at a.
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7. C o n cl u si o n s

We h a v e p r e s e nt e d r e s ult s wit h s oft- gl u o n c o r r e cti o n s f o r t ot al c r o s s s e cti o n s a n d diff e r e nti al

di st ri b uti o n s f o r v a ri o u s p r o c e s s e s i n v ol vi n g t h e p r o d u cti o n of c h a r g e d Hi g g s b o s o n s a n d t o p q u a r k s.

T h e s oft- gl u o n c o r r e cti o n s a r e si g ni fi c a nt a n d d o mi n a nt i n all t h e p r o c e s s e s t h at w e h a v e di s c u s s e d.

We h a v e p r e s e nt e d a N 3 L O r e s ult s f o r t H − p r o d u cti o n, f o r t W p r o d u cti o n, a n d f o r tt̄ p r o d u cti o n.

We h a v e s h o w n a N N L O r e s ult s f o r t- c h a n n el a n d s - c h a n n el si n gl e-t o p p r o d u cti o n, H − W + p r o d u cti o n,

a n d t Z p r o d u cti o n vi a a n o m al o u s c o u pli n g s. F o r t h e si n gl e-t o p a n d t o p- a ntit o p- p ai r p r o c e s s e s, w e fi n d

e x c ell e nt a g r e e m e nt wit h all a v ail a bl e c olli d e r d at a. T h e hi g h e r- o r d e r s oft- gl u o n c o r r e cti o n s a r e n e e d e d

f o r a b ett e r d e s c ri pti o n of t h e d at a a n d f o r s etti n g li mit s i n n e w p h y si c s s e a r c h e s.

F u n di n g: T hi s m at e ri al i s b a s e d u p o n w o r k s u p p o rt e d b y t h e N ati o n al S ci e n c e F o u n d ati o n u n d e r G r a nt s N o.
P H Y 1 5 1 9 6 0 6 a n d P H Y 1 8 2 0 7 9 5.

C o n fli ct s of I nt er e st: T h e a ut h o r d e cl a r e s n o c o n fli ct of i nt e r e st.
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