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Abstract. We present a primal-dual method to solve L1-type nonsmooth optimization problems
independently of the grid size. We apply these results to two important problems: the Rudin–Osher–
Fatemi image denoising model and the L1 earth mover’s distance from optimal transport. Crucially,
we provide analysis that determines the choice of optimal step sizes and we prove that our method
converges independently of the grid size. Our approach allows us to solve these problems on grids as
large as 4096× 4096 in a few minutes without parallelization.
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1. Introduction. In recent years there has been an explosion of interest ([12,
4, 18, 16, 5, 17, 20] and many more) in solving convex optimization problems using
first-order algorithms. The primary advantage of first-order algorithms (as compared
to, say, Newton’s method) is that one need only evaluate the proximal operator or the
gradient of the functional at the current position. As a result, the complexity of each
iteration is typically linear in the total number of grid points. This opens the door to
solving extremely large problems, which would be infeasible with other methods.

However, such a viewpoint often sweeps under the rug that the convergence rate
of first-order methods may depend badly on the size of the problem. This dependence
may enter through two competing factors—the distance between the minimizer and
the initial point, and the stability of the descent information. These factors are easiest
to understand in the context of smooth gradient descent. Indeed, given a smooth
convex functional F with a unique global minimum at u∗, gradient descent using the
inner product (·, ·)H has the convergence rate

F (un) ≤ F (u∗) + 2LH
‖u∗ − u0‖2H

n+ 4
,(1.1)

where un is the nth iterate, u0 is the initial point, and LH is the Lipschitz constant of
∇HF in the norm ‖·‖H [19]. Strengthening the inner product (·, ·)H decreases LH at
the expense of increasing ‖u∗−u0‖H (and vice versa). In the continuum setting, if LH
or ‖u∗−u0‖H is infinite, then on a discrete grid the corresponding quantity will grow
as the grid resolution becomes finer. In these cases, each iteration of the first-order
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CONVERGENCE RATE INDEPENDENT OF GRID SIZE 1101

method is extremely efficient, but the number of required iterations depends on the
problem size. This can place a severe restriction on the size of solvable problems.

The situation appears to be particularly dire for pathological problems where at
least one of LH or ‖u∗ −u0‖H is infinite for any choice of inner product. In this case,
(1.1) would suggest that it is not possible to obtain a convergence rate independent of
the grid size. Our goal in this paper is to show that this is in fact not the case—even
for pathological problems the convergence rates of first-order methods can be made
independent of the problem size.

Our approach is inspired by a more powerful convergence rate estimate given by
Nesterov in [19]. In addition to an accelerated convergence rate, Nesterov’s estimate
sequence framework reveals that for smooth convex F one has

F (un) ≤ min
u

[

F (u) + 4LH
‖u− u0‖2H
(n+ 2)2

]

.(1.2)

This estimate gives far more flexibility, as we can attempt to approximate the mini-
mizer u∗ with a sequence {uR}R>0 where each uR satisfies uR ∈ argmin‖u−u0‖≤R F (u).
If we then let δF (R) = F (uR)− F (u∗) we see that

F (un)− F (u∗) ≤ δF (R) + 4LH
R2

(n+ 2)2
.(1.3)

As long as δF (R) → 0 as R→ ∞, we can choose R and n so that the right-hand side
of (1.3) is as small as desired. This perspective makes it clear that LH <∞ should be
prioritized over ‖u∗ −u0‖H <∞ when choosing an inner product. More importantly,
we can see that the convergence rate can be made independent of the problem size.

In this paper, we are interested in L1-type problems where the functional F is
not smooth. As such, we must consider methods which can handle nondifferentiable
functions. A powerful framework for nonsmooth optimization is given by primal-dual
splitting schemes. Primal-dual algorithms convert minimization problems of the form

F (u) = f(Ku) + g(u)(1.4)

into saddle point problems

L(u, p) = (Ku, p)Z + g(u)− f∗(p),(1.5)

where f and g are convex functions, K : H → Z is a linear map between Hilbert
spaces, and f∗ is the convex dual of f . If one can easily compute the proximal oper-
ators of f and g, then there are many efficient algorithms for finding the saddle point
of (1.5) such as Douglas–Rachford splitting, augmented Lagrangian, the alternating
direction of multipliers method, split Bregman, PDHG, and Nesterov’s excessive gap
method [7, 15, 11, 10, 12, 17].

In this paper, we work with a modified version of Chambolle and Pock’s primal-
dual hybrid gradient algorithm (PDHG) [4], which we call G-prox PDHG; see below.
(We pause here to note that through various reductions G-prox PDHG can be shown to
be equivalent to the well-known Douglas–Rachford splitting algorithm.) We also note
that we could have carried out our analysis and results by building upon Nesterov’s
excessive gap technique [17] instead of using PDHG.

Both PDHG and G-prox PDHG search for the saddle point of (1.5) by alternating
proximal updates of the primal and dual variables. The key difference between G-prox
PDHG and the original PDHG algorithm is that our u update equation uses the
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1102 M. JACOBS, F. LÉGER, W. LI, AND S. OSHER

Algorithm. G-prox PDHG.

un+1 = argmin
u∈H

g(u) + (Ku, p̄n)Z +
1

2τ
‖K(u− un)‖2Z ,

pn+1 = argmax
p∈Z

−f∗(p) + (Kun+1, p)Z − 1

2σ
‖(p− pn)‖2Z ,

p̄n+1 = 2pn+1 − pn.

generalized prox term ‖K(u−un)‖2Z as opposed to ‖u−un‖2Z for the original algorithm.
This can be understood as preconditioning the u descent direction with the operator
(KTK)−1. As a result, this scheme has a much more satisfactory stability condition.
The primal-dual step size parameters τ and σ only need to satisfy

τσ < 1

compared to τσ < 1
‖KTK‖H

for the original algorithm. When K is an unbounded

operator, say, K = ∇ and H = Z = L2, the step sizes of the discrete PDHG algorithm
must depend on the grid resolution. On the other hand, the step sizes of the discrete
G-prox PDHG algorithm will be clearly independent of the grid size. As one might
expect from our exposition above, we must pay for the increased stability by increasing
the distance between the solution u∗ and the initial point u0. Indeed this is the case;
the convergence rate will now depend on ‖K(u∗ − u0)‖Z as opposed to ‖u∗ − u0‖H
for the original PDHG. However, this trade-off is worth it. We shall show in section
3 (cf. Theorem 3.1) that under certain technical conditions the averaged sequence of

primal iterates uN = 1
N

∑N
n=1 un satisfies

F (uN ) ≤ min
u

[

F (u) +
C‖K(u− u0)‖H

N

]

(1.6)

for some constant C < ∞. This estimate shows that an approximate solution to the
optimization problem can be obtained independently of the grid size as long as

δF (R) = min
‖K(u−u0)‖Z≤R

F (u)− F (u∗)

goes to zero as R→ ∞.
In order to obtain the convergence rate given in (1.6) the step sizes τ and σ

must be chosen optimally. Note this is nontrivial as the stability condition τσ < 1
has a degree of freedom. As it turns out, the optimal choices of τ and σ are highly
dependent on the properties of the functional F , the underlying space H, and the
primal and dual solutions u∗ and p∗, respectively. Furthermore, we shall see that the
optimal choices of τ and σ may depend on the user’s desired error tolerance. For
example, the optimal step sizes used to find an ε accurate solution may be different
from the optimal step sizes used to find an ε/2 accurate solution!

In the face of such a complication, it seems unlikely that there is an elegant
or concise statement which provides the optimal convergence rate and optimal step
sizes for general F . Instead, we focus on two important problems: the Rudin–Osher–
Fatemi (ROF) image denoising model and the earth mover’s distance (EMD) between
two probability measures. Both of these problems can be solved very efficiently with
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our method, as the matrix inversion (KTK)−1 can be carried out in log-linear time
using the fast Fourier transform (FFT). For both of these problems, we provide a
principled strategy for choosing approximately optimal step sizes τ and σ and give an
explicit upper bound for the convergence rate in terms of the number of iterations N .
Although other works have considered solving these problems with preconditioned
algorithms, their convergence rates have not been independent of the grid size [1].
Thus, to the best of our knowledge, this paper provides the first proof that these
problems can be solved with a convergence rate independent of the grid discretization.
In addition, our arguments give a blueprint for extending the convergence rate results
to other functionals of interest.

The rest of the paper is structured as follows. We conclude the introduction with
a summary of our contributions. Next, in section 2, we provide background on convex
optimization and introduce further notation. In section 3, we prove the main results
of the paper. In section 4, we perform various numerical experiments that highlight
the need for our rigorous theoretical analysis. Finally, in section 5, we conclude the
paper with a brief discussion.

Contributions. The following is a summary of the present paper’s contributions:
• We conclusively demonstrate that the ROF problem and the L1 EMD prob-
lem can be solved with a convergence rate independent of the grid discretiza-
tion. Furthermore, our arguments apply to a general class of L1 functionals.
Surprisingly, these results are nontrivial and require a detailed analysis.

• Crucially, our analysis provides the optimal step sizes for splitting algorithms.
As a result, we are able to solve these problems orders of magnitude faster
than previous works. We can solve problems on grids of size 2048 × 2048
in less than 2 minutes and grids of size 4096 × 4096 in less than 10 minutes
without parallelization.

2. Background and notation. In this paper we will be interested in convex
functionals F : X → R∪ {+∞}, where X is a convex subset of the space of functions
{u : [0, 1]d :→ R}. In order to minimize F , one typically needs to add additional
structure in the form of a distance. The distance is used to control how far the
scheme is allowed to move using only local information about F . In principle, these
distances can be very general [6]. Here, we will focus on the case where the distance
is induced by an inner product (·, ·)H. Thus, it will be useful for us to assume that F
is defined on some Hilbert space H with the inner product (·, ·)H.

Typically, there is an enormous amount of freedom in choosing the Hilbert space
H (it is usually easy to extend F to a larger space or restrict it to a smaller space). In
the introduction, we alluded to the fact that there may not be a single Hilbert space
H which is the “natural” or “correct” choice. Ideally, one should choose a Hilbert
space where ∇F is Lipschitz continuous and F is coercive in the norm ‖·‖H. This
is enough to imply that F has a minimizer u∗ ∈ H [8] and that ∇F behaves stably
in local neighborhoods. However, for many interesting functionals, no such “natural”
Hilbert space exists. For example, there is no Hilbert space where the total variation
functional is both Lipschitz continuous and coercive. Thus, when choosing an inner
product we must be aware of the trade-offs that such a choice entails.

For nonsmooth functionals, we cannot use gradient descent to search for a mini-
mizer. Instead, we turn to the proximal operator of F

proxτ (F, u) = argmin
u′∈H

F (u′) +
1

2τ
‖u′ − u‖2H ,(2.1)
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1104 M. JACOBS, F. LÉGER, W. LI, AND S. OSHER

which is well-defined when F is merely lower semicontinuous and bounded below
on H [8]. Roughly speaking, the proximal operator searches for the smallest value
of F in a neighborhood of the current point u. When F is smooth, we know that
proxτ (F, u) ≈ u− τ∇HF (u) for small τ . Thus, the proximal operator generalizes the
notion of gradient descent to nonsmooth functionals.

Unfortunately, computing the proximal operator of a nontrivial functional F is
extremely difficult. Indeed, one should expect that computing proxτ (F, u) is as dif-
ficult as finding a minimizer of F . On the other hand, a large class of nontrivial
functionals F can be written as a sum

F (u) = f(Ku) + g(u),(2.2)

where the proximal operators of f(u) and g(u) can be computed easily. This leads
to a large class of closely related algorithms (Douglas–Rachford splitting, augmented
Lagrangian, alternating direction of multipliers method, split Bregman, PDHG, Nes-
terov’s excessive gap method) [7, 15, 11, 10, 12, 17], which minimize F by appropri-
ately combining the proximal operators of f and g. For the remainder of this paper
we shall focus on the PDHG algorithm.

2.1. PDHG. PDHG converts the minimization problem

F (u) = f(Ku) + g(u)(2.3)

into the primal-dual saddle point problem

L(u, p) = (Ku, p)Z + g(u)− f∗(p).(2.4)

f∗ is the convex dual of f , which is defined by the Legendre–Fenchel transform:

f∗(p) = sup
v∈Z

(v, p)− f(v).(2.5)

For convex functions f , the Legendre–Fenchel transform is an involution f∗∗ = f .
Therefore, F can be recovered from L by

F (u) = sup
p∈Z

L(u, p)− f∗(p).

If F has a unique minimizer u∗ and L has a saddle point (û, p̂), then û = u∗. Indeed,

F (û) = sup
p∈Z

L(û, p) = L(û, p̂) ≤ L(u∗, p̂) ≤ F (u∗).

Therefore, instead of directly minimizing F , we can achieve the same goal by searching
for a saddle point of L.

To proceed further, we must know what it means for a point (u, p) to be close to
a saddle point. A notion of closeness can be defined through the primal-dual gap:

G(u, p) = sup
p′∈Z

L(u, p′)− inf
u′∈H

L(u′, p).

By definition, G(u, p) ≥ 0 for all (u, p). Furthermore, G(û, p̂) = 0 if and only if (û, p̂)
is a saddle point. Indeed, L is convex in u for fixed p and concave in p for fixed u,
thus the inequalities

sup
p′∈H

L(û, p′) ≤ L(û, p̂) ≤ inf
u′∈H

L(u′, p̂)
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encode the definition of a saddle point. In addition, the primal-dual gap controls how
close one is to the minimizer of F , namely,

G(u, p) = F (u)− inf
u′∈H

L(u′, p) ≥ F (u)− inf
u′∈H

F (u′).

Now we are ready to discuss the PDHG algorithm. PDHG searches for a saddle
point of L as follows.

Algorithm 1. PDHG.

un+1 = argmin
u∈H

g(u) + (u,KT p̄n)H +
1

2τ
‖u− un‖2H,(2.6)

pn+1 = argmax
p∈Z

−f∗(p) + (Kun+1, p)Z − 1

2σ
‖(p− pn)‖2Z ,(2.7)

p̄n+1 = 2pn+1 − pn.(2.8)

The main source of instability in the PDHG algorithm is the decoupling of the u
and p update steps. The scheme is stable if τσ‖KTK‖H < 1 [4]. However, if K is
an unbounded operator from H to Z, there are no nonzero step sizes which produce
a stable scheme. Thus, we see that the underlying Hilbert spaces H and Z play a
crucial role in the stability of the algorithm.

We conclude the background section with an important result of Chambolle and
Pock which provides a convergence rate for the PDHG algorithm. The convergence
rate is given in terms of a slightly unusual object, the partial primal-dual gap

GR1,R2
(u, p) = sup

‖p′−p0‖Z≤R1

L(u, p′)− inf
‖u′−u0‖H≤R2

L(u′, p),(2.9)

where u0 and p0 are the initial iterates of u and p. The partial primal-dual gap restricts
the search for maximizers p′ and minimizers u′ to balls of finite radius centered at
the initial iterates. As a result, it is possible for the partial primal-dual gap to
vanish at non saddle points. However, if GR1,R2

(û, p̂) vanishes and ‖p̂ − p0‖Z < R1,
‖û− u0‖H < R2, then (û, p̂) is a saddle point [4].

Theorem 2.1 (Chambolle and Pock [4]). Suppose that K : H → Z is a bounded

operator and the step sizes τ and σ satisfy τσ‖KTK‖H < 1. Let uN = 1
N

∑N
n=1 un

and pN = 1
N

∑N
n=1 pn, where un and pn are the sequence of iterates produced by

Algorithm 1. After N iterations the partial primal-dual gap satisfies

GR1,R2
(uN , pN ) ≤ 1

2N

(

R2
1

τ
+
R2

2

σ

)

.(2.10)

Formula (2.10) is very interesting. The radii R1 and R2 play the same role as the
distance term ‖u− u0‖2H in the gradient descent convergence rate formulas (1.1) and
(1.2). Similarly, the step size restriction τσ‖KTK‖H < 1 plays the same role as the
Lipschitz constant LH. Thus, we see that the convergence rate of PDHG depends on
the inner products (·, ·)H and (·, ·)Z in the same way as gradient descent. We shall
see shortly that we will be able to use these features to convert Theorem 2.1 into our
main result.
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3. Main results. Let us recall that our goal in this paper is to solve optimization
problems with a convergence rate independent of the grid size. If K : H → Z is an
unbounded operator, then PDHG is not well-defined in the continuous setting. In
the discrete approximation, K will be bounded but the operator norm of K will grow
with the grid size. This implies that at least one of the step sizes τ or σ must shrink
to zero as the grid resolution approaches the continuous limit. In that case, it is clear
from formula (2.10) that the convergence rate will depend on the grid size. Thus, our
immediate goal is to modify PDHG to ensure that K is always a bounded operator.

Assume that the inner product (·, ·)Z for the variable p has already been chosen.
The simplest way to ensure that K : H → Z will be a bounded operator is to define
the inner product (·, ·)H by (u, v)H = (Ku,Kv)Z (note we can always assume that
K is injective—it is trivial to solve for and eliminate the components of u which are
not coupled to p). This simple modification leads us to Algorithm 2, G-prox PDHG.

We again note that G-prox PDHG is equivalent to the Douglas–Rachford splitting
algorithm (cf. section 4.2 in [4]). However, we prefer this formulation as it allows us
to directly use the convergence result (2.10). G-prox PDHG modifies Algorithm 1 by
choosing a specific inner product for the u update. Thus, G-prox PDHG is a special
case of Algorithm 1 whereK is a bounded operator with operator norm ‖KTK‖H = 1.
As long as τσ < 1, the convergence result, Theorem 2.1, applies to G-prox PDHG.

Algorithm 2. G-prox PDHG.

un+1 = argmin
u∈H

g(u) + (Ku, p̄n)Z +
1

2τ
‖K(u− un)‖2Z ,(3.1)

pn+1 = argmax
p∈Z

−f∗(p) + (Kun+1, p)Z − 1

2σ
‖(p− pn)‖2Z ,(3.2)

p̄n+1 = 2pn+1 − pn.(3.3)

Now we still need to address the choice of the Hilbert space Z for the dual variable
p and the impact of the distances ‖K(u − u0)‖Z and ‖p − p0‖Z on the convergence
rate. The highest priority is to choose (·, ·)Z so that the updates (3.1) and (3.2) can
be computed efficiently. Indeed, if steps (3.1) and (3.2) cannot be computed in linear
or log-linear time (in the number of grid points), then the entire purpose of choosing
a first-order method is lost. For this reason, in the remainder of this paper we shall
always take (·, ·)Z to be the usual L2 inner product on a domain. Thus, our inner
products shall always be given by

Primal inner product:
(u, v)H = (Ku,Kv)L2 ,

Dual inner product:
(p, q)Z = (p, q)L2 .

Note that there may be other specific problems where a different choice of inner
product is more appropriate.

Now we are ready to state and prove Theorem 3.1, which shows that for certain
problems the convergence rate of G-prox PDHG is independent of the problem size
even when the distance ‖K(u∗ − u0)‖Z is infinite.
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Theorem 3.1 (convergence of G-prox PDHG). Suppose that F is a functional on

a Hilbert space H of the form

F (u) = f(Ku) + g(u),

where f and g are convex functions. Furthermore suppose that for all u ∈ H the

maximizer p(u) ∈ argmaxp∈Z(Ku, p)Z − f∗(p) is uniformly bounded:

sup
u∈H

‖p(u)‖Z = C <∞.

Let uN = 1
N

∑N
n=1 un, where un is the sequence of iterates produced by G-prox PDHG

starting from u0. Then there is an optimal choice of step sizes τ and σ, satisfying
στ < 1 such that after N iterations

F (uN ) ≤ min
u

[

F (u) +
C‖K(u− u0)‖Z

N

]

.

Furthermore, if limR→∞ min‖K(u−u0)‖Z≤R F (u) = infu∈H F (u) = F̄ , then limN→∞
F (uN ) = F̄ .

Remark 1. Although the boundedness condition on the dual variable

sup
u∈H

‖p(u)‖Z = C <∞

appears to be very restrictive, it is trivially satisfied if p arises from the dual of an L1

norm. Indeed, if f(u) = ‖u‖L1 , then

f∗(p) =

{

0 if ‖p‖∞ ≤ 1,

∞ otherwise.

Thanks to this observation we shall be able to apply this theorem to the two main
problems we are interested in.

Proof. From (2.10) and the definition of C we have

GC,R(u
N , pN ) = F (uN )− min

‖Ku‖Z≤R
[g(u) + (Ku, pN )− f∗(pN )] ≤ 1

2N

(

R2

τ
+
C2

σ

)

.

Now we wish to estimate the second term on the left-hand side with a quantity related
to F . Immediately we can see that

min
‖K(u−u0)‖Z≤R

[g(u)+(Ku, pN )− f∗(pN )] ≤ min
‖K(u−u0)‖Z≤R

max
p∈Z

[g(u)+(Ku, p)−f∗(p)]

= min
‖K(u−u0)‖Z≤R

F (u).

Putting things together we have

F (uN )− F̄ ≤ 1

2N

(

R2

τ
+
C2

σ

)

+ min
‖K(u−u0)‖Z≤R

F (u)− F̄ .

For any fixed R the best choice of the step sizes τ and σ is to take τ = R
C and

σ = C
R , which gives

F (uN )− F̄ ≤ RC

N
+ min

‖K(u−u0)‖Z≤R
F (u)− F̄ .
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Since R is arbitrary, we can minimize the right-hand side over R ≥ 0 to get the first
result. For the second result, it is enough to let R = R(N) grow to infinity with N
such that limN→∞

RC
N = 0.

By examining the above proof, we see that the rate of convergence is governed by
the gap

δF (R) = min
‖K(u−u0)‖Z≤R

F (u)− F̄ .

Obtaining explicit upper bounds for δF (R) is of great practical importance. The
behavior of this quantity informs our choice of step sizes and thus directly impacts
the performance of the algorithm. We cannot expect to give a general statement on
the behavior of δF (R), as it is highly dependent on the properties of the functional F .
Instead, we will closely analyze two important problems, total variation denoising
and the EMD. For these two problems we shall provide explicit upper bounds on a
convergence rate of G-prox PDHG and we shall show how to choose the optimal step
sizes σ and τ .

3.1. Total variation denoising of images. Image processing is a source of
many important large-scale problems. Simple consumer devices, such as cell phone
cameras, have pixel counts in the tens of millions. More importantly, medical images
such as MRI scans may be three-dimensional images of physical objects. The pixel
counts of three-dimensional images grow cubically with the resolution; thus even
relatively low-resolution three-dimensional images images have enormous pixel counts.

Digital images are defined on either two or three dimensional grids. At each grid
point, the image takes a value in [0, 1], which represents the brightness of the image
at that location. In what follows, we shall consider images as discrete approximations
to a function I : B → [0, 1], where B is a rectangle in the plane or a box in 3-space.
By rescaling the side lengths, we shall always assume that I is defined on the unit
cube [0, 1]d.

A fundamental problem in image processing is image denoising. The goal of im-
age denoising is to remove pixel errors while preserving as much of the original image
information as possible. The most important information is typically contained in the
edges of objects and scenery. Mathematically, edges correspond to sharp discontinu-
ities in the image intensity function. Thus, variational models for image denoising
must be able to produce discontinuous solutions.

A popular model for image denoising is the ROF model [22]

Fλ(u, I) = ‖u‖TV +
λ

2
‖u− I‖2L2 ,(3.4)

where I is the original image to be denoised and ‖u‖TV is the total variation of u.
For smooth functions, ‖u‖TV = ‖∇u‖L1 .

We shall consider the saddle point formulation:

(∇u, p)L2 +
λ

2
‖u− I‖2L2 − χ∞(p).(3.5)

Here χ∞(p) is the convex indicator function of the L∞ unit ball, i.e.,

χ∞(p) =

{

0 if |p(x)| ≤ 1 for allx ∈ [0, 1]d,

∞ otherwise.
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Clearly, p will always have the L2 norm bounded by 1; thus the ROF problem satisfies
the hypotheses of Theorem 3.1 with C = 1.

We shall use the prox term ‖∇(u − un)‖2L2([0,1]2) for the primal updates and

‖p−pn‖2L2([0,1]2) for the dual updates. Thus, the G-prox PDHG updates for the ROF
problem have the form

un+1 =
(

λτ Id−∆)−1
(

λτI + τ∇ · p̄n −∆un
)

,(3.6)

pn+1(x) =
pn(x) + σ∇un+1(x)

max(1, |pn(x) + σ∇un+1(x)|)
,(3.7)

p̄n+1 = 2pn+1 − pn,(3.8)

where the identity matrix Id should not be confused with the image to be denoised
I. Note that the u update can be conveniently expressed as a matrix vector product,
whereas it is more convenient to express the p update in a pointwise fashion.

Minimizers of the ROF model are functions of bounded variation (BV). BV func-
tions may have discontinuities along curves; thus the model will preserve the edges
of I for λ sufficiently large but finite. For example, if I is the characteristic function
of a disc of radius r and λ > 2

r , then the solution is the still discontinuous function
u∗(x) = (1 − 2

λr )I(x) +
2πr

λ(1−πr2) [3]. As a result, the unique minimizer u∗ of the

ROF model is not in general an element of the Hilbert space H1([0, 1]d) = {u ∈
L2([0, 1]d) : ∇u ∈ L2([0, 1]d)}. Thus, ROF is not coercive in the H1 norm and we
shall have to compute the gap min‖∇(u−u0)‖L2≤R ROFλ(u, I)−ROFλ(u

∗, I) to obtain
a convergence rate for G-prox PDHG.

Proposition 3.2. Given an image I taking values in [0, 1], the decay of the ROF

gap is bounded by

min
‖∇u‖L2≤R

ROFλ(u, I)− ROFλ(u
∗, I) ≤ 3λd2

2R2
‖u∗‖2TV(3.9)

when u0 = 0.

Proof. We estimate the gap by constructing approximate minimizers uδ of the
ROF functional such that uδ has finite H1 norm. Our trick is to take the solution u∗

and convolve it with the Gaussian approximation to the identity Gδ(z) = δ−de−π(z/δ)2

(note that convolutions can be appropriately defined on [0, 1]d; see the appendix for
details).

If we let uδ = Gδ ∗ u∗, then uδ is a C∞ function and thus an element of H1.
Adding and subtracting uδ into the L2 term we get

ROFλ(uδ, I) = ‖uδ‖TV +
λ

2
‖u∗ − I‖2L2 +

λ

2
‖uδ − u∗‖2L2 + λ(u∗ − I, uδ − u∗)L2 .

Using Jensen’s inequality we can pull the convolution out of the TV norm and get
‖uδ‖TV ≤ ‖u∗‖TV . If we then apply Holder’s inequality to λ(u∗ − I, uδ − u∗) we get

ROFλ(uδ, I) ≤ ROFλ(u
∗, I) +

λ

2
‖uδ − u∗‖2L2 + λ‖u∗ − I‖L∞ ‖uδ − u∗‖L1 .

The minimizer of the ROF problem satisfies a maximum principle; therefore we
know that u∗(x) ∈ [0, 1] for all x [2]. It only remains to estimate the decay of
‖uδ − u∗‖qLq and the growth of ‖∇uδ‖2L2 . See the appendix for the details on these
computations.
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With Proposition 3.2 in hand, we can now give an upper bound on the convergence
rate of G-prox PDHG applied to the ROF model.

Theorem 3.3. An ε approximate solution to the ROF model may be obtained in

at most

N =
d
√
3λ ‖u∗‖TV

ε3/2

iterations of G-prox PDHG using the step sizes

τ =
d
√
3λ ‖u∗‖TV

ε1/2
, σ = τ−1.

Note that the step size in Theorem 3.3 depends on ‖u∗‖TV , which is unknown until the
problem is solved. We can remedy this by providing a simple estimate for ‖u∗‖TV in
terms of I. Let I0 be the average value of I over the domain. By evaluating the func-
tional at either I or the constant I0, we know that ROFλ(u

∗, I) ≤ min
(

‖I‖TV ,
λ
2 ‖I0−

I‖2L2

)

. This bound immediately implies ‖u∗‖TV ≤ min
(

‖I‖TV ,
λ
2 ‖I0 − I‖2L2

)

. Thus,
we have a strategy for choosing the step sizes using only quantities available at the
start of computation.

Finally, we conclude this section with a convergence result for the infinite dimen-
sional ROF problem.

Corollary 3.4. Let uN = 1
N

∑N
n=1 un, where un is the sequence of primal vari-

ables produced by G-prox PDHG. Then uN converges to the minimizer u∗ ∈ BV of

the ROF problem strongly in L2([0, 1]d).

Proof. The ROFλ functional is λ-strongly convex with respect to the L2 distance.
Therefore,

ROFλ(u, I)− ROFλ(u
∗, I) ≥ λ

2
‖u− u∗‖2L2 .

The convergence
lim

N→∞
ROFλ(u

N , I)− ROFλ(u
∗, I) = 0

then gives the result.

3.2. Earth mover’s distance. The EMD is a statistical distance on probability
measures. Given probability measures ρ1 and ρ0 defined on a space Ω, the EMD
measures the minimal cost required to move the distribution of ρ0 onto the distribution
of ρ1. The cost is measured according to a predetermined function c(x, y), which
gives the expense of transporting a unit of mass at location x ∈ Ω to location y ∈ Ω.
Nowadays, the EMD plays important roles in machine learning, image retrieval, and
image segmentation [14, 23, 21, 24]. This widespread usage is due to the fact that the
EMD incorporates the geometry of the underlying space Ω (via the cost function).

We shall concentrate on the (important) special case where Ω = [0, 1]d and the
cost function is the usual Euclidean norm, c(x, y) = |x− y|. We shall assume that the
probability measures ρ1, ρ0 are elements of the dual space C([0, 1]d)∗. Furthermore
we assume that there exists a compact set K ⊂ (0, 1)d such that ρ1(K) = ρ0(K) = 1.
In this setting, the EMD coincides with the following convex optimization problem:

EMD(ρ1, ρ0) = min
∇·m=ρ1−ρ0

∫

[0,1]d
|m|,(3.10)D

o
w

n
lo

ad
ed

 0
6
/0

3
/1

9
 t

o
 1

2
8
.9

7
.2

7
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE RATE INDEPENDENT OF GRID SIZE 1111

wherem is a d-dimensional vector-valued measure satisfyingm·n = 0 on the boundary
and |·| is the 2 norm on d-dimensional vectors.

Using the Hodge decomposition we can decompose m = u + ∇ψ, where u is a
divergence-free vector field and ∇ψ is a gradient field. Now we see that ∇·m = ∆ψ =
ρ1 − ρ0. If we let ψ solve the Poisson equation ∆ψ = ρ1 − ρ0 (with zero Neumann
boundary conditions) we can rewrite the problem as

EMD(ρ1, ρ0) = min
u
F (u, ψ) = min

u

∫

[0,1]d
|u+∇ψ|+ χ∇⊥(u),(3.11)

where χ∇⊥(u) is the convex indicator function encoding the constraints ∇ · u = 0
and u · n = 0. If ρ1, ρ0 are singular measures, then ψ solves the Poisson equation in
a weak sense only. Thus, ψ does not satisfy the usual regularity properties enjoyed
by solutions to the Poisson equation. Nonetheless, the Hardy–Littlewood–Sobolev
lemma implies that ∇ψ ∈ Lr([0, 1]d) for any r < d

d−1 [13]. Therefore, the right-hand
side of (3.11) is well-defined. In general, one can find a vector-valued measure u∗

which minimizes F ; however, the minimizer need not be unique [9].
Let us briefly note that the EMD problem is closely related to the ROF model

when d = 2. In two dimensions, divergence-free vector fields u can be written in the
form u = ∇⊥h, where h is a scalar function and ∇⊥h = (∂yh,−∂xh). In this case,
the EMD distance can be written as the unconstrained minimization problem

EMD(ρ1, ρ0) = min
h

∫

[0,1]2
|∇⊥h+∇ψ|.(3.12)

Now we can see that the EMD problem has the same structure as the ROF model,
where we are minimizing the Euclidean norm of a differential operator applied to a
function.

Returning to (3.11), the saddle point formulation of the EMD problem has the
form

(u+∇ψ, p)L2 + χ∇⊥(u)− χ∞(p),(3.13)

where χ∞ is defined as in (3.1).
The G-prox PDHG updates for the EMD problem have the form

un+1 = un − τP∇⊥(p̄n),(3.14)

pn+1(x) =
pn(x) + σ

(

un+1 +∇ψ(x)
)

max
(

1, | pn(x) + σ
(

un+1 +∇ψ(x)
)

|
) ,(3.15)

p̄n+1 = 2pn+1 − pn,(3.16)

where P∇⊥ is the Leray projection onto divergence-free vector fields,

P∇⊥(p) = p−∇∆−1∇ · p.(3.17)

Again, the u update can be conveniently expressed as a matrix vector product, whereas
it is more convenient to express the p update in a pointwise fashion.

It is clear from the saddle point formulation that the EMD problem satisfies the
hypotheses of Theorem 3.1 with C = 1. Since minimizers of the EMD functional
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are measures, we should not expect the minimizers to have finite L2 norm. Thus, to
obtain a convergence rate for the EMD problem we shall need to estimate the gap

min
‖u‖L2≤R

F (u, ψ)− F (u∗, ψ).

Estimating the gap is more difficult than the ROF problem. The regularity of u∗ is
dependent on the regularity of the measures ρ1 and ρ0, but also on more complicated
geometric properties of ρ1 and ρ0. We shall estimate the gap assuming only that
∫

[0,1]d
|ρ1−ρ0| ≤ 2. As a result, we will have an upper bound on the gap which is valid

for any probability measures but may be too pessimistic when ρ1 and ρ0 are “nice.”
Once again, we shall turn to convolutions. Given a minimizer u∗, we construct

approximate minimizers via convolution with the Gaussian kernel uδ = Gδ ∗ u∗. The
convolution takes vector-valued measures to smooth functions, thus we have uδ ∈
L2([0, 1]d). Here convolutions are an especially important tool as they preserve the
divergence-free constraint.

Proposition 3.5. For any probability measures ρ1 and ρ0 the EMD gap satisfies

min
‖u‖L2≤R

F (u, ψ)− F (u∗, ψ) ≤ Cd

(

EMD(ρ1, ρ0)

R2

)

1
d−1

log

(

R2

EMD(ρ1, ρ0)

)

,

where Cd is a constant that depends on the dimension only.

Proof. Let u∗ be a minimizer of F (u, ψ). Let uδ = Gδ ∗ u∗ and ψδ = Gδ ∗ ψ. By
the triangle inequality, we have

F (uδ, ψ) ≤ F (uδ, ψδ) + ‖∇ψδ −∇ψ‖L1 .

Using Jensen’s inequality to pull the convolution out of F (uδ, ψδ) we have

F (uδ, ψ) ≤ F (u∗, ψ) + ‖∇ψδ −∇ψ‖L1 .

Thus, we only need to estimate the decay of ‖∇ψδ − ∇ψ‖L1 and the growth of
‖uδ‖L2 . In the appendix we show that

‖∇ψδ −∇ψ‖L1 ≤ δ
(

|log(δ)|+ 1
)

C ′
d

∫

[0,1]d
|ρ1 − ρ0|

and

‖uδ‖L2 ≤
(

(2δ)1−dEMD(ρ1, ρ0)
)1/2

,

where C ′
d is a constant which depends on the dimension only. By using

∫

[0,1]d
|ρ1−ρ0| ≤

2, and assuming δ < 1/2, we can simplify the bound for ‖∇ψδ −∇ψ‖L1 to

δ|log(δ)|Cd.

Putting everything together we get the result.

Now we can give an upper bound on the convergence rate of G-prox PDHG applied
to the EMD problem.

Theorem 3.6. Suppose that ρ1 and ρ0 are probability measures on [0, 1]d. Then

EMD(ρ1, ρ0) can be computed with error at most ε in

N =
Cd

ε

(

EMD(ρ1, ρ0)1/2 log(1/ε)

ε

)(d−1)/2
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iterations of G-prox PDHG with the step sizes τ = Cd(
EMD(ρ1,ρ0)1/2 log(1/ε)

ε )(d−1)/2

and σ = τ−1, where Cd is a constant depending on the dimension only.

Note that we do not know the value of EMD(ρ1, ρ0) until the problem is solved.
This is easily dealt with, as we have the estimate EMD(ρ1, ρ0) ≤

∫

[0,1]d
|ρ1 − ρ0|.

We conclude this section with a convergence result.

Corollary 3.7. Let uN = 1
N

∑N
n=1 un, where un is the sequence of primal vari-

ables produced by G-prox PDHG. Then there exists a subsequence that weakly converges

to a measure u∗ which is a minimizer of the EMD functional.

Proof. The sequence uN has uniformly bounded total variation. By the Banach–
Alaoglu theorem, the sequence has a weak cluster point u∗. We have established the
convergence limN→∞ F (uN , ψ)− infu∈L2 F (u, ψ) = 0. The EMD functional is weakly
lower semicontinuous, thus

F (u∗, ψ) ≤ inf
u∈L2

F (u, ψ).

4. Numerical experiments. All numerical algorithms were coded in C and
executed on a single 1.6 GHz core with 8 GB RAM. Inversion of the Laplace operator
was performed using the FFT. All FFTs were calculated using the free FFTW C
library. The code used in this paper is available on GitHub at https://github.com/
majacomajaco/G prox pdhg.

In this work we do not consider parallelization; however, our approach is still
amenable to parallelization. The only step of our method which is nontrivial to
parallelize is the computation of the FFT. This is not an insurmountable hurdle,
as many modern parallel computing platforms, such as CUDA, have built-in FFT
subroutines.

For all of our experiments, given an error tolerance ε, we run the algorithms until
the condition F (un) − infu∈H F (u) < ε is satisfied for the nth iterate un. If we do
not know infu∈H F (u) in advance, we precompute it by running G-prox PDHG for an
extremely large number of iterations to obtain a “ground truth” value. To ensure that
this ground truth is sufficiently accurate, we use the primal-dual gap to check that we
are within ε

10 of the exact value. Note that the ground truth value may depend on
the grid discretization. As a result, we must compute a ground truth value for each
grid size that we test.

We will run G-Prox PDHG using a constant multiple of the step sizes from our
analysis with one caveat. On a discrete d-dimensional grid with cell length ∆x and
M = ( 1

∆x )
d points, all Lp norms are equivalent up to a factor depending upon M .

Clearly, ‖u‖L∞ ≤ M‖u‖L1 and it then follows that ‖u‖Lp ≤ M1−1/p‖u‖L1 . For the
ROF problem we have ‖∇Mu‖L2 ≤ M1/2‖u‖TV , and for the EMD problem we have
‖u‖L2 ≤M1/2‖u‖L1 . This means that the gap δF (R) will vanish at a finite value RM ,
even though one must take R→ ∞ in the continuum. Let Rε be the optimal choice of
R for solving the continuum problem with error at most ε. Then in the discrete case,
we will choose the step size τ = min(RM , Rε)/C (as opposed to the choice τ = Rε/C).
Calculating RM exactly is difficult; however, we shall give some simple upper bounds
in what follows below.

4.1. Total variation denoising. For the total variation denoising problem, we
will consider a simple two-dimensional example where the image I : [0, 1]2 → [0, 1]
is the characteristic function of a disc of radius 1/4 centered at (1/2, 1/2). This
allows us to easily create a test image with any desired resolution. For λ > 8 the
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Table 4.1

G-Prox PDHG λ = 10.

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 33 1.1 61 1.80

1024× 1024 34 5.0 89 10.3
2048× 2048 34 21.2 124 58.4
4096× 4096 34 86.7 168 348.4

Table 4.2

G-Prox PDHG λ = 20.

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 51 1.5 209 4.5

1024× 1024 66 8.2 232 24.1
2048× 2048 83 42.4 265 112.6
4096× 4096 87 186.8 308 586.3

Table 4.3

G-Prox PDHG λ = 20 discretization-independent step sizes.

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 79 2.0 505 10.3

1024× 1024 81 9.5 412 44.1
2048× 2048 83 41.2 396 172.2
4096× 4096 86 176.9 401 794.5

continuous solution is given by u∗(x) = (1− 8
λ )I(x)+

8π
λ(16−π) . On a discrete grid with

M points, the minimizer u∗M is different (and needs to be calculated) but approaches
the continuum solution u∗ as the grid size grows [28]. For our experiments, we take
λ = 10 and 20 and ε = 10−2 and 10−3 as error cutoffs.

For our step sizes we will choose τ = min
(

√
λ‖I‖TV

ε1/2
, ‖∇I‖L2

)

. This choice
depends only on quantities that are easily estimated at the start of computation.
Note that ‖∇I‖L2 gives a reasonable upper bound for the discrete grid quantity
RM = ‖∇u∗M‖L2 , and we have dropped the dimensionality constants from Theo-
rem 3.3.

In Tables 4.1 and 4.2, we present the results of G-prox PDHG when λ = 10 and
λ = 20, respectively. The algorithm converges faster for λ = 10, since less fidelity
to the original image is required. This behavior is predicted in our convergence rate
analysis, Theorem 3.3, where the rate depends on

√
λ. When λ = 10 and ε = 10−2,

the value of
√
λ‖I‖TV

ε1/2
is smaller than ‖∇I‖L2 , for every grid size. As a result, the

iteration count is the same for all grid sizes. In the other experiments,
√
λ‖I‖TV

ε1/2
is

larger than ‖∇I‖L2 on the smaller grids, thus the algorithm converges faster on the
smaller grids.

In Table 4.3, we rerun the λ = 20 experiment where we do not allow the step sizes

τ to depend on the grid discretization. In other words we take τ =
√
λ‖I‖TV

ε1/2
for every

grid size. In this experiment, the iteration count stays relatively uniform as the grid
size changes. This demonstrates that the algorithm has a convergence rate which is
truly independent of the grid size, but when ε is small one can get faster convergence
by taking into account the grid discretization.
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Table 4.4

CP2 (from [4]) ROF disc λ = 10.

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 2196 15.6 4473 31.8

1024× 1024 4415 156.2 8471 296.2
2048× 2048 8855 1305.2 17724 2576.3
4096× 4096 — — — —

Table 4.5

CP2 (from [4]) ROF disc λ = 20.

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 1252 8.7 2439 17.4

1024× 1024 2497 80.4 4063 132.4
2048× 2048 5005 711.0 8044 1133.8
4096× 4096 10103 6980.2 — —

Next, we compare G-prox PDHG to an accelerated version of PDHG (Algorithm
2 from [4]), which we will refer to as CP2. CP2 has two advantages over G-prox
PDHG. CP2 has extremely simple updates which do not require solving any linear
systems. As a result, each iteration of CP2 is faster than G-prox PDHG, which needs
to compute an FFT to invert (λτ Id−∆). Second, the primal-dual formulation of the
ROF problem

L(u, p) = (∇u, p)L2 +
λ

2
‖u− I‖2L2 − χ∞(p)

is L2 strongly convex in u. CP2 computes the u update in the L2 norm, thus the L2

strong convexity can be exploited to accelerate the algorithm. As a result, CP2 has
quadratic convergence rate (i.e., the restricted primal-dual gap after N iterations has
decayO(1/N2)). However, these advantages are offset by the fact that the convergence
rate of CP2 depends heavily on the grid size.

In Tables 4.4 and 4.5 we present the results of CP2 on the same experimental
setup. CP2 accelerates PDHG by changing the step sizes τ = τn and σ = σn at each
iteration n according to a special update rule. One only needs to choose initial values
τ0 and σ0 satisfying τ0σ0‖∆M‖L2 ≤ 1 where ‖∆M‖L2 is the L2 norm of the discrete
Laplace operator ∆M . In [4], it is suggested to take τ0 extremely large. We seemed
to obtain the best results by choosing τ0 = σ0 = 1√

‖∆M‖L2
, thus we report results

with this choice. Comparing Tables 4.4 and 4.5 to Tables 4.1 and 4.2, we see that
CP2 is slower in both time and iterations in every case. In some of the cases, CP2
was unable to complete the computation in the alloted time (2 hours).

4.2. EMD. For the EMD, we will consider two different two-dimensional prob-
lems. In the first problem, ρ1 and ρ0 are both measures supported on a disc of radius
1/4 where ρ1 is centered at (5/8, 5/8) and ρ0 is centered at (3/8, 3/8). In the sec-
ond problem, ρ1 and ρ0 are delta measures at the points (5/8, 5/8) and (3/8, 3/8),
respectively. In both cases, ρ1 is the translation of ρ0 by the vector (1/4, 1/4).

When two measures differ by a translation, it is possible to determine a minimizer
m∗ = u∗ + ∇ψ explicitly [26]. Suppose that ρ1 is given by translating ρ0 by the
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Table 4.6

EMD discs

Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s)
512× 512 64 1.7 163 3.6

1024× 1024 64 7.5 167 16.0
2048× 2048 64 30.6 168 67.4
4096× 4096 65 126.4 168 294.6

vector v. Then given a continuous, vector-valued test function p on [0, 1]d, there
exists a minimizer m∗ such that

(m∗, p) =

∫ 1

0

∫

[0,1]d
v · p(x− tv) dρ0(x) dt.(4.1)

It then follows that the EMD distance must be equal to |v|. Thus, the EMD distance
for both experiments is 1√

8
. Due to grid anisotropy, the solution on a discrete grid

will be different, but it will approach 1√
8
as the grid becomes finer.

In the case of the two discs, the densities ρ1 and ρ0 are L∞ functions. From
formula (4.1) we can deduce that u∗ must have bounded L2 norm. In fact, ‖m∗‖2L2 =

‖u∗‖2L2 + ‖∇ψ‖2L2 , and thus ‖u∗‖L2 ≤ ‖m∗‖L2 = 8−1/4. Thus, we do not need to

estimate the gap δF (R)—it is already zero when R > 8−1/4. This suggests that we
can simply choose step sizes τ = σ = 1. The performance of G-prox PDHG on the
disc experiment is presented in Table 4.6. The convergence rate is clearly independent
of the grid size for both error tolerances 10−3 and 10−4.

The case of two delta measures is different. From formula (4.1) we see that m∗ is
a singular measure which concentrates on a one-dimensional line segment. We know
that ∇ψ ∈ Lq for q < 2. Therefore, u∗ = m∗−∇ψ is also a singular measure and does
not have finite L2 norm. As such, we will need to use Theorem 3.6 to help choose the

step sizes. On a grid with M points, we will take τ = min(
√

1
ε|log ε| , 2M

1/4), which

again consists only of quantities that are easily calculated at the start of computation.
Note that here we have dropped the dimensionality constant in Theorem 3.6 and used

the trivial estimate EMD(ρ1, ρ0) ≤ 1 to get
√

1
ε|log ε| . To get the second term 2M1/4 we

first use the inequality ‖u∗M‖L2 ≤ ‖m∗
M‖L2 . Then we note that m∗

M is approximately
supported on a one-dimensional line segment and thus

‖m∗
M‖L2 ≤ 2M1/4‖m∗

M‖1/2L1 ≤ 2M1/4.

In Table 4.7 we present the results of G-prox PDHG on the delta measure exper-

iment. When ε = 10−2,
√

1
ε|log ε| is smaller than 2M1/4 for every grid size. Therefore,

the optimal step size τ is the same for every grid, and the number of iterations needed

to reach the error cutoff is always 30. When ε = 10−3,
√

1
ε|log ε| is larger than 2M1/4

on the 512 × 512 grid, approximately equal on the 1024 × 1024 grid, and smaller on
the 2048× 2048 and 4096× 4096 grids. As a result, the 2048× 2048 and 4096× 4096
grids have nearly identical iteration counts, while the algorithm converges faster on

the 512× 512 and 1024× 1024 grids. When ε = 10−4, 2M1/4 is smaller than
√

1
ε|log ε|

on every tested grid size. Therefore, the algorithm converges faster on the smaller
grids. Once again, if we did not allow τ to depend on the grid discretization we would
get nearly identical iteration counts for each grid, but with slower convergence.
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Table 4.7

EMD delta measures

Error 10−2 Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s) Iterations Time (s)
512× 512 30 1.2 56 1.6 121 2.8

1024× 1024 30 5.5 81 9.1 149 14.6
2048× 2048 30 22.8 98 45.6 185 75.3
4096× 4096 30 83.3 101 201.9 236 417.8

Table 4.8

EMD delta measures non-optimal step sizes

Error 10−2 Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s) Iterations Time (s)
512× 512 93 2.4 611 12.0 1864 35.3

1024× 1024 112 11.9 1055 90.7 3835 322.9
2048× 2048 128 58.2 1747 675.6 8413 2985.2
4096× 4096 137 253.3 2530 4149.5 – –

In [24] the authors solve the L1 EMD problem with a completely equivalent
ADMM method. However, [24] does not consider how to choose optimal step sizes.
For singular measures this can lead to a significant slowdown. In Table 4.8 we repeat
the delta measure experiment with nonoptimal step sizes τ = σ = 1. Comparing
Tables 4.7 and 4.8 we see that the nonoptimal step sizes lead to runtimes that are
up to 50 times slower. These results highlight the need for our careful theoretical
analysis.

Finally, let us note that the EMD functional is not strongly convex in L2. Without
strong convexity, it is not possible to use the accelerated algorithms from [4]. As a
result, G-prox PDHG will be orders of magnitude faster than PDHG type algorithms
which do not use preconditioning. We can verify this by comparing our algorithm
to the state-of-the-art results for the EMD problem presented in [23]. In [23], the
authors approach the EMD minimization problem

min
∇·m=ρ1−ρ0

∫

[0,1]d
|m|

by converting it into a different unconstrained saddle point problem

min
m

max
p

∫

[0,1]d
|m|+ (∇ ·m+ ρ0 − ρ1, p)

and searching for the saddle point using PDHG. Since the divergence operator ∇· is
not preconditioned by PDHG, the convergence rate of the algorithm depends on the
grid size. Due to this dependence, [23] only considers grids of size 256× 256 and less
and requires parallelization for efficient computation. Notably, our serial algorithm
on grids of size 512× 512 appears to be faster than their parallel algorithm on grids
of size 256× 256.

5. Conclusion. In this paper we have shown that G-prox PDHG, a variant of
the PDHG algorithm, can be used to solve large-scale optimization problems with
a convergence rate independent of the grid size. We have demonstrated our results
both theoretically and numerically for two important optimization problems, the ROF
denoising model and the EMD between probability measures. Our method is able to
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solve these problems on grids as large as 4096× 4096 in a few minutes—a benchmark
which seems to be out of reach for previous approaches.

In future works we hope to further extend our analysis and numerical results to
other large-scale problems of interest. Furthermore, we hope to use our approach to
more efficiently simulate the dynamics of stiff differential equations involving total
variation.

Appendix A. The domain [0, 1]d. Functions u : [0, 1]d → R have a natural
extension ũ to the larger domain [−1, 1]d via even reflections. We can define ũ explic-
itly by taking ũ(x1, . . . , xd) = u(|x1|, . . . , |xd|). u takes the same value on opposite
boundaries, thus we can glue opposite boundaries together and identify [−1, 1]d with
the torus Td. This allows us to perform Fourier analysis on [0, 1]d, as we can manipu-
late the Fourier series of ũ and then restrict the result back to [0, 1]d. Therefore, any
Fourier multiplier type operator, such as convolution, can be defined on [0, 1]d (these
operators can also be defined in physical space through the translation invariance of
[−1, 1]d).

Other extensions to [−1, 1]d are possible; however, even reflections are most nat-
ural for our purposes. Since ũ is even on [−1, 1]d, its Fourier series expansion is a
cosine series. Assuming ∇ũ exists, it should have a sine series expansion. As a result,
∇ũ · n = 0 on the boundary of [0, 1]d. Thus, we see that the extension by even re-
flections can be used to automatically solve the Poisson equation on [0, 1]d with zero
Neumann boundary conditions.

Appendix B. ROF proofs.

Lemma B.1. Suppose that u : [0, 1]d → [a, b] is a function of BV. Let Gδ(z) =

δ−de−π(z/δ)2 be the Gaussian kernel and let u = Gδ ∗ u. Then we have the following

inequalities:

‖uδ − u‖qLq ≤ δ

(

d

2π

)
1
2

(b− a)q−1‖u‖TV(B.1)

and

‖∇uδ‖2L2 ≤ 1

δ

√
2πd3

(

b− a
)

‖u‖TV .

Proof.

‖uδ − u‖qLq =

∫

[0,1]d

∣

∣

∣

∣

∫

Rd

G(z)
(

u(x+ δz)− u(x)
)

dz

∣

∣

∣

∣

q

dx.

Using Jensen’s inequality and the fact that u maps to the bounded interval [a, b], we
bound the above by

≤ (b− a)q−1

∫

Rd

G(z)

∫

[0,1]d
|u(x+ δz)− u(x)|dxdz.

Next we use the fact that BV functions satisfy a global Lipschitz property to get

≤ δ‖u‖TV

∫

Rd

|z|G(z) = δ‖u‖TV Ad−1

∫ ∞

0

rde−πr2dr,

where Ad−1 is the surface area of the sphere Sd−1. The first result follows from the
inequality

Ad−1

∫ ∞

0

rde−πr2 ≤
√

d

2π
.

D
o
w

n
lo

ad
ed

 0
6
/0

3
/1

9
 t

o
 1

2
8
.9

7
.2

7
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE RATE INDEPENDENT OF GRID SIZE 1119

Now we turn to estimating the H1 norm of uδ. We have

‖∇uδ‖2L2 =

∫

[0,1]d

∣

∣

∣

∣

∫

Rd

∇Gδ(z)u(x+z)dz

∣

∣

∣

∣

2

dx =
1

δ2

∫

[0,1]d

∣

∣

∣

∣

∫

Rd

∇G(z)u(x+δz)dz
∣

∣

∣

∣

2

dx.

Since
∫

Rd ∇G(z)dz = 0, we may replace the above with

1

δ2

∫

[0,1]d

∣

∣

∣

∣

∫

Rd

∇G(z)
(

u(x+ δz)− u(x)
)

dz

∣

∣

∣

∣

2

dx.

We have the estimate ‖∇G‖L1 ≤
√
2πd; thus the above is

≤
√
2πd

δ2
(b− a)

∫

Rd

|∇G(z)|
∫

[0,1]d
|u(x+ δz)− u(x)|dxdz.

Again applying the global Lipschitz property of BV functions we get

≤
√
2πd

δ
(b− a)‖u‖TV

∫

Rd

|z||∇G(z)|.

Finally,
∫

Rd |z||∇G(z)| = d.

Appendix C. EMD proofs.

Lemma C.1. Let ρ1, ρ0 be probability measures and suppose that ψ solves the Pois-

son equation ∆ψ = ρ1 − ρ0 on [0, 1]d with zero Neumann boundary conditions. Let

Gδ be the Gaussian kernel with width δ > 0 and ∇ψδ = ∇ψ ∗Gδ. Then

‖∇ψδ −∇ψ‖L1 ≤ Cd δ
(

|log(δ)|+ 1
)

∫

[0,1]d
|ρ1 − ρ0|,

where Cd is a constant which depends on the dimension only.

Proof. Let us define a linear operator Tδ

Tδh = ∇∆−1
(

Gδ ∗ h− h
)

.

The current proposition is equivalent to

‖Tδ(ρ1 − ρ0)‖L1 ≤ Cdδ
(

|log(δ)|+ 1
)

∫

[0,1]d
|ρ1 − ρ0|.

Let ρik = G1/k ∗ ρi. Then ρik is a smooth L1 function. If we assume that Tδ is a
bounded operator on L1, we can use lower semicontinuity to obtain

‖Tδ(ρ1 − ρ0)‖L1 ≤ lim inf
k→∞

‖Tδ(ρ1k − ρ0k)‖L1 ≤ ‖Tδ‖L1 lim inf
k→∞

‖ρ1k − ρ0k‖L1 .

Applying Jensen’s inequality to the last term we have

lim inf
k→∞

‖ρ1k − ρ0k‖L1 ≤
∫

[0,1]d
|ρ1 − ρ0|.

Thus, it is enough to show that for smooth functions h the operator Tδ satisfies

‖Tδh‖L1 ≤ Cd δ
(

|log(δ)|+ 1
)

‖h‖L1 .
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For smooth h we have

Tδh(x) =

∫

Rd

G(z)∆−1
(

∇h(x+ δz)−∇h(x)
)

dz

=

∫

Rd

G(z)∆−1

∫ δ

0

zTD2h(x+ tz) dt dz.

All of the operators applied to h commute, so we have

‖Tδh‖L1 ≤
∫ δ

0

‖D2∆−1h ∗ G̃t‖L1dt,

where G̃(z) = zTG(z). Suppose that q(t) ∈ (1, 2] for each t ∈ (0, δ]. Then

∫ δ

0

‖D2∆−1h ∗ G̃t‖L1 dt ≤
∫ δ

0

‖D2∆−1h ∗ G̃t‖Lq(t) dt.

Now we use the fact that D2∆−1 is a bounded operator on Lq for q ∈ (1,∞). More-
over, for q ∈ (1, 2], we have the operator norm bound

‖D2∆−1‖Lq→Lq ≤ C ′′
d

q − 1
,

where C ′′
d is a constant depending on the dimension only [25]. Using the above bound

and then Young’s convolution inequality we get

∫ δ

0

‖D2∆−1h ∗ G̃t‖Lq(t) dt ≤
∫ δ

0

C ′′
d

q(t)− 1
‖h ∗ G̃t‖Lq(t) dt ≤ ‖h‖L1

∫ δ

0

C ′′
d ‖G̃t‖Lq(t)

q(t)− 1
dt.

The Lq norm of G̃t satisfies

‖G̃t‖Lq ≤ C ′
dt

d(1−q)/q

for some new constant C ′
d. Now we shall make the choice q(t) = 1 + 1

d|log(t)| . This
gives us

‖h‖L1

∫ δ

0

C ′′
d ‖G̃t‖Lq(t)

q(t)− 1
dt ≤ Cd‖h‖L1

∫ δ

0

|log(t)| dt,

where Cd is again a new constant. The inequality
∫ δ

0
|log(t)| dt ≤ δ |log(δ)|+ δ finishes

the proof.

Lemma C.2. Let Gδ(z) = δ−de−π(z/δ)2 be the Gaussian kernel. Then there exists

a minimizer u∗ of the EMD functional such that uδ = Gδ ∗ u∗ has finite L2 norm

bounded by

‖uδ‖2 ≤
(

(2δ)(1−d)EMD(ρ1, ρ0)

)1/2

.

Proof. Young’s convolution inequality automatically gives ‖uδ‖L2 ≤ ‖Gδ‖L2

‖u∗‖1 = δ−d/2‖u∗‖L1 . However, this does not take into account the structure of the
EMD problem, and better results are possible.

Consider first the case where ρ1 and ρ0 are delta measures at locations x1, x0 ∈
(0, 1)d, respectively. It is then known ([26]) that the solutionm∗ = u∗+∇ψ is given by

(p,m∗) = (x1 − x0) ·
∫ 1

0

p
(

t(x1 − x0) + x0
)

dt.
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The simplicity of the solution allows us to express ‖Gδ ∗m∗‖22 explicitly in the Fourier
domain. This will allow us to bound ‖Gδ ∗ u∗‖22 since m∗ = u∗ +∇ψ and u∗ and ∇ψ
are orthogonal in the L2 inner product.

‖Gδ ∗m∗‖22 =
‖x1 − x0‖22
2d−1π2

∑

n∈Zd

|sin
(

π(n, x1)
)

− sin
(

π(n, x0)
)

|2
|(n, x1 − x0)|2

e−πδ2|n|2 .

The inner sum can be bounded by

1 +

∫

Rd

|sin(π(ξ, x1))− sin(π(ξ, x0))|2
|(ξ, x1 − x0)|2

e−πδ2‖ξ‖2
2 .

Using the inequality

|sin(π(ξ, x1))− sin(π(ξ, x0))| ≤ |sin
(

π(ξ, x1 − x0)
)

|

we may bound the integral by

∫

Rd

sin
(

π(ξ, x1 − x0)
)2

|(ξ, x1 − x0)|2
e−πδ2‖ξ‖2

2 .

By rotating, we may assume that x1 − x0 is parallel to the first standard basis vector
e1. Thus, the integral simplifies to

∫

Rd

sin
(

πξ1‖x1 − x0‖2
)2

ξ21‖x1 − x0‖22
e−πδ2‖ξ‖2

2 ≤ δ1−d

∫

R

sin(πξ1‖x1 − x0‖2)2
ξ21‖x1 − x0‖22

dξ1.

The integral on the right-hand side can be computed explicitly and has value
π2

2‖x1−x0‖2
. Thus, we may conclude that

‖Gδ ∗ u∗‖22 ≤ ‖Gδ ∗m∗‖22 ≤ (2δ)1−d‖x1 − x0‖2.

Next we extend our result to sums of delta measures. Suppose that ρ1= 1
k

∑k
j=1 δxj

and ρ0 = 1
k

∑k
j=1 δyj

for some (potentially repeated) points x1, . . . , xk, y1, . . . , yk ∈
(0, 1)d. Then there exists a minimizer m∗ with the form

(p,m∗) =
1

k

k
∑

j=1

(

xj − yπ(j)
)

·
∫ 1

0

p
(

yπ(j) + t(xj − yπ(j))
)

dt,

where π is a permutation of {1, . . . , k}, which solves the assignment problem

π ∈ argmin
σ∈Sk

1

k

k
∑

j=1

‖xj − yσ(j)‖2.

Using the triangle inequality and then Jensen’s inequality, we have

‖Gδ ∗m∗‖2 ≤ 1

k

k
∑

j=1

(

(2δ)1−d‖xj − yπ(j)‖2
)1/2 ≤

(

(2δ)1−dEMD(ρ1, ρ0)

)1/2

.

Finally, we wish to extend this result to general probability measures ρ1, ρ0. Let
Pk be the set of all probability measures of the form µ = 1

k

∑k
j=1 δxj

for any list of
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(potentially repeated) points x1, . . . , xk ∈ (0, 1)d. Sums of delta measures are dense
in the space of probability measures with the EMD topology [27]; therefore there exist
sequences ρ1k and ρ0k such that ρ1k, ρ

0
k ∈ Pk, EMD(ρ1k, ρ

1) → 0 and EMD(ρ0k, ρ
0) → 0.

Using these sequences, we can choose for each k

uk ∈ argmin
∇·u=0

∫

[0,1]d
|u+∇ψk|,

where ψkis the solution of the Poisson equation ∆ψk = ρ1k − ρ0k, with zero Neumann
boundary conditions.

The solutions uk have finite total variation bounded by

2‖∇ψk‖1 ≤ 2Cd

∫

[0,1]d
|ρ1k − ρ0k| ≤ 2Cd,

where Cd is the operator norm of ‖∇∆−1‖
L1→L

d
d−1

,w . Thus, by the Banach–Alaoglu

theorem, there exists a subsequence ukn
and a vector-valued measure ũ such that for

every bounded continuous test function p we have

lim
n→∞

(ukn − ũ, p) = 0.

Without loss of generality, we shall assume that this property holds for the full se-
quence uk. Lower semicontinuity gives ‖Gδ ∗ ũ‖2 ≤ lim infk→∞‖Gδ ∗ uk‖2. Thus, if
we can show ũ ∈ argmin∇·u=0

∫

[0,1]d
|u+∇ψ| we will be done.

To that end, we note that

lim inf
k→∞

EMD(ρ1k, ρ
0
k) = lim inf

k→∞

∫

[0,1]d
|uk +∇ψk|

≥ sup
‖ϕ‖∞=1

lim inf
k→∞

(uk +∇ψk, ϕ) =

∫

[0,1]d
|ũ+∇ψ|.

Next by the triangle inequality, we have

EMD(ρ1k, ρ
0
k) ≤ EMD(ρ1, ρ1k) + EMD(ρ0, ρ0k) + EMD(ρ1, ρ0),

thus lim supk→∞ EMD(ρ1k, ρ
0
k) ≤ EMD(ρ1, ρ0) = inf∇·u=0

∫

[0,1]d
|u + ∇ψ|. Putting

everything together, we get the chain of inequalities

lim sup
k→∞

EMD(ρ1k, ρ
0
k) ≤ inf

∇·u=0

∫

[0,1]d
|u+∇ψ| ≤

∫

[0,1]d
|ũ+∇ψ| ≤ lim inf

k→∞
EMD(ρ1k, ρ

0
k),

which completes the proof.
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