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Abstract. We study a regularization of the classical Saint-Venant (shallow-water) equations,
recently introduced by D. Clamond and D. Dutykh (Commun. Nonl. Sci. Numer. Simulat. 55
(2018) 237–247). This regularization is non-dispersive and formally conserves mass, momentum and
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1. Introduction

In a recent paper, Clamond and Dutykh [4] have introduced a regularization of
the classical Saint-Venant (shallow-water) equations, which is non-dispersive, non-
dissipative, and formally conserves mass, momentum, and energy. In conservation form,
these regularized Saint-Venant equations (rSV) are written

ht+(hu)x=0 , (1.1)

(hu)t+(hu2+
1

2
gh2+εRh2)x=0, (1.2)

R def
= h(u2

x−uxt−uuxx)−g

(

hhxx+
1

2
h2
x

)

. (1.3)

Smooth solutions of these equations also satisfy a conservation law for energy, in the
form

Eε
t +Qε

x=0 , (1.4)

where

Eε def
=

1

2
hu2+

1

2
gh2+ε

(

1

2
h3u2

x+
1

2
gh2h2

x

)

, (1.5)

Qε def
=

1

2
hu3+gh2u+ε

((

1

2
h2u2

x+
1

2
ghh2

x+hR
)

hu+gh3hxux

)

. (1.6)

The rSV equations (1.1)–(1.2) above were derived in [4] as the Euler-Lagrange
equations corresponding to a least action principle for a Lagrangian of the form (see [4,
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2 Non-dispersive regularization of shallow-water equations

Eq. (3.2)])

L def
=

1

2
hu2− 1

2
gh2+ε

(

1

2
h3u2

x−
1

2
gh2h2

x

)

+(ht+(hu)x)φ. (1.7)

Here φ is a Lagrange multiplier field that enforces mass conservation. The terms propor-
tional to ε in (1.2) have a form similar to terms that appear in improved Green-Naghdi
or Serre equations that approximate shallow-water dynamics for waves of small slopes,
see [5]. (The rSV equations also admit a non-canonical Hamiltonian structure like one
known for the Green-Naghdi equations—see section 6 below.)

The particular coefficients appearing here, however, do not yield improved accu-
racy for modeling exact water-wave dispersion at long wavelengths. Instead, they are
designed to eliminate linear dispersion, resulting in a regularization that faithfully re-
produces the original shallow-water dispersion relation. The balance of terms in R
ensures that the rSV equations are non-dispersive—linearized about a constant state
(h0,u0), solutions proportional to eikx−iωt necessarily have

(ω−u0k)
2=gh0k

2 ,

implying that phase velocity is independent of frequency.
The presence of squared derivatives in the energy Eε indicates that the rSV equa-

tions will not admit classical shock wave solutions with discontinuities in h and u.
Numerical experiments reported in [4] suggest, in fact, that with smooth initial data
that produce hydraulic jumps (shock wave solutions) for the shallow-water equations,
one obtains front-like solutions of the rSV equations that remain smooth and non-
oscillatory, yet propagate at the correct speed determined by classical jump conditions
corresponding to limiting states on the left and right. These solutions were computed
numerically by a pseudospectral scheme that is highly accurate for smooth solutions
and fairly uncomplicated. This is a hint that a similar approach could perhaps be taken
to approximate shallow water dynamics by non-dispersive regularization in multidimen-
sional geometries with more complicated topography and other physics.

At this point, a paradox arises. The energy of smooth solutions of the rSV equations
satisfies the conservation law (1.4), whereas in the case of shallow water equations,
energy is dissipated at a shock-wave discontinuity, satisfying a distributional identity of
the form

E0
t +Q0

x=µ (1.8)

where µ is a non-positive measure supported along the shock curve. How can it be that
front-like solutions of the rSV equations approximate classical shallow-water shocks well
while conserving an energy similar to the one dissipated for shallow-water shocks?

Our purpose here is to describe a novel wave-propagation mechanism that may
explain this paradox. We shall show that the regularized Saint-Venant equations (1.1)–
(1.2) admit regularized shock-wave solutions with profiles that are continuous but only

piecewise smooth, with derivatives having a weak singularity at a single point. Such
a wave exists corresponding to every classical shallow-water shock. These waves are
traveling-wave weak solutions of the rSV equations that conserve mass and momen-
tum. They dissipate energy at the singular point, however, at the precise rate that the
corresponding classical shock does.

We also find that the rSV equations admit weak solutions in the form of cusped soli-

tary waves. These waves loosely resemble the famous ‘peakon’ solutions of the Camassa-
Holm equation in the non-dispersive case [2]. One difference is that the wave slope of
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our cusped solitary waves becomes infinite approaching the crest, while that of a peakon
remains finite. The rSV equations also loosely resemble various 2-component general-
izations of the Camassa-Holm equation which have appeared in the literature—for a
sample see [3, 14, 17, 18, 20]. One of the most well-studied of these is the integrable
2-component Camassa-Holm system appearing in [3, 18, 20],

ht+(hu)x=0, (1.9)

ut+3uux−utxx−2uxuxx−uuxxx+ghhx=0, (1.10)

which has been derived in the context of shallow-water theory by Constantin and Ivanov
[8] (also see [16]). This system admits peakon-type solutions, and as noted in [10], it
admits some degenerate front-type traveling wave solutions, which however necessarily
have h→0 as either x→+∞ or −∞.

The existence of weakly singular weak solutions of the rSV equations raises many
interesting analytical and numerical issues that we cannot address here. For example,
do smooth solutions develop weak singularities in finite time? Do finite-energy weak
solutions exist globally in time? How can we approximate solutions well numerically
despite weak singularities? Are weakly singular shock profiles and cusped solitary waves
stable? Can similar regularization mechanisms be used to approximate shock waves
in other interesting physical systems? (E.g., the classical Saint-Venant equations are
formally identical to isentropic Euler compressible fluid equations with a particular
pressure-density relation.) It would be strange if this novel and interesting phenomenon
were unique to the shallow water equations.

2. Shock waves for the classical shallow-water system

Let us summarize some well-known basic properties of shock-wave solutions of the
classical shallow-water (Airy or Saint-Venant) system for water depth h(x,t)>0 and
average horizontal velocity u(x,t):

ht+(hu)x=0 , (2.1)

(hu)t+

(

hu2+
1

2
gh2

)

x

=0 . (2.2)

This system has two Riemann invariants u±2
√
gh, and two characteristic speeds

λ1=u−
√

gh, λ2=u+
√

gh.

2.1. Jump conditions. A piecewise smooth solution that jumps along a curve
x=X(t) is a weak solution if and only if the Rankine-Hugoniot conditions hold at each
point of the curve:

−s[h]+[hu]=0, (2.3)

−s[hu]+

[

hu2+
1

2
gh2

]

=0 . (2.4)

Here s= Ẋ(t) is the jump speed and [h]
def
= h+−h− is the difference of right and left

limits at the shock location, with similar definitions for the other brackets, e.g., [hu]
def
=

h+u+−h−u−.
After eliminating s from the Rankine-Hugoniot conditions one finds

[

1

2
gh2

]

[h]=
g(h++h−)

2
[h]2=[hu]2− [hu2][h]=h+h−[u]

2 ,
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so that the states (h±,u±) lie on the Hugoniot curves given by

u+−u−=±γ(h+−h−), γ
def
=

√

g(h++h−)

2h+h−

. (2.5)

Correspondingly the jump speed is determined by

s=
[hu]

[h]
=u+±γh−=u−±γh+ . (2.6)

In these relations, the − sign corresponds to 1-waves and the + sign corresponds to
2-waves. Physically meaningful shock waves satisfy the Lax shock conditions:

u−−
√

gh−>s>u+−
√

gh+ for 1-shocks,

u−+
√

gh−>s>u++
√

gh+ for 2-shocks.
(2.7)

From (2.6) one finds that the Lax conditions hold if and only if

h−<h+ for 1-shocks,
h−>h+ for 2-shocks.

(2.8)

The two wave families are related via the natural spatial reflection symmetry of the
shallow water equations:

(x,t)→ (−x,t), (h,u)→ (h,−u)

Under this symmetry, 1-shocks are mapped to 2-shocks and vice versa.

2.2. Energy dissipation. The energy dissipation identity for a piecewise-
smooth solution with shock curve Γ={(x,t) :x=X(t)} takes the form (1.8), where the
measure µ is absolutely continuous with respect to 1-dimensional Hausdorff measure (arc
length measure) restricted to the shock curve Γ. Denoting this Hausdorff measure by σ,
in terms of the parametrization x=X(t) we can write informally that dσ=

√
1+s2dt

and

D def
=

dµ

dt
=−s[E0]+[Q0]=

[

1

2
h(u−s)3+gh2(u−s)

]

. (2.9)

One verifies this identity by expanding (u−s)3 and using that

s3[h]=s2[hu]=s

[

hu2+
1

2
gh2

]

from the Rankine-Hugoniot conditions. The precise meaning of (2.9) and (1.8) is that
for any smooth test function ϕ with support in a small neighborhood of the shock curve
Γ and contained in the half-plane where x∈R and t>0, we have

∫ ∞

0

∫ ∞

−∞

(−E0∂tϕ−Q0∂xϕ)dxdt=

∫

Γ

ϕdµ=

∫ ∞

0

ϕ(X(t),t)D(t)dt.

The identity (2.9) is related to the Galilean invariance of the shallow-water equations
after changing to a frame moving with constant speed s frozen at some instant of time.
To conveniently compute further we introduce v=u−s and write

v−=u−−s, v+=u+−s, (2.10)
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and note that by the Rankine-Hugoniot conditions,

M
def
= h+v+=h−v− , (2.11)

N
def
= h+v

2
++

1

2
gh2

+=h−v
2
−+

1

2
gh2

− . (2.12)

With the same choice of sign as in (2.6) we find

M =∓γh+h− , (2.13)

N =
M2

h±

+
1

2
gh2

±=
1

2
g(h2

++h+h−+h2
−) . (2.14)

Then using (2.13) and (2.8), we compute

D=
M3

2

[

1

h2

]

+gM [h]=±1

4
gγ[h]3<0 , (2.15)

for both 1-shocks and 2-shocks. Note that the dissipation is of the order of the amplitude
cubed for small shocks.

3. Weakly singular shock profiles for the regularized system

Now consider any simple piecewise-constant shock-wave solution of the shallow wa-
ter equations, in the form

(h,u)=

{

(h−,u−) x<st

(h+,u+) x>st
(3.1)

where s, h±, and u± are constants with h±>0. Our goal in this section is to show that
the regularized Saint-Venant equations (1.1)–(1.2) admit a corresponding traveling-wave
solution having shock profile that is continuous and piecewise smooth, and dissipates
energy at the precise rate that the corresponding classical shock does.

We mention that through the time-reversal symmetry

(x,t)→ (x,−t), (h,u)→ (h,−u),

the traveling waves that we obtain remain as valid weak solutions of the rSV system,
which generate energy instead of dissipating it. These solutions correspond to non-
physical shocks for the shallow-water equations that violate the Lax conditions in (2.7).

3.1. Construction of shock profiles Because both the rSV and shallow water
equations are invariant under spatial reflection, we may assume the shock is a 2-shock
without loss of generality. Moreover, the rSV and shallow water equations are invariant
under the Galilean transformation taking

u→u+s, ∂t→−s∂x+∂t.

Thus it is natural to work in the frame of reference moving with the shock at speed
s and seek a steady wave profile that is smooth except at the origin x=0. Adopting
the notation in (2.10) and writing v=u−s for convenience, therefore we seek time-
independent functions h :R→ (0,∞) and v :R→R such that h and v are continuous,
smooth except at x=0, take the limiting values

(h,v)→
{

(h−,v−) x→−∞,

(h+,v+) x→+∞,
(3.2)
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and provide a weak solution of the steady rSV equations

(hv)x=0, (hv2+
1

2
gh2+εRh2)x=0, (3.3)

R=hv2x−hvvxx−g(hhxx+
1

2
h2
x). (3.4)

As is natural, we will find solutions whose derivatives approach zero as x→±∞. Thus
upon integration we find that

hv=M , (3.5)

hv2+
1

2
gh2+εRh2=N , (3.6)

where M and N are the Rankine-Hugoniot constants defined in (2.11) and (2.12) and
are given by (2.13) and (2.14), respectively.

Let us first work on the right half-line where x>0. In terms of the dimensionless
variables given by

H=
h

h+

, V =
v

v+
, z=

x

h+

,

and the squared Froude number on the right,

F+=
v2+
gh+

,

the equations take the form

HV =1 , (3.7)

FHV 2+
1

2
H2+εFH3(V 2

z −V Vzz)−ε(H3Hzz+
1

2
H2H2

z )=F+
1

2
. (3.8)

(For simplicity we temporarily drop the subscript on F+ here.) Eliminating V we obtain
a single equation for the dimensionless wave height H,

F
H

+
1

2
H2+

εF
H

(HHzz−H2
z )−ε(H3Hzz+

1

2
H2H2

z )=F+
1

2
. (3.9)

Dividing this equation by H2 we can rewrite it as

F
H3

+
1

2
+εF(H−1Hz)zH

−1−ε(H
1
2Hz)zH

1
2 =

F+ 1

2

H2
. (3.10)

Further multiplying by Hz one can integrate this equation to obtain

εH2
z =G(F ,H)

def
=

(H−F)(H−1)2

H3−F . (3.11)

Here the integration constant is determined by requiring H→1 as z→∞.
In terms of the original dimensional variables this equation takes the form

εh2
x=G

(

F+,
h

h+

)

=
(h−h+F+)(h−h+)

2

h3−h3
+F+

. (3.12)
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On the left half-line where x<0, a similar integration procedure yields

εh2
x=G

(

F−,
h

h−

)

=
(h−h−F−)(h−h−)

2

h3−h3
−F−

, (3.13)

with F−=v2−/gh−. We note that these equations correspond to equation (29) of [4]
with the appropriate choice of integration constants.

Recalling that we are dealing with a 2-shock for which h+<h−, we note

h3
+F+=h3

−F−=
M2

g
=

1

2
(h++h−)h+h− ∈ (h3

+,h
3
−) . (3.14)

Therefore

F−<1<F+ , (3.15)

and furthermore, the denominators in (3.12) and (3.13) vanish at the same critical height

hc satisfying h+<hc<h−, where

h3
c =

1

2
(h++h−)h+h−=

M2

g
. (3.16)

On the right half line where x>0, note the denominator in (3.12) changes sign
from negative to positive as h increases from h+ past the critical height hc, while the
numerator is negative for h+<h<h+F+. Because h+F+=h3

c/h
2
+>hc, this means that

the right-hand side of (3.12) changes sign as h increases past hc: for h near hc we have

G

(

F+,
h

h+

)

>0 for h<hc, G

(

F+,
h

h+

)

<0 for h>hc.

Thus a solution of (3.12) taking values between h+ and h− can exist only as long as
h<hc. Because we require h→h+ as x→+∞, such a solution must be monotone
decreasing and satsify

√
εhx=−

√

G(F+,h/h+) . (3.17)

Actually, we have h(x)=η+(x/
√
ε) for a unique continuous function η+ : [0,∞)→ (0,∞)

which is a smooth decreasing solution of (3.17) with ε=1 for x>0 and satisfies

η+(0)=hc, η+(x)→h+ as x→+∞.

To see that this is true, one can separate variables in (3.17) and determine the solution
implicitly according to the relation

∫ hc

h

dk
√

G(F+,k/h+)
=

x√
ε
, x≥0, h∈ (h+,hc], (3.18)

since the integral converges on any interval [h,hc]⊂ (h+,hc].
On the left half line where x<0, the reasoning is similar. The numerator in (3.13) is

positive for h−>h>h−F− while the denominator changes sign from positive to negative
as h decreases past the critical height hc. The solution we seek takes values between
h− and hc, satisfying

√
εhx=−

√

G(F−,h/h−) . (3.19)
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Again, we have h(x)=η−(x/
√
ε) for a unique continuous function η− : (−∞,0]→ (0,∞)

which is a smooth decreasing solution of (3.19) with ε=1 for x<0 and satisfies

η−(0)=hc, η−→h− as x→−∞.

The solution is determined implicitly in this case according to the relation

∫ hc

h

dk
√

G(F−,k/h−)
=

x√
ε
, x<0, h∈ (hc,h−). (3.20)

Summary. Let us summarize: Given the 2-shock solution (3.1) of the shallow
water equations, our corresponding weakly singular traveling wave solution of the rSV
equations satisfies (3.2) and takes the form

h(x,t)=















η+

(

x−st√
ε

)

x≥st,

η−

(

x−st√
ε

)

x<st,
u(x,t)=s+

M

h
, (3.21)

where η± are determined by h+ and h− implicitly from (3.18) and (3.20) respectively
with ε=1, using (3.14) to determine F±, and hc is given by (3.16).

3.2. Behavior near the singular point and infinity The nature of the sin-
gularity at x=st for the solution above may be described as follows. For the function
G in (3.12), because h+F+=h3

c/h
2
+ we have

1

G(F+,h/h+)
=

(h3−h3
c)h

2
+

(h2
+h−h3

c)(h−h+)2
∼K2

+(hc−h) (3.22)

as h→hc, where

K2
+=

3hch
2
+

(h2
c−h2

+)(hc−h+)2
.

From this asymptotic description we infer from (3.18) that for small x>0,

hc−h∼ c+x
2/3, hx∼−2

3
c+x

−1/3, hxx∼
2

9
c+x

−4/3, (3.23)

where c+=(2K+

√
ε/3)−2/3.

A similar description holds on the other side of the singularity: From (3.13) we have

1

G(F−,h/h−)
=

(h3−h3
c)h

2
−

(h2
−h−h3

c)(h−h−)2
∼K2

−(h−hc) (3.24)

as h→hc, where

K2
−=

3hch
2
−

(h2
−−h2

c)(hc−h−)2
.

So for small x<0,

h−hc∼ c−|x|2/3, hx∼−2

3
c−|x|−1/3, hxx∼−2

9
c−|x|−4/3, (3.25)
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where c−=(2K−

√
ε/3)−2/3.

The behavior of v follows by differentiation from (3.5). Thus we see that hx and vx
are square integrable in any neighborhood of x=0 (and belong to Lp for p<3), while
hxx and vxx are not integrable functions. The singularities due to second derivatives in
(3.6) cancel however (see below), to produce the constant value N . This yields a valid
distributional solution of the steady rSV equations (3.3) written in conservation form.

As x→±∞, it is straightforward to check that the limits in (3.2) are achieved at
an exponential rate.

3.3. Distributional derivatives Because of the blow-up of hx at the origin, the
distributional derivative of hx is no longer a classical function. Rather, it is a generalized
function or a distribution which can be computed as follows.

We write hxx to denote the distributional derivative of hx and write hxx for the
classical derivative of hx that is not defined at 0. Let ϕ∈C∞

c (R) be a test function with
support suppϕ⊂ (−L,L). Let τ be a subtracting operator acting on functions from R

to R such that

τϕ(x)=ϕ(x)−ϕ(0) (3.26)

Then the distributional pairing of ϕ with the distribution hxx is

〈hxx,ϕ〉=−
∫

R

hxϕxdx=−
∫

R

hx(τϕ)xdx

=− lim
ε→0+

(

∫ −ε

−L

hx(τϕ)xdx+

∫ L

ε

hx(τϕ)xdx

)

=−hx(−L)ϕ(0)+hx(L)ϕ(0)+

∫ L

−L

hxx(τϕ)dx (3.27)

where in the last step we use the fact that (τϕ)(x)∼xϕx(0) when x is small and the
fact that hxxτϕ is integrable near 0. Furthermore, the above equality is true for all L
large enough, so sending L to infinity we have that

〈hxx,ϕ〉=
∫

R

hxx(τϕ)dx. (3.28)

Due to this result, the distribution hxx(h−hc) satisfies

〈hxx(h−hc),ϕ〉= 〈hxx,(h−hc)ϕ〉

=

∫

R

hxxτ((h−hc)ϕ)dx=

∫

R

hxx(h−hc)ϕdx

=
〈

hxx(h−hc),ϕ
〉

(3.29)

where the first line is justified by the fact that hxx is a continuous linear functional on
W 1,p(R) for any p∈ (1,∞). This implies that in the sense of distributions,

hxx(h−hc)=hxx(h−hc), (3.30)

where the right-hand side is a locally integrable function.
From this we can find a locally integrable representation of the quantity h2R from

(3.4). Differentiating (3.5) twice and multiplying by h2v, we find h3v2x=M2h2
x/h and

−h3vvxx=M2

(

hxx−
2h2

x

h

)

.
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Because M2=gh3
c , using (3.30) it follows

h2R=g(h3
c−h3)hxx−

g

2h
(2h3

c+h3)h2
x. (3.31)

So we conclude that the singularities appearing in hxx and vxx do cancel each other in
a way that makes the stationary momentum flux locally integrable with distributional
derivative 0.

Another way to see this cancellation is that the singular terms in h2R sum up to
give

h3vvxx+gh3hxx=
(

h3vvx+gh3hx

)

x
−(h3v)xvx−g(h3)xhx

=

(

h3v

(

−M

h2
hx

)

+gh3hx

)

x

−(h3v)xvx−g(h3)xhx

=g
(

(h3−h3
c)hx

)

x
−(h3v)xvx−g(h3)xhx , (3.32)

in which every term is a locally integrable function.

3.4. Energy dissipation of weakly singular waves. Here our aim is to show
that the regularized shock-wave solutions of the rSV equations that correspond to the
simple shallow-water shock (3.1) satisfy the distributional identity

Eε
t +Qε

x=µ (3.33)

where the dissipation measure µ is a constant multiple of 1-dimensional Hausdorff mea-
sure restricted to the simple shock curve {(x,t) :x=st}, satisfying

D=
dµ

dt
=±1

4
gγ(h+−h−)

3<0, (3.34)

exactly the same as the simple shallow-water shock in (3.1).
Indeed, the steady solution constructed above is a smooth solution of the rSV

equations (1.1)–(1.2) on both the right and left half-lines, hence satisfies the conservation
law (1.4) except at x=0. In this time-independent situation this means

Qε
x=0, x∈R\{0}.

Now, integration of this equation separately on the right and left half lines yields

Qε=

{

Q− , x<0,

Q+ , x>0,

where the constants Q± can be evaluated by taking x→±∞ in the expression for Qε

in (1.4) and invoking the limits in (3.2). The result is that the constants Q± take the
same values as appear in (2.9) for the simple shallow-water shock. Namely,

Q±=
1

2
h±v

3
±+gh2

±v± .

Therefore, by the same calculation that leads to (2.15), the weak derivative of Qε on all
of R is a multiple of the Dirac delta measure δ0 at x=0, satisfying

Qε
x=(Q+−Q−)δ0=Dδ0, (3.35)

where D is the same as in (2.15). By undoing the Galilean transformation to the frame
moving with the simple shock speed, we obtain (3.33) with dissipation measure µ exactly
as claimed above.
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4. Cusped solitary waves for the regularized system

The construction of weakly singular shock profiles in the previous section also en-
ables us to describe cusped solitary waves for the rSV equations. These are weak
traveling-wave solutions whose limits as x→−∞ are the same as those as x→+∞.

The point is that weak solutions of the steady rSV equations (3.3)–(3.4) can be
constructed by reflection from either piece η± of the 2-shock profile in the previous
section. For each of these pieces, the quantities on the left-hand sides in (3.5) and (3.6)
are locally integrable (in total, though not term-wise) and indeed constant on R\{0}.
Thus the construction above yields two valid distributional solutions of the steady rSV
equations with height profiles

h(x,t)=η±

( |x−st|√
ε

)

, (4.1)

respectively satisfying h(x,t)→h± as |x|→∞. The energy of these solitary wave solu-
tions satisfies the conservation law (1.4) without alteration.

4.1. Solitary waves of elevation We note that for the solution using η+, the
value of h− has no direct interpretation in terms of the wave shape. However, from
(3.22) we see that the solitary-wave height profile with the + sign can be determined

from any independently chosen values of h∞

def
= h+ and hc with

0<h∞<hc.

Here hc is the maximum height of the wave and h∞ is the limiting value at ∞. The
wave everywhere is a wave of elevation, with h∞<h(x,t)≤hc, determined implicitly as
in (3.18) and (3.22) by

∫ hc

h

(

h3
c−k3

h3
c−h2

∞k

)

1
2 h∞

k−h∞

dk=
|x−st|√

ε
, x∈R, h∈ (h∞,hc]. (4.2)

It is natural for solitary waves to consider u+=0 to be the limiting velocity as |x|→∞
in the original frame. Then by (2.6), v+=−s=−γh−, whence we find using (3.16) that
γ=

√
ghchc/(h+h−) and

s=
√

ghc
hc

h∞

. (4.3)

This determines the velocity profile according to

u(x,t)=s+
M

h
=s

(

1− h∞

h

)

. (4.4)

This velocity is everywhere positive, as a consequence of the fact that we started with a
2-shock profile. We note that these solitary waves travel to the right, with speed s that
exceeds the characteristic speed

√
gh∞ at the constant state (h∞,0) in this case. The

spatial reflection symmetry yields solitary waves that travel to the left instead. This
symmetry also recovers the solitary waves that can be constructed from 1-shock profiles.

4.2. Solitary waves of depression We obtain solitary waves of depression by

using η− in (4.1) instead of η+, choosing h∞

def
= h− (the wave height at ∞) and hc (the

minimum wave height) arbitrary subject to the requirement that

0<hc<h∞.
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Similarly to (4.2), the wave height h(x,t)∈ [hc,h∞) is determined implicitly by

∫ h

hc

(

k3−h3
c

h2
∞k−h3

c

)

1
2 h∞

h∞−k
dk=

|x−st|√
ε

, x∈R, h∈ [hc,h∞). (4.5)

Considering u−=0 to be the limiting velocity as |x|→∞, we find v−=−s=−γh+ from
(2.6), whence the solitary wave speed is again given by equation (4.3), and again the
corresponding velocity profile is given by (4.4). This time, the velocity is everywhere
negative (when starting with the 2-shock profile), while the solitary wave travels to the
right (s>0) but with speed s less than the characteristic speed

√
gh∞ of the state at

infinity. Again, spatial reflection yields waves of depression traveling to the left.

5. Parametric formulae for shock profiles and cusped waves

Here we describe how weakly singular shock profiles and cusped waves can be de-
termined in a parametric form,

h=h(ξ), x=x(ξ), ξ∈R,

by a quadrature procedure that eliminates having to deal with the singularities present
in the ODEs (3.12), (3.13) and in the integrands of the implicit relations (3.18),
(3.20), (4.2). Inspired by the fact that classical solitary wave profiles of the form
f(ξ)=β sech2( 1

2
ξ) (and their translates) satisfy an equation with cubic polynomial as

right-hand side,

f2
ξ =f2

(

1− f

β

)

, (5.1)

we modify the dimensionless ODE (3.11) by replacing H3 in the denominator by its
asymptotic value 1. Thus we seek the solution of (3.11) in parametric form H=H(ξ),
z= z(ξ) by solving

H2
ξ =

(H−F)(H−1)2

1−F =(H−1)2
(

1−H−1

F−1

)

, (5.2)

z2ξ =ε
H3−F
1−F . (5.3)

We require H3=F when z=0. It is convenient to require z(0)=0. Comparing the
form of (5.2) with (5.1) we find the appropriate solution of (5.2) on either half-line ξ≥0
or ξ≤0 can be written in the form

H(ξ)=1+(F−1)sech2
(

1

2
|ξ|+α

)

, (5.4)

where H(0)=F1/3 provided

cosh2α=
F−1

F1/3−1
. (5.5)

A unique α>0 solving this equation exists in either case F >1 or 0<F <1, namely

α=ln(
√
γ+
√

γ−1), γ=
F−1

F1/3−1
, (5.6)
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because γ >1. Now z(ξ) is recovered by quadrature from (5.3) as

z(ξ)=
√
ε

∫ ξ

0

(

H(ζ)3−F
1−F

)1/2

dζ (5.7)

To express this result in dimensional terms for h=h±H in each case as appropriate,
we recall F±=h3

c/h
3
± where hc may be determined from h+, h− by (3.16). We obtain

h(ξ)=h±+
(hc−h±)cosh

2α±

cosh2( 1
2
|ξ|+α±)

, (5.8)

x(ξ)=
√
εh±

∫ ξ

0

(

h(ζ)3−h3
c

h3
±−h3

c

)1/2

dζ , (5.9)

where α± is determined from (5.6) using F =F±.
Cusped solitary waves profiles are expressed parametrically by the same formulae

after replacing h± with h∞.
An explicit expression for x(ξ) remains to be obtained. Even if this expression could

be obtained in closed form, it likely would involve special functions that may not be
easily computed. In any case, it is straightforward to compute x(ξ) directly from the
integral by an efficient quadrature method. We note, however, that Taylor expansion
of sech2( 1

2
|ξ|+α±) implies that for small |ξ|,

h(ξ)−hc

h±−hc
= |ξ|tanhα±+O(|ξ|2).

Consequently the integrand of (5.9) has a weak singularity at 0, with

(

h(ζ)3−h3
c

h3
±−h3

c

)1/2

=K|ζ|1/2+O(|ζ|), K=

(

3h2
c tanhα±

h2
±+h±hc+h2

c

)1/2

.

This singularity can be eliminated by a change of variable ζ=±y2—then simple quadra-
tures will yield accurate numerical approximations.

6. Numerical simulations

In this section we examine how the theory of weakly singular shock profiles devel-
oped in this paper fits the smoothed shocks observed in the computations carried out
in [4].

6.1. A dynamically generated wave front. In Fig. 6.1 we compare a shock
profile computed by the theory developed in this paper with a solution to the rSV
system computed as in [4] for “dam-break” initial data, similar to a Riemann problem
for the shallow-water system. For a recent treatment of the classical Riemann problem
for the shallow-water equations, including a discussion of analytical properties as well
as numerical techniques, see [12].

The solid line in Fig. 6.1 is from the numerically computed solution to the rSV
system at time t=15 with ε=0.5 and smoothed step function (“dam break”) initial
data

h0(x)=h−+
1

2
(h+−h−)(1+tanh(δx))

for h−=1.5, h+=1, g=1, δ=1, as indicated in [4]. The numerical computation was
performed with a Fourier pseudospectral method as described in [9], using an Erfc-Log
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Fig. 6.1. Comparison of shock profile with dam-break computation of [4]. The solid line is the rSV
solution with ε=0.5 computed by a pseudospectral method. Crosses mark the shock profile computed
as in (5.8)–(5.9), shifted by 17.67.

filter for anti-aliasing [1] and with N =8192 modes on a periodic domain of length 4L
with L=25.

The crosses mark the shock profile solution computed parametrically using formulae
(5.8)-(5.9) of the previous section with h−=1.2374 and h+=1, with x shifted by 17.67.
The bottom part of the figure is a zoom-in on the indicated region of the upper part.
We remark that the computed rSV solution in Fig. 6.1 corresponds directly to Fig. 3(c)
of [4]—due to a late change of notation the values of ε reported for the computations
in [4] correspond to 2ε in the present notation.

6.2. Energy dissipation. In Fig. 6.2 we plot the total energy from (1.4),

Eε(t)=

∫ L

−L

Eεdx, (6.1)

as a function of time, for a solution computed as in Fig. 6.1 but with anti-aliasing
performed using the filter employed by Hou and Li in [15], namely

ρ(2k/N)=exp(−36|2k/N |36), k=−N/2, . . . ,N/2−1,

applied on each time step. From this data, we estimate the average energy decay rate
dEε/dt≈−0.00326 over the range t∈ [14,15]. Corresponding to h−=1.2374, h+=1,
the dissipation formula (2.15) predicts dEε/dt=−0.00318, giving a relative error of less
than 2.6 percent.
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Fig. 6.2. Total energy Eε vs. t in the smoothed dam break problem as in Fig. 6.1 with ε=0.5.
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Fig. 6.3. Cusped solitary wave profile for h∞=1, hc=1.3

6.3. Cusped waves The profile of a cusped solitary wave of elevation is plotted
in Fig. 6.3 for h∞=h+=1 and maximum height hc=1.3. We were not able to compute
a clean isolated traveling cusped wave by taking the numerically computed wave profile
for (h,u) as initial data on a regular grid. Indeed, there is no particular reason our
pseudospectral code should work well for such a singular solution, and anyway it may
not be numerically stable. However, when taking the h-profile in Fig. 6.3 as initial data
with zero initial velocity, the numerical solution develops two peaked waves traveling in
opposite direction as indicated Fig. 6.4. While hardly conclusive, this evidence suggests
that cusped solutions may be relevant in the dynamics of the rSV system.

The two peaks here are slightly skewed compared to the profile of a cusped solitary
wave. Our limited exploration uncovered no convincing evidence that cusped waves
collide “cleanly” enough to justify calling them ‘cuspons’ or suggest that the rSV system
is formally integrable—It may be difficult to tell, though, as perturbed cusped waves
do not leave behind a dispersive “tail” in this non-dispersive system.

7. Discussion and outlook

Our analysis of traveling wave profiles for the rSV system proves that, as the authors
of [4] stated, the regularized system admits ‘smoothed shocks’ that propagate at exactly
the same speed as corresponding classical discontinuous shocks for the shallow water
equations. The new waves are indeed piecewise smooth and continuous, but have weak
singularities which correctly generate the same energy dissipation as the classical shocks.
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Fig. 6.4. Numerical solution at t=6 with initial height from Fig. 6.3, initial velocity zero.

This ability of the rSV system to correctly model shock wave propagation non-
dispersively without oscillations while conserving energy for smooth solutions is an
interesting feature which deserves further investigation. As demonstrated in [4], it
means that a rather straightforward pseudospectral method (albeit one which involves
careful dealiasing, and iteration to eliminate the time derivative term in R) computes
shock speeds accurately over a wide range of values of ε, with 2ε ranging from 0.001 to
5 in the examples treated in [4].

The comparisons made in the previous section above make it plausible that the
pseudospectral method used to produce Figs. 6.1 and 6.2 is computing an accurate
approximation to a solution of the rSV system which ceases to conserve energy (hence
loses smoothness) around t=7 or 8, and develops afterward a traveling wave whose
shape closely matches a weakly singular shock profile. We speculate that an important
source of energy dissipation in this pseudospectral computation may be the damping of
high frequency components induced for dealiasing purposes.

How this actually happens and what it may mean with regard to the design and ac-
curacy of numerical approximations remains to be investigated in detail. Often, energy
conservation, or preservation of some variational (Lagrangian) or symplectic (Hamil-
tonian) structure, is a desirable feature of a numerical scheme designed for long-time
computations in an energy-conserving system. (See [6, 11, 21, 23] for discussion of vari-
ational and symplectic integrators.) But for the rSV system considered here, exact
conservation of energy appears to be inappropriate for approximating solutions contain-
ing weakly singular shock profiles, which dissipate energy as we have shown.

At present, the issue of preservation of symplectic structure may be moot anyways,
since we are not aware of a canonical Hamiltonian structure for the rSV system. It seems
worth mentioning, however, that the rSV system admits the following non-canonical
Hamiltonian structure. Namely, with

H=

∫

1

2
hu2+

1

2
g(h−h∞)2+ε

(

1

2
h3u2

x+
1

2
gh2h2

x

)

dx, (7.1)

and m=hu−ε(h3ux)x, the rSV system is formally equivalent to

∂t

(

m
h

)

=−
(

∂xm+m∂x h∂x
∂xh 0

)(

δH/δm
δH/δh

)

. (7.2)

This is a simple variant of the Hamiltonian structure well-known for the Green-Naghdi
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equations [7, 13, 19, 22], obtained by replacing the Green-Naghdi Hamiltonian with a
Hamiltonian derived from (1.5).

Finally, as we have mentioned, quite a number of analytic questions remain for fur-
ther investigation, involving the development of weak singularities in smooth solutions
of the rSV system, the existence of solutions with weak singularities, and whether these
phenomena occur for other important models of physical systems.
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