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Maximal immediate extensions of valued differential fields

Matthias Aschenbrenner, Lou van den Dries and Joris van der Hoeven

Abstract

We show that every valued differential field has an immediate strict extension that is spherically
complete. We also discuss the issue of uniqueness up to isomorphism of such an extension.

Introduction

In this paper a valued differential field is a valued field K of equicharacteristic zero, equipped
with a derivation ∂ : K → K that is continuous with respect to the valuation topology on the
field. (The difference with [1, 2] is that there the definition did not include the continuity
requirement.)

Let K be a valued differential field. Unless specified otherwise, ∂ is the derivation of K,
and we let v : K× = K \ {0} → Γ = v(K×) be the valuation, with valuation ring O = Ov and
maximal ideal O = Ov of O; we use the subscript K, as in ∂K , vK , ΓK , OK , OK , if we wish to
indicate the dependence of ∂, v, Γ, O, O on K. We denote the residue field O/O of K by res(K).
When the ambient K is clear from the context we often write a′ instead of ∂(a) for a ∈ K, and
set a† := a′/a for a ∈ K×.

By [2, Section 4.4], the continuity requirement on ∂ amounts to the existence of a φ ∈ K×

such that ∂O ⊆ φO; the derivation of K is said to be small if this holds for φ = 1, that is,
∂O ⊆ O. By an extension of K we mean a valued differential field extension of K. Let L be an
extension of K. We identify Γ in the usual way with an ordered subgroup of ΓL and res(K)
with a subfield of res(L), and we say that L is an immediate extension of K if Γ = ΓL and
res(K) = res(L). We call the extension L of K strict if for every φ ∈ K×,

∂O ⊆ φO ⇒ ∂LOL ⊆ φOL, ∂O ⊆ φO ⇒ ∂LOL ⊆ φOL.

With these conventions in place, our goal is to establish the following:

Theorem. Every valued differential field has an immediate strict extension that is
spherically complete.

We consider this as a differential analogue of Krull’s well-known theorem in [5, § 13] that
every valued field has a spherically complete immediate valued field extension. (Recall that
for a valued field the geometric condition of spherical completeness is equivalent to the
algebraic condition of being maximal in the sense of not having a proper immediate valued
field extension.) In our situation, strictness is analogous to the extended derivation ‘preserving
the norm’. Weakening the theorem by dropping ‘strict’ would still require strictness at various
places in the proof, for example when using Lemma 4.5 and in coarsening arguments at the
end of Section 6.

Throughout this paper K is a valued differential field. For the sake of brevity we say that K
has the Krull property if K has a spherically complete immediate strict extension. Let us first
consider two trivial cases:
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Case Γ = {0}. Then K itself is a spherically complete immediate strict extension of K, and
thus K has the Krull property.

Case ∂ = 0. Take a spherically complete immediate valued field extension L of the valued
field K. Then L with the trivial derivation is a spherically complete immediate strict extension
of K, so K has the Krull property.

Thus towards proving our main theorem we can assume Γ �= {0} and ∂ �= 0 when convenient.
We shall freely use facts (with detailed references) from Sections 3.4, 4.1, 4.2, 4.3, 4.4, 4.5, 5.7,
6.1, 6.2, 6.3, 6.5, 6.6, 6.9, 9.1, 9.2, 10.5, and 11.1 in [2].

Special cases of the main theorem are in [2]: By [2, Corollary 6.9.5], if K has small derivation
and ∂O � O, then K has a spherically complete immediate extension with small derivation; in
[2, Corollary 11.4.10] we obtained spherically complete immediate extensions of certain
asymptotic fields. What is new compared to the proofs of these special cases? Mainly the
notion of strict extension, the invariant convex subgroup S(∂) of Γ, the flexibility condition
on K, and the lemmas about these (related) concepts; see Sections 1, 3, 4, 6. We also generalize
in Section 2 the notion of Newton degree from [2, 11.1, 11.2] to our setting. This gives us the
tools to adapt in Section 5 the proofs of these special cases to deriving our main theorem for K
such that Γ> has no least element and S(∂) = {0}. Section 6 shows how that case extends to
arbitrary K using coarsening by S(∂).

We give special attention to asymptotic fields, a special kind of valued differential field
introduced in [2, Section 9.1]: K is asymptotic if for all nonzero f, g ∈ O,

f ∈ gO ⇐⇒ f ′ ∈ g′O.

For us, H-fields are asymptotic fields of particular interest, see [2, Section 10.5]: An H-field
is an ordered valued differential field K whose valuation ring O is convex and such that, with
C = {f ∈ K : f ′ = 0} denoting the constant field of K, we have O = C + O, and for all f ∈ K,
f > C ⇒ f ′ > 0. Hardy fields extending R are H-fields. Our theorem answers some questions
about Hardy fields and H-fields that have been around for some time. For example, it gives
the following positive answer to Question 2 in Matusinski [6]. (However, in [6] the notion of
H-field is construed too narrowly.) See also the remarks at the end of Section 3.

Corollary. Each H-field has an immediate spherically complete H-field extension.

(Here strictness of the extension is automatic by Lemma 1.11 below.) This corollary follows
from our main theorem in conjunction with the following: Any immediate strict extension of
an asymptotic field is again asymptotic by Lemma 1.12 below; and any immediate asymptotic
extension L of an H-field K has a unique field ordering extending that of K in which OL is
convex; equipped with this ordering, L is an H-field by [2, Lemma 10.5.8].

Uniqueness

By Kaplansky [4], a valued field F of equicharacteristic zero has up to isomorphism over F
a unique spherically complete immediate valued field extension. In Section 7 we prove such
uniqueness in the setting of valued differential fields, but only when the valuation is discrete.
We also discuss there a conjecture from [2] about this, and recent progress on it.

In Section 8 we give an example of an H-field where such uniqueness fails. Here we use some
basic facts related to transseries from Sections 10.4, 10.5, 13.9, and Appendix A in [2].

Notations and conventions

We borrow these notational conventions from [2]. For the reader’s convenience we repeat what
is most needed in this paper. We set N := {0, 1, 2, . . . } and let m, n range over N.
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A valuation (tacitly, on a field) takes values in an ordered (additively written) abelian
group Γ, where ‘ordered’ here means ‘totally ordered’, and for such Γ,

Γ< := {γ ∈ Γ : γ < 0}, Γ� := {γ ∈ Γ : γ � 0},
and likewise we define the subsets Γ>, Γ�, and Γ�= := Γ \ {0} of Γ. For α, β ∈ Γ, α = o(β)
means that n|α| < |β| for all n � 1.

For a field E we set E× := E \ {0}. Let E be a valued field with valuation v : E× → ΓE =
v(E×), valuation ring OE and maximal ideal OE of OE . When the ambient valued field E is
clear from the context, then for a, b ∈ E we set

a � b :⇔ va = vb, a � b :⇔ va � vb, a ≺ b :⇔ va > vb,

a � b :⇔ b � a, a � b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.

It is easy to check that if a ∼ b, then a, b �= 0, and that ∼ is an equivalence relation on E×;
let a∼ be the equivalence class of an element a ∈ E× with respect to ∼. We use pc-sequence to
abbreviate pseudocauchy sequence; see [2, Sections 2.2, 3.2]. Let also a valued field extension F
of E be given. Then we identify in the usual way res(E) with a subfield of res(F ), and ΓE with
an ordered subgroup of ΓF .

Next, let E be a differential field of characteristic zero (so the field E is equipped with a single
derivation ∂ : E → E, as in [2]). Then we have the differential ring E{Y } = E[Y, Y ′, Y ′′, . . . ]
of differential polynomials in an indeterminate Y , and we set E{Y }�= := E{Y } \ {0}. Let
P = P (Y ) ∈ E{Y } have order at most r ∈ N, that is, P ∈ E[Y, Y ′, . . . , Y (r)]. Then
P =

∑
i PiY

i, as in [2, Section 4.2], with i ranging over tuples (i0, . . . , ir) ∈ N1+r,
Y i := Y i0(Y ′)i1 · · · (Y (r))ir , and the coefficients Pi are in E, and Pi �= 0 for only finitely many
i. For such i we set

|i| := i0 + i1 + · · · + ir, ‖i‖ := i1 + 2i2 + · · · + rir.

The degree and the weight of P �= 0 are, respectively,

degP := max
{|i| : Pi �= 0

} ∈ N, wtP := max
{‖i‖ : Pi �= 0

} ∈ N.

For d ∈ N, we let Pd :=
∑

|i|=d PiY
i be the homogeneous part of degree d of P , so P =

∑
d∈N Pd

where Pd = 0 for all but finitely many d ∈ N. We also use the decomposition P =
∑

σ P[σ]Y
[σ];

here σ ranges over words σ = σ1 · · ·σd ∈ {0, . . . , r}∗, Y [σ] := Y (σ1) · · ·Y (σd), all P[σ] ∈ E and
P[σ] �= 0 for only finitely many σ, and P[σ] = P[π(σ)] for all σ = σ1 · · ·σd and permutations π
of {1, . . . , d}, with π(σ) = σπ(1) · · ·σπ(d). We set ‖σ‖ := σ1 + · · · + σd for σ = σ1 · · ·σd, so
‖i‖ = ‖σ‖ whenever Y i = Y [σ]. We also use for a ∈ E the additive conjugate
P+a := P (a + Y ) ∈ E{Y } and the multiplicative conjugate P×a := P (aY ) ∈ E{Y }. If P /∈ E,
the complexity of P is the triple (r, s, t) ∈ N3 where r is the order of P , s is the degree of P
in Y (r), and t is the total degree of P (so s, t � 1). For the purpose of comparing complexities
of differential polynomials we order N3 lexicographically. Thus for P,Q ∈ E{Y } \ E, the
complexity of P and the complexity of Q are less than the complexity of PQ.

For a valued differential field K we construe the differential fraction field K〈Y 〉 of K{Y } as a
valued differential field extension of K by extending v : K× → Γ to the valuation K〈Y 〉× → Γ
by requiring vP = min vPi for P ∈ K{Y }�=.

1. Preliminaries

We recall some basics about valued differential fields, mainly from Section 4.4 and Chapter 6 of
[2], and add further material on compositional conjugation, strict extensions, the set Γ(∂) ⊆ Γ,
the convex subgroup S(∂) of Γ, and coarsening. We finish this preliminary section with facts
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about the dominant degree of a differential polynomial as needed in the next section. In this
section φ ranges over K×.

Compositional conjugation

The compositional conjugate Kφ of K is the valued differential field that has the same
underlying valued field as K, but with derivation φ−1∂. Let L be an extension of K. Then Lφ

extends Kφ, and

L strictly extends K ⇐⇒ Lφ strictly extends Kφ.

Therefore, K has the Krull property if and only if Kφ has the Krull property: L is a spherically
complete immediate strict extension of K if and only if Lφ is a spherically complete immediate
strict extension of Kφ. Moreover,

∂O ⊆ φO ⇐⇒ the derivation φ−1∂ of Kφ is small.

Thus for the purpose of showing that K has the Krull property it suffices to deal with the case
that its derivation ∂ is small.

Strict extensions

Suppose that ∂ is small. Then ∂O ⊆ O by [2, Lemma 4.4.2], so ∂ induces a derivation

a + O �→ (a + O)′ := a′ + O

on the residue field res(K); the residue field of K with this derivation is called the differential
residue field of K and is denoted by res(K) as well. Note that the derivation of res(K) is trivial
if and only if ∂O ⊆ O.

The field C((t)) of Laurent series with derivation ∂ = d/dt and the usual valuation, where
O = C[[t]] and O = tC[[t]], is a valued differential field, since ∂O = O = t−1O. It is an example of
a valued differential field with ∂O ⊆ O, but ∂O � O. On the other hand, under a mild assumption
on Γ we do have ∂O ⊆ O ⇒ ∂O ⊆ O:

Lemma 1.1. Suppose ∂O ⊆ O and Γ> has no least element. Then ∂O ⊆ O.

Proof. For f ∈ O we have f = gh with g, h ∈ O, so f ′ = g′h + gh′ ∈ O. �

Lemma 1.2. Suppose ∂O ⊆ O and ∂O � O. Then for all φ: ∂O ⊆ φO ⇔ φ � 1.

Proof. From ∂O ⊆ φO, we get φ−1∂O ⊆ O, so the derivation φ−1∂ is small, and
thus φ−1∂O ⊆ O, hence ∂O ⊆ φO, which in view of ∂O � O gives φ � 1. For the converse,
note that if φ � 1, then O ⊆ φO. �

This leads easily to:

Lemma 1.3. Suppose that ∂ is small and the extension L of K has small derivation. Then
the differential residue field res(L) of L is an extension of the differential residue field res(K)
of K. If in addition ∂O � O, then L is a strict extension of K.

Lemma 1.4. Let L be an algebraic extension of K. Then L strictly extends K.

Proof. [2, Proposition 6.2.1] says that if the derivation of K is small, then so is the derivation
of L. Now, if ∂O ⊆ φO, then φ−1∂ is small, hence φ−1∂L is small, and thus ∂LOL ⊆ φOL. Next,
assume ∂O ⊆ φO. Then φ−1∂ is small and induces the trivial derivation on res(K). Hence φ−1∂L
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is small, and the derivation it induces on res(L) extends the trivial derivation on res(K), so is
itself trivial, as res(L) is algebraic over res(K). Thus φ−1∂LOL ⊆ OL, that is, ∂LOL ⊆ φOL. �

In this lemma the derivation of L is assumed to be continuous for the valuation topology,
because of the meaning we assigned to extension of K and to valued differential field. In the
proof of the lemma we used [2, Proposition 6.2.1], but that proposition does not assume this
continuity. Thus if we drop the implicit assumption that the derivation of L is continuous, then
Lemma 1.4 goes through, with the continuity of this derivation as a consequence.

For immediate extensions, strictness reduces to a simpler condition:

Lemma 1.5. Let L be an immediate extension of K such that for all φ, if ∂O ⊆ φO, then
∂LOL ⊆ φOL. Then L is a strict extension of K.

Proof. Suppose ∂O ⊆ φO. Given f ∈ OL we have f = g(1 + ε) with g ∈ O and ε ∈ OL, hence
f ′ = g′(1 + ε) + gε′ ∈ φOL. �

The following related fact will also be useful:

Lemma 1.6. Suppose that ∂ is small and L is an immediate extension of K such that
∂LOL ⊆ OL. Then ∂L is small.

Proof. If a ∈ OL, then a = b(1 + ε) with b ∈ O, ε ∈ OL, so a′ = b′(1 + ε) + bε′ ∈ OL. �

Let us record the following observations on extensions M ⊇ L ⊇ K.

(1) If M ⊇ K is strict, then L ⊇ K is strict.
(2) If M ⊇ L and L ⊇ K are strict, then so is M ⊇ K.
(3) If L is an elementary extension of K, then L ⊇ K is strict.
(4) Any divergent pc-sequence in K pseudoconverges in some strict extension of K; this is

an easy consequence of (3), (cf. [2, Remark after Lemma 2.2.5]).

The set Γ(∂)

Note that if a, b ∈ K×, a � b, and O ⊆ aO, then O ⊆ bO. The set Γ(∂) ⊆ Γ, denoted also by ΓK(∂)
if we need to specify K, is defined as follows:

Γ(∂) := {vφ : ∂O ⊆ φO}.
This is a nonempty downward closed subset of Γ, with an upper bound in Γ if ∂ �= 0. Moreover,
Γ(∂) < v(∂O). Lemma 1.2 has a reformulation:

Corollary 1.7. If ∂O ⊆ O and ∂O � O, then Γ(∂) = Γ�.

Lemma 1.8. If vφ ∈ Γ(∂) is not maximal in Γ(∂), then ∂O ⊆ φO.

Proof. Let a ∈ K× be such that vφ < va ∈ Γ(∂). Then a−1∂ is small, so a−1∂O ⊆ O, and
thus ∂O ⊆ aO ⊆ φO. �

Corollary 1.9. Suppose that ΓK(∂) has no largest element, L extends K, and for all φ, if
∂O ⊆ φO, then ∂LOL ⊆ φOL. Then L strictly extends K.

Proof. If vφ ∈ ΓK(∂), then vφ ∈ ΓL(∂), but vφ is not maximal in ΓL(∂), and thus ∂OL ⊆ φOL
by Lemma 1.8. �
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Lemma 1.10. If L strictly extends K with ΓL = Γ, then ΓL(∂) = ΓK(∂).

The case of asymptotic fields

In this subsection we assume familiarity with Sections 6.5, 9.1, and the early parts of Section 9.2
in [2]. Recall that K is said to be asymptotic if for all f, g ∈ K with 0 �= f, g ≺ 1 we have
f ≺ g ⇐⇒ f ′ ≺ g′. In that case we put Ψ :=

{
v(f†) : f ∈ K×, f �� 1

} ⊆ Γ; if we need to
make the dependence on K explicit we denote Ψ by ΨK . We recall from [2, Section 9.1] that
then Ψ < v(f ′) for all f ∈ O. An asymptotic field K is said to be grounded if Ψ has a largest
element, and ungrounded otherwise.

Lemma 1.11. Suppose that K and L are asymptotic fields, and L is an immediate extension
of K. Then L is a strict extension of K.

Proof. Assume ∂O ⊆ O; we show that ∂OL ⊆ OL. (Using Lemma 1.5, apply this to φ−1∂ in
the role of ∂, for vφ ∈ Γ(∂).) Now ∂O ⊆ O means that there is no γ ∈ Γ< such that Ψ � γ, by
[2, Lemma 9.2.9]. Since ΓL = Γ, we have ΨL = Ψ, and so there is no γ ∈ Γ<

L such that ΨL � γ,
which gives ∂OL ⊆ OL. �

Here is a partial converse. (The proof assumes familiarity with asymptotic couples.)

Lemma 1.12. Suppose that K is asymptotic and L strictly extends K with ΓL = Γ. If K is
ungrounded or res(K) = res(L), then L is asymptotic.

Proof. Let a ∈ L×, a �� 1. Then a = bu with b ∈ K× and a � b, so u � 1 and a† = b† + u†.
Using Γ = ΓL and the equivalence of (i) and (ii) in [2, Proposition 9.1.3] applied to L, we see
that for L to be asymptotic it is enough to show that a† � b†, which in turn will follow from
u′ ≺ b† in view of u′ � u†.

Suppose that Ψ has no largest element. Take φ with v(b†) < v(φ) ∈ Ψ. Then vφ < v(∂O), so
∂O ⊆ φO, hence ∂OL ⊆ φOL, which by [2, Lemma 4.4.2] gives ∂OL ⊆ φOL, and thus u′ � φ ≺ b†.

Next, suppose res(K) = res(L). Then in the above we could have taken u = 1 + ε with ε ≺ 1.
Then ∂O ⊆ b†O, so ∂OL ⊆ b†OL, hence u′ = ε′ ≺ b†. �

For an example of a nonstrict extension L ⊇ K of asymptotic fields, take K = R with
the trivial valuation and trivial derivation, and L = R((t)) with the natural valuation f �→
order(f) : L× → Z given by order(f) = k for

f = fkt
k + fk+1t

k+1 + · · ·
with fk �= 0 and all coefficients fk+n ∈ R, and derivation ∂ = d/dt given by ∂(f) =∑

k �=0 kfkt
k−1 for f =

∑
k fkt

k. Note that ΓL(∂) = Z<, so 0 /∈ ΓL(∂).
The following is not needed, but is somehow missing in [2].

Lemma 1.13. If K is asymptotic and Γ> has a least element, then K is grounded.

Proof. Suppose f ∈ O, f �= 0, and v(f) = min(Γ>). Replacing K by Kφ where φ = f† we
arrange v(f†) = 0. There is no γ ∈ Γ with 0 < γ < v(f), which in view of v(f) = v(f ′) and
Ψ < v(∂O) gives 0 = max Ψ. �

Another class of valued differential fields considered more closely in [2] is the class of
monotone fields: By definition, K is monotone if and only if f† � 1 for all f ∈ K×. If K
is monotone, then so is any strict extension L of K with ΓL = Γ, by [2, Corollary 6.3.6].
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Note that K has a monotone compositional conjugate if and only if for some φ ∈ K× we
have f† � φ for all f ∈ K×. If K has a monotone compositional conjugate, then clearly any
strict extension L of K with ΓL = Γ has as well.

The stabilizer of Γ(∂)

By this we mean the convex subgroup

SK(∂) :=
{
γ ∈ Γ : Γ(∂) + γ = Γ(∂)

}
of Γ, also denoted by S(∂) if K is clear from the context. Thus

S(∂)� =
{
γ ∈ Γ� : Γ(∂) + γ ⊆ Γ(∂)

}
.

Note that Γ(∂) is a union of cosets of S(∂). We have Γ(a∂) = Γ(∂) + va and S(∂) = S(a∂) for all
a ∈ K×. So S(∂) is invariant under compositional conjugation. Normalizing ∂ so that 0 ∈ Γ(∂)
has the effect that S(∂) ⊆ Γ(∂).

Lemma 1.14. Suppose that K is asymptotic. Then S(∂) = {0}.

Proof. We have Ψ < v(∂O), so Ψ ⊆ Γ(∂). Therefore, if γ ∈ Γ>, say γ = vg, g ∈ K×, then
β := v(g†) ∈ Ψ ⊆ Γ(∂), yet β + γ = v(g′) /∈ Γ(∂), hence γ /∈ S(∂). �

The following is also easy to verify.

Lemma 1.15. If Γ(∂) has a supremum in Γ, then S(∂) = {0}.

In particular, if Γ(∂) has a maximum, then S(∂) = {0}. If ∂ �= 0 and Γ is archimedean, then
clearly also S(∂) = {0}. In Section 3 we need the following:

Lemma 1.16. Suppose S(∂) = {0}. Then for any ε ∈ Γ> there are γ ∈ Γ(∂) and δ ∈ Γ \ Γ(∂)
such that δ − γ � ε.

Proof. Let ε ∈ Γ>. Then ε /∈ S(∂), so we get γ ∈ Γ(∂) with δ := γ + ε /∈ Γ(∂). �

For cases where S(∂) �= {0}, let k be a field of characteristic zero with a valuation w : k →
Δ = w(k×), and let K = k((t)) be the field of Laurent series over k. Then we have the
valuation f �→ order(f) : K× → Z, where order(f) = k means that f = fkt

k + fk+1t
k+1 + · · ·

with fk �= 0 and all coefficients fk+n ∈ k. We combine these two valuations into a single
valuation v : K× → Γ extending the valuation w on k, with Γ having Δ and Z as ordered
subgroups, Δ convex in Γ, and Γ = Δ + Z; it is given by v(f) = w(fk) + k, with k = order(f).
Next, we equip K with the derivation ∂ = t · d/dt given by ∂(f) =

∑
k kfkt

k for f =
∑

k fkt
k.

Then K with the valuation v and the derivation ∂ is a (monotone) valued differential field,
with ∂O =

{
f ∈ K : order(f) � 1

}
. It follows easily that

Γ(∂) = {γ ∈ Γ : γ � δ for some δ ∈ Δ},
and thus S(∂) = Δ.

Coarsening

We begin with reminders about coarsening from [2, Sections 3.4, 4.4]. Let Δ be a convex
subgroup of Γ. This yields the ordered abelian quotient group Γ̇ = Γ/Δ of Γ, with the coarsened
valuation

v̇ = vΔ : K× → Γ̇, v̇(a) := v(a) + Δ
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on the underlying field of K. The Δ-coarsening KΔ of K is the valued differential field with
the same underlying differential field as K, but with valuation v̇. Its valuation ring is

Ȯ = {a ∈ K : va � δ for some δ ∈ Δ} ⊇ O,

with maximal ideal

Ȯ = {a ∈ K : va > Δ} ⊆ O.

The residue field

K̇ := res(KΔ) = Ȯ/Ȯ

is itself a valued field with valuation v : K̇× → Δ given by

v(a + Ȯ) := v(a) for a ∈ Ȯ \ Ȯ,

and with valuation ring {a + Ȯ : a ∈ O}. We identify res(K) with res(K̇) via res(a) �→ res(a + Ȯ)
for a ∈ O. The following is [2, Corollary 4.4.4]:

Lemma 1.17. If ∂O ⊆ O, then ∂Ȯ ⊆ Ȯ.

Suppose that the derivation ∂ of K is small. Then ∂ is also small as a derivation of KΔ, and
the derivation on K̇ induced by the derivation of KΔ is small as well. This derivation on K̇
then induces the same derivation on res(K̇) as ∂ on K induces on res(K). The operation of
coarsening commutes with compositional conjugation: (Kφ)Δ and (KΔ)φ are the same valued
differential field, to be denoted by Kφ

Δ.
The next lemma describes the downward closed subset Γ̇(∂) of Γ̇ almost completely in terms

of Γ(∂) and the canonical map π : Γ → Γ̇. Let α range over Γ.

Lemma 1.18. If ∂Ȯ ⊆ φȮ, then vφ ∈ ⋂
α>Δ Γ(∂) + α. As a consequence we have either Γ̇(∂) =

πΓ(∂), or Γ̇(∂) = πΓ(∂) ∪ {μ̇} with μ̇ = max Γ̇(∂).

Proof. Suppose ∂Ȯ ⊆ φȮ. Then φ−1∂Ȯ ⊆ Ȯ, so φ−1∂Ȯ ⊆ Ȯ, hence ∂Ȯ ⊆ φȮ. For a ∈ K×

with α = va > Δ we have aȮ ⊆ O, so ∂Ȯ ⊆ φȮ ⊆ φa−1O, and thus ∂O ⊆ φa−1O, which gives
vφ− α ∈ Γ(∂). We conclude that

vφ ∈
⋂
α>Δ

Γ(∂) + α.

It follows from Lemma 1.17 that πΓ(∂) ⊆ Γ̇(∂). Suppose vφ > Γ(∂) + Δ. Then by the above,
v̇φ− α̇ ∈ πΓ(∂) for all α̇ ∈ Γ̇>. If πΓ(∂) has no largest element, then we get v̇φ = supπΓ(∂).
If πΓ(∂) has a largest element, then v̇φ− maxπΓ(∂) must be the least positive element of Γ̇>,
and Γ̇(∂) = πΓ(∂) ∪ {v̇φ}. �

The following will be needed in deriving Proposition 7.2:

Lemma 1.19. Let L be an immediate strict extension of K such that res(LΔ) = res(KΔ).
Then LΔ is a strict extension of KΔ.

Proof. Note that LΔ is an immediate extension of KΔ. Suppose ∂Ȯ ⊆ φȮ; applying
Lemmas 1.5 and 1.6 to the extension LΔ of KΔ, it suffices to derive from this assumption
that ∂ȮL ⊆ φȮL. The proof of Lemma 1.18 gives ∂O ⊆ φa−1O for every a ∈ K× with va > Δ,
and so ∂OL ⊆ φa−1OL for such a. Thus for f ∈ OL we have v(f ′) > vφ− α for all α > Δ, so
v(f ′/φ) > −α for all α > Δ, that is, f ′/φ ∈ ȮL, so f ′ ∈ φȮL. This shows ∂ȮL ⊆ ∂OL ⊆ φȮL,
as desired. �
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Dominant degree

We summarize here from [2, Section 6.6] what we need about the dominant part and
dominant degree of a differential polynomial and its behavior under additive and multiplicative
conjugation. We give the definitions, but refer to [2, Section 6.6] for the proofs. In this
subsection we assume that the derivation ∂ of K is small, and we choose for every P ∈ K{Y }�=
an element dP ∈ K× with dP � P , such that dP = dQ whenever P ∼ Q, P,Q ∈ K{Y }�=.
Let P ∈ K{Y }�=.

We have d−1
P P � 1, in particular, d−1

P P ∈ O{Y }, and we define the dominant part DP ∈
res(K){Y }�= to be the image of d−1

P P under the natural differential ring morphism O{Y } →
res(K){Y }. Note that degDP � degP . The dominant degree of P is defined to be the natural
number ddegP := degDP ; unlike DP it does not depend on the choice of the
elements dP ∈ K×. Given also Q ∈ K{Y }�= we have ddegPQ = ddegP + ddegQ. If f � 1
in an extension L of K with small derivation satisfies P (f) = 0, then DP (f + OL) = 0 and thus
ddegP � 1.

Lemma 1.20. If a ∈ K and a � 1, then ddegP+a = ddegP .

Lemma 1.21. Let a, b ∈ K, g ∈ K× be such that a− b � g. Then

ddegP+a,×g = ddegP+b,×g.

Lemma 1.22. If g, h ∈ K× and g � h, then ddegP×g � ddegP×h.

For these facts, see [2, Lemma 6.6.5(i), Corollary 6.6.6, Corollary 6.6.7].

2. Eventual behavior

In this section Γ �= {0}. We let φ range over K×, and σ, τ over N∗. We also fix a differential
polynomial P ∈ K{Y }�=. Here we generalize parts of [2, Sections 11.1, 11.2] by dropping the
assumption there that K is asymptotic. The condition vφ < (Γ>)′ there becomes the condition
vφ ∈ Γ(∂) here.

Behavior of vFn
k (φ)

The differential polynomials Fn
k (X) ∈ Q{X} ⊆ K{X} for 0 � k � n were introduced in

[2, Section 5.7] in connection with compositional conjugation: There we considered the
K-algebra morphism

Q �→ Qφ : K{Y } → Kφ{Y }
defined by requiring that Q(y) = Qφ(y) for Q ∈ K{Y } and all y in all differential field
extensions of K. The Fn

k (X) (1 � k � n) satisfy

(Y (n))φ = Fn
n (φ)Y (n) + Fn

n−1(φ)Y (n−1) + · · · + Fn
1 (φ)Y ′

and F 0
0 = 1, Fn

0 = 0 for n � 1. (For example, F 1
1 = X and F 2

2 = X2, F 2
1 = X ′.) We also recall

from there that for τ = τ1 · · · τd � σ = σ1 · · ·σd,

F τ
σ := F τ1

σ1
· · ·F τd

σd
.

In order to better understand v(Pφ) as a function of φ we use from [2, Lemma 5.7.4] and its
proof the identities

(Y [τ ])φ =
∑
σ�τ

F τ
σ (φ)Y [σ], (Pφ)[σ] =

∑
τ�σ

F τ
σ (φ)P[τ ]. (1)

The next two lemmas have the same proof as [2, Lemmas 11.1.1, 11.1.2].
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Lemma 2.1. If ∂O ⊆ O and φ � 1, then v(Pφ) � v(P ), with equality if φ � 1.

We set δ = φ−1∂ in the next two results.

Lemma 2.2. Suppose δO ⊆ O, and let 0 � k � n.

(i) If φ† � φ, then Fn
k (φ) � φn and Fn

n (φ) = φn.
(ii) If φ† ≺ φ and k < n, then Fn

k (φ) ≺ φn.

Corollary 2.3. Suppose δO ⊆ O and φ† � φ, and τ � σ. Then F τ
σ (φ) � φ‖τ‖ and F τ

τ (φ) =
φ‖τ‖. If φ† ≺ φ and τ > σ, then F τ

σ (φ) ≺ φ‖τ‖.

Let P have order � r, so P =
∑

i PiY
i with i ranging over N1+r. We define the dominant

degree ddegP ∈ N and the dominant weight dwtP ∈ N by

ddegP = max
{|i| : Pi � P

}
, dwtP = max

{‖i‖ : Pi � P
}
.

Thus if K has small derivation, then ddegP = degDP as in the previous section, and dwtP =
wtDP , agreeing with the dominant weight from [2, Sections 4.5, 6.6].

Lemma 2.4. Suppose ∂O ⊆ O and φ � 1. Then ddegPφ = ddegP .

Proof. Set

d := ddegP, Id :=
{
i : Pi � P, |i| = d

}
, I<d :=

{
i : Pi � P, |i| < d

}
.

Then

P = Q + R + S with Q :=
∑
i∈Id

PiY
i, R :=

∑
i∈I<d

PiY
i,

and so

Pφ = Qφ + Rφ + Sφ, Pφ � P, Qφ � Q � P, Rφ � R, Sφ � S ≺ P,

by Lemma 2.1, and R � P if R �= 0. Also degQφ = degQ = d and degRφ = degR < d by
[2, Corollary 5.7.5], and thus ddegPφ = d. �

It is convenient to introduce two operators D,W: K{Y }�= → K{Y }�=:

D(P ) :=
∑
i∈I

PiY
i, I := {i : Pi � P},

W(P ) :=
∑
i∈J

PiY
i, J :=

{
i ∈ I : ‖i‖ = dwtP

}
.

Thus D(P ) and W(P ) are of degree ddegP , and every monomial Y i occurring in W(P ) has
weight ‖i‖ = dwtP . Note that P � D(P ) � W(P ). If K has small derivation, then the nonzero
coefficients of D(P ) are � dP , and the image of d−1

P D(P ) under the natural differential ring
morphism O{Y } → res(K){Y } equals the dominant part DP of P .

Lemma 2.5. Suppose that Γ> has no smallest element and ∂O ⊆ O. Then there exists an
α ∈ Γ< such that for w := dwtP we have

D(Pφ) ∼ φw W(P )

for all φ with α < vφ < 0, so ddegPφ = ddegP and dwtPφ = dwtP for such φ.



386 MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES AND JORIS VAN DER HOEVEN

Proof. For any monomial Y i = Y [τ ] we have (Y [τ ])φ =
∑

σ�τ F τ
σ (φ)Y [σ] by (1). Now let

φ � 1. Then φ† ≺ φ: this is clear if φ′ � φ, and follows from [2, Lemma 6.4.1(iii)] when φ′ � φ.
Thus by Corollary 2.3 and using ‖i‖ = ‖τ‖:

(Y i)φ ∼ φ‖i‖Y i.

Now P = W(P ) + Q with Q ∈ K{Y }, and for each monomial Y i, either Qi ≺ P , or Qi = Pi �
P and ‖i‖ < dwtP . Then

Pφ = W(P )φ + Qφ, W(P )φ ∼ φw W(P ) for w := dwtP .

Now Γ> has no smallest element, so given any β ∈ Γ> and n � 1 there is an α ∈ Γ> such that
nγ < β whenever γ ∈ Γ and 0 < γ < α. Thus by considering the individual monomials in Q we
obtain an α ∈ Γ< such that Qφ ≺ φw W(P ) whenever α < vφ < 0. Any such α witnesses the
property stated in the lemma. �

Corollary 2.6. If Γ> has no least element, φ0 ∈ K× and v(φ0) ∈ Γ(∂), then there exists
α < v(φ0) such that ddegPφ0 = ddegPφ whenever α < v(φ) < v(φ0).

Proof. Apply Lemma 2.5 to Kφ0 and Pφ0 in the role of K and P . �

Newton degree

In this subsection we assume that Γ> has no least element. Let P ∈ K{Y }�= have order � r ∈ N.
For d � degP we define

Γ(P, d) :=
{
γ ∈ Γ(∂) : ddegPφ = d for some φ with vφ = γ

}
.

Note that in this definition of Γ(P, d) we can replace ‘some’ by ‘all’ in view of Lemma 2.4,
and hence the nonempty sets among the Γ(P, d) with d � degP partition Γ(∂). Note also
that if γ ∈ Γ(P, d), then (γ − α, γ] ⊆ Γ(P, d) for some α ∈ Γ> by Corollary 2.6, so each convex
component of Γ(P, d) in Γ is infinite.

Lemma 2.7. The set Γ(P, d) has only finitely many convex components in Γ.

Proof. Let i range over the tuples (i0, . . . , ir) ∈ N1+r with |i| � degP , and likewise for j.
Let N be the number of pairs (i, j) with i �= j. We claim that for every φ0 ∈ K× with vφ0 ∈ Γ(∂)
the set Γ(P, d) has at most N + 1 convex components with an element � vφ0. (It follows easily
from this claim that Γ(P, d) has at most N + 1 convex components.) By renaming Kφ0 and Pφ0

as K and P it suffices to prove the claim for φ0 = 1. So we assume ∂O ⊆ O and have to show
that Γ(P, d) has at most N + 1 components with an element � 0. We now restrict i further by
the requirement that Pi �= 0, and likewise for j. By the proof of Lemma 2.5,

ddegPφ = max
{
|i| : vPi + ‖i‖vφ = min

j
vPj + ‖j‖vφ

}
for vφ < 0.

For each i we have the function fi : QΓ → QΓ given by fi(γ) = vPi + ‖i‖γ. For any i, j, either
fi = fj or we have a unique γ = γi,j ∈ QΓ with fi(γ) = fj(γ). Let γ1 < · · · < γM with M � N
be the distinct values of γi,j < 0 obtained in this way, and set γ0 := −∞ and γM+1 := 0. Then
on each interval (γm, γm+1) with 0 � m �M , the functions fi − fj have constant sign: −, 0,
or +. In view of the above identity for ddegPφ it follows easily that for each m with 0 � m �
M the value of ddegPφ is constant as vφ ranges over (γm, γm+1) ∩ Γ. Thus Γ(P, d) has at
most M + 1 convex components. �

It follows from Lemmas 2.5 and 2.7 that there exists d � degP and a φ0 ∈ K× such that
vφ0 ∈ Γ(∂), vφ0 is not maximal in Γ(∂), and ddegPφ = d for all φ � φ0 with vφ ∈ Γ(∂). We
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now define the Newton degree ndegP of P to be this eventual value d ∈ N of ddegPφ. Note
that if Γ(∂) does have a maximal element vφ, then

ndegP = ddegPφ.

Also, for f ∈ K× and Q ∈ K{Y }�= we have

ndegP f = ndegP, ndegPQ = ndegP + ndegQ.

Newton degree and multiplicative conjugation

In this subsection Γ> has no least element. Here we consider the behavior of ndegP×g as
a function of g ∈ K×. Indeed, ndegP×g � 1 is a useful necessary condition for the existence
of a zero f � g of P in a strict extension of K, as stated in the following generalization of
[2, Lemma 11.2.1]:

Lemma 2.8. Let g ∈ K× and suppose that some f � g in a strict extension of K satisfies
P (f) = 0. Then ndegP×g � 1.

Proof. For such f we have f = ag with a � 1, and Q(a) = 0 for Q := P×g. So Qφ(a) = 0
for all φ with vφ ∈ Γ(∂), hence ddegQφ � 1 for those φ, and thus ndegQ � 1. �

Next some results on Newton degree that follow easily from corresponding facts at the end
of Section 1 on dominant degree, using also that compositional conjugation commutes with
additive and multiplicative conjugation by [2, Lemma 5.7.1].

Lemma 2.9. If a ∈ K and a � 1, then ndegP+a = ndegP .

Lemma 2.10. Let a, b ∈ K, g ∈ K× be such that a− b � g. Then

ndegP+a,×g = ndegP+b,×g.

Lemma 2.11. If g, h ∈ K× and g � h, then ndegP×g � ndegP×h.

For g ∈ K× we set ndeg≺g P := max{ndegP×f : f ≺ g}.

Lemma 2.12. For a, g ∈ K with a ≺ g we have ndeg≺g P+a = ndeg≺g P .

Proof. Use that ndegP+a,×f = ndegP×f for a � f ≺ g, by Lemma 2.10. �

It will also be convenient to define for γ ∈ Γ,

ndeg�γ P := max{ndegP×g : g ∈ K×, vg � γ}.
By Lemma 2.11, ndeg�γ P = ndegP×g for any g ∈ K× with γ = vg. From Lemmas 2.10 and
2.11 we easily obtain:

Corollary 2.13. Let a, b ∈ K and α, β ∈ Γ be such that v(b− a) � α and β � α. Then
ndeg�β P+b � ndeg�α P+a.

Newton degree in a cut

In this subsection Γ> has no least element. We do not need the material here to obtain the
main theorem. It is only used in proving Corollaries 4.6 and 4.7, which are of interest for other
reasons.
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Let (aρ) be a pc-sequence in K, and put γρ = v(as(ρ) − aρ) ∈ Γ∞, where s(ρ) is the
immediate successor of ρ. Using Corollary 2.13 in place of [2, Corollary 11.2.8] we generalize
[2, Lemma 11.2.11]:

Lemma 2.14. There is an index ρ0 and d ∈ N such that for all ρ > ρ0 we have γρ ∈ Γ
and ndeg�γρ

P+aρ
= d. Denoting this number d by d

(
P, (aρ)

)
, we have d

(
P, (aρ)

)
= d

(
P, (bσ)

)
whenever (bσ) is a pc-sequence in K equivalent to (aρ).

As in [2, Section 11.2], we now associate to each pc-sequence (aρ) in K an object cK(aρ),
the cut defined by (aρ) in K, such that if (bσ) is also a pc-sequence in K, then

cK(aρ) = cK(bσ) ⇐⇒ (aρ) and (bσ) are equivalent.

We do this in such a way that the cuts cK(aρ), with (aρ) a pc-sequence in K, are the elements
of a set c(K). Using Lemma 2.14 we define for a ∈ c(K) the Newton degree of P in the cut a
as

ndega P := d
(
P, (aρ)

)
= eventual value of ndeg�γρ

P+aρ
,

where (aρ) is any pc-sequence in K with a = cK(aρ). Let (aρ) be a pc-sequence in K and
a = cK(aρ). For y ∈ K the cut cK(aρ + y) depends only on (a, y), and so we can set a + y :=
cK(aρ + y). Likewise, for y ∈ K× the cut cK(aρy) depends only on (a, y), and so we can set
a · y := cK(aρy). We record some basic facts about ndega P :

Lemma 2.15. Let (aρ) be a pc-sequence in K, a = cK(aρ). Then

(i) ndega P � degP ;
(ii) ndega P

f = ndega P for f ∈ K×;
(iii) ndega P+y = ndega+y P for y ∈ K;
(iv) if y ∈ K and vy is in the width of (aρ), then ndega P+y = ndega P ;
(v) ndega P×y = ndega·y P for y ∈ K×;

(vi) if Q ∈ K{Y }�=, then ndega PQ = ndega P + ndega Q;
(vii) if P (�) = 0 for some pseudolimit � of (aρ) in a strict extension of K, then ndega P � 1;

Proof. Most of these items are routine or follow easily from earlier facts. Item (iv) follows
from (iii), and (vii) from Lemma 2.8. �

3. Flexibility

We assume in this section about our valued differential field K that

Γ �= {0}, ∂ �= 0.

After the first three lemmas we introduce the useful condition of flexibility, which plays a key
role in the rest of the story.

Lemma 3.1. Let P ∈ K{Y }�= be such that degP � 1. Suppose that ∂ is small and the
derivation of res(K) is nontrivial. Then the set{

vP (y) : y ∈ K, P (y) �= 0
} ⊆ Γ

is coinitial in Γ.

Proof. Given Q ∈ K{Y }, the gaussian valuation v(Q×f ) of Q×f for f ∈ K depends
only on v(f) by [2, Lemma 4.5.1(ii)], and so we obtain a function vQ : Γ∞ → Γ∞ with
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vQ(vf) = v(Q×f ) for f ∈ K. We have vP (γ) = mind vPd
(γ) ∈ Γ for γ ∈ Γ, and by [2, Corol-

lary 6.1.3], vPd
(γ) = v(Pd) + dγ + o(γ) if Pd �= 0 and γ ∈ Γ �=. Using also degP � 1, it follows

that vP (Γ) is a coinitial subset of Γ. By [2, Lemma 4.5.2], there is for each β ∈ vP (Γ) a y ∈ K
with vP (y) = β. �

Lemma 3.2. Let P ∈ K{Y }�= be such that degP � 1. Then the set{
vP (y) : y ∈ K

} ⊆ Γ∞

is infinite.

Proof. By compositional conjugation we arrange that ∂ is small. Take an elementary
extension L of K such that ΓL contains an element > Γ. Let Δ be the convex hull of Γ in ΓL,
and let LΔ be the Δ-coarsening of L with valuation v̇ and (nontrivial) value group Γ̇L = ΓL/Δ.
By Lemma 1.17, the derivation of LΔ remains small, and since ∂ �= 0, the derivation of res(LΔ)
is nontrivial. So by the preceding lemma, the set

{
v̇P (y) : y ∈ L, P (y) �= 0

}
is coinitial in Γ̇L.

Hence the set
{
vP (y) : y ∈ L, P (y) �= 0

}
is coinitial in ΓL. Thus

{
vP (y) : y ∈ K, P (y) �= 0

}
is coinitial in Γ, and hence infinite. �

Lemma 3.3. Suppose that Γ> has no least element and S(∂) = {0}. Let P ∈ K{Y }�= be
such that ndegP � 1, and let β ∈ Γ>. Then the set{

vP (y) : y ∈ K, |vy| < β
} ⊆ Γ∞

is infinite.

Proof. Let γ ∈ Γ(∂) and δ ∈ Γ \ Γ(∂); then there are a, g ∈ K such that

a ≺ 1, vg = γ, 0 < v(g−1a′) � δ − γ.

To see this, take a, d ∈ K such that a ≺ 1, vd = δ, and d−1a′ � 1. Take g ∈ K with vg = γ.
Then a′ � d, and so g−1a′ � g−1d. It remains to note that g−1a′ ≺ 1.

This fact and Lemma 1.16 yield an elementary extension L of K, with elements φ ∈ L×

and a ∈ OL such that vφ ∈ ΓL(∂L), vφ � Γ(∂) and 0 < v(φ−1a′) < Γ>. Let Δ be the convex
subgroup of ΓL consisting of the ε ∈ ΓL with |ε| < Γ>. Then res(Lφ

Δ) has nontrivial derivation
with value group Δ �= {0}. Take a nonzero f ∈ L such that f−1Pφ � 1 in Lφ{Y }. Let PΔ ∈
res(Lφ

Δ){Y } be the image of f−1Pφ ∈ OLφ{Y } under the natural map OLφ{Y } → res(Lφ
Δ){Y }.

From ndegP � 1 it follows that degPΔ � 1. Now apply Lemma 3.2 to res(Lφ
Δ) and PΔ in the

role of K and P . �

Recall that a∼ is the equivalence class of a ∈ K× with respect to the equivalence relation ∼
on K×. We define K to be flexible if Γ> has no least element and for all P ∈ K{Y }�= with
ndegP � 1 and all β ∈ Γ> the set{

P (y)∼ : y ∈ K, |vy| < β, P (y) �= 0
}

is infinite. Flexibility is an elementary condition on valued differential fields, in the sense of
being expressible by a set of sentences in the natural first-order language for these structures.
Flexibility is invariant under compositional conjugation. By Lemma 3.3 we have:

Corollary 3.4. If Γ> has no least element and S(∂) = {0}, then K is flexible.

Combined with earlier results on S(∂) this gives large classes of valued differential fields
that are flexible. For example, if Γ> has no least element, then K is flexible whenever K is
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asymptotic or Γ is archimedean. If Γ> has no least element and K is flexible, does it follow
that S(∂) = {0}? We do not know.

Remark. In [1, p. 292] we defined a less ‘flexible’ notion of flexibility. We stated there as
Theorem 4.1, without proof, that every real closed H-field has a spherically complete immediate
H-field extension, and mentioned that we used flexibility in handling the case where the real
closed H-field has no asymptotic integration. It turned out that for that case ‘Theorem 4.1’
was not needed in [2], and so it was not included there. As we saw in the introduction,
[1, Theorem 4.1] is now available, even without the real closed assumption, as a special case of
the main theorem of the present paper.

4. Lemmas on flexible valued differential fields

In this section we assume about K that ∂ �= 0, Γ �= {0}, and Γ> has no least element. (Flexibility
is only assumed in Lemmas 4.4 and 4.5.) We let a, b, y range over K and m, n, d, v, w over K×.
Also, P and Q range over K{Y }�=.

Using strict extensions and flexibility we now adapt the subsection ‘Vanishing’ of [2, Section
11.4] to our more general setting.

Let � be an element in an extension L of K such that � /∈ K and

v(K − �) :=
{
v(a− �) : a ∈ K

}
has no largest element. Recall that then � is a pseudolimit of a divergent pc-sequence in K
and v(K − �) ⊆ Γ.

We say that P vanishes at (K, �) if for all a and v with a− � ≺ v we have ndeg≺v P+a � 1,
that is ndegP+a,×b � 1 for some b ≺ v. By Lemma 2.8, if L is an immediate strict extension
of K and P (�) = 0, then ndegP+a,×b � 1 whenever �− a � b, hence P vanishes at (K, �).
Let Z(K, �) be the set of all P that vanish at (K, �). Here are some frequently used basic
facts:

(1) P ∈ Z(K, �) ⇐⇒ P+b ∈ Z(K, �− b);
(2) P ∈ Z(K, �) ⇐⇒ P×m ∈ Z(K, �/m);
(3) P ∈ Z(K, �) =⇒ PQ ∈ Z(K, �) for all Q;
(4) P ∈ K× =⇒ P /∈ Z(K, �).

Moreover, if P /∈ Z(K, �), we have a, v with a− � ≺ v and ndeg≺v P+a = 0, and then
also ndeg≺v P+b = 0 for any b with b− � ≺ v, by Lemma 2.12. (In general, Z(K, �) ∪ {0} is
not closed under addition, see the remark following the proof of Corollary 4.6 below.)

Lemma 4.1. Y − b /∈ Z(K, �).

Proof. Take a and v such that a− � ≺ v � b− �. Then for P := Y − b and m ≺ v
we have P+a,×m = mY + (a− b) and m ≺ a− b, so DP+a,×m

∈ res(K)×. It follows that
ndeg≺v P+a = 0. �

Lemma 4.2. Suppose P /∈ Z(K, �), and let a, v be such that a− � ≺ v and ndeg≺v P+a = 0.
Then P (f) ∼ P (a) for all f in all strict extensions of K with f − a � m ≺ v for some m. (Recall:
m ∈ K× by convention.)

Proof. Let f in a strict extension E of K satisfy f − a � m ≺ v, so f = a + mu with u � 1
in E. Now

P+a,×m = P (a) + R with R ∈ K{Y }, R(0) = 0,
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so for φ ∈ K× we have

Pφ
+a,×m = P (a) + Rφ.

From ndegP+a,×m = 0, we get φ ∈ K× with ∂O ⊆ φO and Rφ ≺ P (a). Thus

P (f) = P+a,×m(u) = Pφ
+a,×m(u) = P (a) + Rφ(u) in Eφ,

with Rφ(u) � Rφ ≺ P (a) in Eφ, so P (f) ∼ P (a). �

Suppose that L is a strict extension of K. Then the conclusion applies to f = �, and so for P
and a, v as in the lemma we have P (�) ∼ P (a), hence P (�) �= 0. Thus for P , a, v as in the
lemma we have P (f) ∼ P (a) ∼ P (�) for all f ∈ K with f − � ≺ v.

Lemma 4.3. Suppose P,Q /∈ Z(K, �). Then PQ /∈ Z(K, �).

Proof. Take a, b, v, w such that a− � ≺ v, b− � ≺ w and

ndeg≺v P+a = ndeg≺w Q+b = 0.

We can assume a− � � b− �. Take n � a− � and d ∈ K with d− � ≺ n. Then d− � ≺ v and d−
� ≺ w, so ndeg≺v P+a = ndeg≺v P+d = 0, and so ndeg≺n P+d = 0. Likewise, ndeg≺n Q+d = 0,
so ndeg≺n(PQ)+d = 0. �

Lemma 4.4. Assume that K is flexible. Let P ∈ Z(K, �), and let any b be given. Then there
exists an a such that a− � ≺ b− � and P (a) �= 0, P (a) �∼ P (b).

Proof. Take v � b− � and a1 ∈ K with a1 − � ≺ v, so ndeg≺v P+a1 � 1, which gives m ≺ v
with ndegP+a1,×m � 1. By flexibility of K, the set{

P (a1 + my)∼ : |vy| < β, P (a1 + my) �= 0
}

is infinite, for each β ∈ Γ>, so we can take y such that a1 + my − � ≺ v and 0 �= P (a1 + my) �∼
P (b). Then a := a1 + my has the desired property. �

Lemma 4.5. Assume that K is flexible, L is a strict extension of K, P,Q /∈ Z(K, �)
and P −Q ∈ Z(K, �). Then P (�) ∼ Q(�).

Proof. By Lemma 4.3 we have b and v such that

�− b ≺ v, ndeg≺v P+b = ndeg≺v Q+b = 0.

Replacing � by �− b and P,Q by P+b, Q+b we arrange b = 0, that is,

� ≺ v, ndeg≺v P = ndeg≺v Q = 0,

so P (0) �= 0 and Q(0) �= 0. If a ≺ v, then by the remark preceding Lemma 4.3,

P (a) ∼ P (0) ∼ P (�), Q(a) ∼ Q(0) ∼ Q(�).

If P (�) �∼ Q(�), then P (0) �∼ Q(0), so (P −Q)(a) ∼ (P −Q)(0) for all a ≺ v, contradicting
P −Q ∈ Z(K, �) by Lemma 4.4. Thus P (�) ∼ Q(�). �

Relation to the Newton degree in a cut

Let (aρ) be a divergent pc-sequence in K with pseudolimit �. The following generalizes
[2, Lemma 11.4.11], with the same proof except for using Lemma 4.2 instead of
[2, Lemma 11.4.3].
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Corollary 4.6. If P (aρ)� 0, then P ∈ Z(K, �).

Proof. Suppose P /∈ Z(K, �). Take a and v such that a− � ≺ v and ndeg≺v P+a = 0.
Now v(a− aρ) = v(a− �), eventually, so by Lemma 4.2 we have P (aρ) ∼ P (a) eventually, so
v
(
P (aρ)

)
= v

(
P (a)

) �= ∞ eventually. �

In particular, if P (aρ)� 0, then P (Y ) + ε ∈ Z(K, �) for all ε ∈ K such that ε ≺ P (aρ)
eventually. We now connect the notion of P vanishing at (K, �) with the Newton degree ndega P
of P in the cut a = cK(aρ) (introduced in the last subsection of Section 2) generalizing
[2, Lemma 11.4.12]. The proof is the same, except for using Lemma 2.12 and Corollary 2.13
above instead of [2, Lemma 11.2.7]:

Corollary 4.7. ndega P � 1 ⇐⇒ P ∈ Z(K, �). More precisely,

ndega P = min
{
ndeg≺v P+a : a− � ≺ v

}
.

Proof. We may assume v(�− aρ) is strictly increasing with ρ. Given any index ρ, take v �
�− aρ, take ρ′ > ρ, and set a := aρ′ . Then a− � ≺ v. Now γρ := v(�− aρ) = v(v) = v(a− aρ),
and thus (using Corollary 2.13 for the last inequality):

ndeg≺v P+a � ndeg�v P+a = ndeg�γρ
P+a � ndeg�γρ

P+aρ
.

It follows that min
{
ndeg≺v P+a : a− � ≺ v

}
� ndega P . For the reverse inequality, let a and v

be such that a− � ≺ v. Let ρ be such that �− aρ � �− a. Then aρ − a ≺ v and γρ = v(�− aρ) >
v(v), so by Lemma 2.12:

ndeg�γρ
P+aρ

� ndeg≺v P+aρ
= ndeg≺v P+a.

Therefore ndega P � min
{
ndeg≺v P+a : a− � ≺ v

}
. �

5. Constructing immediate extensions

Our goal in this section is to establish the following:

Theorem 5.1. Suppose ∂ �= 0, Γ �= {0}, Γ> has no least element, and S(∂) = {0}. Then K
has the Krull property.

Much of this section is very similar to the subsection ‘Constructing immediate extensions’ of
[2, Section 11.4], but there are some differences that make it convenient to give all details. In
the next section we show how to derive our main theorem from Theorem 5.1 by constructions
involving coarsening by S(∂).

In the rest of this section we assume about K that ∂ �= 0, Γ �= {0}, and Γ> has no least
element. We also keep the notational conventions of the previous section, and assume that � is
an element of a strict extension L of K.

Lemma 5.2. Suppose Z(K, �) = ∅. Then P (�) �= 0 for all P , and K〈�〉 is an immediate strict
extension of K. Suppose also that M is a strict extension of K and g ∈ M satisfies v(a− g) =
v(a− �) for all a. Then there is a unique valued differential field embedding K〈�〉 → M over K
that sends � to g.

Proof. Clearly P (�) �= 0 for all P . Let any nonzero element f = P (�)/Q(�) of the
extension K〈�〉 of K be given. Lemma 4.3 gives a and v such that

a− � ≺ v, ddeg≺v P+a = ddeg≺v Q+a = 0,
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and so P (�) ∼ P (a) and Q(�) ∼ Q(a) by Lemma 4.2, and thus f ∼ P (a)/Q(a). It follows
that K〈�〉 is an immediate extension of K.

It is clear that Z(K, g) = Z(K, �) = ∅, so g is differentially transcendental over K and K〈g〉
is an immediate extension of K, by the first part of the proof. Given any P we take a and v such
that a− � ≺ v and ddeg≺v P+a = 0. Then P (a) ∼ P (g) and P (a) ∼ P (�), and thus vP (g) =
vP (�). Hence the unique differential field embedding K〈�〉 → M over K that sends � to g is
also a valued field embedding. �

Lemma 5.3. Suppose that K is flexible, Z(K, �) �= ∅, and P is an element of Z(K, �) of
minimal complexity. Then K has an immediate strict extension K〈f〉 such that P (f) = 0
and v(a− f) = v(a− �) for all a, and such that if M is any strict extension of K and s ∈ M
satisfies P (s) = 0 and v(a− s) = v(a− �) for all a, then there is a unique valued differential
field embedding K〈f〉 → M over K that sends f to s.

Proof. Let P have order r and take p ∈ K[Y0, . . . , Yr] such that

P = p(Y, Y ′, . . . , Y (r)).

Then p is irreducible by P having minimal complexity in Z(K, �) and Lemma 4.3. Thus we
have an integral domain

K[y0, . . . , yr] = K[Y0, . . . , Yr]/(p), yi = Yi + (p) for i = 0, . . . , r,

with fraction field K(y0, . . . , yr) = K(y0, . . . , yr−1)[yr] where y0, . . . , yr−1 are algebraically
independent over K. Let s ∈ K(y0, . . . , yr)×, so

s = g(y0, . . . , yr)/h(y0, . . . , yr−1)

where g ∈ K[Y0, . . . , Yr]�=, h ∈ K[Y0, . . . , Yr−1]�=, and g(Y, Y ′, . . . , Y (r)) /∈ Z(K, �). (This non-
membership in Z(K, �) can be arranged by taking g of lower degree in Yr than p.) The comment
following the proof of Lemma 4.2 gives an a such that

g(�, �′, . . . , �(r)) ∼ g(a, a′, . . . , a(r)), h(�, . . . , �(r−1)) ∼ h(a, . . . , a(r−1)),

so vg(�, �′, . . . , �(r)), vh(�, . . . , �(r−1)) ∈ Γ. We claim that

vg(�, �′, . . . , �(r)) − vh(�, . . . , �(r−1))

depends only on s and not on the choice of g and h. To see this, let g1 ∈
K[Y0, . . . , Yr], h1 ∈ K[Y0, . . . , Yr−1] be such that g1(Y, . . . , Y (r)) /∈ Z(K, �), h1 �= 0, and
s = g1(y0, . . . , yr)/h1(y0, . . . , yr−1). Then

gh1 − g1h ∈ pK[Y0, . . . , Yr], (gh1)(Y, . . . , Y (r)), (g1h)(Y, . . . , Y (r)) /∈ Z(K, �),

which yields the claim by Lemma 4.5. We now set, for g, h as above,

vs := vg(�, �′, . . . , �(r)) − vh(�, . . . , �(r−1)),

or more suggestively,

vs = v
(
G(�)/H(�)

) ∈ Γ, with G = g(Y, . . . , Y (r)), H = h(Y, . . . , Y (r−1)).

We thus have extended v : K× → Γ to a map

v : K(y0, . . . , yr)× → Γ.

Let s ∈ K(y0, . . . , yr)× and take g ∈ K[Y0, . . . , Yr], h ∈ K[Y0, . . . , Yr−1] with
g(Y, Y ′, . . . , Y (r)) /∈ Z(K, �) and h �= 0 such that s = g(y0, . . . , yr)/h(y0, . . . , yr−1). Let
s1, s2 ∈ K(y0, . . . , yr)×. Then v(s1s2) = vs1 + vs2 follows easily by means of Lemma 4.3. Next,
assume also s1 + s2 �= 0; to prove that v : K(y0, . . . , yr)× → Γ is a valuation it remains to show
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that then v(s1 + s2) � min(vs1, vs2). For i = 1, 2 we have si = gi(y0, . . . , yr)/hi(y0, . . . , yr−1)
where

0 �= gi ∈ K[Y0, . . . , Yr], 0 �= hi ∈ K[Y0, . . . , Yr−1],

and gi has lower degree in Yr than p. Then for s := s1 + s2 we have

s = g(y0, . . . , yr)/h(y0, . . . , yr−1), g := g1h2 + g2h1, h = h1h2,

and so g �= 0 (because s �= 0) and g has also lower degree in Yr than p. In particular,
g(Y, . . . , Y (r)) /∈ Z(K, �), hence vs = v

(
g(�, . . . , �(r))/h(�, . . . , �(r−1))

)
, and so by working in the

valued field K〈�〉 we see that vs � min(vs1, vs2), as promised. Thus we now have K(y0, . . . , yr)
as a valued field extension of K. To show that K(y0, . . . , yr) has the same residue field as K,
consider an element s = g(y0, . . . , yr) /∈ K with nonzero g ∈ K[Y0, . . . , Yr] of lower degree in Yr

than p; it suffices to show that s ∼ b for some b. Set G := g(Y, . . . , Y (r)) and take a and v with
a− � ≺ v and ndeg≺v G+a = 0. Then G(�) ∼ G(a) by Lemma 4.2, so for b := G(a) we have
v(s− b) = v

(
g(y0, . . . , yr) − b

)
= v(G(�) − b) > vb, that is, s ∼ b. This finishes the proof that

the valued field F := K(y0, . . . , yr) is an immediate extension of K.
Next we equip F with the derivation extending the derivation of K such that y′i = yi+1 for

0 � i < r. Setting f := y0 we have f (i) = yi for i = 0, . . . , r, F = K〈f〉 = K(y0, . . . , yr), and
P (f) = 0. Note that v(G(f)) = v(G(�)) for every nonzero G ∈ K[Y, . . . , Y (r)] of lower degree
in Y (r) than P , in particular, v(f − a) = v(�− a) for all a. We now show that the derivation
of F is continuous and that F is a strict extension of K.

Let φ ∈ K× and vφ ∈ Γ(∂). To get ∂OF ⊆ φOF , we set

S :=
{
H(f) : H ∈ K

[
Y, . . . , Y (r−1)

]
, H(f) � 1

}
.

(If r = 0, then we have K
[
Y, . . . , Y (r−1)

]
= K, so S = O.) By Lemma 1.5 and by [2, Lemma

6.2.3] applied to K
(
f, . . . , f (r−1)

)
in the role of E and with F = L, it is enough to show that

∂S ⊆ φOF and ∂(S ∩ OF ) ⊆ φOF . We prove the first of these inclusions. The second follows in
the same way.

Let H ∈ K
[
Y, . . . , Y (r−1)

] \K with H(f) � 1; we have to show H(f)′ � φ. We can assume
H(f)′ �= 0. Take H1(Y ), H2(Y ) ∈ K

[
Y, . . . , Y (r−1)

]
such that

H ′ = H(Y )′ = H1(Y ) + H2(Y )Y (r) in K{Y }.
Then

H ′(f) = H(f)′ = H1(f) + H2(f)f (r),

and for all a,

H ′(a) = H(a)′ = H1(a) + H2(a)a(r).

We now distinguish two cases:

Case 1: P has degree > 1 in Y (r), or H2 = 0. Then H ′ has lower degree in Y (r) than P , so
we can take a, v with a− � ≺ v, ndeg≺v H+a = 0, and ndeg≺v H

′
+a = 0, so H(a) ∼ H(f) � 1

and H ′(a) ∼ H ′(f). Hence H(f)′ ∼ H(a)′ � φ.

Case 2: P has degree 1 in Y (r) and H2 �= 0. Then

H ′ =
G1P + G2

G
, G1, G2, G ∈ K[Y, . . . , Y (r−1)], G1, G �= 0,

so 0 �= H(f)′ = G2(f)/G(f), so G2 �= 0. By Lemma 4.3 there is a v such that for some a we
have a− � ≺ v and

ndeg≺v H+a = ndeg≺v(G1)+a = ndeg≺v(G2)+a = ndeg≺v G+a = 0.
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Fix such v, and let A ⊆ K be the set of all a satisfying the above. Then for a ∈ A we have
G(f) ∼ G(a) and H(f) ∼ H(a), so H(a)′ � φ. Also G1(f) ∼ G1(a) and

G(f)H(f)′ = G2(f) ∼ G2(a),

G(a)H(a)′ = G1(a)P (a) + G2(a).

We now make crucial use of Lemma 4.4 to arrange that

v
(
G1(a)P (a) + G2(a)

)
= min

(
v(G1(a)P (a)), v(G2(a)

)
by changing a if necessary. Hence G2(a) � G1(a)P (a) + G2(a) = G(a)H(a)′, so

G(f)H(f)′ ∼ G2(a) � G(a)H(a)′ ∼ G(f)H(a)′ � G(f)φ

and thus H(f)′ � φ. This concludes the proof that F is a strict extension of K.
Suppose that s in a strict extension M of K satisfies P (s) = 0 and v(a− s) = v(a− �)

for all a. By Lemma 4.2 and the remarks following its proof we have vQ(s) = vQ(f) for all
Q /∈ Z(K, �), in particular, Q(s) �= 0 for all Q of lower complexity than P . Thus we have a
differential field embedding K〈f〉 → M over K sending f to s, and this is also a valued field
embedding. �

Proof of Theorem 5.1. Assume S(∂) = {0}; we show that K has an immediate strict
extension that is maximal as a valued field. We can assume that K itself is not yet maximal, and
it is enough to show that then K has a proper immediate strict extension, since by Lemma 1.10
the property S(∂) = {0} is preserved by immediate strict extensions. As K is not maximal, we
have a divergent pc-sequence in K, which pseudoconverges in an elementary extension of K,
and thus has a pseudolimit � in a strict extension of K. If Z(K, �) = ∅, then Lemma 5.2 provides
a proper immediate strict extension of K, and if Z(K, �) �= ∅, then Lemma 5.3 provides such
an extension. This concludes the proof of Theorem 5.1. �

6. Coarsening and S(∂)

In this section we finish the proof of the main theorem stated in the introduction.

Making S(∂) vanish

In this subsection we set Δ := S(∂) and assume Δ �= {0}. Then Γ(∂) has no largest element, and
so v(∂O) > Γ(∂) by Lemma 1.8. The next lemma says much more. Let KΔ be the Δ-coarsening,
with valuation ring Ȯ.

Lemma 6.1. v(∂Ȯ) > Γ(∂).

Proof. Let a ∈ Ȯ. If va � 0, then va′ > Γ(∂) by the above. If va < 0, then va ∈ Δ and
va′ − 2va = v((1/a)′) > Γ(∂), so va′ > Γ(∂) + 2va = Γ(∂). �

It follows in particular that if ∂ is small, then the derivation of res(KΔ) is trivial. Let
π : Γ → Γ̇ := Γ/Δ be the canonical map, so πΓ(∂) ⊆ Γ̇. We also have Γ̇(∂) := Γ̇KΔ(∂) ⊆ Γ̇, with
πΓ(∂) ⊆ Γ̇(∂) by Lemma 1.18.

Lemma 6.2. SKΔ(∂) = {0} ⊆ Γ̇.
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Proof. If πΓ(∂) = Γ̇(∂), then clearly SKΔ(∂) = {0}. Suppose πΓ(∂) �= Γ̇(∂). (We do not know
if this can happen.) Then Lemma 1.18 tells us that Γ̇(∂) has a largest element, and so SKΔ(∂) =
{0} by Lemma 1.15. �

Lifting strictness

Let K have small derivation and let L be an immediate extension of K with small derivation.
Let Δ be a convex subgroup of Γ, giving rise to the extension LΔ of KΔ, both with value
group Γ̇ = Γ/Δ. Note that if φ ∈ K× and vφ ∈ ΓK(∂), then φ−1∂ is small with respect to v,
and thus small with respect to v̇ by Lemma 1.17, so v̇φ ∈ Γ̇KΔ(∂). We show that under various
assumptions strictness of LΔ ⊇ KΔ yields strictness of L ⊇ K:

Lemma 6.3. Suppose that LΔ strictly extends KΔ and res(LΔ) = res(KΔ). Then L strictly
extends K.

Proof. Let φ ∈ K×, vφ ∈ Γ(∂), and 0 �= f ∈ OL. Then f = g(1 + ε) with g ∈ K× and
v̇(ε) > 0, so vf = vg and f ′ = g′(1 + ε) + gε′. Now v(g′) > v(φ). Since LΔ strictly extends
KΔ we have v̇(ε′) > v̇(φ), so v(ε′) > v(φ). Hence v(f ′) > v(φ). �

Lemma 6.4. Suppose that LΔ strictly extends KΔ and Δ = S(∂) �= {0}. Then L strictly
extends K.

Proof. Let 0 �= f ∈ OL. Then f = gu with g ∈ K and v(u) = 0, so g ∈ O and f ′ = g′u + gu′.
We have v(g′u) = v(g′) > Γ(∂). By Lemma 6.1 we have v̇(∂Ȯ) > γ̇ for every γ ∈ Γ(∂). Since LΔ

strictly extends KΔ, this gives v̇(∂ȮL) > γ̇ for every γ ∈ Γ(∂), hence v(∂ȮL) > Γ(∂), and so
v(u′) > Γ(∂). This gives v(f ′) > Γ(∂). �

Building strict extensions by extending the residue field

Suppose that the derivation of K is small. Let f ∈ O, and let a be an element in a field
extension of K, transcendental over K. We extend the derivation of K to the derivation
on K(a) such that a′ = f . We equip K(a) with the gaussian extension of the valuation of K
[2, Lemma 3.1.31]: The unique valuation on K(a) extending the valuation of K such that a � 1
and res a is transcendental over res(K). So for b = P (a)/Q(a) ∈ K(a) where 0 �= P,Q ∈ K[Y ],
we have vb = vP − vQ; in particular, ΓK(a) = Γ and res

(
K(a)

)
= res(K)(res a).

Lemma 6.5. The derivation of K〈a〉 is small. If ∂O ⊆ O, then ∂OK(a) ⊆ OK(a).

Proof. Given P = PdY
d + · · · + P0 ∈ K[Y ] (where P0, . . . , Pd ∈ K), we have P (a)′ =

P ′
da

d + · · · + P ′
0 + f · (∂P/∂Y )(a), hence P (a) ≺ 1 ⇒ P (a)′ ≺ 1, and P (a) � 1 ⇒ P (a)′ � 1.

Let b ∈ OK〈a〉. Then b = P (a)/Q(a) where P,Q ∈ K[Y ] and P (a) ≺ 1 � Q(a), so P (a)′ ≺ 1
and Q(a)′ � 1, hence

b′ =
P (a)′Q(a) − P (a)Q(a)′

Q(a)2
≺ 1.

Thus ∂OK〈a〉 ⊆ OK〈a〉. Similarly one shows that if ∂O ⊆ O, then ∂OK(a) ⊆ OK(a). �

Lemma 6.6. Suppose vf > Γ(∂). Then L := K(a) is a strict extension of K.

Proof. Let φ ∈ K× and ∂O ⊆ φO. Then the derivation of Kφ is small and Lφ = Kφ(a) where
φ−1∂(a) = φ−1f ≺ 1. Hence by the preceding lemma applied to Kφ, φ−1f instead of K, f , we



MAXIMAL IMMEDIATE EXTENSIONS OF VALUED DIFFERENTIAL FIELDS 397

have φ−1∂OL ⊆ OL and hence ∂OL ⊆ φOL. In the same way we show that if ∂O ⊆ φO, then
∂OL ⊆ φOL. �

This leads to the following variant of [2, Corollary 6.3.3]:

Corollary 6.7. Suppose ∂O ⊆ O and let E be a field extension of res(K). Then there is a
strict extension L of K such that ΓL = Γ, the derivation of res(L) is trivial, and res(L) is, as
a field, isomorphic to E over res(K).

Proof. We can reduce to the case E = res(K)(y). If y is transcendental over res(K), then the
corollary holds with L = K(a) as defined above with f = 0, by Lemma 6.6. Next, suppose that y
is algebraic over res(K), with minimum polynomial F (Y ) ∈ res(K)[Y ] over res(K). Take monic
F ∈ O[Y ] with image F in res(K)[Y ]. Then F is irreducible in K[Y ]. Take a field extension
L = K(a) of K where a is algebraic over K with minimum polynomial F over K. Then there
is a unique valuation vL : L× → Γ that extends the valuation of K; see [2, Lemma 3.1.35].
Then L with this valuation and the unique derivation extending the derivation of K has the
desired property, by Lemma 1.4 and the remark following its proof. �

For future reference we also state [2, Corollary 6.3.3] itself:

Lemma 6.8. Let E be a differential field extension of res(K). Then there is an extension L
of K with small derivation having the same value group as K and differential residue field
isomorphic to E over res(K).

Further generalities about coarsening

In this subsection we suspend our convention that K denotes a valued differential field, and just
assume that it is a valued field, not necessarily of characteristic zero. Notations not involving ∂
keep their usual meaning; in particular, the valuation of K is v : K× → Γ = v(K×). Let Δ be
a convex subgroup of Γ. Then the coarsening KΔ of K by Δ is the valued field with the same
underlying field as K, but with valuation v̇ = vΔ : K× → Γ̇ = Γ/Δ. The residue field res(KΔ)
of KΔ is turned into a valued field with value group Δ and residue field res(K) as described in
the subsection on coarsening of Section 1. The following well-known fact is [2, Corollary 3.4.6],
and is used several times below:

Lemma 6.9. The valued field K is spherically complete if and only if the valued fields KΔ

and res(KΔ) are spherically complete.

Let F be a valued field extension of KΔ with value group vF (F×) = Γ/Δ. Let also res(F )
be given a valuation w : res(F )× → Δ that extends the valuation v : res(KΔ)× → Δ. Then
we can extend v : K× → Γ to a map v : F× → Γ as follows. For f ∈ F×, take g ∈ K× and
u ∈ F× such that f = gu and vF (u) = 0; then resu ∈ res(F )×, so w(resu) ∈ Δ; it is easy to
check that v(g) + w(resu) ∈ Γ depends only on f and not on the choice of g, u; now put
v(f) := v(g) + w(resu).

Lemma 6.10. v : F× → Γ is a valuation on F with Δ-coarsening vΔ = vF .

Proof. Clearly v : F× → Γ is a group morphism with vF (f) = v(f) + Δ ∈ Γ/Δ for f ∈ F×.
Also, if f ∈ F× and vF (f) > 0, then vf > 0 and v(1 + f) = 0. Next, for f1, f2 ∈ F× with
f1 + f2 �= 0 one shows that v(f1 + f2) � min

{
vf1, vf2

}
by distinguishing the cases vF (f1) =

vF (f2) and vF (f1) < vF (f2). �
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Let L be the valued field extension of K that has the same underlying field as F and
has valuation v as above. Then the lemma above says that LΔ = F , and the valuation w
on res(F ) equals the valuation v : res(LΔ)× → Δ induced by v : L× → Γ and Δ. If res(LΔ) is
an immediate extension of res(KΔ), then L is an immediate extension of K. See the following
diagram, where arrows like ��	 indicate partial maps; for example, the residue map of KΔ is
defined only on Ȯ.

In the situation above, assume that K is of characteristic zero and is equipped with a small
derivation (with respect to v), and F is equipped with a small derivation (with respect
to vF ) that makes it a valued differential field extension of KΔ. Assume also that the induced
derivation on res(F ) is small with respect to w. Then the derivation of F is small as a derivation
of L (with respect to the valuation v of L).

Putting it all together

First one more special case of the main theorem:

Proposition 6.11. Suppose that ∂ is small and the derivation of res(K) is nontrivial.
Then K has the Krull property.

In view of Lemma 1.3, this is just [2, Corollary 6.9.5]. We have not yet completely settled
the case S(∂) = {0} of the main theorem, but we can now take care of this:

Proposition 6.12. Suppose S(∂) = {0} and Γ> has a least element. Then K has the Krull
property.

Proof. Let 1 denote the least element of Γ>. We first note that Γ(∂) has a largest element:
otherwise, Γ(∂) would be closed under adding 1, and so 1 ∈ S(∂), a contradiction. Thus by
compositional conjugation we can arrange that Γ(∂) = Γ�, so the derivation of K is small. We
have the convex subgroup Δ := Z1 of Γ, so the valuation of the differential residue field res(KΔ)
of the coarsening KΔ is discrete. The completion res(KΔ)c of the valued field res(KΔ) is a
spherically complete immediate extension of res(KΔ). Since the derivation of K is small, so is
that of KΔ and hence that of res(KΔ). (See the remarks after Lemma 1.17.) The derivation
of res(KΔ) is nontrivial: With φ ∈ K satisfying vφ = 1 we have ∂O � φO, since Γ(∂) = Γ�, so
we can take g ∈ O with v(g′) � vφ = 1, and then vΔ(g) � 0 = vΔ(g′). This derivation extends
uniquely to a continuous derivation on res(KΔ)c, and res(KΔ)c equipped with this derivation
is a strict extension of the valued differential field res(KΔ).

By applying Lemma 6.8 to the differential field extension res(KΔ)c ⊇ res(KΔ) we obtain an
extension F of KΔ with small derivation, the same value group vF (F×) = Γ/Δ as KΔ, and
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with differential residue field res(F ) isomorphic to res(KΔ)c over res(KΔ). Extending F further
using Proposition 6.11, if necessary, we arrange also that F is spherically complete.

Next we equip res(F ) with a valuation w : res(F )× → Δ that makes res(F ) isomorphic as
a valued differential field to res(KΔ)c over res(KΔ). This places us in the situation of the
previous subsection, and so we obtain an extension L of K with the same value group Γ such
that LΔ = F (so L and F have the same underlying differential field), the valuation induced
by L and Δ on res(LΔ) = res(F ) equals w, and the derivation of L is small. It follows easily
that L is an immediate extension of K. Since F = LΔ and res(LΔ) are spherically complete, L
is spherically complete by Lemma 6.9. Since the derivation of L is small and ΓK(∂) has largest
element 0, the extension L of K is strict, by Lemma 1.5. �

We can now finish the proof of our main theorem. We are given K and have to show that K
has a spherically complete immediate strict extension. We already did this in several cases, and
by Theorems 5.1 and Proposition 6.12 it only remains to consider the case Δ := S(∂) �= {0}. We
assume this below and also arrange by compositional conjugation that the derivation is small.
By Lemma 6.1 we have ∂Ȯ ⊆ Ȯ, and so the derivation of res(KΔ) is trivial. Take a spherically
complete immediate valued field extension E of the valued field res(KΔ). By Corollary 6.7
applied to KΔ we obtain a strict extension F of KΔ with value group vF (F×) = Γ/Δ, the
derivation of res(F ) is trivial, and res(F ), as a field, is isomorphic to E over res(KΔ). We
equip res(F ) with a valuation w : res(F )× → Δ that makes res(F ) isomorphic as a valued field
to E over res(KΔ). We are now in the situation of the previous subsection, and so we obtain
an extension L of K with the same value group Γ as K such that LΔ = F (so L and F have
the same underlying differential field), the valuation induced by L and Δ on res(LΔ) = res(F )
equals w, and the derivation of L is small. Now res(LΔ) is an immediate extension of res(KΔ),
hence L is an immediate extension of K, and so L strictly extends K by Lemma 6.4.

Lemma 6.2 yields SKΔ(∂) = {0}, and so SLΔ(∂) = {0} by Lemma 1.10. Then Theorem 5.1 and
Proposition 6.12 yield a spherically complete immediate strict extension G of LΔ. This places
us again in the situation of the previous subsection, with L and G in the role of K and F .
Hence we obtain an extension M of L with the same value group Γ as L such that MΔ = G
(so M and G have the same underlying differential field), the valuation induced by M and Δ
on res(MΔ) = res(G) = res(F ) equals w, and the derivation of L is small. Therefore M is an
immediate extension of L and thus of K. Since MΔ and res(MΔ) are spherically complete, M
is spherically complete by Lemma 6.9. The extension M of L is strict by Lemma 6.3. Thus M
is a spherically complete immediate strict extension of K as required. This concludes the proof
of the main theorem. �

7. Uniqueness

Let us say that K has the uniqueness property if it has up to isomorphism over K a
unique spherically complete immediate strict extension. If Γ = {0} and more generally, if K is
spherically complete, then K clearly has the uniqueness property. If ∂ = 0, then the derivation
of any immediate strict extension of K is also trivial, so K has the uniqueness property. The
next result describes a more interesting situation where K has the uniqueness property.

Proposition 7.1. Suppose Γ = Z. Then K has the uniqueness property.
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Proof. Let K̂ be the completion of the discretely valued field K. Then the unique extension
of ∂ to a continuous function K̂ → K̂ is a derivation on K̂ that makes K̂ an immediate strict
extension of K. If L is any spherically complete immediate extension of K, then we have a
unique valued field embedding K̂ → L over K, and this embedding is clearly an isomorphism
of valued differential fields. �

Proposition 7.2. Suppose that Δ is a convex subgroup of Γ and res(KΔ) is spherically
complete. If KΔ has the uniqueness property, then so does K.

Proof. Let L and M be spherically complete immediate strict extensions of K. Then res(LΔ)
and res(MΔ) are immediate valued field extensions of res(KΔ) and thus equal to res(KΔ).
Hence LΔ and MΔ are spherically complete immediate extensions of KΔ, and LΔ and MΔ are
strict extensions of KΔ by Lemma 1.19. Next, let i : LΔ → MΔ be an isomorphism over KΔ; it is
enough to show that then i : L → M is an isomorphism over K. For a ∈ L× we have a = b(1 + ε)
with b ∈ K× and ε ∈ ȮL, so i(a) = b(1 + i(ε)) and i(ε) ∈ ȮM , hence va = vb = vi(a). �

One could try to use this last result inductively, but at this stage we do not even know if
uniqueness holds when Γ = Z2, lexicographically ordered.

The role of linear surjectivity

In the next section we give an example of an H-field K that does not have the uniqueness
property. This has to do with the fact that certain linear differential equations over this K have
no solution in K. Here we focus on the opposite situation: as in [2, Section 5.1] a differential
field E of characteristic zero is said to be linearly surjective if for all a1, . . . , an, b ∈ E the linear
differential equation

y(n) + a1y
(n−1) + · · · + any = b

has a solution in E. For valued differential fields this property is related to differential-
henselianity: We say that K is differential-henselian (for short: d-henselian) if K has small
derivation and every differential polynomial P ∈ O{Y } = O[Y, Y ′, Y ′′, . . . ] whose reduction
P ∈ res(K){Y } has degree 1 has a zero in O; (cf. [2, Chapter 7]). If K is d-henselian, then its
differential residue field res(K) is clearly linearly surjective. Here is a differential analogue of
Hensel’s Lemma:

If K has small derivation, res(K) is linearly surjective, and K is spherically complete,
then K is d-henselian. This is [2, Corollary 7.0.2]; the case where K is monotone goes back to
Scanlon [7].

Conjecture. If K has small derivation and res(K) is linearly surjective, then K has the
uniqueness property.

For monotone K this conjecture has been established [2, Theorem 7.4]. It has also been
proved for K whose value group has finite archimedean rank and some related cases in [3].
Recently, Nigel Pynn-Coates has proved the conjecture in the case of most interest to us,
namely for asymptotic K. This is part of work in progress.

8. Nonuniqueness

We begin with a general remark. Let A ∈ K[∂] and suppose that the equation A(y) = 1 has
no solution in any immediate strict extension of K. Assume in addition that a ∈ K is such
that the equation A(y) = a has a solution y0 in an immediate strict extension K0 of K and the
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equation A(y) = a + 1 has a solution y1 in an immediate strict extension K1 of K. Extending K0

and K1 we arrange that K0 and K1 are spherically complete, and we then observe that K0

and K1 cannot be isomorphic over K. Thus K does not have the uniqueness property.
Below we indicate a real closed H-field K where the above assumptions hold for a certain

A ∈ K[∂] of order 1, and so this K does not have the uniqueness property.
The first two subsections contain generalities about solving linear differential equations of

order 1 in immediate extensions of d-valued fields. In the last subsection we assume familiarity
with [2, Sections 5.1, 11.5, 11.6, 13.9, Appendix A].

We recall from [2, Section 9.1] that an asymptotic field K is said to be d-valued (short for:
‘differential-valued’) if O = C + O. (So each H-field is d-valued.) We also recall that if K is an
asymptotic field, then for f ∈ K× with f �� 1, the valuation v(f†) of the logarithmic derivative
of f only depends on vf , so we have a function ψ : Γ�= := Γ \ {0} → Γ with ψ(vf) = v(f†) for
such f . If we want to stress the dependence on K we write ψK instead of ψ, and for γ ∈ Γ �= we
also set γ′ := γ + ψ(γ). The pair (Γ, ψ) is an asymptotic couple, that is (see [2, Section 6.5]):
ψ(α + β) � min

{
ψ(α), ψ(β)

}
for all α, β ∈ Γ �= with α + β �= 0; ψ(kγ) = ψ(γ) for γ ∈ Γ�= and

0 �= k ∈ Z; and

Ψ :=
{
ψ(γ) : γ ∈ Γ �=} < (Γ>)′ :=

{
γ′ : γ ∈ Γ>

}
.

Slowly varying functions

In this subsection K is an asymptotic field, Γ �= {0}, and A ∈ K[∂] is of order 1. Proposition 8.4
below is a variant of [2, Proposition 9.7.1]. Recall from [2, Section 9.7] that for an ordered
abelian group G and U ⊆ G a function η : U → G is said to be slowly varying if η(α) − η(β) =
o(α− β) for all α �= β in U ; note that then γ �→ γ + η(γ) : U → G is strictly increasing. Note
also that ψ : Γ�= → Γ is slowly varying [2, Lemma 6.5.4(ii)].

Lemma 8.1. Let a ∈ K× and s = a†. Then there is a slowly varying function η : Γ \ {va} → Γ
such that v(y† − s) = η(vy) for all y ∈ K× with vy �= va.

Proof. We can take η(γ) := ψ(γ − va) for γ ∈ Γ \ {va}. �

Lemma 8.2. Assume that K is d-valued. Let s ∈ K be such that v(y† − s) < (Γ>)′ for
all y ∈ K×. Then there is a slowly varying function η : Γ → Γ such that

η(vy) = v(y† − s) for all y ∈ K×.

Proof. Let y range over K×. Take a nonzero φ in an elementary extension L of K such
that φ† − s � y† − s for all y; thus δ := v(φ† − s) <

(
Γ>
L

)′. From v(y† − s) � v(φ† − s) we get
y† − φ† �∼ s− φ†, and thus

v(y† − s) = v
(
(y† − φ†) − (s− φ†)

)
= min

{
v
(
(y/φ)†

)
, δ
}

= min
{
ψL(vy − vφ), δ

}
,

where in case y � φ we use that L is d-valued to get the last equality. Thus v(y† − s) = η(vy),
where η : Γ → Γ is defined by η(γ) := min

{
ψL(γ − vφ), δ

}
. Next we show that η is slowly

varying. The function γ �→ ψL(γ − vφ) : ΓL \ {vφ} → ΓL is slowly varying, hence so is the
restriction of η to Γ \ {vφ}. Moreover, if vφ ∈ Γ and γ ∈ Γ \ {vφ}, then η(vφ) = δ, so

η(γ) − η(vφ) = min
{
ψL(γ − vφ), δ

}− δ

= min
{
ψL(γ − vφ) − δ, 0

}
= o(γ − vφ)

by [2, Lemma 9.2.10(iv)] applied to the asymptotic couple (ΓL, ψL − δ), which has small
derivation. �
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Lemma 8.3. Suppose that K is d-valued and
{
f ∈ K : vf ∈ (Γ>)′

} ⊆ (K×)†. Then there
is a slowly varying function η : Γ \ v(kerA) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K with vy /∈ v(kerA).

Proof. We have A = a0 + a1∂ with a0, a1 ∈ K, a1 �= 0; put s := −a0/a1. For y ∈ K× we
get A(y) = a1y(y† − s), hence v

(
A(y)

)
= va1 + vy + v(y† − s), and the claim follows from

Lemmas 8.1 and 8.2. �

We refer to [2, Section 11.1] for the definition of the subset E e(A) of Γ, for ungrounded K;
since A has order 1, this set E e(A) has at most one element. Recall also that K is said to
be of H-type or H-asymptotic if ψ restricts to a decreasing function Γ> → Γ, and to have
asymptotic integration if (Γ�=)′ = Γ.

Proposition 8.4. Let K be d-valued of H-type with asymptotic integration. Then there
is a slowly varying function η : Γ \ E e(A) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K× with vy /∈ E e(A).

Proof. By [2, Lemma 10.4.3] we have an immediate d-valued extension L of K such that{
s ∈ L : vs ∈ (Γ>

L )′
} ⊆ (L×)†. Applying Lemma 8.3 to L in place of K yields a slowly varying

function η : Γ \ v(kerL A) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K with vy /∈ v(kerL A).

It only remains to note that v
(
(kerL A) \ {0}) ⊆ E e

L(A) = E e(A). �

Application to solving first-order linear differential equations

In this subsection K is d-valued, A ∈ K[∂] has order 1, and g ∈ K is such that g /∈ A(K),
so S := v

(
A(K) − g

) ⊆ Γ.

Lemma 8.5. Suppose that K is henselian of H-type with asymptotic integration. Also
assume E e(A) = ∅ and S does not have a largest element. Let L = K(f) be a field extension
of K with f transcendental over K, equipped with the unique derivation extending that of K
such that A(f) = g. Then there is a valuation of L that makes L an immediate asymptotic
extension of K.

Proof. Take a well-indexed sequence (yρ) in K such that
(
v
(
A(yρ) − g

))
is strictly increasing

and cofinal in S. Proposition 8.4 yields a strictly increasing function i : Γ → Γ with v
(
A(y)

)
=

i(vy) for all y ∈ K×. Hence for ρ < σ,

v
(
A(yρ) − g

)
= v

(
(A(yρ) − g) − (A(yσ) − g)

)
= v

(
A(yρ − yσ)

)
= i

(
v(yρ − yσ)

)
,

so i
(
v(yρ − yσ)

)
< i

(
v(yσ − yτ )

)
and thus v(yρ − yσ) < v(yσ − yτ ) for ρ < σ < τ . Hence (yρ)

is a pc-sequence. Suppose toward a contradiction that yρ � y ∈ K. Then v(yρ − y) is even-
tually strictly increasing, so v

(
A(yρ) −A(y)

)
= i

(
v(yρ − y)

)
is eventually strictly increasing,

and thus eventually v
(
A(yρ) − g

)
� v

(
A(y) − g

)
, contradicting the assumption that S has

no largest element. Hence (yρ) does not have a pseudolimit in K. It remains to use
[2, Proposition 9.7.6]. �

Here is a situation where the hypothesis about S in Lemma 8.5 is satisfied:

Lemma 8.6. If S ⊆ v
(
A(K)

)
, then S does not have a largest element.
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Proof. Let y ∈ K be given; we need to find ynew ∈ K with A(ynew) − g ≺ A(y) − g. Since
v
(
A(y) − g

) ∈ v
(
A(K)

) ∩ Γ, we can pick h ∈ K× such that A(h) ∼ A(y) − g. Set ynew := y − h.
Then A(ynew) − g =

(
A(y) − g

)−A(h) ≺ A(y) − g as required. �

Some differential-algebraic lemmas

In this subsection E is a differential field of characteristic zero and F is a differential field
extension of E.

Lemma 8.7. Let F be algebraic over E, and f ′ + af = 1 with a ∈ E and f ∈ F . Then
g′ + ag = 1 for some g ∈ E.

Proof. We can assume n := [F : E] < ∞. The trace map trF |E : F → E is E-linear and
satisfies trF |E(y′) = trF |E(y)′ for all y ∈ F and trF |E(1) = n. Thus g := 1

n trF |E(f) ∈ E satisfies
g′ + ag = 1. �

Lemma 8.8. Let F = E〈y〉 where y is differentially transcendental over E, and let a ∈ E(y).
Then there is no f ∈ F \ E with f ′ + af = 1.

Proof. This is a special case of [2, Lemma 4.1.5]. �

Lemma 8.9. Let Y be an indeterminate over a field G and let R ∈ G(Y ) be such that
R(Y ) = R(Y + g) for infinitely many g ∈ G. Then R ∈ G.

Proof. We have R = P/Q with P,Q ∈ G[Y ]. Let Z be an indeterminate over G(Y ). Then
R(Y ) = R(Y + g) for infinitely many g ∈ G yields

P (Y )Q(Y + Z) = Q(Y )P (Y + Z).

Substituting g − Y for Z yields P (Y )Q(g) = Q(Y )P (g) for all g ∈ G. Choosing g such that
Q(g) �= 0, we obtain R(Y ) = P (Y )/Q(Y ) = P (g)/Q(g) ∈ G. �

Corollary 8.10. Let F = E(y) with y′ ∈ E \ ∂E, and let a ∈ E \ (E×)†. Then there is no
f ∈ F \ E with f ′ + af = 1.

Proof. By [2, Lemma 4.6.10], y is transcendental over E, and by [2, Corollary 4.6.13] there
is no g ∈ F× with g′ + ag = 0. For each c ∈ CE we have an automorphism σc of the differential
field E(y), which is the identity on E and sends y to y + c. Suppose f ′ + af = 1, f ∈ F . Then(
f − σc(f)

)′ + a
(
f − σc(f)

)
= 0 and hence σc(f) = f , for each c ∈ CE . Hence f ∈ F by the

preceding lemma. �

Nonisomorphic spherically complete extensions

We now use the preceding subsections to construct an H-field K with two spherically complete
immediate H-field extensions that are not isomorphic over K. Let M be the subgroup of the
ordered multiplicative group GLE of LE-monomials generated by the rational powers of ex and
the iterated logarithms �n of x:

M =
⋃
n

eQx �Q0 · · · �Qn .

We consider the spherically complete ordered valued Hahn field

M := R[[M]] ⊆ R[[GLE]].
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Note that L :=
⋃

n �
Q
0 · · · �Qn is a convex subgroup of M with L ∩ eQx = {1} and M = L eQx,

and so M = L[[eQx]] where L = R[[L]]. (Our use of the symbols L, L differs slightly from that
in [2, Section 13.9].) We equip M with the unique strongly R-linear derivation satisfying

(erx)′ = r erx, (�r0)
′ = r �r−1

0 , (�rn+1)
′ = r �r−1

n+1(�0 · · · �n)−1 (r ∈ Q).

Then M is an H-field with constant field R. The element λ ∈ L is defined by

λ :=

( ∞∑
n=1

�n

)′
=

∞∑
n=0

(�0 · · · �n)−1,

as in [2, Section 13.9]. Consider the real closed H-subfield E := R〈λ, �0, �1, . . . 〉rc of L and the
real closed H-subfield K := E[[eQx]] of M . Note that L is an immediate extension of E and M is
an immediate extension of K. Thus K has the same divisible value group Qv(ex) ⊕⊕

n Qv(�n)
as M , and K has asymptotic integration. Note also that (�n) is a logarithmic sequence in K
in the sense of [2, Section 11.5].

We set A := ∂ − λ ∈ E[∂]. Let K∗ be an immediate H-field extension of K. By
[2, Lemma 11.5.13] we have kerK∗ A = {0}. Moreover, −λ creates a gap over K∗, by
[2, Lemma 11.5.14] and so A(y) �� 1 for all y ∈ K∗, by [2, Lemma 11.5.12]; in particular
1 /∈ A(K∗). These remarks apply in particular to K∗ = M . We are going to show:

Proposition 8.11. For every c ∈ R there is an element y in some immediate H-field
extension Kc of K with A(y) = ex +c.

By Lemma 1.11, any immediate H-field extension of K strictly extends K. Thus in view of
the remark in the beginning of this section and using Proposition 8.11:

Corollary 8.12. There is a family (Kc)c∈R of spherically complete immediate strict H-field
extensions Kc of K that are pairwise nonisomorphic over K.

In particular, K does not have the uniqueness property. Toward the proof of the proposition,
we still need two lemmas.

Lemma 8.13. The elements �0, �1, . . . of L are algebraically independent over the subfield
R〈λ〉 = R(λ, λ′, . . . ) of L.

Proof. The element λ is differentially transcendental over R by [2, Corollary 13.6.3], and
hence over R(�0, �1, . . . ), so λ, λ′, λ′′, . . . are algebraically independent over R(�0, �1, . . . ). Since
�0, �1, . . . are algebraically independent over R,

�0, �1, �2, . . . , λ, λ′, λ′′, . . .

are algebraically independent over R. Hence �0, �1, . . . are algebraically independent over
R(λ, λ′, . . . ). �

Let B := ∂ + (1 − λ) ∈ E[∂]. We have λ /∈ (M×)† by [2, Lemma 11.5.13] and 1 = (ex)† ∈
(M×)†, so 1 − λ /∈ (M×)†, that is, kerM B = {0}.

Lemma 8.14. 1 /∈ B(E).

Proof. Put L0 := R〈λ〉 and Ln+1 := R〈λ, �0, . . . , �n〉, so Ln+1 = Ln(�n) in view of �′n =
�†n−1 ∈ Ln for n � 1, and �′0 = 1 ∈ L0. Note that E is algebraic over R〈λ, �0, �1, . . . 〉 =

⋃
n Ln.

By Lemma 8.7 it suffices that 1 /∈ B(Ln) for all n. The case n = 0 follows from Lemma 8.8.



MAXIMAL IMMEDIATE EXTENSIONS OF VALUED DIFFERENTIAL FIELDS 405

Suppose 1 /∈ B(Ln). Now Ln+1 = Ln(�n) and �n is transcendental over Ln, by Lemma 8.13,
so 1 /∈ B(Ln+1) by Corollary 8.10. �

Proof of Proposition 8.11. Let c ∈ R and g := ex +c ∈ K.

Claim 1. A(y) �= g and A(y) − g −� ex, for all y ∈ K.
This is obvious for y = 0, so assume y ∈ K×. Let r range over Q and let the yr ∈ E be such

that y =
∑

r yr erx with the reverse-well-ordered set {r : yr �= 0} having largest element r0.
Then

A(y) =
∑
r

(
y′r + (r − λ)yr

)
erx .

For r0 �= 0 we have r0 − λ � 1, so r0 − λ /∈ (L×)†, and thus for r0 > 1,

A(y) − g ∼ (
y′r0 + (r0 − λ)yr0

)
er0x −� ex .

Next, assume r0 = 1. By Lemma 8.14 we have y′1 + (1 − λ)y1 − 1 �= 0, and thus

A(y) − g ∼ (
y′1 + (1 − λ)y1 − 1

)
ex −� ex .

Finally, if r0 < 1, then A(y) − g ∼ −g � ex.

Since K is an H-field with asymptotic integration we can pick for every f ∈ K× an element
If ∈ K× with If �� 1 and (If)′ ∼ f .

Claim 2. Suppose f ∈ K× and f −� ex. Then If � f .
To prove this, note that h† � 1 for all h ∈ M×, hence f/If ∼ (If)† � 1 and so f � If .

If f ≺ If , then f ′ ≺ (If)′ ∼ f , whereas f −� ex means f† � (ex)† = 1, a contradiction. Thus
f � If , as claimed.

Let y ∈ K be given, and set z := A(y) − g and ynew := y − Iz ∈ K. Then

znew := A(ynew) − g = z − (Iz)′ + λIz.

By Claim 1 we have z −� ex, so Iz � z by Claim 2, and thus λIz ≺ z. Since z − (Iz)′ ≺ z, this
yields znew ≺ z.

This argument shows that the subset v
(
A(K) − g

)
of Γ does not have a largest element. By

[2, Example at end of Section 11.1, Lemma 11.5.13] we have E e
K(A) = ∅. Thus Proposition 8.11

follows from Lemma 8.5. �

To finish this paper we indicate how the operator B differs in its behavior on E from that
on its immediate extension L. This uses the following:

Lemma 8.15. Let L be an H-asymptotic field with asymptotic integration and divisible
value group ΓL, and let s ∈ L be such that

S :=
{
v(s− a†) : a ∈ L×} ⊆ Ψ↓

L.

Then the following are equivalent for g ∈ L×:

(i) vg /∈ v
(
D(L)

)
for D := ∂ − s ∈ L[∂];

(ii) g† − s creates a gap over L.

Proof. If S has no largest element, this is [2, Lemma 11.6.15]. Suppose that S has a largest
element. Then [2, Lemma 10.4.6] yields an H-asymptotic extension L(b) with b �= 0, b† = s,
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η := vb /∈ ΓL, and ΓL(b) = Γ ⊕ Zη, and ΨL(b) = ΨL ∪ {maxS} ⊆ Ψ↓
L. The rest of the argument

is as in the proof of [2, Lemma 11.6.15]. �

In contrast to Lemma 8.14 we have:

Proposition 8.16. B(L) = L; in particular 1 ∈ B(L).

Proof. Set s := λ − 1. We have λ ≺ 1 and for a ∈ L× we have a† ≺ 1. Thus{
v(s− a†) : a ∈ L×} = {0} ⊆ Ψ↓

L.

Let g ∈ L×. Applying Lemma 8.15 yields:

vg /∈ v
(
B(L)

) ⇐⇒ g† − s creates a gap over L.

We have λn � λ. If vg /∈ v
(
B(L)

)
, then λn � s + g† by [2, 11.5.12] and the above equivalence,

so v(1 + g†) > ΨL by [2, Lemma 11.5.2]. But g† ≺ 1, so v(1 + g†) = 0 ∈ Ψ↓
L. Thus v

(
B(L)

)
=

v(L×). As we saw, v(g† − s) ∈ Ψ↓
L for all g ∈ L×, so E e

L (B) = ∅, by [2, Example at end of
Section 11.1]. The desired result now follows from Lemmas 8.5 and 8.6 and the spherical
completeness of L. �

As a consequence of Proposition 8.16 we have ex ∈ A(M): Taking y ∈ L with B(y) = 1
gives A(y ex) = ex. In view of the remarks just before Proposition 8.11 we also obtain that
ex +c /∈ A(M) for all nonzero c ∈ R.

Acknowledgement. We thank the referee for suggesting to make the paper more accessible
by including explicit statements of some material from [2].

References

1. M. Aschenbrenner, L. van den Dries and J. van der Hoeven, ‘Toward a model theory for transseries’,
Notre Dame J. Form. Log. 54 (2013) 279–310.

2. M. Aschenbrenner, L. van den Dries and J. van der Hoeven, Asymptotic differential algebra and model
theory of transseries, Annals of Mathematics Studies 195 (Princeton University Press, Princeton, NJ, 2017).

3. L. van den Dries and N. Pynn-Coates, ‘On the uniqueness of maximal immediate extensions of valued
differential fields’, Preprint, 2017, arXiv:1707.07034.

4. I. Kaplansky, ‘Maximal fields with valuations’, Duke Math. J. 9 (1942) 303–321.
5. W. Krull, ‘Allgemeine Bewertungstheorie’, J. reine angew. Math. 167 (1932) 160–196.
6. M. Matusinski, ‘On generalized series fields and exponential-logarithmic series fields with derivations’,

Valuation theory in interaction, EMS Series of Congress Reports (eds A. Campillo, F.-K. Kuhlmann and
B. Teissier; European Mathematical Society, Zürich, 2014) 350–372.
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