Sonata: Query-Driven Streaming Network Telemetry

Arpit Gupta

Princeton University

Nick Feamster
Princeton University

ABSTRACT

Managing and securing networks requires collecting and
analyzing network traffic data in real time. Existing teleme-
try systems do not allow operators to express the range of
queries needed to perform management or scale to large traf-
fic volumes and rates. We present Sonata, an expressive and
scalable telemetry system that coordinates joint collection
and analysis of network traffic. Sonata provides a declarative
interface to express queries for a wide range of common
telemetry tasks; to enable real-time execution, Sonata parti-
tions each query across the stream processor and the data
plane, running as much of the query as it can on the network
switch, at line rate. To optimize the use of limited switch
memory, Sonata dynamically refines each query to ensure
that available resources focus only on traffic that satisfies the
query. Our evaluation shows that Sonata can support a wide
range of telemetry tasks while reducing the workload for the
stream processor by as much as seven orders of magnitude
compared to existing telemetry systems.

CCS CONCEPTS

+ Networks — Network monitoring;

KEYWORDS

analytics, programmable switches, stream processing

ACM Reference Format:

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-Driven Stream-
ing Network Telemetry. In SIGCOMM ’18: ACM SIGCOMM 2018
Conference, August 20-25, 2018, Budapest, Hungary. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3230543.3230555

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGCOMM °18, August 20-25, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08....$15.00
https://doi.org/10.1145/3230543.3230555

Rob Harrison
Princeton University

Jennifer Rexford
Princeton University

Marco Canini
KAUST

Walter Willinger
NIKSUN Inc.

1 INTRODUCTION

Network operators routinely perform continuous monitor-
ing to track events ranging from performance impairments
to attacks. This monitoring requires continuous, real-time
measurement and analysis—a process commonly referred
to as network telemetry [55]. Existing telemetry systems can
collect and analyze measurement data in real time, but they
either support a limited set of telemetry tasks [34, 40], or
they incur substantial processing and storage costs as traffic
rates and queries increase [7, 10, 58].

Existing telemetry systems typically trade off scalabil-
ity for expressiveness, or vice versa. Telemetry systems
that rely on stream processors alone are expressive but not
scalable. For example, systems such as NetQRE [58] and
OpenSOC [40] can support a wide range of queries using
stream processors running on general-purpose CPUs, but
they incur substantial bandwidth and processing costs to do
so. Large networks can require performing as many as 100
million operations per second for rates of 1 Tbps and packet
sizes of 1 KB. Scaling to these rates using modern stream pro-
cessors is prohibitively costly due to the lower (2-3 orders of
magnitude) processing capacity per core [37, 39, 41, 59]. On
the other hand, telemetry systems that rely on programmable
switches alone can scale to high traffic rates, but they give
up expressiveness to achieve this scalability. For example,
Marple [34] and OpenSketch [56], can perform telemetry
tasks by executing queries solely in the data plane at line
rate, but the queries that they can support are limited by the
capabilities and memory in the data plane.

Rather than accepting this apparent tradeoff between ex-
pressiveness and scalability, we observe that stream proces-
sors and programmable switches share a common processing
model; they both apply an ordered set of transformations
over structured data in a pipeline. This commonality sug-
gests that an opportunity exists to combine the strengths of
both technologies in a single telemetry system that supports
expressive queries, while still operating at line rate for high
traffic volumes and rates.

To explore this idea, we develop Sonata (Streaming Net-
work Traffic Analysis), a query-driven network telemetry
system. Figure 1 shows the design of Sonata: it provides
a declarative interface that can express queries for a wide

https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230555

Query; Query, ««s Query,
Results Stream
Processor

Runtime

Switch Programmable Switch
Configs

—)

Packets Out

Packet
Tuples

Packets In
Figure 1: Sonata architecture.

range of telemetry tasks and also frees the network operator
from reasoning about where or how the query will execute.
To scale query execution, Sonata (1) makes use of both pro-
grammable data-plane targets and scalable stream proces-
sors and (2) iteratively zooms-in on subsets of traffic that
satisfy the query—making the best use of limited data-plane
resources. By unifying stream processing and data-plane ca-
pabilities, Sonata’s runtime can refine query execution in the
data plane to reduce load on the stream processor. This ability
to dynamically refine queries is important because telemetry
queries often require finding “needles in a haystack” where
the fraction of total traffic or flows that satisfies these queries
is tiny. We present the following contributions:

Unified query interface. (Section 2) We design a query
interface that unifies the parsing and compute capabilities
of a programmable switch with those of stream processors.
This interface allows network operators to apply familiar
dataflow operators (e.g., map, filter, reduce) over arbitrary
combinations of packet fields without regard for where the
query will execute. We show that a wide-range of network
telemetry tasks can be expressed in fewer than 20 lines of
Sonata code (Table 3).

Query partitioning based on data-plane constraints.
(Section 3) To reduce load on the stream processor, we design
an algorithm that partitions queries between the switch and
the stream processor. We first show how dataflow queries can
be partitioned without compromising accuracy. However,
data-plane resources, such as switch memory and processing
stages, are quite limited and inelastic by design. To make the
best use of these resources, we develop an accurate model of
common data-plane resource constraints and show how high-
level dataflow operators consume these resources. Sonata’s
query planner uses this model to decide how to partition
query execution between the switch and stream processor.

Dynamic query refinement based on query and work-
load. (Section 4) To efficiently use limited switch resources,
we develop a dynamic refinement algorithm that ignores
most of the traffic and only focuses on the subsets of traffic

that actually satisfy a query. We show that this technique
applies to a wide range of telemetry queries and demon-
strate how Sonata’s query planner considers the structure
of queries and representative traffic traces to compute a re-
finement plan for each query.
Modular and extensible software architecture. (Sec-
tion 5) To support different types of data-plane and streaming
targets, we design Sonata so that it could be extended to sup-
port operations over arbitrary packet fields. The queries
expressed using the Sonata interface are agnostic to the
underlying switch and streaming targets. Our current pro-
totype implements drivers for both hardware (e.g., Bare-
foot Tofino [49]) and software (e.g., BMV2 [50]) protocol-
independent switches as well as the Spark Streaming [48]
stream processor. The current prototype parses packet head-
ers for standard protocols and can be extended to extract
other information, such as queue size along a path [19].
The Sonata prototype is publicly available on Github [52],
and consists of about 9, 000 lines of code; it currently com-
piles queries to a single programmable switch. We use real
packet traces from operational networks to demonstrate that
Sonata’s query planner reduces the load on the stream pro-
cessor by as much as seven orders of magnitude over existing
telemetry systems (Section 6). We also quantify how Sonata’s
performance gains depend on data-plane constraints and traf-
fic dynamics. To date, our open-source software prototype
has been used by both researchers at a large ISP and in a
graduate networking course [5].

2 UNIFIED QUERY INTERFACE

This section presents Sonata’s query interface and shows
example queries to illustrate the types of queries that existing
systems can and cannot support. Sonata provides a query
interface that is as expressive as modern stream processors
but opportunistically achieves the scalability of data-plane
execution. Although Sonata uses programmable switches
to scale query execution, the expressiveness of its query
interface does not depend on the computational capabilities
of these switches. Sonata’s stream processor simply executes
the operations for which no more data-plane resources are
available or which are not supported by the switch (e.g.,
payload processing or floating-point arithmetic).

2.1 Dataflow Queries on Tuples

Extensible tuple abstraction. Information in packet head-
ers naturally constitute key-value tuples (e.g., source and
destination IP address, and other header values). This struc-
ture lends itself to a tuple-based abstraction [16]. Of course,
an operator may want to write queries based on information
that is not in the IP packet header, such as the application
protocol, or DNS query type. To facilitate a broader range

1 packetStream(W)

2 .filter(p => p.tcp.flags == 2)

3 .map(p => (p.dIP, 1))

4 .reduce(keys=(dIP,), f=sum)

5 .filter ((dIP, count) => count > Th)

Query 1: Detect Newly Opened TCP Connections.

of queries, Sonata allows an operator to extend the tuple
interface to include other fields that could be extracted by
either the programmable switch or the stream processor. For
example, they can specify customized packet-parsing opera-
tions for programmable switches in a language such as P4.
Based on such a specification, the parser can extract all por-
tions of the packet that pertain to the query. Sonata parses
tuples on the switch whenever possible, shunting packets to
the stream processor only when the query requires sophisti-
cated parsing (e.g., parsing of the packet’s payload) or join
operations that the switch itself cannot support.
Expressive dataflow operators. Many network telemetry
tasks require computing aggregate statistics over a subset of
traffic and joining the results from multiple queries, which
can be expressed as a sequential composition of dataflow op-
erators (e.g., filter, map, reduce). Gigascope [10], Chimera [7],
and Marple [34] all use such a programming model, which is
both familiar and amenable for compilation to programmable
switches [34]. Section 3 describes how Sonata compiles
queries across the stream processor and switch. We include
an overview of all the operators Sonata suports in an ex-
tended technical report [42]. Stateful dataflow operators are
all executed with respect to a query-defined time interval, or
window. For example, applying reduce over a sum operation
will return a result at the end of each window. Each query
can explicitly specify the interval’s duration for stateful op-
erations.

Limitations. Sonata supports queries operating at packet-
level granularity, as in existing declarative telemetry sys-
tems [7, 10, 34, 40]; it cannot support queries that require
reassembling a byte stream, as in Bro [43]. Sonata also cur-
rently compiles each query to a single switch, not across
multiple switches. We leave compiling arbitrary queries to
multiple switches as future work, but the set of single-switch
queries considered in this paper is nonetheless directly ap-
plicable to real-world deployments such as a border switch
or an Internet exchange point (IXP).

2.2 Example Network Telemetry Queries

We now present three example queries: one that executes
entirely in the data plane, a second that involves a join of two
sub-queries, and a third that requires parsing packet payloads.
Table 3 summarizes the queries that we have implemented
and released publicly along with the Sonata software [53].

Computing aggregate statistics over a subset of traffic.
Suppose that an operator wants to detect hosts that have
too many recently opened TCP connections, as in a SYN
flood attack. Detection requires parsing each packet’s TCP
flags and destination IP address, as well as computing a sum
over the destination IP address field. Query 1 first applies a
filter operation (line 2) over the entire packet stream to
select TCP packets with just the SYN flag set. It then counts
the number of packets it observed for each host (lines 3-4)
and reports the hosts for which this count exceeds threshold
Th at the end of the window (line 5). This query can be
executed entirely on the switch, so existing systems (e.g.,
Marple [34]) can also execute this type of query at scale.
Joining the results of two queries. A more complex query
involves joining the results from two sub-queries. To detect
a Slowloris attack [45], a network operator must identify
hosts which use many TCP connections, each with low traf-
fic volume. This query (Query 2) consists of two sub-queries:
the first sub-query counts the number of unique connections
by applying a distinct, followed by a reduce (lines 1-6).
The second sub-query counts the total bytes transferred for
each host (lines 8-11). The query then joins the two results
(line 7) to compute the average connections per byte (line 12)
and reports hosts whose average number of connections per
byte exceeds a threshold Th2 (line 13). Marple [34] cannot
support this query as it applies a join after an aggregation
operation (reduce). Also, this query cannot be executed en-
tirely in the data plane as computing an average requires
performing a division operation. Even state-of-the-art pro-
grammable switches (e.g., Barefoot Tofino [49]) do not sup-
port the division operation in the data plane. In general,
existing approaches that only use the data plane for query
execution cannot support queries that require complex op-
erations that cannot be executed in the switch. In contrast,
Sonata’s query planner partitions the query for partial execu-
tion on the switch and performs more complex computations
at the stream processor.

Although this query is written to detect hosts for which
the average bytes per connection exceeds a threshold, it is
equivalent to detecting hosts for which the average bytes
per connection is less than a different threshold; we explain
in Section 4 why it is desirable to express this query using a
“greater than” instead of a “less than” condition.
Processing packet payloads. Consider the problem of de-
tecting the spread of malware via telnet [35], which is a
common tactic targeting IoT devices [1]. Here, miscreants
use brute force to gain shell access to vulnerable Internet-
connected devices. Upon successful login, they issue a se-
quence of shell commands, one of which contains the key-
word “zorro” The query to detect these attacks first looks

packetStream
.filter(p => p.proto == TCP)
.map(p => (p.dIP,p.sIP,p.tcp.sPort))
.distinct ()
.map ((dIP,sIP,sPort) =>(dIP,1))
.reduce (keys=(dIP,), f=sum)
.join(keys=(dIP,), packetStream

.filter(p => p.proto == TCP)

.map(p => (p.dIP,p.pktlen))

.reduce (keys=(dIP,), f=sum)

.filter ((dIP, bytes) => bytes > Thl))
.map ((dIP, (byte,con)) => (dIP, (con/byte))
.filter ((dIP, con/byte) => (con/byte > Th2)

O 0 N NG R W N

— = =
w N = O

Query 2: Detect Slowloris Attacks.

packetStream
.filter(p => p.tcp.dPort == 23)
.join(keys=(dIP,), packetStream
.filter(p => p.tcp.dPort == 23)
.map(p => ((p.dIP,p.nBytes/N), 1))
.reduce (keys=(dIP, nBytes), f=sum)
.filter (((dIP,nBytes),cntl) => cntl > Thl))
.filter(p => p.payload.contains('zorro'))
.map(p => (p.dIP,1))
.reduce (keys=(dIP,), f=sum)
.filter ((dIP, count2) => count2 > Th2)

O 0 N NG R W N =

—_
=

Query 3: Detect Zorro Attacks.

for hosts that receive many similar-sized telnet packets fol-
lowed by a telnet packet with a payload containing the key-
word “zorro” The query for this task has two sub-queries
(Query 3): the first part identifies hosts that receive more
than Th1 similar-sized telnet packets rounded off by a factor
of N (lines 4-7). The second part joins (line 3) the output of
the first sub-query with the other and reports hosts that re-
ceive more than Th2 packets and contain the keyword “zorro”
in the payload (lines 8—11). Since this query requires parsing
packet payloads, many existing approaches cannot support
it. In contrast, Sonata can support and scale these queries by
performing as much computation as possible on the switch
and then performing the rest at the stream processor.

3 QUERY PARTITONING

Sonata partitions a given query across a stream processor
and a protocol-independent switch that performs part of
the query, ultimately reducing the load (Section 3.1) on the
stream processor. Section 3.2 discusses the constraints of
these switches that the Sonata query planner considers;
the planner solves an optimization problem to partition the
query, as described in Section 3.3.

3.1 Data Reduction on the Switch

A central contribution of Sonata is to use the capabili-
ties of programmable switches to reduce the load on the
stream processor. In contrast to conventional switches,

Filter Map Reduce Filter

/|| “Register
/ ‘ﬁ
%

Stage 0 Stage 1[|Stage 2 Stage 3

PHV,

Parser

Pkti, Pktoue

Figure 2: Compiling a dataflow query (Query 1) to a sequence
of match-action tables for a PISA switch. Each query consists
of an ordered sequence of dataflow operators, which are then
mapped to match-action tables in the data plane.

protocol-independent switch architecture (PISA) switches
(e.g., RMT [9], Barefoot Tofino [20], Netronome [54]) offer
programmable parsing and customizable packet-processing
pipelines, as well as general-purpose registers for stateful
operations. These features provide opportunities for Sonata
to perform more of the query on the switch, reducing the
amount of data sent to the stream processor.

3.1.1 Abstract Packet Processing Model. Figure 2 shows
how Query 1 naturally maps to the capabilities of the packet
processing model of a PISA switch. On PISA switches, a re-
configurable parser constructs a packet header vector (PHV)
for each incoming packet. The PHV contains not only fixed-
size standard packet headers but also custom metadata for
additional information such as queue size. A fixed number
of physical stages, each containing one match-action unit
(MAU), then processes the PHVs. The packet processing
pipeline is a sequence of custom match-action tables; MAUSs
implement these abstract tables in hardware. Each MAU
performs a self-contained set of match-action operations,
consuming PHVs as input and emitting transformed PHVs as
output. If fields in the PHV match a given rule in the MAU,
then a set of custom actions corresponding to that rule are
applied to the PHV. These actions can be stateless or state-
ful; the stateful operations use register memory to maintain
state. Finally, a deparser reassembles the modified PHV into
a packet before sending it to an output port.

The PISA processing model aligns well with streaming
analytics platforms such as Spark Streaming [59] or Apache
Flink [38]. The processing pipelines for both can be repre-
sented as a directed, acyclic graph (DAG) where each node
in the graph performs some computation on an incoming
stream of structured data. For stream processors, the nodes in
the DAG are dataflow operators and the stream of structured
data consists of tuples. For PISA switches, the nodes in the
DAG are match-action tables and the stream of structured
data consists of packets. Given this inherent similarity, an
ordered set of dataflow query operators could map to an
ordered set of match-action tables in the data plane. We now
describe how Sonata takes advantage of this similarity to
execute dataflow operators directly in the data plane.

3.1.2 Compiling Each Operator. Compiling dataflow
queries to PISA switches requires translating the DAG of
dataflow operators into an equivalent DAG of match-action
tables. Prior work [34] also faced the challenge of compiling
high-level queries to match-action tables, but limited the set
of input queries to those that can be performed entirely on
the switch. Rather than constraining the set of input queries,
Sonata’s query planner partitions all input queries into a set
of dataflow operators than can be executed on the switch
and a set that must be executed at the stream processor.
Before Sonata’s query planner can make this partitioning
decision, it must first quantify the resource requirements for
individual dataflow operators.

Filter requires a single match-action table to match a set of
fields in the PHV. For example, line 1 of Query 1 requires a
single match-action table where the six-bit tcp.flags field
is a column and the value 2 is a single rule (row), as shown
in Figure 2. In general, the match-action table for a filter
operation has a column for each field in the predicate. A filter
predicate with multiple clauses connected by “and” leads to
multiple rules, one per clause.

Map also requires a single match-action table. For example,
line 2 of Query 1 transforms all incoming packets into a tuple
consisting of the ipv4.dIP field from the packet’s header
and the value 1. These values are stored in query-specific
metadata for further processing. Although Sonata’s query
interface does not constrain the transformations that map
might perform over a set of tuples, the operator cannot be
compiled to the data plane if the switch cannot perform the
corresponding transformation.

Reduce requires maintaining state across sequences of pack-
ets; Sonata uses registers, which are simply arrays of values
indexed by some key, to do so. Query-specific metadata fields
permit loading and storing values from the registers. As a re-
sult, stateful operations require two match-action tables: one
for computing the index of the value stored in the register
and the other for updating state using arithmetic and logic
operators supported by the switch, such as add and bit_or.
A corresponding metadata field carries the updated state
after applying the arithmetic operation. For example, exe-
cuting the reduce operator for Query 1 in Figure 2 requires
a match-action table to compute an index into the register
using the dIP header field. A second table performs the state-
ful action that increments the indexed value in the register
and stores the updated value. In Section 3.3, we describe how
Sonata’s query planner uses representative training data to
configure the number of entries for each register.

Distinct operations are similar to a reduce, where the func-
tion bit_or (with argument 1) is applied to a single bit.
Join operations are costly to execute in the data plane. In the
worst case, this operation maintains state that grows with
the square of the number of packets. Sonata executes join

operations at the stream processor by iteratively dividing the
query into a set of sub-queries. For example, Sonata divides
Query 2 into two sub-queries: one that computes the number
of unique connections, and a second that computes the num-
ber of bytes transferred for each host. Sonata independently
decides how to execute the two sub-queries and ultimately
joins their results at the stream processor.

3.1.3 Compiling Dataflow Queries. In addition to map-
ping individual dataflow operators to match-action tables,
the resulting data-plane mapping must be synthesized in a
way that respects the following additional considerations.
Preserving packet forwarding decisions. Sonata pre-
serves packet forwarding decisions by transforming only
query-specific metadata fields, rather than the packet con-
tents that might affect forwarding decisions (e.g., destination
address, application headers, or even payload). The switch
extracts values from the packets’ original header fields and
copies them to auxiliary metadata fields before performing
any additional processing. This process leaves the original
packet unmodified.

Reporting intermediate results to the stream proces-
sor. When a query is partitioned across the stream processor
and the switch, the stream processor may need either the
original packet or just an intermediate result from the switch,
so that it can perform its portion of the query. To facilitate
this reporting, the switch maintains a one-bit report field
in the metadata for each packet. Each query partitioned to
the switch marks this field whenever a query-specific con-
dition is met that requires a packet be sent to the stream
processor. If this field is set at the conclusion of the entire
processing pipeline, the switch sends to the stream processor
all intermediate results needed to complete processing the
query, including the original packet if needed by the query.
If the last operator is stateful (e.g., reduce), then the switch
sends only one packet for each key to the stream processor.
This informs the stream processor which register indices in
the data plane must be polled at the end of each window to
retrieve aggregated values stored in the switch (see Section 5
for details).

Detecting and mitigating hash collisions. Sonata must
detect and mitigate hash collisions that may result at the
switch. The probability of a hash collision is proportional
to the number of hashes performed on unique keys and the
size of the output hash as a consequence of the pigeonhole
principle. In theory, a 32-bit hash has a 50% chance of a
collision after hashing fewer than 80,000 keys. Since true
hash-tables with collision resolution are not available on
the switch, we instead use registers with hash-based indices.
In practice, these registers contain far fewer rows than the
number of unique values in the hash output, making colli-
sions even more likely. To detect collisions, switches store

the original key when performing reduce and distinct op-
erations. To mitigate collisions, Sonata uses a sequence of
up to d registers, each using a different hash function for
determining indices. If a key generates a collision, Sonata
iterates through each of the d registers, storing the key in
the first register that does not result in a collision. If after
iterating through all d registers, the key still generates a
collision, Sonata sends the packet to the stream processor.
At the end of each window, the stream processor adjusts the
results received from the switch with the additional packets
processed due to collisions.

3.2 Data-Plane Resource Constraints

Sonata’s query planner must consider the finite resource
constraints of PISA switches for parsing packet header fields,
performing actions on packets, storing state in register mem-
ory and performing all of these operations in a limited num-
ber of stages.

Parser. The cost of parsing increases with the number of
fields to extract from the packet. This cost is quantified as
the number of bits to extract and the depth of the parsing
tree. The size of the PHV limits the number of fields that can
be extracted for processing. Typically, PISA switches have
PHVs about 0.5-8 Kb [9] in size. Let M denote the maximum
storage for metadata in the PHV.

Actions. Most stream processors execute multiple queries
in parallel, where each query operates over its own logical
copy of the input tuple. In contrast, PISA switches transform
raw packets to PHVs and then concurrently apply multiple
operations over the PHV in pipelined stages. These mech-
anisms suggest that PISA switches would be amenable to
parallel query execution. In practice, there is a limit on how
many actions can be applied over a PHV in one stage, which
limits the number of queries that can be supported in the
data plane. Typically, PISA switches support 100-200 state-
less and 1-32 stateful actions per stage [9]; we denote the
maximum number of stateful actions per stage as A.
Registers. The amount of memory required to perform
stateful operations grows with the number of packets and
the number of queries. Stream processors scale by adding
more nodes for maintaining additional state. In contrast,
stateful operations in PISA switches can only access register
memory locally available to their physical stage. This register
memory is bounded for each stage, which affects the switch’s
ability to handle both increased traffic loads and additional
queries. Within a stage, the amount of memory available to
a single register is also bounded. Typically, PISA switches
support 0.5-32 Mb memory for each stage [9]. Let B denote
the maximum number of register bits available in each stage.
Stages. Queries that lack available resources in a given stage
must execute in a later stage. PISA switches typically support

Switch Constraints

M Amount of metadata stored in switch.

A Number of stateful actions per stage.

B Register memory (in bits) per stage.

S Number of stages in match-action pipeline.

Input from Queries
Oy Ordered set of dataflow operators for query q.
Tq Ordered set of match-action tables for query q.

Mg, Amount of metadata required to perform query q.
Zy Indicates whether table ¢ performs a stateful operation.
Input from Workload

Nyg.: | Number of packets generated after table ¢ of query gq.
Bg,+ | State (bits) required for executing table ¢ of query g.
Output
Pg.+ | Indicates whether ¢ is the last table partitioned to the

switch for query q.

Xgq.t,s | Indicates whether table ¢ of query g executes at stage s
in the switch.

Sq.t Stage id for table ¢ for query q.

Table 1: Summary of variables in the query planning problem.

1-32 physical stages [9]; we denote the maximum number
of stages as S.

3.3 Computing Query Partitioning Plans

Consider a switch with S = 4 stages, B = 3,000 Kb, and A = 4
stateful actions per stage. These constraints are more strict
than Barefoot’s Tofino switch [49], but they illustrate how
the data-plane resource constraints affect query planning.
Sonata runs Query 1 over a one-minute packet trace from
CAIDA [11] to compute that the switch requires 2, 500 Kb to
count the number of TCP SYN packets per host (Figure 5).
Since 2,500 Kb < B, Sonata can execute the entire query on
the switch, sending only the 77 tuples that satisfy the query
to the stream processor. If B or S were smaller, Sonata could
not execute the reduce operator on the switch and would
need to partition the query. The rest of this section describes
how Sonata computes such query plans.

Sonata’s query planner solves an Integer Linear Program
(ILP) that minimizes the number of packet tuples sent to the
stream processor based on a partitioning plan, subject to
switch constraints, as summarized in Table 2. Our approach
is inspired by previous work on a different problem that
partitions multiple logical tables across physical tables [22].
Table 1 summarizes the variables in the query planning prob-
lem. To select a partitioning plan, the query planner deter-
mines the capabilities of the underlying switch, estimates the
data-plane resources needed to execute individual queries,
and estimates the number of packets sent to the stream pro-
cessor given a partitioning of operators on the switch.
Input. For the set of input queries (Q), Sonata interacts with
the switch to compile the ordered set of dataflow operators
(Og) in each query q to an ordered set of match-action tables
(Ty) that implement the operators on the switch. In some
cases, more than one dataflow operator can be compiled to
the same table. For instance, the filter operator that checks

Goal
min(N =33 Pgs Ng1)
q t

Constraints

cr: Vi 200 Xans Bas < B
q Tq

Co. VSiY N ZiXgrs <A
q Tq

C3: Vg t:Sg:<S
C4: Vq,i<j,i,jeTq:Sq,j>Sq,,-

cs: Va4 Mg <M
q

Table 2: ILP formulation for the query partitioning problem.

the threshold after the reduce in Query 1 can be compiled
to the same table as the reduce operator. Z; indicates to
the query planner whether a given table contains a stateful
operator.

Using training data in the form of historical packet traces,
the query planner estimates the number of packet tuples
(Ng,+) sent to the stream processor and the amount of state
(Bg,:) required to execute table ¢ for query g on the switch.
The planner applies all of the packets in the historical traces
to each query q. After applying each table ¢ that contains a
stateful operator, the planner estimates the amount of state
required to perform the stateful operation based on the total
number of keys processed in the historical traces. It also
estimates the number of packets sent to the stream processor
(Ng,:) after table ¢ processes the packets from the historical
traces. The planner divides the historical traces into time
windows of size W, computes By, ; and Ny, ; per window, and
inputs the median value across all intervals to the ILP.
Objective. The objective of Sonata’s query planning ILP is
to minimize the number of packets processed by the stream
processor. The query planner models this objective by in-
troducing a binary decision variable P, ; that captures the
partitioning decision for each query; Py,; = 1 one if t is the
last table for query g that is executed on the switch. For each
query, only one table corresponding to one operator can be
set as the last table on the switch: ZTq Py < 1. The total
number of packets processed by the stream processor is then
the sum of all packets emitted by the last table processed on
the switch for all queries.

Switch constraints. To ensure that Sonata respects the
constraints from Section 3.2, we introduce variables X and
S. Xg4,1,5 is a binary variable that reflects stage assignment:
Xg,t,s = 1 only if table t for query g executes at stage s in
the match-action pipeline. Similarly, S, ; returns the stage
number where table ¢ for query g is executed. These two
variables are related: if X, ; s = 1, then S, ; = s for a given
stage. An accompanying technical report [42] details the
complete ILP and how Sonata’s query planner respects each
of these constraints on: register memory (C1), number of

1.00 ~

0.75 A

0.50 +

Collision Rate

0.25 4

0.00

0.0 0.5 1.0 1.5 2.0
Number of Incoming Keys

Figure 3: Relationship between collision rate and the number
of unique incoming keys (k) relative to the estimate (n).

actions per stage (C2), total stages (C3), ordering of operators
within a query (C4), and total metadata size (C5).
Monitoring traffic dynamics. The query planner uses
training data to decide how to configure the number of en-
tries (n) for each register, and how many registers (d) to use
for each stateful operation. It is possible that the training
data might underestimate the number of expected keys (k)
for a stateful operation due to variations in traffic patterns.
In Figure 3, we show how the collision rates increase as the
number of unique keys grows beyond the original estimate
(n) for a sequence of (d) registers. Here, the x-axis is the num-
ber of incoming keys relative to the original estimate and the
y-axis is the collision rate. The collision rate increases as the
relative number of incoming keys increases and decreases
as the number of registers increases.

Since collision rates are predictable, we choose values of
(n) and (d) to keep collision rates low but still high enough
to send a signal to Sonata’s runtime when the switch is
storing many more unique keys than originally expected.
Sonata’s query planning ILP considers both the number of
additional packets processed by the stream processor and
the additional switch memory while computing the optimal
query partitioning plans.

4 DYNAMIC QUERY REFINEMENT

For certain queries and workloads, partitioning a subset of
dataflow operators to the switch does not reduce the work-
load on the stream processor enough; in these situations,
Sonata uses historical packet traces to refine input queries
dynamically.

To do so, Sonata’s query planner modifies the input queries
to start at a coarser level of granularity than specified in the
original query (Section 4.1). It then chooses a sequence of
finer granularities that reduces the load on the stream pro-
cessor. This process introduces additional delay in detecting
the traffic that satisfies the input queries. The specific levels
of granularity chosen and the sequence in which they are

RO ri=8
B / Map | Map Reduce
~ \ dIP/S J s sum

\
E_ [Fllter |_,, Map Map Reduce
g dIP/S \ dIP/16 ' dIp,1 sum
hatiel ri =16

Figure 4: Query augmentation for Query 1. The query planner
adds the operators shown in red to support refinement. Query 1
executes at refinement level r; = /8 during window T and at
level riy1 =/16 during window (T + W). The dashed arrow
shows the output from level r; feeding a filter at level r;.

applied constitute a refinement plan. To compute an opti-
mal refinement plan for the set of input queries, Sonata’s
query planner estimates the cost of executing different re-
finement plans based on historical packet traces. Sonata’s
query planner then solves an extended version of the ILP
from Section 3.3 that determines both partitioning as well as
refinement plans to minimize the workload on the stream
processor (Section 4.2).

4.1 Modifying Queries for Refinement

Identifying refinement keys. A refinement key is a field
that has a hierarchical structure and is used as a key in a
stateful dataflow operation. The hierarchical structure allows
Sonata to replace a more specific key with a less specific ver-
sion without missing any traffic that satisfies the original
query. This applies to all queries that filter on aggregated
counts greater than a threshold. For example, dIP has a hi-
erarchical structure and is used as a key for aggregation
in Query 1. As a result, the query planner selects dIP as a
refinement key for this query. Other fields that have hier-
archical structure can also serve as refinement keys, such
as dns.rr.name and ipv6.dIP. For example, a query for
detecting malicious domains that requires counting the num-
ber of unique resolved IP address for each domain [6], can
use the field dns.rr.name as a refinement key. Here, a fully-
qualified domain name is the finest refinement level and the
root domain (.) is the coarsest. A query can contain mul-
tiple candidate refinement keys and Sonata independently
selects refinement keys for each query. Additionally, express-
ing the second sub-query in Query 2 as the one that reports
flows for which the average connections per bytes exceeds
the threshold ensures that it can benefit from iterative re-
finement, because replacing a more specific key with a less
specific one will not miss any traffic that satisfies the original
query.

Enumerating refinement levels. After identifying candi-
date refinement keys, the query planner enumerates the pos-
sible levels of granularity for each key. Each refinement key

TN
"Fllter \ Map ‘; Map Reduce
\\ ri’ INI \\ r,, / dip1 sum NZ

=iy N, B (Kb)

*— 32 2,500 77
*— 16 570K 180 99
*— 8 6 33
8 — 32 1,900 77

526K
8 — 16 50 98
16 — 32 450K 1,200 77

Figure 5: The N and B cost values for executing Query 1 at
refinement level i1 after executing it at level r;.

consists of a set of levels R = {r; ... r,} where r; is the coars-
est level and r,, is the finest. The inequality r; > r, means
that ry is coarser than r,,. The semantics of the i refinement
level is specific to each key; r; = 32 would correspond to a
/32 IP prefix for the key dIP and r; = 2 would correspond to
the second-level domain for the key dns.rr.name. For each
refinement key, the query planner will choose a subset of
these refinement levels for a refinement plan. For simplicity,
we will refer to the chosen subset of refinement levels as R.
Augmenting input queries. To ensure that the finer re-
finement levels only consider the traffic that has already
satisfied coarser ones, Sonata’s query planner augments the
input queries. For example, Figure 4 shows how it augments
Query 1 with refinement key dIP and R ={8, 16, 32} to exe-
cute the query at level r;4; = 16 after executing it at level
r; = 8. The query planner first adds a map at each level to
transform the original reduction key into a count bucket for
the current refinement level. For example, r; and r;4; rewrite
dIP as dIP/8 and dIP/16, respectively. By transforming the
reduction key for each refinement level, the rest of the origi-
nal query can remain unmodified. At refinement level r;.,
the query planner also adds a filter. At the conclusion
of the first time window, the runtime feeds as input to the
filter operator the dIP/8 addresses that satisfy the query
at r; = 8. This filtering ensures that refinement level r;;;
only considers traffic that satisfies the query at r;.

Sonata’s query planner also augments queries to increase
the efficiency of executing refined queries. Because count-
ing at coarser refinement levels (e.g., /8) will result in larger
sums than at finer levels (e.g., /32), using the original query’s
threshold values at coarser refinement levels would still
be correct but inefficient. Sonata’s query planner instead
uses training data to calculate relaxed threshold values for
coarser refinement levels that do not sacrifice accuracy (e.g.,
Thyg > Thj6 in Figure 4). For each query and for each refine-
ment level, the planner selects a relaxed threshold that is
the minimum count for all keys satisfying the original query
aggregated at that refinement level.

Dynamic refinement is also appropriate for queries that
require join operations (e.g., Query 2). The two sub-queries
use the same refinement plan and their output at coarser
levels determines which portion of traffic to process for the
finer levels.

By its very nature, dynamic refinement introduces ad-
ditional delay (D) in detecting the traffic that satisfies the
original input queries. In the worst case, Sonata can only
identify network events lasting at least W X |R| seconds for
each query. Here, W is the interval size and |R| is the to-
tal number of refinement levels considered. However, by
specifying an upper bound on the acceptable delay (D), the
network operator can force Sonata to consider fewer refine-
ment levels and reduce the delay to detect traffic that satisfies
the original query.

4.2 Computing Refinement Plans

Dynamic query refinement example. Sonata’s query
planner applies the augmented queries over the training
data to generate Figure 5 for Query 1. This figure shows the
costs to execute Query 1 with refinement key dIP and refine-
ment levels R ={8, 16, 32} over the training data. It shows the
number of packets sent to the stream processor depending
on which refinement level (r;,1) is executed after level r;. If
only the filter operation is executed on the switch, then
N1 packets are sent to the stream processor. If the reduce
operation is also executed on the switch, then N, packets are
sent, but then B bits of state must also be maintained in the
data plane. For simplicity of exposition, we assume that these
counts remain the same for three consecutive windows.

Consider an approach, Fixed-Refinement, that applies a
fixed refinement plan for all input queries. In this example,
the query planner augments the original queries to always
run at refinement levels 8, 16, and 32. The runtime updates
the filter for the query at level 16 with the output from level
8 and the filter of level 32 with the output from 16. The
costs of this plan are shown in rows * — 8, 8 — 16, and
16 — 32 of Figure 5. Because the switch only supports two
stateful operations (A = 2), the reduce operator could only
be performed on the switch for the first two refinement levels.
This would result in sending 33 packets (N; for * — 8) at
the end of the first window, 98 packets (N, for 8 — 16) at
the end of the second window, and 450, 000 (N; for 16 —
32) packets at the end of the third window to the stream
processor. Compared to the solution without any refinement
from beginning of Section 3.3, Fixed-Refinement reduces the
number of tuples reported to the stream processor from 570 K
to 450 K at the cost of delaying two additional time windows
to detect traffic that satisfies the query.

In contrast, Sonata’s query planner uses the costs in Fig-
ure 5 combined with the switch constraints to compute the

refinement plan * — 8 — 32. Executing the query at refine-
ment level * — 8 requires only 6 Kb of state on the switch
and sends 33 packet tuples to the stream processor at the
end of the first window. Each packet represents an individ-
ual dIP/8 prefix that satisfies the query in the first window.
Sonata then applies the original input query (dIP/32) over
these 33 dIP/8 prefixes in the second window interval, pro-
cessing 526, 000 packets (N for 8 — 32) and consuming only
1900 Kb on the switch. At the end of the second window, the
switch reports 77 dIP/32 addresses to the stream processor.
This refinement plan sends 110 packet tuples to the stream
processor over two window intervals, significantly reducing
the workload on the stream processor while costing only
one additional window of delay.

ILP for dynamic refinement. The ILP for jointly comput-
ing partitioning and refinement plans is an extension to the
ILP from Section 3.3. An accompanying technical report [42]
presents the full version of the extended ILP, including these
new constraints. The objective is the same, but the query
planner must also compute the cost of executing combina-
tions of refined queries to estimate the total cost of candidate
query plans. We add new decision variables I, » and F,, r,
to model the workload on the stream processor in the pres-
ence of refined queries. I, , is set to one if the refinement
plan for query g includes level . Fy ,, , is set to 1 if level r; is
executed after r; for query g. These two variables are related
by X, Fg.ri,r, = Igr,- We also augment X and S variables
with subscripts to account for refinement levels as detailed
in our extended technical report [42].

Additional constraints. For queries containing join op-
erators, the query planner can select refinement keys for
each sub-query separately, but it must ensure that both sub-
queries use the same refinement plan. We then add the con-
straint Vq,r and Vq;,q; € q : Iy, » = Ig,,r- The variables g;
and g; represent sub-queries of query g containing a join
operation. The query planner also limits the maximum detec-
tion delay for each query, Vq : 3, I, < Dy. Here, Dy is the
maximum delay query g can tolerate expressed in number
of time windows.

5 IMPLEMENTATION

Figure 6 illustrates the Sonata implementation. For each
query, the core generates partitioned and refined queries;
drivers compile the parts of each query to the appropriate
component. When packets arrive at the PISA switch, Sonata
applies the packet-processing pipelines and mirrors the ap-
propriate packets to a monitoring port, where a software
emitter parses the packets and sends the corresponding tu-
ples to the stream processor. The stream processor reports
the results of the queries to the runtime, which then updates
the switch, via the data-plane driver, to perform dynamic
refinement.

Query Interface

Partitioned,

———— .| Refined Queries
I
Ptag 1
Data-Plane Driver - o Streaming Driver
Parsing;
Configuration| i
A 4

Emitter I—P| Spark Streaming
Packets Tuples
—b_ Original Packets

PISA Switch

Partitioned,

Refined Querlg;, Constraints—

=

Compiled
P4 Code

4-----

Figure 6: Sonata’s implementation: red arrows show compila-
tion control flow and black ones show packet/tuple data flow.

Core. The core has two modules: (1) the query planner and
(2) the runtime. Upon initialization or re-training, the run-
time polls the data-plane driver over a network socket to
determine which dataflow operators the switch is capable of
executing, as well as the values of the data-plane constraints
(ie, M, A, B, S). It then passes these values to the query
planner which uses Gurobi [17] to solve the query plan-
ning ILP offline and to generate partitioned, refined queries.
The runtime then sends partitioned and refined queries to
the data-plane and streaming drivers. It also configures the
emitter—specifying the fields to extract from each packet for
each query; each query is identified by a corresponding query
identifier (qid). When the switch begins processing packets,
the runtime receives query outputs from the stream proces-
sor at the end of every window. It then sends updates to the
data-plane driver, which in turn updates table entries in the
switch according to the dynamic refinement plan. When it
detects too many hash collisions, the runtime triggers the
query planner to re-run the ILP with the new data.
Drivers. Data-plane and streaming drivers compile the
queries from the runtime to target-specific code that can
run on the switch and stream processor, respectively. The
data-plane drivers also interact with the switch to execute
commands on behalf of the runtime, such as updating filter
tables for iterative refinement at the end of every window.
The Sonata implementation currently has drivers for two
PISA switches: the BMV2 P4 software switch [50], which
is the standard behavioral model for evaluating P4 code;
and the Barefoot Wedge 100B-65X (Tofino) [49], which is a
6.5 Tbps hardware switch. The data-plane driver communi-
cates with these switches using a Thrift API [2]. The current
implementation also has a driver for the Apache Spark [48]
streaming target for processing packet tuples in the user-
space and reporting the output of each query to Sonata’s
runtime.

Emitter. The emitter consumes raw packets from the data-
plane’s monitoring port, parses the query-specific fields in

Lines of Code

| Query Sonata P4 Spark
1 | Newly opened TCP Conns. [58] 6 367 4
2 | SSH Brute Force [21] 7 561 14
3 | Superspreader [56] 6 473 10
4 | Port Scan [24] 6 714 8
5 | DDoS [56] 9 | 691 8
6 | TCP SYN Flood [58] 17 | 870 10
7 | TCP Incomplete Flows [58] 12 633 4
8 | Slowloris Attacks [58] 13 | 1,168 15
9 | DNS Tunneling [7] 11 570 12
10 | Zorro Attack [35] 13 561 14
11 | DNS Reflection Attack [25] 14 773 12

Table 3: Implemented Sonata Queries. We report lines of code
considering the same: refinement and partitioning plans, exe-
cuting as many dataflow operators in the switch as possible.

the packet, and sends the corresponding tuples to the stream
processor. The emitter uses Scapy [51] to extract the unique
(gid) from packets. It uses this identifier to determine how
to parse the remainder of the query-specific fields embedded
in the packet based on the configuration provided by the
runtime. As discussed in Section 3.1.3, the emitter immedi-
ately sends the output of stateless operators to the stream
processor, but it stores the output of stateful operators in a
local key-value data store. At the end of each window inter-
val, it reads the aggregated value for each key in the local
data store from the data-plane registers before sending the
output tuples to the stream processor.

6 EVALUATION

In this section, we first demonstrate that Sonata is expressive
(Table 3). We then use real-world packet traces to show that it
reduces the workload on the stream processor by 3-7 orders
of magnitude (Figure 7) and that these results are robust to
various switch resource constraints (Figure 8). Finally, we
present a case study with a Tofino switch to demonstrate
how Sonata operates end-to-end, discovering “needles” of
interest without collecting the entire “haystack” (Figure 9).

6.1 Setup

Telemetry applications. To demonstrate the expressive-
ness of Sonata’s query interface, we implemented eleven
different telemetry tasks, as shown in Table 3. We show
how Sonata makes it easier to express queries for complex
telemetry tasks by comparing the lines of code needed to ex-
press those tasks. For each query, Sonata required far fewer
lines of code to express the same task than the code for the
switch [8] and streaming [48] targets combined. Not only
does Sonata reduce the lines of code, but also the queries
expressed with Sonata are platform-agnostic and could exe-
cute unmodified with a different choice of hardware switch
or stream processor, e.g., Apache Flink.

Query Plan | Description Telemetry Systems
. . . Gigascope[10],
M 1 k h
e[l o e ks 0 0 |Gy S
P NetQRE[58]
Appl ly fil i h
Filter-DP pP v only filter operations on the EverFlow[60]
switch
Max-DP Exegute as many détaﬂow operations as | Univmon[26],
possible on the switch OpenSketch[56]
Fix-REF IteratwelyA zoom-in one refinenement DREAM[29]
level at a time

Table 4: Telemetry systems emulated for evaluation.

Packet traces. We use CAIDA’s anonymized and unsam-
pled packet traces [44], which were captured from a large
ISP’s backbone link between Seattle and Chicago. We evalu-
ate over a subset of this data containing 600 million packets
and transferring about 360 GB of data over 10 minutes. This
data contains no layer-2 headers or packet payloads, and the
layer-3 headers were anonymized with a prefix-preserving
algorithm [14].

Query planning. For query planning, we consider a max-
imum of eight refinement levels for all queries (i.e, R =
{4,8, ...,32}); additional levels offered only marginal im-
provements. We replay the packet traces at 20x speed to
evaluate Sonata on a simulated 100 Gbps workload (i.e., about
20 million packets per second) that might be experienced at
a border switch in a large network. We use a time window
(W) of three seconds. In general, selecting a shorter time
interval is desirable; however, for very short time intervals
the overhead of updating the filter rules in the data plane at
the end of each window can introduce significant errors. Our
choice of three seconds strikes a balance between achieving
a tolerable detection delay and minimizing the errors intro-
duced by the data-plane update overhead. Sonata’s query
planner processed around 60 million packets for each time
interval to estimate the number of packet tuples (N) and the
register sizes (B). We observed that although the ILP solver
could compute near-optimal query plans in 10-20 minutes,
the solver typically required several hours to determine the
optimal plans. Since running the ILP solver for longer du-
rations had diminishing returns, we selected a time limit of
20 minutes for the ILP solver to report the best (possibly
sub-optimal) solution that it found in that period.

Targets. Since switches have fixed resource constraints,
we choose to evaluate Sonata’s performance with simulated
PISA switches. This approach allows us to parameterize the
various resource constraints and to evaluate Sonata’s per-
formance over a variety of potential PISA switches. Unless
otherwise specified, we present results for a simulated PISA
switch with sixteen stages (S = 16), eight stateful operators
per stage (A = 8), and eight Mb of register memory per stage
(B = 8 Mb). Within each stage, a single stateful operator can
use up to four Mb.

Comparisons to existing systems. We compare Sonata’s
performance to that of four alternative query plans. Each
plan is representative of groups of existing systems, such
as Gigascope [10], OpenSOC [41], EverFlow [60], OpenS-
ketch [56], and DREAM [29], as shown in Table 4. Rather
than instrumenting each of these systems, we emulate them
by modifying the constraints on the Sonata’s query-planning
ILP. For example to emulate the Fix-REF plan, we add the
constraint Yq,r : I , = 1.

6.2 Load on the Stream Processor

We perform trace-driven analysis to quantify how much
Sonata reduces the workload on the stream processor. To
enable comparison with prior work, we evaluate the top
eight queries from Table 3; these queries process only layer 3
and 4 header fields. Fix-REF queries use all eight refinement
levels, while Sonata may select a subset of all eight levels in
its query plans.

Single query performance. Figure 7a shows that Sonata
reduces the workload on the stream processor by as much
as seven orders of magnitude. Filter-DP is efficient for the
SSH brute-force attack query, because this query examines
such a small fraction of the traffic. Filter-DP’s performance
is similar to All-SP for queries that must process a larger
fraction of traffic, such as detecting Superspreaders [56]. For
some queries, such as the SSH brute-force attack, Max-DP
matches Sonata’s performance. In many other cases, large
amounts of traffic are sent to the stream processor due to a
lack of resources. For example, the Superspreader query ex-
hausts stateful processing resources. Fix-REF’s performance
matches Sonata’s for most cases, but uses up to seven addi-
tional windows to detect traffic that satisfies the query.
Multi-query performance. Figure 7b shows how the
workload on the stream processor increases with the num-
ber of queries. When executing eight queries concurrently,
Sonata reduces the workload by three orders of magnitude
compared to other query plans. These gains come at the cost
of up to three additional time windows to detect traffic that
satisfies the query. The performance of Fix-REF degrades the
most because the available switch resources, such as meta-
data and stages, are quickly exhausted when supporting a
fixed refinement plan for several queries. We have also con-
sidered query plans with fewer refinement levels for Fix-REF
and observed similar trends. For example, when considering
just two refinement levels (dIP/16 and dIP/32) for all eight
queries, we observed that the load on the stream processor
was two orders of magnitude greater than Sonata.

As the number of queries increases, the number of tuples
will continue to increase and eventually be similar to All-SP.
Although Sonata makes the best use of limited resources for
a given target, its performance gains are bounded by the

HEl Filter-DP

. All-SP

I Max-DP

N Fix-REF

Hl Sonata

(a) Single-query performance

mn ks md

Pl

pew T oM BT g pread®ly j 5ca® D% YN F\oo?;omo' FlOWg w0

1010

S St TFE

107_i—r'ijj"
,*

B PO S S O

% All-SP 4l Max-DP S

1 =#c Filter-DP == F\:-REF + orete
10 T T T T T T T T
1 2 3 4 5 6 7 8

Number of Queries

Tuples
N

(b) Multi-query performance

Figure 7: Reduction in workload on the stream processor running: (a) one query at a time, (2) concurrently running multiple

queries.

available switch resources. It is important to differentiate
the limitations on Sonata’s performance from the limitations
imposed by existing hardware switches. While today’s com-
modity hardware switches can support tens of network mon-
itoring applications, we envision that the next-generation
hardware switches will be able to support hundreds if not
thousands of concurrent monitoring queries with Sonata.
Effect of switch constraints. We study how switch con-
straints affect Sonata’s ability to reduce the load on the
stream processor. To quantify this relationship, we vary one
switch constraint at a time for the simulated PISA switch.
Figure 8a shows how the workload on the stream processor
decreases as the number of stages increases. More stages
allow Sonata to consider more levels for dynamic refinement.
Additional stages slightly improve the performance of Fix-
REF as it can now support stateful operations for the queries
at finer refinement levels on the switch. We observe similar
trends as the number of stateful actions per stage (Figure 8b),
memory per stage (Figure 8c), and total metadata size (Fig-
ure 8d) increase. As expected, Max-DP slightly reduces the
load on the stream processor when more memory per stage
is available for stateful operations; increasing the total meta-
data size also allows Fix-REF to execute more queries in the
switch—reducing the load on the stream processor.
Overhead of dynamic refinement. When running all
eight queries concurrently, as many as 200 filter table en-
tries are updated after each time window during dynamic re-
finement. Micro-benchmarking experiments with the Tofino
switch [49] show that updating 200 table entries takes about
127 ms, and resetting registers takes about 4 ms. The total
update time took 131 ms which is about 5% of the specified
window interval (W = 3 s).

6.3 Case Study: Tofino Switch

We used Sonata to execute Query 3 with a Tofino switch [49].
We chose this query to highlight how Sonata handles join
operators and operations over a packet’s payload. For this
experiment, we built a testbed containing four hosts and a

—- Max-DP —-#- Fix-REF —— Sonata —- Max-DP —#- Fix-REF —¢— Sonata

A=t~ ——k
<E—-&-—8—8--8

- e — e — = —tr — —k
108 {88 —8— & —i— 58

(]

(9]

s

° 10 \v—o—o—o—o

 10%

1 2 4 8 12 16 32
Actions/Stage

1 2 4 8 12 16 32
Number of Stages

(a) Maximum pipeline depth. (b) Maximum pipeline width.

—®- Max-DP —#%- Fix-REF —— Sonata —- Max-DP —%- Fix-REF —— Sonata

-y
— - — B~
*— -

I o i et Tt d
[- Wl

02505 1.0 2.0 40 8.0
Metadata Size (Kb)

051 2 4 8 121632
Memory/Stage (Mb)

(c) Maximum bits per stage. (d) Metadata Size.

Figure 8: Effect of switch constraints.

g "' Received by Switch === Reported to Stream Processor

10
9
~ 10° F " 3
° Victim Identified Attack Confirmed
& 107 b E
L L L

0 5 10 15 20

Time (seconds)

Figure 9: Detecting Zorro attacks using Tofino switch.

Tofino switch [49]. Each host has two Intel Xeon E5-2630 v4
10-core processors running at 2.2 Ghz with 128 GB RAM and
10 Gbps NICs. We dedicate two hosts for traffic generation:
one sender and one receiver. We assign a third host for the
emitter component and a fourth for the remaining runtime,
streaming driver, and Spark Streaming [48] components (see
Figure 6). The data-plane driver runs on the CPU of the
Tofino switch itself. The sender connects to the Tofino switch
with two interfaces: one interface to replay CAIDA traces
using the Moongen [12] traffic generator at about 1.5 Mpps
and another to send attack traffic using Scapy [51]. If we were
processing packets at Tofino’s maximum rate of 6.5 Tbps,
our setup would only need to replace the single instance of

Spark Streaming with a cluster that supports the expected
data rate.

The attacker starts sending similar-sized telnet packets to
a single host (99.7.0.25) at time ¢ = 10 s. Figure 9 shows
the number of packets: (1) received by the switch, and (2) re-
ported to the stream processor on a log scale. Sonata reports
only two packet tuples, out of 1.5M pps, to the stream proces-
sor to detect the victim in three seconds using two refinement
levels: * — 24 and 24 — 32. Att = 13 s, the stream processor
starts processing the payload of all telnet packets destined
for the victim host, which is only around 100 pps. The at-
tacker gains shell access at t = 20 s and sends five packets
with the keyword “zorro” in it. Sonata detects the attack
at t = 21 s, demonstrating its ability to perform real-time
telemetry using state-of-the-art hardware switches.

7 RELATED WORK

Network telemetry. Existing telemetry systems that pro-
cess all packets at the stream processor such as Chimera [7],
Gigascope [10], OpenSOC [40], and NetQRE [58] can express
a range of queries but can only support lower packet rates
because the stream processor ultimately processes all re-
sults. These systems also require deploying and configuring
a collection infrastructure to capture packets from the data
plane for analysis, incurring significant bandwidth overhead.
These systems can benefit from horizontally scalable stream
processors such as Spark Streaming [59] and Flink [38], but
they also face scaling limitations due to packet parsing and
cluster coordination [41].

Everflow [60], UnivMon [26], OpenSketch [56], and
Marple [34] rely on programmable switches to execute
queries entirely in the data plane. These systems can process
queries at line rate but can only support queries that can be
implemented on switches. Trumpet [31] and Pathdump [47]
offload query processing to end-hosts (VMs in data center
networks) but not to switches. Our previous work [16] pro-
posed a telemetry system that partitions a single query across
a stream processor and switch, but it only considers switches
with fixed-function chipsets, and requires the network oper-
ators to specify the refinement and partitioning plans man-
ually. In contrast, Sonata supports programmable switches
and employs a sophisticated query planner to automatically
partition and refine multiple queries.

Query planning. Database research has explored query
planning and optimization extensively [4, 32, 36]. Gigascope
performs query partitioning to minimize the data transfer
from the capture card to the stream processor [10]. Sensor
networks have explored the query partitioning problems that
are similar to those that Sonata faces [4, 27, 28, 32, 36, 46].
However, these systems face different optimization problems
because they typically involve lower traffic rates and involve
special-purpose queries. Path Queries [33] and SNAP [3]

facilitate network-wide queries that execute across multiple
switches; in contrast, Sonata currently only compiles queries
to a single switch, but it addresses a complementary set of
problems, such as unifying data-plane and stream-processing
platforms to support richer queries and partitioning sets of
queries across a data-plane switch and a stream processor.
Query-driven dynamic refinement. Autofocus [13],
ProgME [57], and DREAM [29], SCREAM [30], MUL-
TOPS [15], and HHH [23] all iteratively zoom in on traffic of
interest. These systems either do not apply to streaming data
(e.g., ProgME requires multiple passes over the data [57]),
they use a static refinement plan for all queries (e.g., HHH
zooms in one bit at a time), or they do not satisfy general
queries on network traffic (e.g., MULTOPS is specifically de-
signed for bandwidth attack detection). These approaches
all rely on general-purpose CPUs to process the data-plane
output, but none of them permit additional parsing, joining,
or aggregation at the stream processor, as Sonata does.

8 CONCLUSION

Ensuring that networks are secure and performant requires
continually collecting and analyzing data. Sonata makes it
easy to do so, by exposing a familiar, unified query inter-
face to operators and building on advances in both stream
processing and programmable switches to implement these
queries efficiently. Sonata solves an ILP to compute optimal
query plans that use available data-plane resources to mini-
mize the traffic sent by the switch to the stream processor.
Our experiments using real traffic workloads show that by
making the best use of available data-plane resources, Sonata
can reduce traffic rates at the stream processor by several
orders of magnitude.

Sonata provides a foundation for much future work. First,

we are currently extending Sonata to support telemetry appli-
cations such as network-wide heavy hitter detection [18] that
require observing traffic at multiple locations. Second, we
plan to improve on Sonata’s query planning by developing
new (1) methods to minimize the amount of packet traces
required, (2) heuristics for expediting the computation of
query plans, and (3) techniques to make the query planning
more robust. Finally, our long-term goal is to use Sonata as
a building block for closed-loop reaction to network events,
in real time and at scale.
Acknowledgments. We thank our shepherd (Ion Stoica),
Rudiger Birkner, Ankita Pawar, Mina T. Arashloo, Robert
MacDavid, Chris Mac-Stoker, Rachit Agarwal, and the anony-
mous reviewers for the feedback and comments. This re-
search was supported by NSF Awards CNS-1539902 and
CNS-1704077. Jennifer Rexford was additionally supported
by gifts from Intel and Huawei.

REFERENCES

(1]

— —
w DN
[t

—
=)
—

[10

[t

[11

—

(12]

ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERNHARD, M., BURSZTEIN,
E., CocHRAN, J., DURUMERIC, Z., HALDERMAN, J. A., INVERNIZZI, L.,
Karrritsis, M., ET AL. Understanding the Mirai botnet. In USENIX
Security Symposium (2017).

AracHE THRIFT APL https://thrift.apache.org/.

ARrAsHLOO, M. T., KORAL, Y., GREENBERG, M., REXFORD, J., AND WALKER,
D. SNAP: Stateful network-wide abstractions for packet processing.
In ACM SIGCOMM (2016).

ARMBRUST, M., XIN, R. S, L1aN, C., Huar, Y, Liu, D., BrRaDLEY, J. K,
MENG, X., KAFTAN, T., FRANKLIN, M. J., GHODSI, A., ET AL. Spark SQL:
Relational Data Processing in Spark. In ACM SIGMOD International
Conference on Management of Data (2015).

ASSIGNMENT 3, COS 561, PRINCETON UNIVERSITY. https:
//github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/
tutorials/Tutorial-1.

BILGE, L., KIRDA, E., KRUEGEL, C., AND BaLDUZZI, M. Exposure: Finding
malicious domains using passive DNS analysis. In USENIX Network
and Distributed System Security Symposium (2011).

BORDERS, K., SPRINGER, J., AND BURNSIDE, M. Chimera: A declarative
language for streaming network traffic analysis. In USENIX Security
Symposium (2012).

BossHART, P., DALY, D., GiBB, G., 1zzARD, M., McKEOWN, N., REx-
FORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A., VARGHESE, G., AND
WALKER, D. P4: Programming Protocol-independent Packet Processors.
ACM SIGCOMM Computer Communication Review 44, 3 (July 2014),
87-95.

BossHART, P., GiBB, G., Kim, H.-S., VARGHESE, G., McKEOWN, N., 1z-
ZARD, M., MujIca, F., AND HorowITz, M. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN. In
ACM SIGCOMM (2013).

CRANOR, C., JoHNSON, T., SPATSCHEK, O., AND SHKAPENYUK, V. Gigas-
cope: A stream database for network applications. In ACM SIGMOD
International Conference on Management of Data (2003).

The CAIDA UCSD Anonymized Internet Traces 2016-09. http://www.
caida.org/data/passive/passive_2016_dataset.xml.

EMMERICH, P., GALLENMULLER, S., RAUMER, D., WOHLFART, F., AND
CaRLE, G. Moongen: A scriptable high-speed packet generator. In
ACM Internet Measurement Conference (2015).

EsTAN, C., SAVAGE, S., AND VARGHESE, G. Automatically inferring pat-
terns of resource consumption in network traffic. In ACM SIGCOMM
(2003).

FaN, J., Xu, J., AMMAR, M. H., AND MOON, S. B. Prefix-preserving IP
address anonymization: Measurement-based security evaluation and
a new cryptography-based scheme. Computer Networks (2004).

GiL, T. M., AND PoLETTO, M. MULTOPS: A data-structure for band-
width attack detection. In USENIX Security Symposium (2001).
GUPTA, A., BIRKNER, R., CANINI, M., FEAMSTER, N., MACSTOKER, C.,
AND WILLINGER, W. Network Monitoring as a Streaming Analytics
Problem. In ACM HotNets (2016).

GUROBI SOLVER. http://www.gurobi.com/.

HARRISON, R., Qi1zHE, C., GUPTA, A., AND REXFORD, J. Network-Wide
Heavy Hitter Detection with Commodity Switches. In ACM Symposium
on SDN Research (SOSR) (2018).

Hira, M., AND WOBKER, L. J. Improving Network Monitoring and
Management with Programmable Data Planes. Blog posting, http:
//p4.org/p4/inband-network-telemetry/, September 2015.

IzzARD, M. The Programmable Switch Chip Consigns Legacy Fixed-
Function Chips to the History Books. https://goo.gl/JKWnQc, Septem-
ber 2016.

[21] JaveD, M., AND PaxsoN, V. Detecting stealthy, distributed SSH brute-

forcing. In ACM SIGSAC Conference on Computer & Communications

Security (2013), pp. 85-96.

[22] Josk, L., YaN, L., VARGHESE, G., AND McKEowN, N. Compiling packet
programs to reconfigurable switches. In USENIX NSDI (2015).

[23] Josk, L., Yu, M., AND REXFORD, J. Online measurement of large traffic
aggregates on commodity switches. In Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(March 2011).

[24] JuNg, J., PAXSON, V., BERGER, A. W., AND BALAKRISHNAN, H. Fast
portscan detection using sequential hypothesis testing. In IEEE Sym-
posium on Security and Privacy (2004), IEEE, pp. 211-225.

[25] KUHRER, M., HupPPERICH, T., Rossow, C., AND Horz, T. Exit from
hell? Reducing the impact of amplification DDoS attacks. In USENIX
Security Symposium (2014).

[26] Liu, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND BRAVERMAN,
V. One sketch to rule them all: Rethinking network flow monitoring
with UnivMon. In ACM SIGCOMM (2016).

[27] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HonG, W. TAG:
A Tiny Aggregation Service for Ad-hoc Sensor Networks. In USENLX
OSDI (2002).

[28] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HonG, W.
TinyDB: An Acquisitional Query Processing System for Sensor Net-
works. ACM Transaction on Database System 30, 1 (2005).

[29] MosHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Dream: Dy-
namic resource allocation for software-defined measurement. ACM
SIGCOMM (2015).

[30] MosHREF, M., Yu, M., GOVINDAN, R., AND VAHDAT, A. Scream:
Sketch resource allocation for software-defined measurement. In
ACM CoNEXT (2015).

[31] MosHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet: Timely
and precise triggers in data centers. In ACM SIGCOMM (2016).

[32] MutLin, J. K. Optimal Semijoins for Distributed Database Systems.
IEEE Transactions on Software Engineering 16, 5 (1990).

[33] NARAYANA, S., ARASHLOO, M. T., REXFORD, J., AND WALKER, D. Com-
piling path queries. In USENIX NSDI (2016).

[34] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN, V., AL-
IZADEH, M., JEYAKUMAR, V., AND K1, C. Language-directed Hardware
Design for Network Performance Monitoring. In ACM SIGCOMM
(2017).

[35] Pa, Y. M. P, Suzuki, S., YosHIOKA, K., MAaTsumoTo, T., Kasama, T.,
AND Rossow, C. IoTPOT: Analysing the rise of IoT compromises. In
USENIX Workshop on Offensive Technology (2015).

[36] PorycHRONIOU, O., SEN, R, AND Ross, K. A. Track join: Distributed
joins with minimal network traffic. In ACM SIGMOD International
Conference on Management of Data (2014).

[37] Anupdate on the Memcached/Redis benchmark. http://oldblog.antirez.
com/post/update-on-memcached-redis-benchmark. html.

[38] Apache Flink. http://flink.apache.org/.

[39] Benchmarking Apache Kafka: 2 Million Writes Per Second (On
Three Cheap Machines). https://engineering linkedin.com/kafka/
benchmarking-apache-kafka-2-million-writes-second- three-cheap-machines.

[40] OpenSOC. http://opensoc.github.io/.

[41] OpenSOC Scalability. https://goo.gl/CX2jWr.

[42] Sonata’s technical report. https://www.dropbox.com/s/
1s4o0d5giq3otzk1/sonata_tr.pdf?d]=0.

[43] The Bro Network Security Monitor. https://www.bro.org/.

[44] The CAIDA Anonymized Internet Traces 2016 Dataset. https://www.
caida.org/data/passive/passive_2016_dataset.xml.

[45] Slowloris HTTP DoS. https://web.archive.org/web/20150426090206/
http://ha.ckers.org/slowloris, June 2009.

[46] Srivastava, U, MUNAGALA, K., AND WiDOM, J. Operator Placement
for In-Network Stream Query Processing. In Symposium on Principles
of Database Systems (2005).

https://thrift.apache.org/
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.gurobi.com/
http://p4.org/p4/inband-network-telemetry/
http://p4.org/p4/inband-network-telemetry/
https://goo.gl/JKWnQc
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://flink.apache.org/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://opensoc.github.io/
https://goo.gl/CX2jWr
https://www.dropbox.com/s/1s4od5giq3otzk1/sonata_tr.pdf?dl=0
https://www.dropbox.com/s/1s4od5giq3otzk1/sonata_tr.pdf?dl=0
https://www.bro.org/
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris

[47] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter net-

work debugging with PathDump. In USENIX OSDI (2016).

Apache Spark. http://spark.apache.org/.

Barefoot’s Tofino. https://www.barefootnetworks.com/technology/.

P4 software switch. https://github.com/p4lang/behavioral-model.

Scapy: Python-based interactive packet manipulation program. https:

//github.com/secdev/scapy/.

[52] SONATA Github.
SONATA-DEV.

[53] Sonata Queries. https://github.com/sonata-queries/sonata-queries.

[54] VINNAKOTA, B. P4 with the Netronome Server Networking Platform.
https://goo.gl/PKQtC7, May 2016.

[55] Wu, Q., STRASSNER,]., FARREL, A., AND ZHANG, L. Network telemetry
and big data analysis. Network Working Group Internet-Draft (2016

]
]
]
]

https://github.com/Sonata-Princeton/

(Expired)).

[56] Yu, M., Josk, L., AND M1ao, R. Software Defined Traffic Measurement
with OpenSketch. In USENIX NSDI (2013).

[57] Yuan, L., CHUAH, C.-N., AND MOHAPATRA, P. ProgME: Towards Pro-
grammable Network Measurement. In ACM SIGCOMM (2007).

[58] Yuan, Y., LiN, D., MiSHRA, A., MARWAHA, S., ALUR, R., AND Loo, B. T.
Quantitative Network Monitoring with NetQRE. In ACM SIGCOMM
(2017).

[59] ZauARIA, M., Das, T, L1, H.,, HUNTER, T., SHENKER, S., AND STOICA, L
Discretized streams: Fault-tolerant streaming computation at scale. In
ACM SOSP (2013).

[60] Zuu,Y.,KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN, R., MALTZ,
D., YuaN, L., ZHANG, M., ZHAO, B. Y., AND ZHENG, H. Packet-level
telemetry in large datacenter networks. In ACM SIGCOMM (2015).

http://spark.apache.org/
https://www.barefootnetworks.com/technology/
https://github.com/p4lang/behavioral-model
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/sonata-queries/sonata-queries
https://goo.gl/PKQtC7

	Abstract
	1 Introduction
	2 Unified Query Interface
	2.1 Dataflow Queries on Tuples
	2.2 Example Network Telemetry Queries

	3 Query Partitoning
	3.1 Data Reduction on the Switch
	3.2 Data-Plane Resource Constraints
	3.3 Computing Query Partitioning Plans

	4 Dynamic Query Refinement
	4.1 Modifying Queries for Refinement
	4.2 Computing Refinement Plans

	5 Implementation
	6 Evaluation
	6.1 Setup
	6.2 Load on the Stream Processor
	6.3 Case Study: Tofino Switch

	7 Related Work
	8 Conclusion
	References

