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Abstract. National parks often serve as hotspots for environmental crime such as illegal defor-
estation and animal poaching. Previous attempts to model environmental crime either were discrete
and network-based or required very restrictive assumptions on the geometry of the protected region
and made heavy use of radial symmetry. We formulate a level set method to track criminals inside
a protected region which uses real elevation data to determine speed of travel, does not require any
assumptions of symmetry, and can be applied to regions of arbitrary shape. In doing so, we design
a Hamilton—Jacobi equation to describe movement of criminals while also incorporating the effects
of patrollers who attempt to deter the crime. We discuss the numerical schemes that we use to
solve this Hamilton—Jacobi equation. Finally, we apply our method to Yosemite National Park and
Kangaroo Island, Australia, and design practical patrol strategies with the goal of minimizing the
area that is affected by criminal activity.
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1. Introduction. Environmental crime in protected national parks is a concern
to authorities around the world. National parks often serve as hotspots for illegal
logging and animal poaching, henceforth referred to as illegal extraction. In recent
years, scientists have aided law enforcement agencies in the prevention of such crimes.
One way in which they do this is by building models to describe deforestation, track
animal movement, and predict adversarial behavior of criminals. Leader-Williams
and Milner-Gulland [14] examined a case study of poaching in the Luangwa Valley,
Zambia, and concluded that increasing detection rates was a more effective deterrent
to environmental crime than increasing severity of punishment. This means that
models that can help improve detection rates of environmental criminals are a useful
tool for patrollers of protected areas.

Authorities employ different strategies to patrol protected areas and detect illegal
extractors, and research into the effectiveness of these strategies is of major inter-
est. Researchers are challenged to find efficient and practical patrol strategies to
police vast areas with limited resources. An important model of illegal extraction
was given by Albers [1], who described illegal extraction as a continuous spatial game
between patrol units and extractors, constructing a model where extractors maximize
their expected profit by trading off costs of penetrating further into a protected region
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(increasing effort required and risk of capture) against increased benefits of extracting
further from the boundary of the protected region. Albers’ model was formulated as a
Stackelberg game, an adversarial game with a defender (patrollers) and many attack-
ers (extractors) with perfect information about the defender’s strategy. Albers gave
some qualitative results in a very simplified situation where the protected region was
circular, and all quantities were radially symmetric. Johnson, Fang, and Tambe [10]
proved an additional result regarding optimal patrol strategies for this simple case.
Kamra et al. [11] further extended and improved the model, retaining the continuous
state space, removing the assumption that trees are homogeneously distributed, con-
sidering collisions between law enforcement and extractors, and calculating optimal
or near-optimal patrol strategies using machine learning techniques. All of this work
considered a circular protected region, wherein the goal of the extractors is to move
toward the center of the region.

Subsequently, models for illegal extraction (both deforestation and animal poach-
ing) in protected regions using discrete rather than continuous methods have been
developed by Fang et al. [6, 7], Kar et al. [12, 13] and McCarthy et al. [16]. These
models incorporate different methods for modeling human behavior and different ways
to treat the protected region. Kar et al. [12] used repeated Stackelberg games to at-
tempt to understand the evolution of attackers strategies but did not consider realistic
spatial domains. Fang et al. [7] developed a model including detailed terrain and spa-
tial information by describing the protected region as a series of nodes connected
by edges corresponding to natural pathways through the region (for example, along
rivers or walking trails). The PAWS algorithm developed by Fang et al. [7] has been
deployed in Queen Elizabeth National Park (QENP) in Uganda and in Malaysian
forests. Taking another approach, Kar et al. [13] used machine learning techniques
to construct a model for predicting poaching attacks, again deploying the model for a
field test in QENP, Uganda. In addition to the patrol strategy, McCarthy et al. [16]
are able to distinguish between different types of patrol teams, and they apply their
algorithm to a protected region in Madagascar.

Our goal is to generalize the model of Albers [1] so that it is applicable to realistic
protected regions, can include the effects of terrain and geometry, and can be executed
for real protected regions. The most important mathematical technique that enables
this extension is the level set method of Osher and Sethian [18], which provides a
simple way to track moving fronts through the protected region. Indeed, the level set
method and Hamilton-Jacobi equations are now used extensively in modeling travel
in a variety of contexts. Sethian and Vladimirsky [23, 24] discuss a level set method
for optimal travel on manifolds. In application, Dubins [5], and later Takei et al. [25],
modeled movement of simple cars through terrain with obstacles using methods from
control theory which include Hamilton—-Jacobi-Bellman equations. Tomlin has used
similar methods to determine reachable sets for aircraft autolanders [2] and to model
human movement in adversarial reach-avoid games [28]. Thus there is a precedent
for using Hamilton—Jacobi type equations to model movement throughout domains.
However, as discussed above, attempts to model environmental crime either have
required overly restrictive assumptions regarding radial symmetry and geometry of
the protected region or have been discrete in nature. This work serves to fill a gap
in the literature. We suggest a continuum model for environmental crime which is
still able to account for realistic terrain information and bridges the divide between
environmental crime modeling and Hamilton—Jacobi formulations for modeling human
movement.
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This paper is structured as follows. In section 2, we describe the model of Albers
[1]. In section 3, we introduce the level set method, describe the numerical methods
used to solve it, and show how it can be applied to model movement through regions
with terrain. In section 4, we describe our model for illegal extraction from protected
regions and provide an algorithm to calculate the regions through which extractors will
pass. In section 5, we present results and discuss their implications toward both patrol
strategies and our modeling approach. Finally, in section 6, we make conclusions and
identify potential directions for further research.

2. The illegal logging model of Albers [1]. Albers [1] presented a model
for illegal extraction from protected regions that includes spatial effects. They use
a Stackelberg game in a circular region between defenders and extractors. In their
model, an extractor gains benefit and incurs cost based on the depth d into the region
where they choose to extract. The benefit is associated with the extraction point and
is modeled as a concave increasing function B(d). Cost is based on the trip distance
and is modeled as a quasi-convex increasing function C'(d), but no specific functions
are given. Then the extractor’s profit associated with extracting at depth d is

(2.1) P(d) = B(d) — C(d).

If the region is patrolled with density ¥(d), the probability that the extractor is

detected is the cumulative probability ¥(d) = fodw(r)dr over the trip out of the
protected region. If the illegal extractor is caught, any resources they’'ve extracted
are confiscated and they must leave empty-handed. The extractor’s expected profit
can therefore be written as

(2.2) P(d) = (1 — U(d))B(d) — C(d).

Given the extractors have perfect information of the patrol strategy, they know the
function ¥(d), and hence their task is to find the optimal distance d* to penetrate
into the protected region. Simultaneously, the patrollers’ task is to pick the patrol
strategy 1(d) that minimizes d*. Figure 1 illustrates the model, showing the pristine
region where extractors are never present and the outer region through which they
pass while traveling into or out of the protected region.

Pristine area

Fic. 1. Illustration of the Albers [1] model, where extraction occurs at depth d in a circular
region. Reproduction of Figure 2 from Johnson, Fang, and Tambe [10].
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3. The level set method. The level set method is a powerful technique that
we use to model human movement through complex domains. Originally developed
by Osher and Sethian [18], the level set method models fronts which propagate with
a prescribed velocity. The front is embedded as the zero level set of an auxiliary
function, which is then evolved according to a partial differential equation (PDE).
We describe a simple version of the method in R?, sufficient for our needs. Suppose
we are given a simple, closed curve (or a collection of nonintersecting, simple, closed
curves) denoted by I'. To evolve I" via level set flow, we begin by finding a Lipschitz
continuous function ¢ : R? — R such that ¢ is positive inside I" and negative outside
[, and thus T = {z € R? : ¢o(z) = 0}. Next, we evolve ¢ : R? x [0,00) — R using
the PDE

¢ +v(z) [V =0,
¢($,O) = (bo(x)a

for some nonnegative velocity function v and using ¢; to represent the partial deriva-
tive of ¢ with respect to t. Define I'(t) = {x € R? : ¢(x,t) = 0}. This repre-
sents an evolution of I' = I'(0). Indeed, we can rewrite (3.1) as ¢; + v(x)(%) .
V¢ = 0. Note that V¢/|V¢| is a unit vector which is normal to the level contour
I'(t). Thus, locally, this equation models advection in the direction normal to T'(¢)
with velocity v(x). This causes I'(t) to deform with normal velocity v(z). With this
in mind, one can view I'(¢) as the set of points which could be reached after walking
inward from the boundary for a time ¢ with normal velocity v(z). For example, if
v(z) = 1, then for ¢ > 0, the curve I'(¢) is the set of points a distance ¢ from the
original curve.

This procedure is shown in Figure 2. Figure 2(a) shows the boundary of a region
defined by (z(0),y(6)) = (cos(d),sin(f) + sin(360)/2) and a series of contours of points
accessible after traveling a certain time from the boundary. Figure 2(b) shows the
graph of the level set function and with the same level sets overlaid on the surface.
This example also displays one of the strengths of the level set method. Depending
on the original curve, the level contours may break apart into disconnected pieces or
merge into into a single piece. More primitive methods for curve evolution (many of
which involve tracking points along the curve) have trouble handling these changes in
topology but the level set method accounts for them with no special considerations.

(3.1)

(a) Contours of equal travel time (b) The auxiliary function ¢ with level
(red) from the boundary of a re- sets (black).
gion (black).

Fic. 2. Using the level set method to find contours of equal travel time.
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For more information regarding level set methods, see Osher and Fedkiw [17] and the
recent review Gibou, Fedkiw, and Osher [8].

4. Illegal deforestation. Our model for the actions of illegal extractors com-
mitting crimes in protected regions is based on Albers [1], as described in section 2.
Albers derived a game-theoretic model for illegal deforestation in an idealized setting,
assuming the protected region was circular to significantly simplify the problem, and
neglecting the effects of terrain. We wish to relax these restrictions, which leads to
several significant difficulties.

We are interested in real national parks and hence the protected region will not
be symmetric and the benefit and cost functions could be arbitrary. In Albers [1], the
profit is maximized on a ring with some radius and extractors will enter from any
point on the boundary of the region to travel to the maximum profit ring. Without
radial symmetry, however, the profit will, in general, be maximized at an isolated
point rather than along a closed curve, and correspondingly there will be a single
optimal route from this point to the boundary of the protected region. Hence illegal
extractors only ever occupy a set of points of measure zero. In our model, we resolve
this issue by assuming that extractors will tolerate extracting anywhere where the
profit is close to the maximum possible profit.

The cost function of Albers [1] does not generalize easily to irregular geometries.
Instead of using a predefined formula based on distance, we constructively determine
the cost by considering the effects that would detract from the final profit with the help
of the level set method. Given terrain and elevation information for a real protected
park, the paths taken by extractors will not be simple straight lines. Therefore it is
also necessary to find the paths extractors will follow to exit the protected region. In
the next section we describe an algorithm to find the pristine and nonpristine regions
in a protected area with arbitrary shape, terrain, benefit distribution, and patrol
strategy.

4.1. Problem description. Let  represent the area that needs to be pro-
tected and let ¥ (x,y) be the patrol density function measuring the likelihood of
an extractor being caught at position (x,y). The patrol budget E is defined as
E = [,¢(z,y)dzdy. The budget measures how many patrolling resources can be
allocated to protect the domain €2. Effectively, the budget scales 1. Extracting at
a position (z,y) gives the extractor an amount of benefit B(z,y). For example, the
benefit could depend on the quantity, value, or species of trees. We make no assump-
tions about B except that it is known. C(z,y) is the expected cost associated with
extracting at position (x,y). The cost is based on two factors, the effort involved in
traveling from the extraction point to the boundary of the protected region and the
risk of being caught by patrols while inside the domain. The further into the pro-
tected region the extractors penetrate, the higher the cost as they must expend more
time/energy traveling and are more likely to be captured by patrollers.

This highlights a difference between our model and Albers [1]: we include the
effect of the patrol directly in the cost function, whereas Albers includes it as a modi-
fication to the benefit. In our model, the profit an extractor expects from extracting at
a point (z,y) in the protected region is simply P(z,y) = B(z,y)—C(z,y). We assume
the extractors accept a position to extract if the profit is within some tolerance of
the maximum obtainable profit. Finally, we determine the paths that extractors will
take when leaving the protected area (where they can be captured by the patrol). We
assume the extractors will always take an optimal path from the extraction point to
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the boundary and can be caught only after they have finished extracting and started
heading back to the boundary (since no crime has been committed before they have
extracted).

One feature that arises from our model is that in order to achieve high profit,
extractors should only enter from some sections of the boundary of the protected
region. In practice, however, extractors start their trips from villages near the edge
of the park boundary. This means they may have to travel some distance to get
to a position on the boundary of the region which leads to high profit. We do not
include the extra costs of travel outside the protected region, or indeed travel from
the boundary to the extraction location. Although we do not do so in this work, it is
possible to model some of these extra costs. For example, an extra cost term applied
on the boundary could represent the cost of traveling from a village to that point,
and the cost of the inward journey from the boundary to the extraction point can be
calculated relatively simply with one level set calculation.

4.2. Calculating the profit function. Since the benefit function is known
in advance, it remains to calculate the expected cost function. As explained in the
previous section, the cost function depends on many factors, including the optimal
route to a given point. The level set method avoids most of the difficulties one might
expect when calculating optimal paths from all points inside the protected region
to the boundary. We use the level set method to find contours of equal cost in the
protected region. The level set method can be efficiently implemented, and as the
level sets evolve, individual points along the contour follow paths of minimal cost,
where the “cost” accounts for both the physical effort to traverse the region and the
risk of being captured by patrollers.

The expected cost associated with extracting at a given point (g, yo) is calculated
with the following level set equation, using the boundary of the domain 2 as the zero
level set of the function ¢(z,y,0):

1
- 1/U(x’ y) + aw(% y>B(x07 yO)

The cost C(xg, yo) is implicitly defined by ¢(zo, yo, C(zo,yo)) = 0. Intuitively, the
point (xg,yo) lies somewhere inside the curve I' = 9Q2. When we evolve the boundary
using (4.1), the zero level sets I'(t) = {¢(x,y,t) = 0} represent the set of points
which require equal cost to reach from the boundary. For some C' > 0, we will have
(20,y0) € T(C). This C is the cost of extracting at (g, yo). This is demonstrated in
Figure 3.

The important term from a modeling perspective is the coefficient of |V¢|. The
denominator of this term has two summands, 1/v(z,y) and a(x,y)B(xo,yo). For
the first summand, v(z,y) is the walking speed at (z,y) which is determined by the
terrain at (z,y). It is calculated by using the steepness at (z,y) and a walking speed
function adapted from [9] (discussed in subsection 4.2.1). Increasing v makes the
level sets move faster and hence decreases the cost to reach a given point. The second
summand, oy (x,y)B(xo,y0), is a term that penalizes extractors for spending time
in highly patrolled areas. The patrol density function 1 measures the likelihood of
an extractor getting caught at position (z,y), and B(z,yo) is the benefit acquired
at (zo,yo). If the extractor gets caught, they lose all of the accrued benefit, so the
impact of being caught should scale with the benefit gained. When ) (x, y)B(xo, yo)
is larger, the level sets move more slowly, and the cost associated with extracting at
a point increases.

(4.1) ¢r = Vol
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Fi1c. 3. Ewvolve level sets in from the boundary until the C' > 0 such that (zo,y0) € T'(C).

To compare the summands we include a parameter «, which can be thought of
as a risk aversion factor. This parameter weighs the willingness of an extractor to
assume risk of being captured versus the willingess to expend time or energy. A large
« signifies that the extractor will accept less risk of being captured and will be willing
to exert more effort to reach their chosen extraction point. Alternatively, a small «
means the extractor is willing to accept a higher risk of being captured to decrease
the physical effort required to travel in and out of the protected region. Note that
this summand includes information about the extraction point, through the benefit
B(xg,yo). This means that the cost function must be calculated separately for each
extraction point.

4.2.1. The walking speed equation. Tobler [27] gave a formula for walking
speed based on slope. Recently, Irmischer and Clarke [9] gave an improved formula
that they claimed more accurately predicted travel times for humans walking on roads,

(100s + 2)°
4.2 =0.11+e —_— |,
(4.2) Y e ( 1800
where 100s is the grade in percent, and v is the corresponding speed in m/s. This
formula agrees well with experimental results given in [9] but has a drawback for our
model, that the speed does not vanish as the slope goes to infinity. We hence modify
the given equation so that the speed drops to zero as the slope becomes more extreme
and use

(4.3) v =1.11exp <—(1005+2)2> ,

2345

which matches the maximum speed, gives similar results for grades less than 60%,
and decays to zero for more extreme slopes, as can be seen in Figure 4.

We note that the specific walking velocity function is not crucial in our model,
and other functions could be used. We also are able to incorporate areas where the
walking speed is faster or slower, which could model, for example, overgrown scrub
or walking trails. It is also possible to set v to zero in places to model impassable
obstacles.

The walking speed v(z, y) that appears in the level set equation (4.1) is a function
of position only and does not depend on walking direction. This is a simplification
since walking speed does depend on walking direction (for example, walking down a
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Fic. 4. Our velocity function (4.3) (solid blue line) and the Irmischer—Clarke function (4.2)
(dashed red line). Our velocity function decays to zero for high slopes while the function suggested
by Irmischer and Clarke [9] does not.

hill is faster than walking up a hill, or walking along a ridgeline is faster than climbing
down the ridge). Assuming v depends only on position reflects the fact that walking
in any direction on steeply sloping ground is slow even if the slope in the direction
of travel is moderate. We take the maximum slope as the input to the velocity
function (that is, for an elevation profile E(x,y), we set s = |[|VE||). Our model does
not depend critically on the particular model for v, as long as it can be calculated
from position alone. It is possible to account for walking direction with a level set
formulation [20], but doing so requires an anisotropic control-theoretic formulation
which is outside the scope of the current work.

4.3. The expected cost algorithm. The expected profit function is calculated
using the following algorithm:

1. Since the cost level set equation (4.1) depends on the particular benefit level
where extraction takes place, we must solve it for all possible values of B.
We pick N benefit values in [ming B, maxq B] and evaluate the cost function
using each benefit value B; by performing steps 2—4 for each B;.

2. For a given By, first find the contour(s) of points where B(z,y) = B;. In
Figure 5(a), the black contour is the boundary of the domain, and the blue
contour is an equal benefit contour with the same benefit B;.

3. Evolve the expected cost level set function with the benefit B; using (4.1).
In Figure 5(b), the red contours are the equal-cost level set contours. Each
of the contours represents a different cost value.

4. The cost level sets apply only to the points whose benefit has been used to
calculate the level sets. That is, we have calculated the cost assuming the
benefit gained is B;, so our results are valid only at the points (x,y) such
that B(z,y) = B;. Therefore we find the intersections between the cost level
contours ¢(z,y,C) = 0 and the benefit contour B(z,y) = B;. At these
intersections (marked in green), we can calculate C(z,y).

5. Repeat steps 2 to 4 for each benefit level B;, until values of C(z,y) are known
throughout the region.

This algorithm produces a collection of cost functions C(-;B) : @ — [0, 00),
parametrized by B € [ming B, maxq B|, where C(x,y; B) represents the cost of
extracting at (z,y) if the benefit the extractor has gained is B. Since B(z, y) represents
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(a) Begin by choosing a con- (b) For this benefit value, (c) At intersection points

tour (blue) of fixed benefit evolve cost contours (red) in (green), one knows the bene-

value. from the boundary. fit and cost and thus can cal-
culate the profit.

Fic. 5. Determining the profit function throughout the region. These images correspond to steps
2, 3, and 4 in the expected cost algorithm (subsection 4.3), respectively.

the benefit accrued at the point (z,y), the cost to extract is given by C(x,y;
B(z,y)). This value represents the minimal cost required to travel from the extraction
point (z,y) to the boundary of the protected region, considering both the physical ef-
fort required to travel and the risk of being captured. Once this function is obtained,
we can calculate the profit for the extractors P(z,y) = B(x,y) — C(z,y; B(z,y)).
In what follows, we will suppress some notation, writing only C(z,y) at times, and
leaving the dependence of the cost on the benefit implicit.

4.4. Finding the pristine region. Once the expected profit function is found,
the next step is to find the pristine region, the region that extractors will never occupy.
In Albers [1], the pristine region was simply the part of the circular forest between its
center and the ring of maximum profit. In general, however, the pristine region must
be defined differently. We assume that extractors will extract anywhere the profit is
close to the maximum possible profit. Denote P,,q. as the maximum expected profit
and (1 — €)Pyq. as the lowest expected profit that the extractor will accept for some
tolerance €. We also assume that the extractors will take the optimal path away from
their extraction point to the boundary of the region.

The pristine region is determined using the following algorithm:

1. Find the equal profit contour corresponding to (1 — €)Pyuqaz- The extractors
will extract only within this high-profit region.

2. Pick points inside the high-profit region uniformly at random, and calculate
the optimal path from that point to the boundary of the region. The optimal
path can be found easily by solving the gradient descent equation
(1.4) &~ Ve Ba)),
where £(0) = Zp and C(&; B(%Z)) is the cost function which was calculated
using the benefit level B(Zp). If we advance this equation until C(Z(t);
B(#y)) = 0, then Z(t) represents the minimal cost path from Zy to the exterior
of the protected region.
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3. The nonpristine region includes the high-profit region and all points within
some (small) distance of one of the optimal paths found in the previous step.
The rest of the region is pristine and is not traversed by extractors.

4.5. Metrics for measuring patrol effectiveness. To measure the effective-
ness of a given patrol strategy 1, we use two metrics, although others could be used.
A simple measure, as used in Albers [1], is to calculate the proportion of the protected
area that is pristine, using

Jo x(z,y) dzdy
Jo dzdy

where x(z,y) is an indicator function which is 1 in the pristine region and 0 in the
nonpristine region.

Some parts of the protected region may be more valuable to protect than other
regions, and we could instead choose to measure the proportion of the net value
protected using the integral

Pristine Proportion =

Jo Bz, y)x(z,y) dzdy
JoBz,y)dedy

where x is defined as previously. In place of the benefit function, other functions
could be used that measure the relative importance of protecting certain areas.

Proportion of Value Protected =

4.6. Equivalence of this model and [1]. Although our model is more sophis-
ticated than that given in [1], it does give the same profit function in some simple
symmetric cases. Consider an instance of the model in [1] with a circular forest of
radius 1, a uniform patrol strategy with patrol budget 1 (so ¢y = 1/7), a benefit
function B(d) = 2d, and a cost function C(d) = d. Note that choosing C(d) = d in
[1] is equivalent to specifying the walking speed to be 1 in our model.

To evaluate the profit function for the model given in [1], we first find the capture
probability associated with extracting at depth d as ¥(d) = fodw(r)dr = d/m, and
then the profit function (2.2) becomes

2
(4.5) P(d):(l—d>2d—d:d—2d.
™ ™

We arrive at the same result using our model. The protected region is the unit
circle centered at the origin, so in our model, we will have ¢g(z) = 1 — |z|. For = in
the unit circle, set B(z) = 2(1 — |z|) since 1 — |z| is the distance to the bounadary,
which is equivalent to d in [1]. Further, the walking speed is constant v = 1 and we
set the risk aversion factor o = 1 (a parameter with no explicit counterpart in the
Albers model). Fix zo in the unit circle. Note that [V¢| = 1 almost everywhere and
the normal velocity (14 2(1 — |zo|)/7) " in (4.1) is constant with respect to . Thus
the solution to (4.1) is given by

t
(4.6) P(x,t) =1—|zf - 13 20wl

T

Recall that the cost C(xg) associated with extracting at the point x¢ is given implicitly
by ¢(zg,C(x0)) = 0. Solving this equation, we have

(4.7) C(zo) = (1 — |zol) (1 n 2(1—7T|$0|)>
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and the profit P(z¢) = B(xo) — C(xp) is given by
2(1 - |$0)>

™

(4.8) P(ao) = (1 [zo]) <1 -

Note that this profit function is radially symmetric and that for any xy at depth d,
we have P(zg) = d(1 — %) exactly as in (4.5).

In general, with arbitrary benefit function B(d), linear cost function C(d) = cd,
and homogeneous patrol density ¢ (d) = p, Albers [1] gives

(4.9) P(d) = (1 — pd)B(d) — cd,

while our proposed model gives (with speed set to v = 1/c and a = 1)

(4.10) C(d) = d(c +pB(d)),
and so
(4.11) P(d) = B(d) — c¢d — pdB(d) = (1 — pd)B(d) — cd.

The two models agree even if the patrol density is piecewise constant and radially
symmetric. If the cost function and/or patrol density are more complicated, then ¢
will not be constant, and the PDE solution will be more complicated. Our approach
to calculating the cost and benefit functions is therefore equivalent to the approach
given by Albers [1] in simple scenarios but is capable of modeling much more general
cases.

4.7. Numerical implementation. We briefly discuss the numerical implemen-
tation of our model. Numerical solutions to Hamilton—Jacobi equations have been
well-studied for several years. Recent approaches overcome the curse of dimensional-
ity by using Hopf-Lax formulations and optimization [3], but since we are concerned
with two spatial dimensions, grid-based finite difference methods are sufficient. Recall
that a Hamilton—Jacobi equation is an equation of the form ¢+ H (z, V¢) = 0. Due to
the nonlinear dependence on V¢, we cannot use basic differencing methods since they
may lead to instabilities or fail to revolve the viscosity solution to the equation [4].
Rather, in order to minimize oscillation and track the direction in which information
is traveling, we replace the Hamiltonian H(z,y, ¢, ¢,) with a numerical Hamiltonian
H(z,y, T, 63, 559y ), where ¢ ¢ are the forward and backward difference ap-
proximations to ¢, respectively, and similarly for ¢j, ¢, - There are many different
acceptable numerical Hamiltonians [19]. We use the Godunov Hamiltonian given by

4.12 H Ty, ¢, 0 o dT) = ext ext H(z,y,u,v),
x> Prs Py Py
u€l(9z ,¢%) vel(dy dy)

where
(4.13) I(a,b) = [min(a, b), max(a, b)]
and
(4 14) ext _ minagng if a S b,

' zel(a,b) maxXp<z<q if @ > b.

Performing the minimization or maximization can be difficult if the Hamiltonian is
complicated, but in simple cases, they can be resolved explicitly. In our case, the
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Hamiltonian is H(z, y, ¢z, ¢y) = 0(x,y) |V¢|, where the velocity function ¥ is positive.
When the intervals I(¢, ,¢;}) and I(¢,, ¢, ) do not include 0, this Hamiltonian is
monotone in each of ¢, and ¢, on the rectangle I(¢, ) x (¢, , qsz) and the extrema
in (4.12) must occur at the corners of the rectangle. If these intervals do contain 0,
some adjustment is necessary, but one can still explicitly resolve the extrema and find
that

(4.15)
H(e,y. 65, 67,07 6y) = (. y)y/max{(6:)3 (64)2 } + max{(6)2. (62},

where (A)4 = max(A,0) and (A)_ = min(A,0). The Godunov Hamiltonian H gives
a first-order approximation to the Hamiltonian H. Following Osher and Shu [19], we
approximate the derivatives ¢, ¢, at second order and we use second-order total
variation diminishing Runge-Kutta time stepping to evolve the solution. In doing
so, we have constructed a second-order accurate essentially nonoscillatory scheme
for (4.1).

There is an implementation issue which is worth mentioning. Note that the initial
function ¢(z,0) can be taken to be precisely the signed distance from x to the initial
contour:

L _ [ infyer|z—y|, «insideT,
(4.16) ¢(@,0) = dist(2,T) = {— infyer |z —y[, = outside I.

This is desirable since the distance function has gradient of norm 1 almost ev-
erywhere and thus if we can preserve this property (that is, if we can ensure that
¢(x,t) is the signed distance to T'(¢) for all ¢ > 0) we will observe the exact level set
motion that we want. However, as the level sets evolve, there is some distortion so
that numerically for ¢ > 0, we no longer have ¢(x,t) = dist(x,I'(¢)). If |V¢| becomes
too small, it is difficult to resolve the level sets accurately, and if |V¢| becomes to
large, we are required to choose exceedingly fine time discretization or else the nu-
merical solution may develop instabilities. We can prevent these from happening by
occasionally replacing ¢ with the signed distance function to T'(¢). That is, every
so often, we halt the time integration, find the current zero level contour I'(t), reset
o(x,t) = dist(x,T'(t)), and continue. This process is known as redistancing and is
discussed by Lee et al. [15].

In addition to the level set equations, we must also solve the gradient descent
equation (4.4) and evaluate the patrol effectiveness metrics from subsection 4.5. We
solve the gradient descent equation using a stiff ordinary differential solver (odel5s
in MATLAB) to find the paths from the protected region to the boundary of the
protected region. The pristine proportion metric measures the proportion of the
protected region which is pristine. The pristine region and the protected region are
defined by polygons in our numerical formulation, and we use a built-in function
provided by MATLAB to find the areas of these polygons. To calculate the proportion
of the value protected requires the integrals in (4.4) to be explicitly calculated and
again a MATLAB built-in function suffices.

5. Results. We present results for our algorithm applied to two real-world loca-
tions: Yosemite National Park in California and Kangaroo Island in South Australia.
Yosemite National Park is a mountainous area with steep mountains and long valleys.
Kangaroo Island has an interesting shape, with a narrow neck separating the main
part of the island from a smaller part at the eastern end. For both locations we use
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(a) Yosemite National Park. (b) Kangaroo Island.

F1G. 6. Elevation profiles for Yosemite National Park and Kangaroo Island. Yellow corresponds
to higher elevation, blue to lower elevation (scales different in each figure).

real elevation data, sourced from the United States Geographical Survey (Yosemite
National Park data) and the Foundation Spatial Data Framework (Kangaroo Island
data). The elevation profiles for Yosemite National Park and Kangaroo Island are
displayed in Figure 6. The data was processed using QGIS [26] and imported to
MATLAB using TopoToolbox [21, 22]. We apply several patrol strategies identified
by Albers [1] and Johnson, Fang, and Tambe [10] before suggesting some simple and
more effective patrols that account for the geometry of the regions.

5.1. Yosemite National Park without patrols. We first consider the case
without any patrols, so the cost function depends only on the effort required to travel
from the extraction point to the boundary of the park. In Figure 7, we present results
for two cases with different benefit functions. Both benefit functions have the same
form, a quadratic increase from 0 at the boundary to a maximum value at the point
furthest from the boundary, but Figure 7(b) has maximum benefit double that in
Figure 7(a). The lower-benefit case has a larger pristine area and smaller high-profit
region. In the high-benefit case, there is enough incentive for extractors to expend
more effort and extract from more locations within the protected region, obtaining
much higher profits (although not doubled). A selection of the optimal paths from
extraction points to the boundary of the protected region are also shown. In the
sections that follow, we will use & = 8, the high-benefit case.

5.2. Homogeneous patrols. In Figure 8 we consider the simplest nonzero pa-
trol strategy, a homogeneous patrol in which the entire protected area is patrolled with
equal intensity. Two cases are shown, both with the high-benefit case k = 8 from the
previous section, but with different patrol budgets E. The patrol strategy is simply
1 = E/A, where FE is the budget and A is the area of the protected region. We spec-
ify @ = 1 as the risk-aversion parameter, as this choice gives agreement between our
model and that of Albers [1] in simple symmetric case (discussed in subsection 4.6).
As expected, when the patrol budget increases the pristine proportion increases and
the maximum profit obtained by the extractor decreases.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/19 to 128.97.27.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LEVEL SET METHOD FOR ENVIRONMENTAL CRIME MODELING 815

(a) k = 4, 24 paths out of the total 192 (b) k =8, 37 paths out of the total of 294
are shown. Maximum profit is 7.06 x 10* are shown. Maximum profit is 1.65 x 10°
and pristine proportion is 0.867. and pristine proportion is 0.784.

Fi1c. 7. Two cases for Yosemite National Park with no patrols, benefit based on distance from
boundary d as B(d) = kd(2dm — d)/dm (where dm = maxqd) and k = 4 in (a) and 8 in (b).
Dark gray denotes the high-profit region where extraction occurs, and light gray shows the envelope
of paths the extractors follow when exiting the protected region. Some of the individual paths are
shown for illustrative purposes.

(a) E = 3 x 10*, 26 paths out of the to- (b) E = 6 x 10*, 23 paths out of the to-
tal of 205 are shown. Maximum profit is tal of 179 are shown. Maximum profit is
1.27%10° and pristine proportion is 0.809. 9.86x10* and pristine proportion is 0.841.

Fic. 8. Two cases for Yosemite National Park with homogeneous patrols, benefit based on
distance from boundary d as B(d) = kd(2dm —d)/dm (where dm = maxq d and k = 8) and different
budgets E =3 x 10* in (a) and E = 6 x 10* in (b).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/19 to 128.97.27.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

816 ARNOLD ET AL.

In Figure 8, doubling the patrol budget decreases the maximum profit obtained
by extractors by roughly 22%, increases the pristine proportion by roughly 4%, and
increases the proportion of benefit protected by roughly 8.6%. These are clear im-
provements, but one perhaps would expect more change upon doubling the patrol
density. Johnson, Fang, and Tambe [10] claimed that the homogeneous patrol was
not optimal, and this agrees with our intuition that some areas of the protected region
will never be penetrated by extractors, so there is no need to patrol there.

5.3. Band patrols. Johnson, Fang, and Tambe [10] identified the band patrol as
the optimal strategy in symmetric circular protected regions. In the circular case, the
band patrol is a band between two distances from the boundary, 0 < d, < d; < dj,
where d,,, is the maximum distance from the boundary, with highest patrol density
at the outer extent d,, and decreasing density moving toward the innermost extent of
the band d;. In the general case, we set up a band patrol by patrolling between 0.3d,,
and 0.7d,, from the boundary. Figure 9 shows the patrol strategy and the results of
our algorithm. We did not implement the algorithm presented by Johnson, Fang, and
Tambe [10] to find the optimal band patrol, instead testing a number of band patrols
and choosing the one that gave the best results.

The patrol budget in Figure 9(b) is 3 x 10%, the same as for the homogeneous
patrol in Figure 8(a), but the outcome is significantly better for the patrollers. The
homogeneous patrol had a pristine proportion 0.809 and was able to protect 76.9%
of the total benefit, whereas the band patrol has a pristine proportion of 0.901 and
protects 86% of the total benefit. The optimal band patrol of Johnson, Fang, and
Tambe [10] has the property that extractors do not enter the patrolled region, which

(a) The patrol strategy. Yellow corre- (b) The maximum profit is 1.25 x 10° and
sponds to more intense patrolling, blue to the pristine proportion is 0.901.
no patrolling.

F1G. 9. A band patrol in Yosemite National Park. The patrol is based on distance from boundary
d and decreases linearly from d = 0.3 to d = 0.7, and is zero elsewhere. The benefit is B(d) =
kd(2dm, — d)/dm (where dm = maxq d and k = 8) and the budget E = 3 x 10%.
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ours does not. Despite this, it is still superior to the the homogeneous patrol (even
the homogeneous patrol with twice the budget!) and the other band patrols tested.

5.4. Asymmetric patrols. The patrol strategies employed above were identi-
fied by Albers [1] and are radially symmetric with respect to the geometry of Yosemite
National Park. That is, these strategies depended only on the depth d of the point
(z,y): ¥(z,y) = ¥*(d). Our method does not require patrols to be radially sym-
metric, and we here present an asymmetric patrol that outperforms the symmetric
patrols discussed previously. Observing the results of the other patrols, it seems that
extractors prefer to enter and leave the park at certain portions of the boundary:
the portions which are most concave. This is intuitive, as entering at those areas will
ensure less travel distance to reach the center. In response, we can design strategies to
preferentially patrol those regions through which extractors are more likely to enter.
Figure 10 shows just such a patrol strategy.

Exploiting the geometry of the park, rather than patrolling in a depth-dependent
way, the pristine proportion is increased to 0.92 and 90.7% of the benefit is protected.
These results are better than the band or homogeneous patrols with the same budget
and could likely be improved upon even further by finding even more specialized
strategies. This result shows the critical importance of the geometry of the protected
region. To a very rough approximation Yosemite is fairly circular, but the relatively
small-scale concavities are very important in understanding the behavior of extractors.

5.5. Kangaroo island. We now apply our method to Kangaroo Island, a small
island off the southern coast of Australia. We present two patrol strategies (a ho-
mogeneous patrol and a custom-designed patrol) which once again emphasize the

(a) The patrol strategy. Yellow corre- (b) The maximum profit is 1.52 x 10° and
sponds to more intense patrolling, blue to the pristine proportion is 0.920.
no patrolling.

Fi1c. 10. A custom patrol in Yosemite National Park which is designed to patrol the concavities
in the boundary of the park. The benefit is B(d) = kd(2dym —d)/dm (where dy, = maxq d and k = 8)
and the budget E = 3 x 10%.
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(a) E = 3 x 10*, 44 paths out of the to- (b) E = 6 x 10*, 58 paths out of the to-
tal of 431 are shown. Maximum profit is tal of 579 are shown. Maximum profit is
1.34x10° and pristine proportion is 0.349. 1.15x10° and pristine proportion is 0.305.

Fi1c. 11. Two cases for Kangaroo Island with homogeneous patrols, benefit based on distance
from boundary d as B(d) = kd(2dm — d)/dm (where dm = maxq d and k = 8) and different budgets
E =3x10* in (a) and E =6 x 10* in (b).

importance of accounting for the geometry of the protected area. Kangaroo Island is
fairly long and narrow with a portion at the eastern end connected to the rest of the
island by a small neck.

Figure 11 shows results of homogeneous patrols applied to Kangaroo Island. In
this case, we observe that, somewhat counterintuitively, the increased patrol budget
results in a smaller pristine area proportion. The reason for this is that increasing
the patrol budget decreases the profit function but causes the high-profit area to
spread out. That is, with increased patrol the surface profile of the profit function
will look more like a plateau which has a smaller maximum than in the low-budget
case but has a larger near-maximal area. Although the pristine region is smaller, the
maximum profit obtained by the extractors is much lower, decreasing from 1.34 x 10°
to 1.15 x 10, so the patrol does have a significant effect on the extractors. We also
observe that a large portion of the nonpristine area comprises the paths leaving the
region as opposed to the high-profit region itself. This should inform our decision
regarding how to more effectively patrol the region. In any radially symmetric patrol,
the high-profit region will also be radially symmetric, meaning that it will likely
occupy the middle of the island and the paths will cover a very large area as they
enter and exit from the north and the south side of the island. If we can force the
high-profit region out of the middle of the island, then the paths will instead travel
throughout the east and west portions of the island, hopefully occupying a smaller
area. Another key geographic feature of the island is the peninsula at the eastern tip
of the island. The peninsula is connected to the island by an isthmus thin enough
that, for our purposes, the peninsula can almost be considered an independent region.
Extractors will likely be uninterested by the peninsular region since it has much less
depth and thus offers much less benefit than the main body of the island. Hence any
patrol in that region is likely wasted effort.

With the homogeneous results in mind, Figure 12 shows the results of a more
effective patrol, where the middle of the island is patrolled uniformly and the eastern
and western ends are not patrolled. This patrol was able to increase the pristine
area proportion to 0.875 compared to the homogeneous patrol, which gave 0.349 with
the same budget. Again, designing this patrol required some simple observations
regarding the geometry of the region and once again shows the importance of explicitly
incorporating geographical information into the model.

6. Conclusion. Modeling of environmental crime in protected regions has been

the subject of previous research, most of which has been focused on discrete network-
based methods. Attempts at modeling environmental crime in continuous settings
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CPpoc &-

(a) The patrol strategy. Yellow corre- ) The maximum profit is 1.54 x 10° and
sponds to more intense patrolling, blue to the pristine proportion is 0.875.
no patrolling.

Fia. 12. A custom patrol in Kangaroo Island which is designed to push the high profit region
away from the center of the island. The benefit is B(d) = kd(2dm — d)/dm (where dy, = maxq d
and k = 8) and the budget E = 3 x 10%.

have required restrictive assumptions of symmetry and are applicable only to regions
with very simple geometries. In this paper we have formulated a generalized version of
the model of Albers [1] which can account for regions of arbitrary geometry, does not
require any assumptions of symmetry, and can incorporate topographical features. In
doing so, we have unified environmental crime modeling and continuum, PDE models
for tracking human movement.

The level set method of Osher and Sethian [18] allows us to perform calculations
in regions with complicated geometry. Using the level set method, we track the move-
ment of environmental criminals (extractors) by treating them as a front propagating
from the boundary of the protected region toward its center while accounting for
changes in travel velocity due to elevation. The level set method is very powerful
and is suitable for many more applications involving movement through regions with
complicated geometry.

Working with arbitrary geometries increases the complexity of the model. Ac-
cordingly, we have proposed a novel method for incorporating patrol strategy into the
calculation of cost to the extractors and suggested an efficient algorithm for resolving
the cost function while performing relatively few level set computations. Further,
we have redefined the pristine area by considering an extraction area (an area of
near-maximal profit to extractors) as well as paths that extractors will traverse when
leaving the region. This is a necessary deviation from the Albers [1] model that arises
due to the different topology of the point(s) that maximize the extractors’ profit.

We have applied our model to two different regions: Yosemite National Park in
California and Kangaroo Island in South Australia. In doing so, we tested several
different patrol strategies, including some proposed by Albers [1] and by Johnson,
Fang, and Tambe [10]. Then, making some basic observations regarding the geometry
of each region, we designed asymmetric patrols which protected the regions more
effectively that any of those previously suggested. The success of these asymmetric
patrols shows the importance of explicitly treating the geometry. We expect that even
more effective patrol strategies exist, and determining them is a potential avenue for
further research.

The model presented here could be extended and modified in many ways. For
example, the velocity function could be made to depend on ground cover (i.e., higher
speeds on open plains and lower speeds in heavy scrub) or other effects such as lakes
or paths. Likewise, the benefit and cost functions could be calculated differently
depending on the situation. In the proposed model, the cost of traveling to the
extraction point is not considered, only the trip out of the region after the crime
has been committed. This follows Albers [1], who neglected the cost of the inbound
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trip. Adding the extra cost of the inbound trip would be a minor modification of the
algorithm as presented. We have only considered benefit functions that depend on
distance from the boundary, which is likely not realistic. The proposed model can be
evaluated with any benefit function (continuity is not necessary); however, defining a
realistic and accurate benefit function for a given national park would require input
from agencies involved in managing the park.

We have defined patrol strategies as density functions, but these do not correspond
to patrol routes that would be followed. Determining specific patrol routes that give
the desired patrol density is a task requiring significant work. Fang et al. [7] used a
discrete model to find explicit patrol routes but in our continuous setting the problem
is very complicated. Another opportunity for further research is studying the effects
of time-dependent benefit functions. We have used a constant benefit function but
in some situations this may not be appropriate. For example, considering animal
poaching, one might wish to account for the movement of animals over time. This
would require significant modification to the model we have presented.
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