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Abstract

Transversality is a simple and effective method for implementing quantum computation fault-
tolerantly. However, no quantum error-correcting code (QECC) can transversally implement a
quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible
classical computation is often a dominating part of useful quantum computation, whether or not
it can be implemented transversally is an important open problem. We show that, other than
a small set of non-additive codes that we cannot rule out, no binary QECC can transversally
implement a classical reversible universal gate set. In particular, no such QECC can implement
the Toffoli gate transversally.

We prove our result by constructing an information theoretically secure (but inefficient) quan-
tum homomorphic encryption (ITS-QHE) scheme inspired by Ouyang et al. (arXiv:1508.00938).
Homomorphic encryption allows the implementation of certain functions directly on encrypted
data, i.e. homomorphically. Our scheme builds on almost any QECC, and implements that
code’s transversal gate set homomorphically. We observe a restriction imposed by Nayak’s
bound (FOCS 1999) on ITS-QHE, implying that any ITS quantum fully homomorphic scheme
(ITS-QFHE) implementing the full set of classical reversible functions must be highly ineffi-
cient. While our scheme incurs exponential overhead, any such QECC implementing Toffoli
transversally would still violate this lower bound through our scheme.



1 Introduction

1.1 Restrictions on transversal gates

Transversal gates are surprisingly ubiquitous objects, finding applications in quantum cryptography
[29], [25], quantum complexity theory [11], and of course quantum fault-tolerance. The instability
of quantum information is well-documented, and quantum error-correcting codes [24] allow the
encoding of single qubits into multiple qubit systems so that errors on small subsets of physical
qubits can be corrected [21]. Performing computations on these codes carries the risk of propagating
errors between different subsystems, unless the code can implement the computation in a way that
preserves the subsystem structure. Informally, these types of logical operators that decompose as
a product across the subsystems are called transversal, and the oft-cited Eastin-Knill theorem [15],
[39] limits the ability of quantum codes to prevent this error propagation.

Theorem 1 (Eastin-Knill). No quantum error-correcting code can implement a quantum universal
transversal gate set.

These transversal gate sets are valuable as most models of fault-tolerant quantum computa-
tion implement associated transversal gate sets fault-tolerantly “for free”. Incurring comparatively
significant overhead, often in the form of magic state distillation [18], [22], gauge fixing [5], [26],
or more recently deconstructions of non-transversal gates into fault-tolerant pieces [37], one can
fault-tolerantly implement some remaining gate set making the computation space universal. Im-
proving the efficiency of this overhead and designing new fault tolerant architectures to supplement
transversal gates is central to quantum fault tolerance.

Implementing fault-tolerant classical reversible computation efficiently would be extremely de-
sirable as many quantum algorithms are primarily classical subroutines with a relatively small
number of quantum gates, and there have been several proposals for doing so [31], [13], [23].
For example, factoring a cryptographically large RSA key using Shor’s algorithm requires around
3 × 1011 Toffoli gates to perform modular exponentiation alone, and is the dominating portion of
the circuit [19]. As Toffoli is universal for classical reversible computation, one might ask if there
are any quantum error-correcting codes that can naturally implement Toffoli, and thus classical
computations, transversally? We give restrictions on the ability of QECCs to do this.

Theorem 2 (Informal). Almost no quantum error-correcting code can implement a classical uni-
versal transversal gate set. In particular, almost no quantum error-correcting code can implement
the Toffoli gate transversally.

The only exceptions to our theorem are non-additive distance d codes that decompose as d-fold
product states in their logical computational basis, where each “subcode” itself fails to be erasure-
correcting. Essentially, one can think of these as maximally redundant quantum codes: they are the
concatenation of a repetition code with some distance 1 inner code, similar to Shor’s stabilizer code
written as a 3-fold product of GHZ states. We do not expect that any such code can implement
Toffoli transversally, but it remains a case our proof technique cannot rule out. In particular, our
proof does apply to all binary additive codes. The result is perhaps slightly surprising since there
exist QECCs (e.g. triorthogonal codes) that can implement the CCZ gate transversally [31], and in
fact transversal Toffoli gates can map between different quantum Reed-Solomon codes by increasing
the degree of the underlying polynomial [13].
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1.2 Quantum homomorphic encryption

The main ingredient in our proof is an information-theoretically secure homomorphic encryption
scheme. Generally, homomorphic encryption [20] is a means of delegating computation on sensitive
data securely. It allows for the encryption of data in such a way that another party can perform
meaningful computation on the ciphertext without decoding, preserving the security of the under-
lying plaintext. A scheme is termed fully homomorphic encryption (FHE) if it can implement a
universal class of functions in some computation space.

Recently, extensions of homomorphic encryption to the quantum setting have been considered.
Instead of encrypting classical data and implementing addition and multiplication gates homomor-
phically, quantum homomorphic encryption aims to encrypt quantum data and implement unitary
gates homomorphically. Progress was made in [10], and recently [14] extended this work to a leveled
scheme that could homomorphically implement all polynomial-sized quantum circuits.

The aforementioned schemes are only computationally secure, since they use classical FHE as
a subroutine. This is no great indictment: FHE is built on the difficulty of certain hard lattice
problems that are leading candidates for quantum-secure encryption [12], [33]. However, quantum
information often promises information-theoretic security (ITS) guarantees that are impossible
classically. Intermediate advances have also been made in this more restrictive setting. One such
scheme allows for the implementation of a large class of unitaries homomorphically, but with less
stringent ITS guarantees [36].

More recently, [29] proposed a compact ITS-QHE scheme in which the size of the encoding scales
polynomially with size of the input for the limited Clifford circuit class. This scheme achieves
the strongest notion of imperfect ITS, with the probability of distinguishing between any two
ciphertexts exponentially suppressed in the size of the encoding.

The scheme in [29] is based on a “noisy” quantum encoding of the data. They take an encoding
circuit for a particular quantum code and replace the ancilla bits of the encoding with uniformly
random noise. Their encryption is then choosing a random embedding of this code into yet more
uniformly random noise. This scheme links ITS-QHE to transversal gates: the transversal gates
for their code are exactly those gates that can be implemented homomorphically.

1.3 Limitations on ITS-QHE

There are fundamental limitations on what ITS homomorphic encryption can do. It is known
that for a purely classical scheme, efficient ITS-FHE is impossible, violating lower bounds in the
setting of single server private information retrieval [16]. It was further shown that in the best case
scenario, when the mutual information between the plaintext and the ciphertext is precisely zero,
efficient quantum FHE is impossible [38].

This no-go result actually applies to the more restrictive setting of classical data being encrypted
into quantum data, while allowing only classical reversible functions to be evaluated homomorphi-
cally. Both [38] and [29] ask whether relaxing to imperfect ITS-security might allow for efficient
ITS-QFHE. Unfortunately, this is not the case.

Proposition 3. [Informal] Efficient ITS-QFHE is impossible.

Concurrent to this work, this proposition was observed in [25]. We provide a precise statement
and proof of this restriction in Appendix A. This result can be seen by combining the proof technique
in [16] with similar single server private information retrieval bounds in the quantum setting [4].
In essence, the inefficiency of ITS-QFHE follows from viewing ITS-QHE (on classical data using a
quantum encoding) as a certain quantum random access encoding (QRAC) (see [1]) of the function
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class we wish to implement homomorphically. Well-known bounds on QRACs [27] place lower
bounds on the encoding size of such a scheme, precluding efficiency. Using a variant of the code-
based ITS-QHE scheme proposed in [29], we can then argue that (almost) any QECC implementing
the Toffoli gate transversally would yield a scheme violating this lower bound.

It is worth noting that similar tasks such as blind quantum computation [9] and computing on
encrypted data [17], [8] allow ITS solutions, but they do so at the cost of interactivity between the
client and server. We do not allow this interactivity in our definition of homomorphic encryption.

1.4 Comparison to related works

The five works the most closely resemble our results are [15],[39] and [6], which place restrictions
on transversal gate sets for QECCs, and [29] and [25], which use similar ITS-QHE constructions.
We very roughly summarize these results and compare them to our own.

In [39], Zeng et al. were some of the first to place restrictions on quantum universal transversal
gate sets for additive quantum codes by elucidating the stabilizer group structure. Further work in
[2] classified the set of diagonal gates that can implement one and two qubit logical operations in
stabilizer codes. Shortly thereafter, [15] showed that for any QECC, the transversal gate set must
be finite, and so cannot approximate with arbitrary precision the full unitary group. Intuitively,
they make a Lie type argument by showing that infinitesimal transversal operations are themselves
linear combinations of local error operators. Since these unitaries must act identically on the
codespace, it follows that the group of transversal operations must be finite.

More recently, [6] placed restrictions on the more general class of topologically protected logical
gates in topological stabilizer codes, which include transversal gates as an optimal subset. They
showed that for a topological stabilizer code defined on a d-dimensional lattice, any such gate must
lie in the dth level of the Clifford hierarchy. These results were extended in [32] to more general
stabilizer subsystem codes, and in Appendix D, we detail how these arguments can be used to rule
out classical reversible transversal computation for the subclass of stabilizer codes.

In the direction of ITS-QHE, [29] gave a compact and efficient ITS-QHE scheme for the restricted
class of Clifford circuits. Using magic state injection, they complete a universal gate set by adding
the T -gate. However, because the client and server cannot communicate during the protocol, they
must limit themselves to circuits using a constant number of T -gates. Again, their encryption is a
“noisy” encoding of the data into some code followed by a secret embedding into random noise. With
this encryption, they are able to generate indistinguishable outputs using only polynomial overhead
in the input size. In the more recent work [25], the authors independently observe Proposition 3.
They take the more positive approach of arguing what can be done in spite of this limitation,
extending the ITS-QHE schematic in [29] to other particular error-correcting codes and using code
concatenation to achieve security with only polynomial overhead. This achieves ITS-QHE on the
larger circuit class IQP+, which is probably not classically simulable [7].

Because of the stringent lower bounds placed by Nayak, we actually forgo the noisy encoding
circuit and embed QECCs directly into random noise after removing a correctable set of qubits.
This has the effect of increasing the overhead by an exponential factor in order to achieve security,
but thanks to the roomy lower bound, this factor is still too small to allow an ITS-QFHE scheme.

We can argue directly about the security of this scheme using the nonlocality of the quantum
information being encoded in almost any QECC. The idea is conceptually simple: in order to obtain
encryptions of the data that are both secure and (sufficiently) short, we must inject randomness
into the encodings themselves by withholding qubits from the code. While ordinarily this would
negatively affect the correctness of homomorphic evaluation, the error-correcting property allows us
to inject this randomness while still maintaining perfect recoverability. Then intuitively, spreading
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the information across the subsystems limits the complexity of the class of logical operators that
don’t couple the subsystems, i.e. the transversal operators. This differs fundamentally from the
approaches in [39] and [15] in that it is a quantitative information-type bound.

It is not without its drawbacks however, as these maximally redundant codes fail to “spread out”
the information sufficiently. The prototypical example is Shor’s code, which is the concatenation of
a bit-flip and phase-flip code. However, we can argue directly using the stabilizer group structure
that no such additive code can implement Toffoli transversally.

2 Preliminaries

2.1 Quantum Information

We quickly review some standard notation, followed by some less standard tools we will need from
quantum information theory. For a more complete view, see [28].

Throughout, we will be working with 2-level qubit quantum systems. We denote by |H| =
log(dim(H)), the number of qubits constituting state spaceH. We define a general quantum state to
be a positive semi-definite operator ρ ∈ L(H) of trace one. We call such a state pure if rank(ρ) = 1,
otherwise we call it mixed, and note that such an operator is mixed if and only if Tr(ρ2) < 1. For
any operator U ∈ HA, we use the notation UA to indicate the operator UA ⊗ IB ∈ L(HA ⊗ HB).
When it is unclear which space a state lives in, we will denote its state space as a superscript (e.g.
|ψ⟩A). We also sometimes adopt the notation that for ρ ∈ L(A⊗B), ρA = TrB(ρ). By slight abuse
of notation, we also adopt the convention that for any permutation π ∈ Sn, π can also indicate
the unitary permutation operator corresponding to the physical permutation of qubits. We also
sometimes omit the dimension of an identity operator I, but usually the dimension is implicitly its
trace normalization factor, e.g. I/D acts on a space of dimension D.

The norm ∥ ·∥p refers the usual Schatten p-norm, so that for any A ∈ L(H) with singular values
(a1, . . . , an),

∥A∥p =

!
n"

i=0

api

#1/p
for p > 1, and ∥A∥1 =

n"

i=0

|ai|.

Further recall that

1

2
∥ρ− σ∥1 = max

P≤I
Tr(P (ρ− σ)),

and so we can think of the 1-norm as a means of bounding the ability to distinguish two
quantum states, where ≤ refers to the positive semidefinite partial ordering. For a collection of
quantum states {ρS} indexed by S ∈ S, we sometimes write ES [ρS ] to denote the expectation over
a uniformly random choice of S, ES [ρS ] =

1
|S|

$
S∈S ρS . We will regularly be referring to several

particular gates, and so list them here.

X =

%
0 1
1 0

&
Y =

%
0 −i
i 0

&
Z =

%
1 0
0 −1

&

CX =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ CZ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠
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Toff =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CCZ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 4. An (n,m, p)-quantum random access code (QRAC) is a mapping from an n-bit string
x to an m-qubit quantum state ρx along with a family of measurements {M 0

i ,M
1
i }

n
i=1 satisfying,

for all x ∈ {0, 1}n, i ∈ [n],
Tr(M j

i ρx) ≥ p if xi = j.

More generally, we can consider some protocol Mi for retrieving xi and we call this protocol the
ith query of the QRAC, satisfying Pr[Mi(ρx) = xi] ≥ p.

Definition 5. An n-qubit quantum code is simply a subspace C of an n-body Hilbert space H
along with a fiducial orthonormal logical basis. Let PC denote the projection onto C. The code is
further called an [[n, k, d]] quantum error-correcting code (QECC) if it is a subspace C of dimension
2k satisfying, for any ⌊d−12 ⌋-local operators Ea, Eb,

PCE
†
aEbPC = λabPC .

for some Hermitian (λab). We call the Ea, Eb correctable errors and we say d is the distance of the
code.

Operationally, this means that there exists a recovery channel R by which any ⌊d−12 ⌋-local error
(acting nontrivially on at most ⌊d−12 ⌋ qubits) can be corrected. Recall also that any [[n, k, d]] QECC
can correct up to (d − 1) errors in known locations. We call these types of errors erasure errors,
and so call codes satisfying d ≥ 2 erasure-correcting codes.

For simplicity, we will restrict our discussion to QECCs encoding a single qubit, i.e. [[n, 1, d]]
QECCs. A quick review of the proof shows that we can make this assumption without loss of
generality by arguing against a classical universal transversal gate set on any single encoded logical
qubit. By similar reasoning, the proof applies to subsystem codes as well, where we require the
logical operators of such a code to be independent of the state of the gauge qubits.

When we have a collection of p logical qubits, each encoded into an n-qubit code, we can
decompose the np physical qubits into a fixed n-wise partition of p-qubits each so that every
partitioning set contains exactly one qubit from each code block. We refer to these partitioning
sets as the subsystems of the collective code.

Definition 6. An n-qubit stabilizer group S is an abelian subgroup of the n-qubit Pauli group not
containing −I. An n-qubit additive (or stabilizer) code encoding k logical qubits can be described
as the simultaneous (+1)-eigenspace of the Pauli operators comprising an n-qubit stabilizer group S
with n− k generators. The logical Pauli operators of this code correspond to the normalizer cosets
N (S)/S, and it follows that the distance of the code is the minimal weight operator in N (S)/S.

Definition 7. For any quantum error correcting code C, we define its logical states |ψ⟩L to be the
physical encoding of |ψ⟩ in C. We define the logical gate UL to be a codespace preserving physical
gate that satisfies, for all |ψ⟩L ∈ C, UL|ψ⟩L = (U |ψ⟩)L.
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The set of transversal gates TC associated to C are those logical gates that decompose as a
product across the subsystems. That is to say, UL ∈ TC if UL = U1 ⊗ . . . ⊗ Un, where n is the
length of the code, each Ui acts on a single subsystem, and UL is a codespace preserving map on
the code C⊗r for U an r-qubit gate. We further define a logical gate to be strongly transversal if it
decomposes as UL = U⊗n. Following the example of [39], we do not allow coordinate permutations
in our definition of transversality.

Definition 8. We say a quantum code C = SpanC(|0̃⟩, |1̃⟩) is an r-fold code if it can be written as

|i⟩L =
r-

j=1

|ψij⟩.

where each vector |ψij⟩ does not further decompose as a product state across any bipartition. We
additionally assume that r ≤ d, that |ψ0j⟩ and |ψ1j⟩ occupy the same subsystem, and that |ψ0j⟩ ⊥
|ψ1j⟩. It then makes sense to refer to Span{|ψ0j⟩, |ψ1j⟩} as the jth subcode. These assumptions are
natural, and we justify them in our discussion.

If the code is additionally an [[n, 1, d]] QECC with r = d ≥ 3 and each subcode has distance 1,
we simply call the resulting code a maximally redundant code. Note that any (pure state) code is
at least a 1-fold code.

The guiding example is Shor’s code, which can be seen as the concatenation of a repetition outer
code and a complementary GHZ inner code, neither of which is quantum erasure correcting. In the
case that the subcodes are identical, any maximally redundant code is just the concatenation of a
repetition code with some distance 1 subcode. Intuitively, these are codes for which you can’t erase
enough qubits to mix the state while still remaining perfectly correctable: while redundancy can be
used in classical error-correcting codes to protect information, quantum error-correcting codes must
“spread out” information to protect it. In this sense, these codes are maximally redundant because
they “spread out” the information the least. We show that non-additive maximally redundant codes
(i.e. maximally redundant codes for which the subcodes are comprised of non-stabilizer subspaces)
are the only binary QECCs with the hope of implementing logical Toffoli transversally.

2.2 Homomorphic Encryption

We define an ITS-QHE scheme as three algorithms performed between two parties which we will
call Client and Server. We restrict ourselves to the more limited setting of a quantum scheme imple-
menting Boolean functions on classical data using quantum encodings. Of course, any impossibility
result then extends to the more difficult task of quantum computations on quantum inputs.

The parameters of such a scheme are given by (n,m,m′, ϵ, ϵ′) and some gate set F . Formally, we
define the algorithms of an ITS-QHE scheme as acting on Client’s private workspace C, a message
space M sent from Client to Server after encryption, and a message space M′ sent from Server to
Client after evaluation.

(i) QHE.Enc(x) = ρCM, in which the client chooses an n-bit input x and encrypts with some
private randomness to obtain ρ. We assume that any quantum evaluation key is appended to
the encryption. Client then sends the message portion of the encryption ρM to the Server.
We define m to be the length of this message, the size of the encoding.

(ii) QHE.Evalf : L(M) −→ L(M′), in which Server, with description of some circuit f , ap-
plies an evaluation map to an encrypted state, possibly consuming an evaluation key in the
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process. Server then sends his portion of the state σCM′

:= (IC ⊗ QHE.Evalf )(ρCM) back
to Client, and we define the length of this message to bem′, the size of the evaluated encoding.

(iii) QHE.Dec(σCM′

) = y, in which Client decrypts the returned evaluated encoding using her
side information C and recovers some associated plaintext y.

As an encryption scheme, the above should certainly satisfy

QHE.Dec(QHE.Enc(x)) = x.

and as an ITS-QHE scheme, there are three additional properties the scheme should satisfy as well.

(i) ϵ-Information-theoretic security : for any inputs x, y, letting ρx, ρy ∈ L(M) denote the out-
puts of QHE.Enc on M (thinking of these states as mixtures of encryptions under uniformly
random choices of secret key),

∥ρx − ρy∥1 ≤ ϵ.

(ii) F-homomorphic: for any circuit f ∈ F and for any input x,

Pr[QHE.Dec(QHE.Evalf (QHE.Enc(x)))1 ̸= f(x)] ≤ ϵ′

where the probability is over the randomness of the protocol and the subscript 1 denotes
the first bit of the output. This restriction to the first bit is just to argue directly about
Boolean functions. For ease of exposition, we also assume without loss of generality that our
protocols are perfectly correct, and allow ϵ′ = 0. We call the scheme fully homomorphic if it
is homomorphic on the set of all classical Boolean circuits.

(iii) Compactness: a priori, the server could do nothing except append a description of the circuit
f to be run by the decryption function after decrypting. To avoid trivial solutions like this,
we demand that the total time-complexity of Client’s actions in the protocol do not scale with
the complexity of the functions to be evaluated, but only with some fixed function on the
size of the input. Intuitively, this captures the motivation behind homomorphic encryption:
limiting the computational cost to Client. However, we note that the standard definition of
compactness refers to the time-complexity of the decrypt function specifically.

We denote a scheme homomorphic for some class of functions F and satisfying all of these
properties as an F-ITS-QHE scheme. If F is the set of all Boolean circuits, we denote such a
scheme as an ITS-QFHE scheme. We observe that such a scheme must be inefficient. For a precise
statement and proof, see Appendix A.

Proposition 9. The communication cost of ITS-QFHE must be exponential in the size of the input.

3 A coding based ITS-QHE scheme

We now consider a strategy for implementing compact QHE using quantum codes. This will be a
simple “block” embedding encryption scheme homomorphically implementing quantum circuits on
classical input, and is similar to the construction in [29]. We will use the error-correcting property
to withhold a correctable set of qubits from the encoding.
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Coding QHE Scheme:

Arguments:

C = an [[n+ r, 1, d]] r-fold QECC with r < d
i⃗ ∈ {0, 1}p

m = the size of each noise code block
S ∈ [m]n, the secret key

1. On input i⃗ ∈ {0, 1}p, encode i⃗ as the pure state
p.

ℓ=1
|iℓ⟩L, for {|0⟩L, |1⟩L}

the logical computational basis defining C.

2. Let R be a collection of r subsystems, each of p-qubits, comprised of one

subsystem from each subcode. Then form γ i⃗ = TrR(
.

ℓ|iℓ⟩L). Essentially,

γ i⃗ is the state of the collection of codewords with each codeword missing
one subsystem from each of its subcodes.

3. Initialize n (p × m) arrays of maximally mixed qubits, and replace the

Sj-th column of each array with the j-th subsystem of γ i⃗. This forms the
encrypted state.

4. Publish a constant number of labeled encryptions of 0 and 1, to be used
as ancilla in homomorphic evaluation.

Figure 1: A description of the encryption procedure for the code based QHE scheme.
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x1

x2

xp

= |x1⟩L

= |x2⟩L

= |xp⟩L

n+ 1

Encoding Encryption

SnS1 S2

m

n

Figure 2: A diagram illustrating the code-based QHE scheme for an (n+1)-length 1-fold quantum
code while withholding a single subsystem. The (n + 1)-th subsystem remains in the hands of
Client. The arrows connecting the subsystems indicate where each subsystem (i.e. column) is
being mapped. The filled dots represent code qubits, while the empty dots represent maximally
mixed qubits.

The scheme is detailed in Figures 1 and 2. Using that notation to summarize, our encryption

channel E is defined, for secret key S and input string i⃗, as E(S, i⃗) = γ i⃗S . We sometimes use

the notation γS instead of γ i⃗S or γ instead of γ i⃗, omitting i⃗ when we are unconcerned with the
underlying plaintext. The total size of our encrypted input is mnp qubits. In our preceding
notation, the described scheme has parameters (p,mnp,mnp, ϵ(m, p), 0), implementing the set of
gates TC homomorphically.

Lemma 10. Let E be the encryption scheme detailed in Figure 1. Let TC denote the group of
transversal operators associated to the underlying quantum code C. Then, E is TC-homomorphic.

Proof. Let UL be the logical operator we wish to apply to some codestate |ψ⟩L. By definition,
UL ∈ TC implies UL can be decomposed as a product operator U1 ⊗ . . . ⊗ Un+r where Ui is an
operator that acts only on the i-th subsystem of the code. Then, without knowledge of the secret
key S, a third party can implement UL by applying the operator

n-

i=1

m-

j=1

Ui

where each Ui is an operator local to some subsystem in Server’s possession (that is to say, on
one of the columns in the corresponding array). Returning the resulting data to a party with the
secret key, that party can decrypt to obtain a state of the form V RUL|ψ⟩L, where V

R is supported
on the r subsystems that Client has withheld. Since r < d, viewing V R as an erasure error on r
subsystems, there exists some recovery channel R such that R(V RUL|ψL⟩) = UL|ψ⟩L. Decoding,
we obtain U |ψ⟩ as desired.
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Note that this scheme is a TC-homomorphic, non-leveled, and compact QHE scheme, since the
recovery and decryption channel do not depend on the complexity of U .

We now aim to compute the security ϵ(m, p) of the proposed scheme, namely the tradeoff
between the size of the input p, the size of the encoding mnp, and the ITS guarantee. To avoid
confusion, we point out here that the code size n is a constant, as we are not concatenating to
achieve security, just amplifying the size of the noise into which we are embedding.

We want to show that while the scheme is inefficient, its parameters still defeat Nayak’s bound.
To simplify the security proof, we use the more stringent requirement that the outputs are indistin-
guishable from uniformly random noise. Here, we will see that the nonlocality of the information
stored in QECCs is essential in its allowing us to withhold qubits while still delegating computation
to Server. This imposes the requirement of using quantum error-correcting codes, as evidenced by
the following observation.

Lemma 11. Suppose we replace the preceding scheme with one that does not withhold any of the
physical qubits comprising the (pure state) code. Then if m = o(2p), ϵ must be bounded away from
zero.

Proof. Counting the rank of the encrypted state, note that rank(γS) = 2np(m−1). Then,

rank(ES [γS ]) ≤ mn2np(m−1)

≤ 2n(p(m−1)+log(m)).

Thus, the fraction of nonzero eigenvalues must be at most (2n)log(m)−p. Since log(m) = o(p), the
fraction of nonzero eigenvalues goes to zero, and so ∥ES [γS ] − I/2mnp∥1 must be bounded away
from zero as claimed.

4 Security tradeoff for the QHE coding scheme

Our aim is to give (inefficient, but sufficient) security parameters for the coding QHE scheme. We
will then argue that if there were a QECC implementing a sufficiently large transversal gate set
(such as the set of all classical reversible gates), then it would violate Nayak’s bound with these
parameters.

We will first need a small lemma on the structure of the partial trace operator. The proof can
be found in Appendix B.

Lemma 12. For Hilbert space decomposition H = H∆̄1
⊗H∆ ⊗H∆̄2

,

Tr
/
(ρ∆̄1∆ ⊗ I∆̄2)(I∆̄1 ⊗ σ∆∆̄2)

0
= Tr

1
Tr∆̄1

(ρ)Tr∆̄2
(σ)
2
.

With this we are ready to prove the security tradeoff between ϵ, p, and m. We adopt the same
notation used in the proposed scheme for convenience, and note that we are demanding the stronger
condition that outputs are indistinguishable from random noise.

Proposition 13. For the scheme described in Figure 1, letting K = 2p be the dimension of any
subsystem and for some c ∈ (0, 1), we have

∥ (I/Kmn)− ES [γS ]∥1 ≤ ϵ(K,m)

for ϵ(K,m) =
/1

m−1
m

2n
− 1 +K−c

1
2K
m

2n01/2
.
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Proof. By Cauchy-Schwartz,

∥ (I/Kmn)− ES [γS ]∥
2
1 ≤ Kmn∥ (I/Kmn)− ES[γS ]∥

2
2

≤ KmnTr(ES [γS ]
2)−

%
2

Kmn

&
Tr(ES [γS ]) +

%
1

K2(mn)

&
Tr(I)

≤ KmnTr(ES [γS ]
2)− 1.

where the third line follows by noting that, as a quantum state, Tr(ES [γS ]) = 1. We write |S ∩ S′|
to denote the size of the intersection of S and S′ considered as sets. We can then decompose, for
pℓ = PrS,S′ [|S ∩ S′| = ℓ],

KmnTr(ES [γS ]
2) =

%
Kmn

m2n

&"

S,S′

Tr(γSγ
′
S)

(∗) = Kmn
n"

ℓ=0

pℓTr
1
E[(γSγS′)

33 |S ∩ S′| = ℓ]
2
.

Note that pℓ =
(nℓ)(m−1)

(n−ℓ)

mn ≤
1n
l

2
/mℓ and that p0 = (m−1m )n. Furthermore, up to a permutation

on the coordinates, we may write for dim(I) = Kmn−2n,

KmnE[(γSγS′)
33 |S ∩ S′| = 0] = KmnTr

%
(γ/Kn)⊗ (γ/Kn)⊗

/
I/K(mn−2n)

02&

= 1

again by noting that γ is a quantum state of trace one and by multiplicativity of trace over tensor
products. Next consider the general case |S∩S′| = ℓ. Then up to a permutation on the coordinates
and for some π ∈ Sn, for ∆ the subsystem of the intersection S ∩ S′,

KmnTr(γSγS′) = KmnTr

%
(I/Kn−ℓ ⊗ γ)(πγπ† ⊗ I/Kn−ℓ)⊗

/
I/K(mn−2n+ℓ)

02&

= KℓTr
/
(I ⊗ γ)(πγπ† ⊗ I)

0

= KℓTr
/
Tr∆̄(γ)Tr∆̄(πγπ

†)
0

where the final line follows from Lemma 12. Then, because we have withheld a subsystem from
each subcode of the underlying QECC, in any row i we have that Tr∆̄(γ

i) is mixed. It follows
that Tr

1
Tr∆̄(γ

i)Tr∆̄(πγ
iπ†)

2
< 1. So by separability across each encoded qubit and again by

multiplicativity of trace across tensor products,

Tr

⎛

⎝
p-

j=1

Tr∆̄(γ
ij )Tr∆̄(πγ

ijπ†)

⎞

⎠=
p4

j=1

Tr
/
Tr∆̄(γ

ij )Tr∆̄(πγ
ijπ†)

0
.

It follows that there exists some c ∈ (0, 1) so that

KmnTr(γSγS′) ≤ Kℓ−c.

11



Putting this all together, we observe that

Kmn
n"

ℓ=1

pℓTr
1
E[(γSγS′)

33 |S ∩ S′| = ℓ]
2
≤ K−c

n"

ℓ=1

%
n

ℓ

&%
K

m

&ℓ

≤ K−c

%%
1 +

K

m

&n

− 1

&

≤ K−c

%
2K

m

&n

Including the first term in the sum, we get,

(∗) ≤

%
m− 1

m

&n

+K−c

%
2K

m

&n

and so,

ϵ(K,m) =

%%
m− 1

m

&n

− 1 +K−c

%
2K

m

&n&1/2

as desired.

5 Limitations on classical transversal computation

We are left with two competing bounds. On the one hand, it follows from Nayak’s bound (Appendix
A) that, for any F-ITS-QHE encryption scheme with security ϵ and communication size s,

s ≥ log(|F|)(1 −H(ϵ)).

If we choose parameters that do not leak some constant fraction of information about our input,
then as ϵ → 0 we see that for s chosen as some fixed function of the input size, it must be that
s = Ω(log(|F|)). Using the notation and parameters from the aforementioned coding scheme, this
means that mnp = Ω(log(|Fp|)) for Fp the restriction of functions in F to p-bit inputs. Note that
we can assume no ancilla overhead since the constant gets absorbed into this asymptotic bound.

Now by construction of the scheme, F is the transversal gate set for the underlying choice of
quantum error-correcting code. Next, we would like to choose m as a function of K so that ϵ → 0.
For this, it suffices to choose m as a function of K so that

lim
K→∞

K−c

%
2K

m

&n

= 0.

Equivalently, we require m = ω(K1−( cn )). Then for some c′ < 1, we can select m = Kc′ and still
have ϵ → 0. Plugging this back into Nayak’s bound, we see that asymptotically

Kc′ log(K) = Ω(log(|Fp|))

for |Fp| the size of the function class, seen itself as a function returning the number of unique
members in the class on p-bit inputs. In particular, Fp cannot be the set of all Boolean functions,
for then log(|Fp|) = K. This shows that no code satisfying the hypotheses of our scheme can
implement Toffoli transversally.
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We now justify our earlier assumptions on the structure of candidate r-fold codes. Suppose
an r-fold [[n, 1, d]] QECC could implement a logical Toffoli gate transversally. First note that the
tensor decomposition between the logical states must align, or else the restriction of logical Toffoli
to one element of the product would unitarily map a pure state to a mixed state. Furthermore, we
can think of the QECC criterion in Definition 5 as a diagonal and off-diagonal condition: for all
|E| < d,

⟨0L|E|0L⟩ = ⟨1L|E|1L⟩,

⟨0L|E|1L⟩ = 0.

Since the Paulis form an operator basis, we can always assume that E is an element of the Pauli
group. Then, for r-fold codes with logical basis states |i⟩L =

.r
j=1|ψij⟩, this becomes

r4

k=1

⟨ψik|Ek|ψjk⟩ = cEδij

where E = E1 ⊗ . . . ⊗ Er. Note then that if |ψ0j⟩ ̸⊥ |ψ1j⟩, we can trace out the corresponding
subsystem and obtain a code with the same correctable error set on the complement of that system.
Furthermore, if r > d, then we can again trace out any r− d subcode subsystems to obtain a code
with the same correctable error set on the complement. Both of these observations follow from
noticing that these subcodes must themselves satisfy the diagonal condition,

⟨ψ0j |E|ψ0j⟩ = ⟨ψ1j |E|ψ1j⟩.

It follows from the security proof that if r < d, then the code would satisfy the hypotheses
of our scheme and violate the lower bound in Proposition 20. Thus, r = d. Furthermore, logical
transversal Toffoli on the entire code must restrict (up to global phase) to a logical transversal
Toffoli gate on the subcodes, each of which is 1-fold by definition. Thus, each subcode must itself
have distance 1. To summarize,

Theorem 14. If a QECC is not a maximally redundant code, then it does not admit a classical-
reversible universal transversal gate set. In particular, no such code can implement the Toffoli gate
transversally.

Note also that for the scheme in Figure 1, for any m = ω(K1−( c
n
)), ϵ(K) is negligible in p.

Summarizing the parameters of the coding scheme:

Proposition 15. For any r-fold [[n, 1, d]] quantum error-correcting code C with r < d and with
transversal gate set TC , the described protocol is a compact quantum TC-homomorphic encryption
scheme with security ϵ = negl(p) for p the input size and with encoding size m = 2pc

′

for some
c′ < 1.

While this is highly inefficient, we pause to give some intuition for why it suits our purposes.
On the one hand, we can envision trivial “hiding” schemes that have encoding length 2p in each
bit. Nayak’s bound allows for higher efficiency, roughly demanding that encodings implementing
the set of all classical functions on p bits homomorphically must have length at least (2p/p) in each
bit. Finally our scheme, with encoding length 2pc

′

for some c′ ∈ (0, 1), is just efficient enough to
defeat this bound and allow us to argue Theorem 14.

Because these maximally redundant codes have a simple design, if we further assume that
they are additive, we can use the additional stabilizer structure to argue directly that they cannot
implement logical Toffoli transversally. From this observation, we directly obtain the following.

13



Corollary 16. No additive QECC can implement transversal Toffoli.

For proof, see Appendix C. Note that this also follows from the arguments in Appendix D. Our
central result follows.

Corollary 17. If a QECC is not a non-additive maximally redundant code, then it cannot imple-
ment the Toffoli gate transversally.

Finally, note that by concatenating an [[n, 1, d]] d-fold code with itself, the code remains d-fold
while the distance must increase to at least d2. Furthermore, if such a code implements Toffoli
strongly transversally, then so does its concatenation with itself. As a result, we observe the
following.

Corollary 18. No QECC can implement strongly transversal Toffoli.

6 Discussion

Do there exist non-additive maximally redundant codes that can then implement Toffoli transver-
sally? One can essentially think of these as QECCs formed by concatenating an outer repetition
code with a distance 1 inner code that is not a stabilizer subspace. Intuitively, since the inner code
is not quantum error-correcting, the code only “spreads out the information in one basis”. More
precisely, the inner code only satisfies the diagonal QECC criterion. While this is a less restrictive
condition, it still must be “complementary” to the outer code, and this allows us to argue impos-
sibility in the additive case. Unfortunately by comparison, the structure of general non-additive
codes is less well-understood – in particular, we know of no examples of such a code. We expect
that no QECC can implement Toffoli transversally, and view this exception as a consequence of
the lack of structure on general non-additive codes. We hope to resolve this exception in upcoming
work.

The QHE scheme we have detailed is non-leveled and compact, but highly inefficient. An
immediate question would be to refine the security proof, which uses too strong a security demand.
It would be most interesting to see if a modified approach can achieve efficient ITS-QHE for
transversal gate sets of general quantum error-correcting codes, where the size of the encoding is
some fixed polynomial of the input length. There are certain quantitative properties of “nonlocality”
in QECCs (see e.g. [3], [34]) that might be helpful in such an endeavor. Following the outline of
[29], we could also expect to extend a scheme built on a code with desirable transversal gates
to accommodate a constant number of non-transversal gates. Just as one might tailor a QECC
for a specific algorithm that makes heavy use of its transversal gate set, one might also tailor an
ITS-QHE scheme to homomorphically implement that algorithm. Furthermore, it would be of
theoretical interest to find a protocol matching the lower bound implicit in Proposition 20.

Another interesting open question is to consider leveled ITS-QHE schemes: allow the client
some preprocessing to scale with the size of the circuit. Can this relaxation allow more efficient or
universal schemes for polynomial sized circuits, mirroring the computational security case? A first
step might be to try to apply the techniques of instantaneous nonlocal computation [35] that proved
invaluable in the computationally secure scheme. Moreover, through gauge-fixing, we have ways
of converting between codes that together form a universal transversal gate set. Its not clear how
to implement such a strategy, since the noisy embedding and non-interactivity present barriers to
measuring syndromes, but these elements taken together might be useful in extending the current
scheme.
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Finally, one could ask if there is a correspondence between transversal gates for quantum codes
and nontrivial ITS homomorphically-implementable gate sets, based on the “richness” of the func-
tion classes they can realize. In particular, [15] asked: what is the maximum size of finite group
that can be implemented logically and transversally? Indeed, since the Clifford group on p-qubits
is of size at most 22p

2+3p [30], one could reasonably expect to efficiently implement the Clifford
gates homomorphically with information theoretic security, as was done in [29]. We hope that our
arguments might extend past classical reversible circuit classes to address this question, although it
is unclear how to generalize Nayak’s bound to apply to these general finite subgroups of the unitary
group.
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A A no-go result for ITS-QFHE

We now set out to show that efficient ITS-QFHE is impossible. Define for any x ∈ {0, 1}n the state

|sx⟩
CM = QHE.Enc(x).

Note that for any |sx⟩⟨sx|
M, we can always purify to a system of size at most 2|M|. So without

loss of generality, we may assume that |C| = m, the size of the message sent from Client to Server.
Next, by information theoretic security, the state of the encryption on subsystemM must be almost
independent of x. Formally,

∥TrC(|sx⟩⟨sx|)− TrC(|s0n ⟩⟨s0n |)∥1 ≤ ϵ

for ϵ the security of the scheme. Equivalently, there exists a V C
x so that, defining s′x = (V C

x ⊗
IM)|s0n ⟩⟨s0n |(V C

x ⊗ IM)† and sx = |sx⟩⟨sx|,

∥s′x − sx∥1 ≤ ϵ.

Furthermore, for any f ∈ F , we have by the homomorphic property that, abbreviating QHE.Evalf
as fev(·) and QHE.Dec(·) as D(·),

5
IC ⊗ fM

ev (s
CM
x )

6CM′

=: ηf,x,

DCM′

(ηf,x) = f(x).

But now, defining η′f,x by replacing sx with s′x in the definition of ηf,x, by contractivity of trace
distance we also have

Pr[DCM′

(η′f,x) ̸= f(x)] ≤ ϵ.

To elucidate the underlying QRAC, define the mapping

f 1→ ηf,0n ,

and note that (V C
x ⊗ IM

′

)ηf,0n (V C
x ⊗ IM

′

)† = η′f,x. So let DCM′

7
(V C

x ⊗ IM
′

)(·)
8
denote the query

for index x of f , thinking of f as a 2n length bit string, with the xth bit defined as f(x). Then
we have a (2n,m + m′, 1 − ϵ)-QRAC for the set of all Boolean functions, where m + m′ is the
communication cost of the protocol. We now recall a well-known bound on the efficiency of QRACs
[27].

Theorem 19 (Nayak’s Bound). If there exists an (n,m, p)-QRAC, then for H(·) the binary entropy
function,

m ≥ n(1−H(p)).

So it must be that the total communication cost of the protocol (m + m′) ≥ 2n(1 − H(ϵ)).
For security, allowing ϵ → 0 and noting that H(ϵ) → 0, we see that the communication cost
(m + m′) = Ω(2n). Thus, either the size of the encoding or the evaluated ciphertext must be
exponentially long in the input, precluding efficiency. In short,

Proposition 20. The communication cost of ITS-QFHE must be exponential in the size of the
input.
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B Proof of Lemma 12

Proof. Expanding in terms of outer products,

Tr ((ρ⊗ I)(I ⊗ σ)) = Tr

!/"

i,i′

"

j,j′

"

k

ai,i′,j,j′|i⟩⟨i|
∆̄1 ⊗ |j⟩⟨j′|∆ ⊗ |k⟩⟨k|∆̄2

0
·

/"

ℓ

"

m,m′

"

n,n′

bm,m′,n,n′ |ℓ⟩⟨ℓ|∆̄1 ⊗ |m⟩⟨m′|∆ ⊗ |n⟩⟨n′|∆̄2

0#

= Tr

!
"

i,i′

"

n,n′

"

j,m′

⎛

⎝
"

j′

ai,i′,j,j′bj′,m′,n,n′

⎞

⎠|i⟩⟨i| ⊗ |j⟩⟨m′| ⊗ |n⟩⟨n′|

#

=
"

i

"

n

"

j,j′

1
ai,i,j,j′bj′,j,n,n

2
.

On the other hand, we have

Tr
1
Tr∆̄1

(ρ)Tr∆̄2
(σ)
2
= Tr

!/"

i

"

j,j′

ai,i,j,j′|j⟩⟨j
′|
0/"

n

"

m,m′

bm,m′,n,n|m⟩⟨m′|
0#

= Tr

!
"

i

"

n

"

j,j′

/"

j′

ai,i,j,j′bj′,m′,n,n

0
|j⟩⟨m′|

#

=
"

i

"

n

"

j,j′

1
ai,i,j,j′bj′,j,n,n

2

as claimed.

C Proof of Corollary 16

Proof. By Theorem 14, it suffices to consider maximally redundant codes. So suppose, for the sake
of contradiction, that an [[n, 1, d]] additive d-fold code could implement Toffoli transversally. Let
[·, ·] denote the group commutator. We denote by ·̄ states and operations acting on the subcodes,
and ·̃ those on the full code. We will assume that each subcode is the same, e.g. |̃i⟩ = |̄i⟩⊗d, so that
we can speak directly about the inner and outer codes. The general argument follows similarly.

Since the code is additive, the code distance is the minimal weight logical Pauli operator acting
on the code. For any Z̄L, by multiplicativity of the inner product over tensor products,

1

2

9
|0̃⟩+ |1̃⟩

33Z̄L

33 |0̃⟩ − |1̃⟩
:
=

1

2

1
⟨0̃|Z̄L|0̃⟩ − ⟨0̃|Z̄L|1̃⟩+ ⟨0̃|Z̄L|0̃⟩ − ⟨1̃|Z̄L|1̃⟩

2

=
1

2

/
⟨0̄|0̄⟩

n
d + ⟨1̄|1̄⟩

n
d

0
̸= 0.

Since the outer code has distance d, it follows from the QECC criterion that Z̄L must have weight at
least d. Then X̄L must have weight 1, since the underlying inner code has distance 1 by assumption.
Because the outer classical repetition code factors as a tensor product, transversal ;ToffL on the
outer code must restrict (up to a global phase) to transversal ToffL on the inner code. Since we’re
now working with multiqubit gates, let GL(i) denote the logical gate for G acting on the ith code
block. We can compute directly,
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[ToffL(1, 2, 3), X̄L(1)] = CXL(2, 3).

Furthermore, because ToffL and X̄L are transversal, it follows that CXL has a representative
that is also transversal and is supported on the subsystems that support X̄L. By a similar argument

[CXL(1, 2), Z̄L(1)] = Z̄L(2)

so that Z̄L must also be contained in the subsystems supporting CXL, and in turn X̄L. As
we have already observed, the minimal weight of any representative of Z̄L must be at least d, a
contradiction as X̄L has a representative of weight 1.

D An alternate proof for stabilizer codes

Here we offer an alternate proof limiting universal transversal reversible computation for the sub-
class of stabilizer codes. The arguments here are based off of results from [6] and [32], which we
reproduce for completeness.

Definition 21. The Clifford hierarchy C is a sequence of gate sets {Ck}k≥1 defined recursively by
Ck = {U : UC1U † ⊆ Ck−1}, where we define C1 to be the Pauli group.

Note that C2 is the Clifford group, and Ck fails to be a group for k > 2. Further note that
reversible circuits saturate the Clifford hierarchy (and in fact can lie outside it entirely) by the gate
CkX, the k-controlled bit-flip gate, which lies in Ck+1. Toffoli is simply C2X, and so lies in the
third level of the Clifford hierarchy. We next recall the stabilizer cleaning lemma, which can be
found in [6].

Lemma 22. Let S be a stabilizer code, and let R be any subset of physical qubits of the code
such that any logical operator supported on R acts trivially on S. Then, for any logical operator
UL, there exists a representative of UL supported on Rc.

We call such subsets R cleanable. Equipped with the cleaning lemma, we can now summarize
the following lemma from [32].

Lemma 23. Let S be a stabilizer code and let {R0 , . . . , Rk} be a set of cleanable subsets of the
physical qubits comprising S. Let U be a logical operator supported on ∪k

i=0Ri such that U is
transversal with respect to the Ri. Then, UL ∈ Ck.

Proof. We proceed by induction on k. In the base case, we have a logical operator U supported
on cleanable subsets R0 ∪ R1. Let P be any logical Pauli operator cleaned off of R1, and let [·, ·]
denote the group commutator. Since in a stabilizer code the logical Pauli operators are transversal,
we have Supp([U,P ]) ⊆ R0 , which by cleanability implies that [UL, PL] = cIL. Since this is true
for any PL, it must be that UL ∈ C1.

Similarly, suppose U is supported on ∪k
i=0Ri. Then, cleaning any logical Pauli P off of Rk,

we see that Supp([U,P ]) ⊆ ∪k−1
i=0 Ri. By our inductive hypothesis, [UL, PL] ⊆ Ck−1, which implies

ULPLU
†
L ∈ Ck−1 for any logical Pauli PL. Thus UL ∈ Ck, completing the proof.

This argument generalizes to subsystem codes, and we refer the reader [32] for a more complete
description. As a consequence we obtain the following.
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Corollary 24. No erasure-correcting stabilizer code can implement a classical reversible universal
transversal gate set.

Proof. Partition the code block into single subsystem subsets {R1, . . . , Rn} where n is the length
of the code. Then, since the code is erasure-correcting, any logical operator supported on a single
subsystem must act trivially on the codespace, and so these subsets are cleanable. By the lemma,
any transversal logical gate must lie in Cn. Since reversible circuits saturate C, they cannot be
logically transversally implementable.
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