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Abstract—This paper presents a new theoretical framework
that, by integrating robust statistics and robust control theory,
allows us to develop a robust dynamic state estimator of a cyber-
physical system. This state estimator combines the generalized
maximum-likelihood-type (GM)-estimator, the unscented Kalman
filte (UKF), and the H-infinit filte into a robust H-infinit
UKF filte in the Krein space, which is able to handle large
system uncertainties as well as suppress outliers while achieving
a good statistical efficienc under Gaussian and non-Gaussian
process and observation noises. Specificall , we firs use the
statistical linerization approach to build a linear-like regression
model in the Krein space. Then, we show that the H-infinit
UKF is just the Krein space Kalman filte that exhibits a
bounded estimation error in presence of system uncertainties
while minimizing the least squares criterion; consequently, it
suffers from a lack of robustness to outliers and non-Gaussian
noise. Because the GM-estimator is able to handle outliers,
but it may yield large estimation errors in presence of system
uncertainties, we propose to combine it with the H-infinit UKF
in a robust H-infinit UKF. We carry out a theoretical analysis
to demonstrate the connections that our filte has with the H-
infinit UKF and the GM-UKF. The good performance of the
new filte is demonstrated via extensive simulation performed on
the IEEE 39-bus power system.
Index Terms—Dynamic state estimation, robust statistics,

model uncertainties, unscented Kalman filte , non-Gaussian
noise, H-infinit filte , power system estimation, robustness,
phasor measurement units.

I. INTRODUCTION

A. Motivation

THE enhancement of the reliability, security, and resiliency
of electric power systems depends on the availability of a

fast, accurate, and robust dynamic state estimator (DSE) that
processes both model information and online measurements
obtained from phasor measurement units (PMUs). A DSE
provides a better wide-area situation awareness of the system
dynamics, leading to improved system oscillation monitoring
and controls, enhanced dynamic security assessment and sys-
tem protection schemes [1]–[4], among others. Therefore, it is
of a critical importance that any power system DSE is robust
to gross errors on the measurements and the model parameter
values while providing good state estimates in the presence of
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large dynamical system model uncertainties and non-Gaussian
thick-tailed process and observation noises.
It turns out that most of the existing DSEs assume an exact

dynamical system model, accurate measurements, and known
Gaussian system process and measurement noises. However,
due to unknowable system inputs, including noise, parameter
variations and actuator failures [5] and inaccuracies of the
model parameter values of the synchronous generators, the
loads, the lines, and the transformers, to name a few, the sys-
tem model is subject to uncertainties. Furthermore, the process
and the observation noises of the system nonlinear dynamic
models are non-Gaussian as verifie by the Pacifi Northwest
National Lab (PNNL) [6], [7]. Finally, outliers can occur that
may corrupt the state estimates [8]. Two types of outliers are
commonly seen in power systems, namely innovation and ob-
servation outliers. Observation outliers may result from large
biases in PMU measurements due to infrequent calibration,
or instrument failures, or impulsive communication noise [9],
[10]. As for innovation outliers, they may occur in several dif-
ferent ways. For example, some of the generator models may
not be well calibrated, resulting in highly inaccurate model
outputs that are inconsistent with the measurements. This was
precisely the case in the 1996 blackout, where the model being
used predicted system stability while in reality the system was
undergoing numerous cascading failures, which resulted in a
rapid system collapse that occurred within minutes [11], [12].
Innovation outliers may also be induced by the approximations
in the state prediction model or by process impulsive noise.
To bound the influenc of the model uncertainties and large

system process and measurement noises, the first-orde Taylor
series approximations-based H-infinit extended Kalman filte
and the unscented transformation-based H-infinit unscented
Kalman filte (UKF) have been proposed in [13], [14]. How-
ever, they are vulnerable to any types of outliers and exhibit
large biases and variances in presence of non-Gaussian noise.
To suppress gross errors in the PMU measurements, several
robust DSEs are developed. For instance, in [15], Rouhani and
Abur propose a distributed two-stage robust UKF-based DSE
using the least-absolute-value (LAV) estimator that can handle
observation outliers. However, the authors do not address the
vulnerability of the DSE to innovation outliers. To handle
both types of outliers, a generalized maximum-likelihood-
type iterated EKF and UKF are developed in [16]–[18].
However, their statistical efficiencie are low in the presence
of non-Gaussian system process and measurement noises. To
effectively suppress outliers while achieving a high statistical
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efficien y under a broad range of non-Gaussian process and
observation noises, the generalized maximum-likelihood-type
UKF (GM-UKF) is proposed in [19], [20]. Its robustness
and statistical efficien y for different noise distributions are
analyzed analytically. The main weakness of the GM-UKF is
that it may yield biased state estimates when the dynamical
system has large uncertainties that are induced by inaccurate
model parameters and system inputs.

B. Contributions and Paper Organization

To address the aforementioned challenges, this paper
presents a novel theoretical framework that integrates both
robust statistics and robust control theory to develop a robust
dynamic state estimator. Specificall , it yields the following
contributions:

• The GM-estimator, the UKF, and the H-infinit filte are
for the firs time integrated into a unifie framework to
yield the robust H-infinit filte for general nonlinear
systems in the Krein space.

• The statistical linerization is used to build a linear-
like batch-mode regression form in the Krein space.
Specificall , we show that the H-infinit UKF is just the
Krein space Kalman filte that minimizes the least squares
criterion and has a bounded estimation error in presence
of system uncertainties. However, it is vulnerable to
outliers and non-Gaussian noise. It is worth pointing out
that the H-infinit unscented Kalman filte was firstl
proposed in [21] following the framework of linear H-
infinit filte . This paper provides an alternative way of
deriving the H-infinit unscented Kalman filte in the
Krein space.

• A robust H-infinit UKF is developed in the Krein space
by leveraging the H-infinit criterion to bound system
uncertainties with the robustness of GM-estimator to
suppress outliers and filte out non-Gaussian noise. It is
shown that it is able to handle large system uncertainties
as well as suppress outliers while achieving good sta-
tistical efficien y under a broad range of non-Gaussian
process and observation noises.

• A theoretical analysis is performed to demonstrate that,
in the absence of non-Gaussian noise and outliers, the
proposed robust H-infinit UKF reduces to the H-infinit
UKF [14], [21]; on the other hand, if the tuning parameter
of the H-infinit criterion tends to infinit , the proposed
robust H-infinit UKF resembles the GM-UKF. This
provides the justificatio why both the benefit of the
H-infinit filte and the GM-estimator are maintained in
the proposed robust H-infinit UKF.

• A comparative analysis is carried out; it shows that
our proposed robust H-infinit UKF outperforms the H-
infinit UKF and the GM-UKF in terms of statistical
efficien y and robustness to outliers, non-Gaussian noise
and model uncertainties.

The remainder of the paper is organized as follows. Section
II presents the problem formulation. Section III describes the
theory of the proposed theoretical framework and Section IV
shows and analyzes the simulation results carried out on the
IEEE 39-bus system. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

In general, a dynamical system can be described by a set of
continuous-time nonlinear differential and algebraic equations.
These equations can be further discretized into the following
discrete-time state space form:

xk = f (xk−1,uk) +wk, (1)

zk = h (xk,uk) + vk, (2)

where xk ∈ R
n×1 and zk ∈ R

m×1 are the state vector
and the measurement/observation vector at time sample k,
respectively; f and h are vector-valued nonlinear functions;
wk and vk are the system process and observation noise, re-
spectively; they are assumed to be independent and identically
distributed with zero mean and covariance matrices Qk and
Rk, respectively; uk is the system input vector.
As an illustrative example, let us consider the synchronous

generator model. If the two-axis generator model with the
IEEE-DC1A exciter and the TGOV1 turbine-governor is con-
sidered, its dynamical model can be expressed by the following
differential and algebraic equations [22]:
Differential equations:

T ′
do

dE′
q

dt
= −E′

q − (Xd −X ′
d) Id + Efd, (3)

T ′
qo

dE′
d

dt
= −E′

d −
(
Xq −X ′

q

)
Iq, (4)

dδ

dt
= ω − ωs, (5)

2H

ωs

dω

dt
= TM − Pe −D (ω − ωs) , (6)

TE
dEfd
dt

= − (KE + SE (Efd))Efd + VR, (7)

TF
dVF
dt

= −VF +
KF

TE
VR−KF

TE
(KE + SE (Efd))Efd, (8)

TA
dVR
dt

= −VR +KA (Vref − VF − V ) , (9)

TCH
dTM
dt

= −TM + PSV , (10)

TSV
dPSV
dt

= −PSV + PC − 1

RD

(
ω

ωs
− 1

)
, (11)

Algebraic equations:

Vd = V sin (δ − θ) , Vq = V cos (δ − θ) , (12)

Id =
E′
q − Vq

X ′
d

, Iq =
Vd − E′

d

X ′
q

, (13)

Pe = VdId + VqIq, Qe = −VdIq + VqId, (14)

where T ′
do, T ′

qo, TE , TF , TA, TCH and TSV are time constants,
in seconds; KE , KF and KA are controller gains; Vref and
PC are known control inputs; E ′

q , E′
d, Efd, VF , VR, TM and

PSV are the q-axis and d-axis transient voltages, fiel voltage,
scaled output of the stabilizing transformer and scaled output
of the amplifie , synchronous machine mechanical torque and
steam valve position, respectively; Xd, X ′

d, Xq and X ′
q are

generator parameters; V and θ are the terminal bus voltage
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magnitude and phase angle, respectively; Pe and Qe are the
active and reactive electrical power outputs; Id and Iq are the
d and q axis currents, respectively.
By applying a time discretization to (3)-(14) using numer-

ical approaches, such as the 4th-order Ruger-Kutta method,
we get (1)-(2), yielding the state vector given by xk =
[δ ω E′

d E
′
q Efd VF VR TM PSV ]. The relationships given

by (3)-(11) and (12)-(14) are represented in compact forms
by the vector-valued function f(·) and by h(·), respectively.
The system input vector is denoted by uk = [Vref PC ]

T . The
measurement vector zk contains a collection of voltage phasor
measurements V ∠θ and real and reactive power injections Pe
and Qe, which are obtained by the PMUs.
To estimate the system dynamic state vector or model

parameters using Kalman-type filters a two-step procedure is
applied, namely a prediction step using (1), which is a Markov
model, and a filtering/updat step using (2). Specificall ,
given a state estimate at time step k − 1, x̂k−1|k−1 , with
its covariance matrix, Pk−1|k−1 , the predicted state vector
is calculated from (1) directly or through a set of points
drawn from the probability distribution of x̂k−1|k−1 , which is
dependent on the assumed probability distributions of w k and
vk. As for the filterin step, the predictions are used together
with the observations at time sample k to estimate the state
vector and its covariance matrix.
The Kalman-type filter work well only under the validity of

the following assumptions [23], [24]. First, the system process
and observation noise,wk and vk, are assumed to have at each
time instant zero means and known covariance matrices Qk

and Rk , respectively. Secondly, they are assumed to follow
a Gaussian distribution, at which the filte is optimal with
minimum variances. Finally, the system model is assumed
to be known exactly. However, for most practical dynamical
systems, these assumptions do not hold. Indeed, Qk and Rk

are difficul to obtain in practice; the process and observation
noise do not obey a Gaussian distribution as verifie in [6],
[7]; the functions f and h are approximate; for instance, they
may not account for all the nonlinearities of the system; some
model parameter values may be unknown or incorrect [ 13],
[25], [26]; and the received measurements may be strongly
biased due to impulsive communication noise, cyber attacks,
to cite a few [9], [10]. To address these challenges, this
paper presents a new theoretical framework that integrates
both robust statistics and robust control theory for DSE. The
proposed robust H-infinit UKF within this framework is able
to handle large system uncertainties and suppress outliers
while achieving good statistical efficien y under a broad range
of non-Gaussian process and observation noise.

III. THEORETICAL FRAMEWORK OF THE PROPOSED
ROBUST H-INFINITY UKF

In this section, the Krein space UKF will be derived first
Then its equivalence to the H-infinit UKF will be proved. It
will be further shown that Krein space UKF has a bounded
estimation error in presence of system uncertainties. By car-
rying out a theoretical analysis of the weakness of the Krein
space UKF to non-Gaussian noise and outliers, we propose a
robust Krein space UKF, i.e., a robust H-infinit UKF, which

combines the robustness of the H-infinit criterion to model
uncertainties and of the GM-estimator to outliers and non-
Gaussian noise.
A. Derivation of the Krein Space UKF
The statistical linearization is used to convert the traditional

nonlinear UKF into an equivalent linear-like regression form.
The latter is further derived into the Krein space batch-
regression model that allows us to resort to the Kalman filte
framework for the development of Krein space UKF.
1) Derivation of the Linear-Like Regression Form of the

Nonlinear UKF: The main idea of the UKF is to use a
deterministic sampling technique known as the unscented
transform to choose a set of sample points, termed sigma
points, which have the same means and covariance matrices as
the a priori state statistics under the Gaussian assumption [27].
These sigma points are then propagated through the non-linear
functions f and h, yielding an estimation of the a posteriori
state statistics by using the Kalman filte structure, i.e., the
mean and covariance estimates. Consequently, no calculation
of Jacobian matrices is required, which for complex func-
tions can be a difficul task by itself, requiring complicated
derivatives if done analytically or being computationally costly
if done numerically. Specificall , given a state estimate with
mean x̂k−1|k−1 ∈ R

n×1 and covariance matrix P xx
k−1|k−1 at

time step k-1, 2n weighted sigma points are generated through

χj
k−1|k−1

= x̂k−1|k−1 +
(√

nP xx
k−1|k−1

)
j
,

χj+n
k−1|k−1

= x̂k−1|k−1 −
(√

nP xx
k−1|k−1

)
j
, (15)

where j = 1, ..., n and the term
(√

nP xx
k−1|k−1

)
j

represents

the jth column vector of the associated matrix. These sigma
points are propagated through the nonlinear system process
model (1) to obtain the following transformed sigma points:

χj
k|k−1

= f
(
χj

k−1|k−1

)
. (16)

Then, the predicted state vector x̂k|k−1 and its covariance
matrix are approximated by the weighted sample mean and
sample covariance matrix of the transformed sigma points,
respectively, yielding

x̂k|k−1 =
2n∑
j=1

wjχ
j
k|k−1

, (17)

P xx
k|k−1 =

2n∑
j=1

wj(χ
j
k|k−1

− x̂k|k−1)(χ
j
k|k−1

− x̂k|k−1)
T+Qk,

(18)
where the weights wj = 1/2n. Next, the sigma points are
updated to capture the information of system process noise
through

χj
k|k−1

= x̂k|k−1 +
(√

nP xx
k|k−1

)
j
,

χj+n
k|k−1

= x̂k|k−1 −
(√

nP xx
k|k−1

)
j
, (19)

Finally, the predicted measurement vector is given by

ẑk|k−1 =
2n∑
j=1

wjh(χ
j
k|k−1

) and its associated error covariance

matrix is estimated via
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P zz
k|k−1

=
2n∑
j=1

wj(z
j
k|k−1

− ẑk|k−1)(z
j
k|k−1

− ẑk|k−1)
T +Rk,

(20)
where zj

k|k−1
= h(χj

k|k−1
).

It is worth pointing out that the statistical linerization is
equivalent to the unscented transformation in that it propa-
gates the probability distribution of the state vector through
nonlinear functions [19], [20], [28]. Thus, by applying a
statistical linerization to the nonlinear state transition and mea-
surement/observation functions around x̂k−1|k−1 and x̂k|k−1 ,
respectively, we get

xk = Fk
(
xk−1 − x̂k−1|k−1

)
+ x̂k|k−1 + ek +wk, (21)

zk = Hk

(
xk − x̂k|k−1

)
+ ẑk|k−1 + εk + vk, (22)

where Fk = (P xχ
k|k−1

)T (P xx
k−1|k−1

)−1 and

P xχ
k|k−1 =

2n∑
j=1

wj(χ
j
k−1|k−1

− x̂k−1|k−1)(χ
j
k|k−1

− x̂k|k−1)
T .

(23)
Here, ek is the statistical linearization error term that is
normally distributed with zero mean and covariance matrix
given by Lk = P xx

k|k−1
− (P xχ

k|k−1
)T (P xx

k−1|k−1)
−1P xχ

k|k−1
;

Hk = (P xz
k|k−1

)T (P xx
k|k−1

)−1 where

P xz
k|k−1

=

2n∑
i=1

wj(χ
j
k|k−1

− x̂k|k−1)(z
j
k|k−1

− ẑk|k−1)
T ,

(24)
and where εk is the statistical linearization error term on the
nonlinear measurement function; it is normally distributed with
zero mean and covariance matrix given by Πk = P zz

k|k−1
−

(P xz
k|k−1

)T (P xx
k|k−1 )

−1P xz
k|k−1

.
Therefore, the nonlinear dynamical model expressed by ( 1)

and (2) is converted into the following equivalent linear-like
regression form:

xk = Fkxk−1 + x̂k|k−1 − Fkx̂k−1|k−1 + ek +wk, (25)

zk = Hkxk + ẑk|k−1 −Hkx̂k|k−1 + εk + vk, (26)

where Fk and Hk are no longer the Jacobian matrices, but
ek and εk are the statistical linearization errors that are used
to preserve the nonlinearities of the state transition and the
measurement functions, respectively.
Remark 1: By using the Linear Kalman filte framework,

the recursive state estimation form can be derived as
Kk = P xz

k|k−1

(
P zz

k|k−1

)−1

, (27)

x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
, (28)

P xx
k|k = P xx

k|k−1 −KkP
zz
k|k−1

KT
k , (29)

which is precisely the standard UKF.
Remark 2: By taking the expectation on both side of (25)

and using some mathematical manipulations, we can get the
predicted state vector x̂k|k−1 and its covariance matrixP xx

k|k−1

x̂k|k−1 = xk − δk, (30)

where δk is the prediction error and E
[
δkδ

T
k

]
= P xx

k|k−1 . By
processing (30) and (26) simultaneously, we get the following
batch-mode regression form:[

zk +Hkx̂k|k−1 − ẑk|k−1

x̂k|k−1

]
=

[
Hk

I

]
xk +

[
vk + εk
−δk

]
(31)

which can be rewritten in a compact form as

z̃k = H̃kxk + ẽk. (32)

The error covariance matrix is given by

Wk = E
[
ẽkẽ

T
k

]
=

[
Σk|k−1 0

0 P xx
k|k−1

]
, (33)

Σk|k−1 = E[(vk + εk)(vk + εk)
T ] = Rk+Πk. By using the

weighted least squares criterion to (32), that is, min (z̃k −
H̃kxk)

TWk
−1(z̃k − H̃kxk), we obtain

x̂k|k =
(
H̃T

k
Wk

−1H̃k

)−1

H̃T
k
Wk

−1z̃k, (34)

with estimation error covariance matrix

P xx
k|k =

(
H̃T

k
Wk

−1H̃k

)−1

. (35)

By applying the matrix inversion Lemma and performing
mathematical manipulations, it can be verifie that the results
shown in (34)-(35) are the same as (27)-(29).
2) Derivation of the Krein Space UKF: Before the deriva-

tion of the Krein space UKF, let us review the Krein space
linear Kalman filte . Following the main results shown in [29],
[30], we reorganize the Krein space linear Kalman filte into
the following Lemma:

Lemma 1. For a Krein space discrete-time system,{
xk = Akxk−1 + ηk,
yk = Ckxk + ζk,

(36)

with the Gramian matrix given by〈⎡⎣ x0

ηk
ζk

⎤⎦ ,
⎡⎣ x0

ηk
ζk

⎤⎦〉 = diag[ P0|0 Qk Rk ], (37)

both of which can be obtained from Krein space mapping
corresponding to the indefinit quadratic function

J =
∥∥x0 − x̂0|0

∥∥2
P−1

0|0
+

N−1∑
k=0

‖ηk‖2Q−1
k

+

N∑
k=0

‖ζk‖2R−1
k
. (38)

If P0|0 � 0, Qk � 0 and Rk is invertible and [Ak Ck] has
full rank for all k, the existence condition for the Krein space
Kalman filte is provided by

(P xx
k|k)

−1 = (P xx
k|k−1)

−1 +CT
k R

−1
k Ck � 0, (39)

where x̂k|k−1 = Akx̂k−1|k−1, P xx
k|k−1 = AkP

xx
k−1|k−1A

T
k +

Qk and the state vector is updated by the following equations:

P xz
k|k−1

= P xx
k|k−1C

T
k , P zz

k|k−1
= CT

k P
xx
k|k−1Ck +Rk, (40)

Kk = P xz
k|k−1

(
P zz

k|k−1

)−1

, (41)

x̂k|k = x̂k|k−1 +Kk

(
yk −Ckx̂k|k−1

)
, (42)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2019 5

P xx
k|k = (I −KkCk)P

xx
k|k−1

= P xx
k|k−1

−KkP
zz
k|k−1

KT
k
,

(43)

Remark 3: It can be observed from the above equations
that there is little difference between the Hilbert space linear
Kalman filte and the Krein space Kalman filte , except for
the condition that (P xx

k|k−1)
−1 + CT

k R
−1
k Ck � 0. The latter

is in fact required by the Hilbert space Kalman filte as
well because an estimation error covariance matrix must be
positive-definite On the other hand, it is worth pointing out
that (P xx

k|k−1)
−1 +CT

k R
−1
k Ck can be indefinit for the Krein

space Kalman filte [29], [30]. However, under this condition,
it is unable to achieve the minimum error covariance for the
state estimates any more.
According to Remark 2, if we defin x̂k|k−1 =

Akx̂k−1|k−1, P xx
k|k−1 = AkP

xx
k−1|k−1A

T
k +Qk and x̂k|k−1 =

xk − ok, where E
[
oko

T
k

]
= P xx

k|k−1 , (36) can be organized
into the following batch-mode regression form:[

yk
x̂k|k−1

]
=

[
Ck

I

]
xk +

[
ζk
−ok

]
, (44)

which can be further rewritten as

ỹk = C̃kxk + õk, (45)

where Ŵk = E
[
õkõ

T
k

]
= diag[Rk AkP

xx
k−1|k−1A

T
k +Qk].

Corollary 1. If P0|0 � 0, Qk � 0, Rk � 0, rank[Ak Ck] =
n and

(P xx
k|k)

−1 = (P xx
k|k−1)

−1 +CT
k R

−1
k Ck � 0, (46)

the Krein space linear KF can be derived by applying the
weighted least square estimator to (45).

Proof: Following the procedures described in Remark 2,
we get

P xx
k|k =

(
C̃T

k
Ŵ−1

k C̃k

)−1

=

[
CT
k R

−1
k Ck +

(
P xx

k|k−1

)−1
]−1

= P xx
k|k−1

− P xx
k|k−1

CT
k

(
CkP

xx
k|k−1

CT
k +Rk

)−1

CkP
xx
k|k−1

= (I −KkCk)P
xx
k|k−1

= P xx
k|k−1

−KkP
zz
k|k−1

KT
k
,

(47)
where the gain matrix is expressed as

Kk = P xx
k|k−1

CT
k (CkP

xx
k|k−1

CT
k +Rk)

−1 = P xz
k|k−1

(P zz
k|k−1

)−1.
(48)

By following the similar rules and using the matrix inversion
Lemma, we can derive the same state vector updating form as
(42).

Corollary 2. If P0|0 � 0, Qk � 0, Rk � 0, rank[Fk Hk] =
n and

(P xx
k|k)

−1 = (P xx
k|k−1)

−1 +HT
k R

−1
k Hk � 0, (49)

the Krein space UKF can be derived as follows:

Kk = P xz
k|k−1

(
P zz

k|k−1

)−1

, (50)

x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
, (51)

P xx
k|k = (I −KkCk)P

xx
k|k−1

, (52)

where P zz
k|k−1

and P xz
k|k−1

are expressed in (20) and (24),
respectively.

Proof: The linear-like regression model of the UKF
shown in (25)-(26) can be easily organized into the similar
one as (36). Thus, by virtue of Lemma 1 and Corollary 1, we
get
P xz

k|k−1
= P xx

k|k−1H
T
k , P zz

k|k−1
= HT

k P
xx
k|k−1Hk+Rk. (53)

Then, the gain Kk and state estimates x̂k|k can be derived as
(50) and (51).
Remark 4: In fact, the positive-definitenes of (P xx

k|k−1)
−1+

HT
k R

−1
k Hk must be satisfie by the traditional Hilbert space

UKF. This is because in the state prediction stage, the
generation of new sigma points requires the square-root of
P xx
k|k. The positive-definitenes of P xx

k|k immediately implies
(P xx

k|k−1)
−1 +HT

k R
−1
k Hk � 0 according to the relationship

between them shown in (49). On the other hand, motivated by
the Krein space UKF, the Krein space H-infinit UKF can be
derived as well. This is shown in the next section.

B. Derivation of the Krein Space H-infinit UKF
The H-infinit criterion aims to design a filte that achieves

the smallest estimation error for all possible disturbances with
bounded energy. Specificall , the filte is designed such that
the following criterion is satisfied

N∑
k=0

‖xk − x̂k|k‖2P−1
k|k

‖x0 − x̂0|0‖2P−1
0|0

+
N−1∑
k=0

‖wk‖2Q−1
k

+
N∑
k=0

‖vk‖2R−1
k

≤ γ2,

(54)
where x0 and P0|0 are the initial state vector and its covariance
matrix, respectively; γ is a positive scalar parameter that
bounds the uncertainties.

Theorem 1. If rank[Fk Hk] = n, there exists a filte that
achieves the H-infinit criterion shown in (54) if and only if
the estimation error covariance matrix P xx

k|k for all k satisfie

(P xx
k|k)

−1 = (P xx
k|k−1)

−1 +HT
k R

−1
k Hk − γ−2I � 0, (55)

and the recursive H-infinit UKF can be expressed as
x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
, (56)

Kk = P xx
k|k−1

HT
k (HkP

xx
k|k−1

HT
k +Rk)

−1, (57)

= P xz
k|k−1

(P zz
k|k−1

)−1, (58)

P xx
k|k = (I − P xx

k|k−1[H
T
k I]R−1

e,k[H
T
k I]T )P xx

k|k−1, (59)
= P xx

k|k−1 − [P xz
k|k−1

P xx
k|k−1

]R−1
e,k[P

xz
k|k−1

P xx
k|k−1

]T ,

(60)

Re,k =

[
Rk +HkP

xx
k|k−1H

T
k (P xx

k|k−1H
T
k )

T

P xx
k|k−1H

T
k −γ2I + P xx

k|k−1

]
; (61)

=

[
Rk + P zz

k|k−1
[P xz

k|k−1
]T

P xz
k|k−1

−γ2I + P xx
k|k−1

]
, (62)

and where I is an identity matrix.
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Proof: See the proof given in Appendix A.
It is interesting to note that the H-infinit UKF shares a

similar structure as that of the original UKF. One apparent
difference is the updating of the estimation error covariance
matrix. The latter drives the H-infinit UKF to achieve the
smallest estimation error for all possible disturbances. The
bounded error performance of the H-infinit filte subject to
uncertainties can be proved following the procedures shown
in [23]. On the other hand, γ can be seen as a tuning
parameter to balance the tradeoff between the H-infinit and
the minimum mean-square error performance. Indeed, when
γ tends to infinit , the H-infinit UKF will reduce to the
traditional UKF. This indicates that the H-infinit norm of
the traditional UKF may be quite large, leading to a poor
robustness against uncertainties. Furthermore, an indefinit

covariance matrix
[

Rk 0
0 −γ2I

]−1

is involved during the
proof when deriving the Krein space H-infinit UKF, which
is very different from that of the Hilbert space H-infinit
Kalman filte . The latter requires the positive-definitenes of a
covariance matrix.

Theorem 2. The H-infinit UKF derived in the Krein space is
based on the weighted least square estimator and thus, lacks
of robustness to non-Gaussian noise and any types of outliers.

Proof: Defin x̂k|k = xk − nk, where E[nk] = 0 and
E[nkn

T
k ] = −γ2I . According to Corollaries 1 and 2, the

predicted state information can be used to construct the batch-
mode Krein space UKF instead of the form shown in (25).
Thus, the state prediction error form x̂k|k−1 = xk−δk is used,
where δk is the prediction error and E

[
δkδ

T
k

]
= P xx

k|k−1 . On
the other hand, during the proof of Theorem 1, the following
Krein space regression form is actually used:

[ zk +Hkx̂k|k−1 − ẑk|k−1 − εk
x̂k|k−1

x̂k|k

]
=

[ Hk

I
I

]
xk+

[ vk
−δk
−nk

]
,

(63)
which can be rewritten as

z̃k = H̃kxk + ςk. (64)

where W̃k = E[ςkς
T
k ] = diag[Rk P xx

k|k−1 −γ2I]. Applying
the weighted least square estimator to (64) yields

x̂k|k = E[
(
H̃T

k
W̃−1

k H̃k

)−1

H̃T
k
W̃−1

k z̃k]

= ([HT
k R

−1
k (P xx

k|k−1)
−1 −γ2I]

[ Hk

I
I

]
)−1H̃T

k
W−1

k E[z̃k]

= [HT
k R

−1
k Hk + (P xx

k|k−1 )
−1−γ2I]−1

×
[ R−T

k Hk

(P xx
k|k−1 )

−T

−γ2I

]T[ zk +Hkx̂k|k−1 − ẑk|k−1

x̂k|k−1

x̂k|k

]
. (65)

Moving the term x̂k|k from the right-hand side to the left-
hand side and performing matrix manipulations, we can finall

arrive

x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
, (66)

Kk = P xz
k|k−1

(P zz
k|k−1

)−1, (67)

where P xz
k|k−1

= P xx
k|k−1H

T
k and P zz

k|k−1
= HT

k P
xx
k|k−1Hk +

Rk. In terms of the estimation error covariance matrix, it is
expressed as

P xx
k|k = (H̃T

k
W̃−1

k H̃k)
−1

= [HT
k R

−1
k Hk + (P xx

k|k−1)
−1−γ2I]−1

= P xx
k|k−1 − [P xz

k|k−1
P xx

k|k−1
]R−1

e,k[P
xz
k|k−1

P xx
k|k−1

]T ,

(68)

where Re,k is the same as (60). Therefore, it is clear that H-
infinit UKF is based on the least square estimator in the Krein
space. According to the robust statistics [31], [32], it is well-
known that its influenc function is unbounded and therefore
lacks any robustness to non-Gaussian noise and outliers.
Remark 5: It is worth emphasizing that the proposed

nonlinear H-infinit filte is very general. The UKF is just
used as an representative example. Other filter that share
the similar structure of UKF can be leveraged to derive their
corresponding H-infinit filter in the Krein space, such as
the divided difference filte , the quadrature Kalman filte , the
cubature Kalman filte , the EnKF, to cite a few [33]–[35].
On the other hand, instead of propagating the statistics of the
state vector using sigma points, the first-orde Taylor series
expansion-based methods can be used, yielding the H-infinit
EKF.

C. Derivation of the Robust H-infinit UKF
It is shown in Theorem 2 that the H-infinit filte is actually

based on the Krein space weighted least squares estimator.
Despite of its bounded performance against system uncer-
tainties, it lacks any robustness to non-Gaussian noise and
outliers. By contrast, the GM-estimator derived from robust
statistics is able to handle them, but it may yield large estima-
tion errors in presence of system uncertainties. Therefore, to
suppress the outliers and filte out thick-tailed non-Gaussian
measurement noise while bounding system uncertainties, we
propose to apply the GM-estimator to (64) instead of using
the weighted least squares estimator, yielding the following
objective function:

J (xk) =

m+2n∑
i=1

�2
i ρ (rSi) , (69)

where �i are the weights to downweight outliers calculated
by applying projection statistics [17], [18] to the innovation
matrix Zk. The latter is define as follows:

Zk =

⎡⎣ zk−1 − h(x̂k−1|k−2) zk − h(x̂k|k−1)
x̂k−1|k−2 x̂k|k−1

x̂k−2|k−2 x̂k−1|k−1

⎤⎦ , (70)

where zk−1−h(x̂k−1|k−2) and zk−h(x̂k|k−1) are the innova-
tion vectors while x̂k−1|k−2 and x̂k|k−1 are the predicted state
vectors at time instants k-1 and k, respectively; x̂k−2|k−2 and
x̂k−1|k−1 are the filtere state vectors at time instants k-2 and
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k-1, respectively; the mathematical expression of projection
statistics is define as [17], [18]:

PSj = max
‖�‖=1

∣∣lTj �−medi
(
lTi �

)∣∣
1.4826medκ

∣∣lTκ �−medi
(
lTi �

)∣∣ , (71)

for i, j, κ = 1, 2, ...,m + 2n. where lTj is the jth row vector
of Zk; � represents a set of directions that originate from the
coordinatewise medians of the Z k and pass through every data
point. The calculated PS values are compared to a statistical
threshold to identify outliers. Extensive Monte Carlo simula-
tions and Q-Q plots reveal that the probability distributions
of the PS applied to Zk follow chi-square distributions with
degree of freedom 2. As a result, the points that satisfy
PSi > χ2

2,0.975 are identifie as outliers and downweighted
through

�i = min
(
1, d2

/
PS2

i

)
, (72)

where the parameter d is set equal to 1.5 to yield good
statistical efficien y at different distributions.
In (69), rSi = ri/s�i is the standardized residual; ri =

z̃i − h̃Ti x̂ is the residual, where h̃Ti is the ith row vector of
the matrix H̃k; s = 1.4826 ·bm·mediani |ri| is the robust scale
estimate; bm is a correction factor to achieve unbiasedness
for a finit sample of size m + 2n at a given probability
distribution; ρ(·) is the nonlinear function of rSi expressed
as

ρ (rSi) =

{ 1
2r

2
Si
, for |rSi | < λ

λ |rSi | − λ2
/
2, elsewhere

, (73)

where the parameter λ is typically chosen between 1.5 to 3 in
the literature.
To minimize (69), we take its partial derivative with respect

to xk and set it equal to zero, yielding

∂J (xk)

∂xk
=

m+2n∑
i=1

−�ih̃i
sσi

ψ (rSi) = 0, (74)

where ψ (rSi) = ∂ρ (rSi)/∂rSi ; σi is the square-root of the ith
diagonal element of matrix W̃k. By dividing and multiplying
the standardized residual rSi to both sides of (74) and putting
it in a matrix form, we get

H̃T
k W̃

−1
k Q̂

(
z̃k − H̃kxk

)
= 0, (75)

where Q̂ =diag(q (rSi)) and q (rSi) = ψ (rSi)/rSi .
By using the iteratively reweighted least squares (IRLS)

algorithm [17], [31], the state vector correction at the j
iteration is calculated through

x̂
(j+1)
k|k =

(
H̃T
k W̃

−1
k Q̂(j)H̃k

)−1

H̃T
k W̃

−1
k Q̂(j)z̃jk, (76)

where Δx̂
(j+1)
k|k = x̂

(j+1)
k|k − x̂

(j)
k|k . It should be noted that z̃k

needs to be updated at each jth iteration as it contains x̂k|k .
The latter changes at each iteration. Following similar steps
of Theorem 2, we move x̂k|k from the right-hand side of (76)
to its left-hand side, yielding

x̂
(j+1)
k|k =

(
ΓTkΛ

−1
k Ξ(j)Γk

)−1

ΓTkΛ
−1
k Ξ(j)ξk, (77)

where Γ = [HT
k I]T ∈ R

(m+n)×n; Ξ ∈ R
(m+n)×(m+n) and

Λk ∈ R
(m+n)×(m+n) are diagonal matrices whose diagonal

elements are the previous m + n diagonal ones of Q̂ and
W̃k, respectively; ξk = [z̃Tk x̂Tk|k−1]

T ∈ R
(m+n)×1. As a

result, it resembles the GM-UKF. In fact, (77) is recommended
to obtain the state estimates. This is because matrices Γ and
Ξ have much lower dimensions compared with H̃k and Q̂,
leading to improved computational efficien y. Note that the
algorithm converges when

∥∥∥Δx̂
(j+1)
k|k

∥∥∥
∞

≤ 10−2.
To derive the asymptotic error covariance matrix of the

robust H-infinit UKF at time sample k, we use the influenc
function of the GM-estimator. According to our previous work
[17], the influenc function of the robust H-infinit UKF is
given by

IF (x; Φ,T ) = [

∫
1

s
ψ

′
(rSi)H̃kH̃

T
k |T(Φ)

dΦ]−1�H̃kψ(rSi)

(78)
where Φ is the cpdf of the standardized residual rSi ; T (·) is
the functional form of the robust H-infinit UKF. Finally, the
asymptotic error covariance matrix is updated through

P xx
k|k = E[IF (x; Φ,T ) · IF (x; Φ,T )T ]

= α(H̃T
k W̃

−1
k H̃k)

−1(H̃T
k Q̂�W̃

−1
k H̃k)(H̃

T
k W̃

−1
k H̃k)

−1

(79)
where α =

EΦ[ψ2(rSi
)]

{EΦ[ψ′(rSi
)]}2 and Q� = diag(�2

i ).
Remark 6: Under the assumption of Gaussian noise and the

absence of outliers, no predicted state and measurement are
downweighted. Therefore, Q̂ = I and

x̂k|k =
(
H̃T
k W̃

−1
k H̃k

)−1

H̃T
k W̃

−1
k z̃k, (80)

P xx
k|k =

EΦ[ψ
2(rSi)]

{EΦ[ψ′(rSi)]}2
(H̃T

k W̃
−1
k H̃k)

−1, (81)

where α is very close to 1. For example, under Gaussian
noise, this value can be calculated as 1.0369. As a result,
(80) and (81) are the same of (65) and (68), respectively.
Thus, the robust H-infinit UKF reduces to the H-infinit UKF.
According to Theorem 1, the uncertainties of the system model
and measurement noises are bounded, yielding bounded state
estimation errors. This provides the theoretical justification
of why the proposed method is robust to uncertainties. On the
other hand, according to equations (60) and (62), it can be
shown that when γ tends to infinit , the H-infinit criterion
reduces to the traditional UKF. Then, the robust H-infinit
UKF reduces to the GM-UKF, which is robust to outliers
and non-Gaussian noise [20]. In fact, the robust H-infinit
UKF has a bounded influenc function, see equation (78).
This justifie its robustness to different types of outliers and
non-Gaussian noise. From these theoretical analysis, we can
conclude that the proposed robust H-infinit UKF leverages
the robustness of the GM-estimator to filte out non-Gaussian
noise and suppress outliers while relying on the H-infinit
criterion to bound system uncertainties.

D. Computational Complexity Analysis
For the traditional UKF algorithm, it has the computational

complexity of order O(n3) [36]. In particular, there are two
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operations that lead to the cubic complexity, namely the
Cholesky factorization of covariance matrix (see equations
(15) and (19)) and the outer product calculations (see equations
(20) and (23)). For the traditional linear Kalman filte , the
computational complexity is O(n3) [37]. In the proposed
framework, we have found that the H-infinit UKF can be
shown to be a linear Kaman filte using the statistical lineariza-
tion in the Krein space. Since the Cholesky factorization of
covariance matrix and the outer product calculations for the
covariance matrix are still required, the computational com-
plexity is O(n3) for the state prediction. In the filterin stage,
the most time consuming operation is the covariance matrix
updating that involves matrix multiplications and inverse. Note
that due to the introduction of tuning parameter gamma as
well as adding an matrix associated with it, the computational
complexity increases to the order O((2n)3) in the filterin
stage. As a result, the H-infinit UKF has the computational
complexity of O((2n)3). For the proposed robust H-infinit
UKF, the computational complexity is the same as H-infinit
UKF at the state prediction stage. However, during the state
filterin stage, as the dimensions of the H̃ increase to 3n,
the computational complexity becomes O((3n)3). Finally, the
proposed robust H-infinit UKF has an approximate com-
putational complexity of order O((3n)3). Therefore, it can
be concluded that the computational efficiencie of the UKF,
the H-infinit UKF and the robust H-infinit UKF are in the
similar orders. This will be validated by the simulation results
shown in Section IV-D.

E. Application to Power System Dynamic State Estimation
With regard to power system dynamic state estimation

using PMU measurements, both centralized and decentralized
versions have been proposed [17], [18], [25]. The former
one requires accurate dynamical system model of each com-
ponents, including synchronous generators, dynamic loads,
etc, and wide-area PMU measurements, which may be hard
to achieve in practical power system. This motivates the
development of a decentralized DSE that is implemented at
each local synchronous generator. The proposed robust H-
infinit UKF can be implemented in both ways. However,
only the decentralized one is used for demonstration in this
paper. For dynamic state estimation, the state vector is xk =
[δ ω E′

d E
′
q Efd VF VR TM PSV ]. The system input vector

is denoted by uk = [Vref PC V θ]T , where V and θ are the
generator terminal voltage magnitudes and angles obtained by
PMUs. The measurement vector zk contains a collection of
real and reactive power injections Pe and Qe obtained by the
PMUs.

IV. NUMERICAL RESULTS

Extensive simulations are carried out on the IEEE 39-bus
system to assess the performance of the proposed robust
H-infinit UKF under various scenarios. Each synchronous
generator is assumed to be the two-axis model equipped with
the IEEE-DC1A exciter and the TGOV1 turbine-governor.
The parameters of the generator model can be found in [ 38].
The transient stability time domain simulations are performed
to generate measurements and true state variables using the
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Fig. 1: Root-mean-squared errors of the GM-UKF, the H-
infinit UKF and the robust H-infinit UKF in presence
of unknown non-Gaussian system process and measurement
noise.
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Fig. 2: Root-mean-squared error of the GM-UKF, the H-
infinit UKF and the robust H-infinit UKF with model
uncertainties. Here, it is assumed that after the disturbance is
applied, the transient reactances of Generator 5 deviate from
the nominal values by a percentage of 10%.

Matlab-based software PST [39] with some modifications The
4th order Ruger-Kutta approach is adopted with an integration
step of t=1/120 s to solve differential and algebraic equations.
The simulations consist of the following steps: Line 15-
16 is tripped at t=0.5s to simulate a system disturbance;
the voltage phasor, current phasor and frequency at each
generator’s terminal bus are corrupted by additive noise to
simulate realistic PMU measurements; the sampling rate of
the PMU measurements is assumed to be 60 samples/s. The
maximal number of iterations allowed for the IRLS algorithm
is 20. The parameters λ and d are set to 1.5. The convergence
tolerance threshold of the IRLS algorithm is 0.01. The tuning
parameter of the H-infinit filte is 10; the root-mean-squared
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Fig. 3: Estimated state variables by the GM-UKF, the H-infinit UKF and the robust H-infinit UKF with model uncertainties.

error (RMSE) of all estimated generator state variables is used
as the overall performance index while the estimated state
variables of Generator 5 are taken for illustration. The H-
infinit UKF proposed in this paper and the GM-UKF [19]
are used for comparison.
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Fig. 4: Root-mean-squared error of the GM-UKF, the H-
infinit UKF and the robust H-infinit UKF in presence of
observation outliers. Here, it is assumed that the real and
reactive power measurements of Generator 5 are corrupted
with 20% errors from t=4s to t=6s.

A. Case 1: Non-Gaussian Process and Measurement Noise
Due to communication channel noises and GPS synchro-

nization errors, the measurement noises associated with PMUs

may deviate from the Gaussian assumption. Therefore, if part
of the PMU measurements are taken as system inputs, the
system process noise is no longer Gaussian. Furthermore,
due to the changes of system operation conditions and non-
stationary ambient environment, the assumed model to ap-
proximate the true one may yield unknown characteristics.
In order to assess the sensitivity of each approach to the
deviations from model and measurement assumptions, both
system process and measurement noise are assumed to be
non-Gaussian. Since the Gaussian-mixture model can be used
to approximate any distribution, it is assumed in this paper.
Specificall , we assume they follow a Gaussian mixture model,
where 10% of the data are drawn with covariance matrices
Q = 5 × 10−5I9×9 and R = 5 × 10−5I2×2 while the true
covariance matrices are Q = 10−6I9×9 and R = 10−6I2×2.
The root-mean-squared errors of each method are displayed in
Fig. 1. It can be observed that the H-infinit UKF is sensitive
to non-Gaussian noises and provides the worst estimation
results. The reason is that it is based on the weighted least
squares criterion in the Krein space and thus achieves very
low statistical efficien y. By contrast, both the GM-UKF and
the proposed robust H-infinit UKF are able to withstand
the non-Gaussian noise thanks to robustness of GM-estimator.
However, the proposed robust H-infinit UKF outperforms the
GM-UKF slightly. This is because the non-Gaussian noise is
actually unknown and the proposed robust H-infinit UKF firs
leverages the robustness of GM-estimator to suppress it and
then relies on the H-infinit criterion to further bound these
uncertainties, yielding improved statistical efficien y.
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Fig. 5: Estimated state variables of the GM-UKF, the H-infinit UKF and the robust H-infinit UKF in the presence of
observation outliers from t=4s to t=6s.

B. Case 2: Dynamical Model Uncertainties

Because of aging processes, variations of the machine
temperature during its operation, the effect of saturation on
generator inductances, the reactance and transient reactance
of a synchronous generator may change significantl . In this
paper, it is assumed that after the system event, the tran-
sient reactances of the generators deviate from the nominal
values by a percentage of 10% random error simulated by
the Gaussian distribution. The rational of choosing transient
reactance for simulation is as follows: according to the work
[40]–[42], a few critical parameters of the generators are in
charge of the system response. In other words, the changes
of these parameter values are able to affect the generator
response significantl while the changes on other parameters
induce negligible difference. By using the trajectory sensitivity
analysis approach [40], [41], the transient reactances and the
gain of excitor are identifie as these critical parameters. We
anticipate that the uncertainties of them would impose huge
challenges to the dynamic state estimator.
Figs. 2-3 display the root-mean-squared errors of the GM-

UKF, the H-infinit UKF and the robust H-infinit UKF
with model uncertainties and the estimated state variables of
Generator 5, respectively. It is observed from the results that
the GM-UKF shows the highest sensitivity to large dynamical
model uncertainties and provides biased estimation results;
by contrast, thanks to the H-infinit criterion, the H-infinit
UKF is able to bound the uncertainties to a certain degree
and achieves better results than the GM-UKF. Here, we would
like to emphasize that the estimation error covariance matrix

of the GM-UKF is robust thanks to the weights provided
by the projection statistics as well as the GM-estimator.
In other words, the GM-UKF modifie the estimation error
covariance matrix at each iteration to achieve some robustness
to system uncertainties, which is similar to the H-infinit
UKF. This justifie that why the H-infinit UKF does not
outperform significantl the GM-UKF. The proposed robust H-
infinit UKF leverages both the robustness of estimation error
covariance matrix and the H-infinit criterion, yielding the best
estimation results. Note that the estimation error of rotor angle
by the GM-UKF is about several degrees, which is a lot and
may lead to large errors to the rotor angle-based applications,
such as rotor angle stability assessment, out-of-step protection,
causing serious concerns to the system security. However, this
is not the case for our robust H-infinit filte that can reliably
always track the system dynamic states.

C. Case 3: Observation Outliers
Due to imperfect phasor synchronization, the saturation of

metering current transformers and cyber attacks, to name a
few, gross errors can occur in the PMU measurements [15],
[17]. To test the robustness of three methods to observation
outliers, the measured real and reactive powers of Generator
5 is contaminated with 20% error from t=4s to t=6s. The
root-mean-squared errors and the estimated state variables of
Generator 5 for the three methods are shown in Fig. 4 and Fig.
5, respectively. It can be found that the Krein space weighted
least squares estimator-based H-infinit lacks of robustness
to outliers, yielding significantl biased state estimates. By
contrast, thanks to the weights provided by projection statistics
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TABLE I: Average Computing Times of the GM-UKF, the
H-infinit UKF and the Robust H-infinit UKF at Each

PMU Scan
Cases GM-UKF H-infinit UKF Robust H-infinit UKF
Case 1 1.34ms 1.20ms 1.46ms
Case 2 1.42ms 1.23ms 1.56ms
Case 3 1.55ms 1.30ms 1.83ms

and the GM-estimator, both the GM-UKF and the robust H-
infinit UKF are able to suppress outliers, achieving compa-
rable performance. According to the results shown in Cases
1-3, it is now clear that the proposed robust H-infinit UKF
achieves the desired performance, that is, leveraging the H-
infinit criterion to bound system uncertainties while relying
on the robustness of GM-estimator to filte out non-Gaussian
noise and suppress outliers.

D. Computational Efficienc

To assess the computational efficien y of each method, the
average computing times of the GM-UKF, the H-infinit UKF
and the robust H-infinit UKF for Cases 1-3 at each PMU scan
are presented in Table. I. All the tests are performed on a PC
with Intel Core i5, 2.50 GHz, 8GB of RAM. It is found from
this table that the H-infinit UKF is the most computational
efficien approach, followed by the GM-UKF. Although the
robust H-infinit UKF is the most time consuming one, its
difference with other two is negligible. Furthermore, all three
methods spend much less time than the PMU scan rate, which
is 16.7ms. Thus, they can be implemented for power system
online applications.

V. CONCLUSIONS

In this paper, the GM-estimator, the unscented Kalman filte
(UKF), and the H-infinit filte are integrated into a unifie
framework to yield the general robust H-infinit UKF. The
latter is able to handle large system uncertainties as well as
suppress outliers while achieving good statistical efficien y
under a broad range of non-Gaussian process and observation
noise. Specificall , it leverages the H-infinit criterion to
bound system uncertainties while relying on the robustness of
GM-estimator to filte out non-Gaussian noise and suppress
outliers. By contrast, the H-infinit UKF is shown to be based
on the Krein space least squares estimator and thus, lacks
robustness to outliers and non-Gaussian noise. Comparative
results reveal that our proposed robust H-infinit UKF out-
performs the H-infinit UKF and the GM-UKF in terms of
statistical efficien y and robustness to outliers, non-Gaussian
noise, and model uncertainties. As a future work, we will
assess the breakdown point of the proposed robust H-infinit
UKF. Furthermore, we will investigate other combinations of
robust estimators and filter to obtain a good balance between
estimation efficien y and robustness to outliers and model
uncertainties. In particular, we will improve the statistical
efficien y of the filte by resorting to other robust control
strategies such as sliding mode control and probabilistic robust
control.

APPENDIX A
PROOF OF THEOREM 1

Proof: The firs step is to convert the suboptimal H-
infinit filterin problem (54) to an indefinit form so that
the Krein space Kalman filte can be used. Formally, we get

J∞ =
∥∥x0 − x̂0|0

∥∥2
P−1

0|0
+

N−1∑
k=0

‖wk‖2Q−1
k

+

N∑
k=0

‖vk‖2R−1
k

− γ−2
N∑
k=0

‖xk − x̂k|k‖2P−1
k|k

= ‖x0 − x̂0|0‖2P−1
0|0

+
N−1∑
k=0

‖wk‖2Q−1
k

+
N∑
k=0

[
zk − h(xk)
xk − x̂k|k

]T[
Rk 0
0 −γ2I

]−1[
zk − h(xk)
xk − x̂k|k

]
(82)

Defin ck = x̂k|k−1 − Fkx̂k−1|k−1 + ek, mk = ẑk|k−1 −
Hkx̂k|k−1 + εk, yk = zk − mk, C̃T

k = [HT
k I], m̃k =

[yTk x̂Tk|k]
T and use the statistical linerization results shown in

(25)-(26), (82) can be rewritten as

J∞ = ‖x0 − x̂0|0‖2P−1
0|0

+
N−1∑
k=0

‖wk‖2Q−1
k

+
N∑
k=0

[
yk −Hkxk
xk − x̂k|k

]T[
Rk 0
0 −γ2I

]−1 [
yk −Hkxk
xk − x̂k|k

]
(83)

which resembles the Krein space Kalman filte form (36).
Therefore, according to Lemma 1 and Corollary 1, the es-
timation error covariance matrix is derived as

(P xx
k|k)

−1 = (P xx
k|k−1)

−1 + C̃kP
xx
k|k−1

C̃T
k

= (P xx
k|k−1)

−1 +HT
k R

−1
k Hk − γ−2I. (84)

It is clear that (P xx
k|k)

−1 � 0 must hold for true for the
existence of H-infinit UKF. This is because the positive-
definitenes of P xx

k|k is needed for the generation of sigma
points at the next time instant. By applying the matrix inver-
sion Lemma to (84) and using tedious algebraic manipulations,
we are able to derive

P xx
k|k = (I − P xx

k|k−1[H
T
k I]R−1

e,k[H
T
k I]T )P xx

k|k−1

= P xx
k|k−1 − [P xz

k|k−1
P xx

k|k−1
]R−1

e,k[P
xz
k|k−1

P xx
k|k−1

]T ,

(85)

where the expression of Re,k is the same as (62).
In the meantime, according to the formula of the Krein
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space Kalman filte , the filtere state vector is derived as

x̂k|k = x̂k|k−1

+ P xx
k|k−1

C̃T
k (C̃kP

xx
k|k−1

C̃T
k +Rk)

−1(m̃k − C̃kx̂k|k−1)

= x̂k|k−1 + P xx
k|k−1

[HT
k I]

[
I −R̂kHkP

xx
k|k−1

0 I

]

×
[

R̂k 0
0 −γ2I + ((P xx

k|k−1
)−1 +HT

k Hk)
−1

]−1

×
[

I 0

−P xx
k|k−1

HT
k R̂

−1
k I

][
zk − ẑk|k−1

x̂k|k − x̂k|k−1

]T
,

(86)

where R̂k = Rk+HkP
xx
k|k−1

HT
k = P zz

k|k−1
. Using the matrix

inversion Lemma and mathematical manipulations, we can
finall get

x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
, (87)

Kk = P xz
k|k−1

(P zz
k|k−1

)−1. (88)
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