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1. Introduction

In this paper, we consider the generalized surface-quasigeostrophic equations (gSQG):

00 +u-V0=0, (x,t)eR?xRy,
u=—-V+(=A)"1*t20, (1.1)
e\tzo = 907

where « € (0,2). The case « = 1 corresponds to the surface quasi-geostrophic (SQG)
equation and the limiting case o = 0 refers to the 2D incompressible Euler equation.
The case a = 2 produces stationary solutions.
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The pioneering articles of Constantin-Majda—Tabak [7] and Held-Pierrehumbert—
Garner—Swanson [21] motivated the study of the SQG (a = 1) from a mathematical
point of view. Since then, a lot of effort has been devoted to understanding these equa-
tions: the problem of whether the gSQG system presents global solutions or not is yet
not completely understood.

The existence of weak solutions starts with the work of Resnick [35], where he proves
the existence of global weak solutions in L? in the SQG case o = 1. In bounded domains,
Constantin—-Nguyen and Nguyen [8,32] proved that the same results hold. Buckmaster—
Shkoller—Vicol [2] have shown non-uniqueness of weak solutions for the SQG equation in
certain spaces less regular than L?. See also [30], [6], and [31] for more general classes of
weak solutions.

In this paper, we will focus on a particular class of weak solutions, the so-called
a-patches, which are solutions for which # is a step function

o, it zeq)
bla,t) = { 0, if x€ Q) (12)

where Q(0) C R? is a regular set given by the initial distribution of 6, §; and 6y are
constants, and Q(t) is the evolution of ©(0) under the velocity field w.

In this setting, local existence of patch solutions has been obtained by Rodrigo [36]
(for a C* boundary 92(0) in the case @ = 1), Gancedo [17] (for Sobolev regularity
and 0 < a < 1) and Chae—Constantin—-Cordoba—Gancedo—Wu [6] in the more singular
case 1 < a < 2. Uniqueness for the patch equations was proved for 0 < a < 1 by
Kiselev—Yao—Zlatos [28] and for a = 1 by Cérdoba—Cérdoba—Gancedo [9]. Garra [19]
obtained estimates of the growth of the support of the patch in time for 0 < a < 1.
See also [25,26] for local existence results of cubic models of the a-patch problem in the
range 0 < a < 1.

Several authors have done numerical simulations suggesting finite time singularities.
There are two scenarios: the first one (done by Cérdoba—Fontelos-Mancho—Rodrigo [10]),
starting from two patches, suggests an asymptotically self-similar collapse between the
two patches, and at the same time a blowup of the curvature at the touching point;
the second one (by Scott—Dritschel [38]) evolves a thin elliptical patch and indicates a
self-similar filamentation cascade ending at a singularity with a blowup of the curvature.
This is consistent with the rule out of splash singularities by Gancedo—Strain [18]. In
the case with boundaries (more concretely on the halfspace), Kiselev—Ryzhik—Yao—Zlatos
[27] proved the formation of finite time singularities for certain patches that touch the
boundary at all times.

Very little is known concerning nontrivial global solutions for the gSQG equations.
Cérdoba—Goémez-Serrano—Tonescu [11] proved a generic global existence result for small
solutions in the case 1 < o < 2, with initial data 9(0) close to the halfplane.

Another perspective is to look for uniformly rotating solutions. These solutions are
known as V-states. Deem—Zabusky [15] investigated this problem numerically and found
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the first set of families bifurcating from disks. Since then, there has been work by
other authors improving the methods and computing larger classes (see for example
[39,16,29,37]). The theoretical study of V-states of the Euler equations was initiated by
Burbea [3] proving their existence and was continued later in a series of works by Hmidi—
Mateu—Verdera and de la Hoz—Hmidi-Mateu—Verdera [23,14,24] in different settings and
directions (regularity of the boundary, different topologies, etc.).

Bifurcating from disks, Hassainia—Hmidi [20] proved the existence of V-states with
C* boundary regularity in the case 0 < o < 1. In [4], Castro-Cérdoba—Gémez-Serrano
showed existence and C'*° regularity of convex global rotating solutions for the remaining
open cases: o € [1,2) for the existence, o € (0,2) for the regularity. This boundary
regularity was subsequently improved to analytic in [5]. See also [22] for another family
of rotating solutions.

Another scenario that has been investigated is the doubly connected case. Bifurcating
from annuli, de la Hoz—Hassainia—Hmidi [13] established the existence of doubly con-
nected C* V-states for 0 < a < 1, and Renault [34] proved their existence for a = 1
in the analytic setting. In their paper, de la Hoz—Hassainia—Hmidi perform numerical
simulations that suggest the existence of certain V-states with zero angular velocity and
pose the question of establishing analytically the existence of stationary V-states (cf. [13,
p. 1213, Remark 2]).

Our goal in this paper is to solve this open question, and prove the existence of
stationary patches of the gSQG equation for all 0 < o < 2. To our knowledge, this is the
first nontrivial construction of stationary solutions for any «.

The main difficulty is that even if one could find an annulus from which bifurcate at
* = 0 using the previous ideas, there is no control on the branch and it is not clear if
the continuation of the branch would intersect {2 = 0 at a nontrivial point or only at the
bifurcation one (which is an annulus). Another possibility is to study the local behaviour
of the branch close to a bifurcation point of sufficiently small Q*. However, this approach
would require a nontrivial quantitative (or uniform in Q*) control of the neighbourhoods
in which the local approximation is accurate. In order to circumvent these issues, we
impose stationarity and look for a different parameter in which perform the bifurcation
analysis. In our case, this will be the inner radius of the annulus b. Specifically, we
will find that for every m > 2, there exists a certain radius b}, at which nontrivial
stationary m-fold solutions bifurcate from the annulus. The precise theorem is stated in
Theorem 1.1 below. This choice of the parameter leads to a nontrivial spectral analysis
in which one has to check carefully all the conditions from the Crandall-Rabinowitz [12]
theorem.

From now on, we will assume that 8, — 6, = 1.

1.1. The equations

The evolution equation for the interface of an annular a-patch, which we parametrize
as two 27 periodic curves Z(x) (outer boundary) and z(z) (inner), can be written as
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WZ(x,t) 0y Z(x,t) = (—S(Z,2) + S(2,2)) - 0F Z(,t) (1.3)
Oz(z,t) 0y z(x,t) = (=S(Z,2) + S(z,2)) - Oy 2(z, 1) (1.4)
5, 4) = ca / i;zzg:_ yy))— qa(gl(f iy 5

where the normalizing constant c,, is given by:

Ca =

1 ()
27 21— O‘F(2 ay’

Let z(x,t) = (b+ r(x,t))(cos(x),sin(x)), Z(z,t) = (1 + R(z,t))(cos(x),sin(x)) be the

inner and outer boundaries of the patch respectively, where b is a constant. Imposing
stationarity, we are left to solve the following system for (r, R) = (r(z), R(x)) and b:

0=F'b,Rr)=Ti(1+R)+Ta(b+r1+R)
0=F%0b,R,r)=—-To(1+R,b+7)—Ti(b+7), (1.6)

where

T coste - pwute) — uly' @)
Tifu) = a/ (w(z)? + u(y)? — 2u(z)u(y) cos(z — y))*/2 dy

27
c sin(@ — y)(u(@)uly) + ' (2)u'(y)
+oo | et oo ) oo — T

27

. cos(z — y)(p(y)q' (x) — p'(y)q(x))
Lolp.0) = / (@@? + p(9)? — 20(@)p(y) cos(w — )oY
. / e~ ) () + @)
“J (q(2)? +p(y)? — 2q(z)p(y) cos(z — y))*/2

We remark that the case ¥ = R = 0 corresponds to an annulus of radii b and 1,
yielding a stationary (though trivial) solution for any 0 < b < 1.

1.2. Functional spaces

We refer to the space of analytic functions in the strip |3(z)| < ¢ as Cy(c). In our
proofs, we will use the following analytic spaces. For k € Z:
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sz{f()ec Zajcosp: Z/|f +ic)|2dx
+Z/8kf(xiic)|2dx<oo}
+

Xfﬂn:{f(x)ecw() ZaijOSjmx /\f x +ic)|*dx

j>1

+Z/8kf(3::|:ic)|2da:<oo}
+
Yckz{f()ec Zajsmjx Z/|fx:|:zc|dx
+Z/8kf(xiic)|2dm<oo}
+
Zajmsm]mx Z/|f (z +ic)|*dx

j>1
+Z/3kf(m:|:ic)|2da:<oo}
+
Xf+a:{f()ec Zajcosp: Z/|f +ic)|2dx
+Z/\3kf(ziic)|2d:r
+

flx+ic—y)— 0% f(x +ic)

[sin(D)] e a

Y <oop, a€(0,1)
L ()

Xf+o¢,m:{f( ) € Cul Zajmc%jma: Z/\fxizc\dm
+Z/\8kf(xj:ic)|2d:c
+

flx+ic—vy) — 0% f(z +ic)
| sin(g)[

d

Y <ocop, ac(0,1)
L?(z)
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XhHos _ {f(x) € Culc), f e XF, flx)= iaj cos(jz),
j=1

<
L3(2)

+
Xk+10g,7n _ {f(.%‘) cC (C) f c X’f f(m) = ia» cos(jmx)
c w ) c) Jm ’

j=1
< 00 .
L2 (z)

The norm is given in the last two cases by the sum of the X*-norm and the additional

/8kf(x:tic—y)—8kf(x:tic)dy

[sin(3)]

/8kf(x:tic—y)—8kf(x:tic)dy

sin(3)]

finite integral in the definition.
1.8. Theorems and outline of the proofs

The paper is organized as follows. In Section 2, we prove the following theorem:

Theorem 1.1. Let k > 3,m € Nym > 2,0 < a < 2 and let 0 < b}, < 1 be defined in
Proposition 2.5. Then, there exists a family of m-fold stationary solutions (b, R,r) and a
c >0, where (R(x),r(x)) € XFt1m x XFLm (for o < 1), (R(x),r(x)) € XFHitlosm
XktHitloem (for o = 1) or (R(z),r(x)) € XFtam x Xk+tam (for a > 1) of the equation
(1.6) with 0 < a < 2 that bifurcate from the annulus of radii 1 and b7, .

The proof will be carried out by means of a combination of a Crandall-Rabinowitz
theorem and a priori estimates. Finally, in the Appendices we will include useful formulas
and identities involving the special functions that appear throughout the proofs.

2. Checking the hypotheses

The proof will be divided into 6 steps. These steps correspond to check the hypotheses
of the Crandall-Rabinowitz theorem [12] for

F(b7 Ra T’) = (Fl(b7 er)’F2(ba R7T))7
with

F'(b,R,7) =Ti(1+ R) + Ta(b+r,1+ R)
F2(b,R,7) = —To(14+ R,b+7) = T1 (b + 1), (2.1)

and
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Ty (u) = cq / ol cos(y)(vW'(z — y)ulz) —ul@ —yl'(@)

)? +u(x - y)* = 2u(z)u(x — y) cos(y))*/?

. T sin()(u)ule — y) + (@)@ — y)
* / (@) + ulz — )* — 2u(@)u(z — y) cos(y))*2

dy

. / cos(y) (v’ (z — yu(z) — u(z — y)u'(z))
: (2 = 2cos(y))*/?

" 2 — 2cos(y) /2
(u<x>2 T (e —y)? — 2u(x)ulz — 3) cos<y>) B

T sin() (u(@)u(z — ) + o/ (@) — y)
e / (2 — 2cos(y))o/?

0

y 2 — 2cos(y) /2
(u<x>2 Tu(z — 4 — 2u(x)ulz — 3) cos<y>) W

. T cosy)p(@ — )¢ (@) — Pz — y)a(@))
Bop.g) = ca / (q(x)? + p(z — y)? — 2q(2)p(x — y) cos(y))*/?
. 7 sin(y)(p(z — y)g(z) + p'(x — y)¢'(x))
“J (a(@)? +p(x —y)? = 2q(x)p(z — y) cos(y))*/?

dy

The hypotheses are the following:
1. The functional F' satisfies
F(b,R,r) : (0,1) x {Ve} = YL syt
where V¢ is the open neighbourhood of 0

(£.9) € XE x XE ¢ ||fllxx + llgllxe < e ifa<1
VE={ (f.g) € XEHOE X XEHOE ([ F]l pinos + [[gllgers <& ifa=1,
(f.9) € XEFa=1 5 XFHO1 ¢ [[fllkras + llgllxrras < Ha>1

for all 0 < e < gg(m) and k > 3.

2. F(b,0,0) =0 for every 0 < b < 1.

The partial derivatives F,., Fr, Fpr and Fy, exist and are continuous.

4. Ker(F) and Y*~! /Range(F) are one-dimensional, where F is the linearized operator
around r = R =0 at b = b}, (see Proposition 2.5 for a definition of b%,).

5. O, DF(b%,,0,0)[ho] ¢ Range(F), where Ker(F) = (ho).

®
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6. Step 1 can be applied to the spaces:

XhEm o Xkm if <1

ch+log,m % Xk+log,m ifa=1
(& (&

Xkro—lm o xhtoolm if g 51

and YF~Lm x YE=Lm ingtead of

Xk x Xk ifa<1
Xhktlog  Xhtlog  if o =1
Xhta-ly xkta=l ifa > 1

and Y =1 x Y =1 respectively.
Remark 2.1. For the choices of u that will appear in the Theorem (of the form constant
+0(g)), the function inside the parenthesis in T3 (u) is uniformly bounded from below

in y for every x by a strictly positive constant. Then we can analytically extend the
integrand in z to the strip |3(2)| < ¢ for a small enough c.

2.1. Step 1

The regularity step of the functional F' was already shown in [34] for o« = 1, in [13]
for a < 1 and can be easily adapted from the proof of [5] for a > 1.

2.2. Step 2

This is trivial since T1(1), T1(b), T>(1,b) and T5(b, 1) consist of integrands which are
either zero or odd (and therefore have integral zero).

2.3. Step 8

We need to prove the existence and the continuity of the Gateaux derivatives
OrF(b,R,r), 0.F(b, R, 1), ObrF (b, R,r) and 0. F (b, R, 7). We have the following Lemma:

Lemma 2.2. For all (R,r) € V" and for all (H,h) € X, where X = (X x XF), (X}F+los x
Xktlog) op (XEra—ly Xkta=1y depending on «, such that ||(h, H)||x = 1 we have that:

DrFY (b, R,7)[H]

2
. / cos(y)(H'(z — y)(1 + R(z)) + R'(¢ — y)H() - H(z — y)R'(z) — (1 + R(x — y))H'(z))
. (2 — 2cos(y))*/?

0
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2 —2cos(y) a/zd
<1+R + (1 +R(x—y))? —2<1+R<x>><1+R<x—y>>cos<y>) Y

< ) cos )R'(z —y)(1 + R(z)) — (1+ R(z — y))R'(z))
(2 — 2cos(y))*/2

% ((1+R(x))H($)+(1+R(1‘ y)H(@@ —y) — (1 + R@@)H(x —y) + (1 + R(z — y))H(:v))COS(y)>
2 — 2cos(y)

" ( 2 — 2cos(y) )a/2+1d
A+ R@)2+(1+R—1)2—20+Rx)(1+ R —y))cos(y) Y
27
T / sin(y)(1+ R(z))H(z —y) + Hx)(1+ R(z —y)) + R'(x)H' (x —y) + H' (x)R' (x — y)
. (2= 2cos(y))*/

( 2 — 2cos(y) )Q/Qdy
14+ R(x)2+ (14 R(z —))2 — 2(1 + R(x))(1 + R(z — y)) cos(y)

(g) [ sin(y) (1+ R — y))(1+ R(z)) + R (z — y) R'(x))
2 (2 — 2cos(y))/?

% ( (I+R(@)H(z) + (1 + Rz —y)H(z—y) - (1 + R(z))H(z —y) + (1 + R(z — y))H (2)) COS(?J))
2 — 2cos(y)

2 — 2cos(y) /21
* ((1 TR+ (L Rz —9)? 21+ R@)(1 + Rz —9)) cos<y>> a

te 7 cos(y) (b +r(x — y))H'(x) — r'(z — y)H(z))
“ (U + R@)? + (b+ 7z —y))? = 2(1+ R(2)) (b + r(z —y)) cos(y))*/?

0

dy

2w

— <§>ca0/(cos(y)((b+r(x —y))R (z) —r'(z —y)(1+ R(z))))
o (1+ R@) H(@) - (b-+ rla = 1) H(a) cos(y) )
(14 R(x))2 4+ (b+r(z —y))? = 2(1 + R(x))(b+ r(z — y)) cos(y))*/>+1

. / sin(y) (H(z)(b+ r(z — y)) + H'(x)r'(z — y))
S (A4 R@)?2+ (0 +r(x —y))? = 201+ R(@))(b+r(z — y)) cos(y))*/2

+ (§>ca /(sin(y)((b +r(z—y))(1+ R(z)) +r'(z — y)R'(z)))

[}

(1+ R(z)H(x) — (b+r(z — y))H(x) cos(y)
- 2(((1 T R@)?+ (b+r(w—y)? — 201+ R(@)(b+r(z —y)) cos<y>>a/2+1>dy




J. Gémez-Serrano / Advances in Mathematics 343 (2019) 110-140 119

D,.F'(b,R,7)[h]
7 cos(y)(h(z — y)R'(z) — W' (z — y)(1 + R(z))) dy
“J (14 R(@)2 4 (b+r(x—y))? —2(1 + R(x))(b+ r(z — y)) cos(y))*/?

0

=C

27

_(g)ca/(cos,(y)((mr(x- y) R (2) = 7' (x — y) (1 + R(z))))

(b+ r(x)h(z) — (1 + R(x))h(z — y) cos(y)
g 2(((1 +R(@))? + (b+r(z—y))? =21+ R(2))(b+r(z —y)) COS(y))a/”l)dy

i sin(y)((1 + R(x)h(z — y) + R (@)W (z — 1))

a/((1+R(l’))2+(b+7’($— ¥)? = 2(1+ R(x)) (b + r(z — y)) cos(y))*/

0

—c dy

2m

+ ((;) Ca /(Sin(y)((b +r(z—y) (14 R(2)) +7'(x — y)R'(2)))
0

(b+ r(x)h(z) — (1 + R(x))h(z — y) cos(y)
g 2(((1 + R(2))? + (b+r(z —y)? = 2(1+ R(2))(b+ r(z —y)) COS(y))a/”l)dy

DrF?(b,R,r)[H]

2m

/ cos(y)(H (z — y)r'(z) — H'(x — y) (b + r(x))) dy
“J (b4 () + (14 Rl — )2 = 2(b+7(2))(1 + R(z — y)) cos(y))*/?

0

= —C

27

+ (%> Ca /(cos(y) (14 R@—y)r'(z) - Rz —y)(b+r(x))))
0

o (1+ Rlw — y) H(z — y) — (b+ (@) H(z — y) cos(y) o
(@ + (@) + L+ Rl — 9))? — 20+ r(@)(1 + Rl - y) cos(y))*/

/ sin(y)((b+r(x))H(x —y) +r'(x)H'(z — y)) dy
(b+7(@)2+ 1+ Rz —y))2 —2(b+ () (1 + Rz — y)) cos(y))*/2

( ) (sin(y)((1+ R(z —y)) (b +r(x)) + R (z — y)r'(x)))

(14 R(z —y))H(x —y) — (b+r(x))H(x — y) cos(y)
" 2(<<b+ 0 R 0 £ 1+ 7 ) o)

D’I“F2 (b» R7 T) [h]
2

_ . / cos(y) (W' (x — y) (b +r(x)) + r'(z — y)h(z) — h(z —y)r'(x) — (b+ r(z —y))W'(x))
¢ (2 — 2cos(y))*/?

0
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2 — 2cos(y) o/2
< b+r(x +r(x—y))? = 20b+r()(b+r(z— ))COS(:U)> W
( ) cos —y)b+r(x) - (b+r—y)r')
(2 —2cos(y))*/?
x 2( (b+r(x)h(x) + (b +7r(x —y))h(z — y);_(ébcjsgf))h@ —y) + (b+r(x —y)h(z)) COS(Z/))
2 — 2cos(y) o/2+
" ((b Fr@) 4 Gt (e = )P =20+ r@)b+ (e ) cos<y>> v

. / sin(y)(b + r(@))h(x — y) + h(x)(b+ (@ — y)) + (@) (@ — y) + W (@)r'( — y)
o (2 — 2cos(y))"/?

2 —2cos(y) /2
b+r(z +r(z—y))? 2(b+7’($))(b+7"($y))COS(y)> W

(3
< ) sm ((b+r(z ?2 z);bc;zny(;c))(z; ' (z — ) (z))

o Ctr@)h(z) + (b+r(e—y)hx —y) = (b+r(@)h(z —y) + (b + (@ —y)h(z)) COS(Z/))
2 — 2cos(y)

§ ( 2 — 2cos(y) >a/2+1dy
(b+r@)2+ (b+r(r—y)?*—2(0b+7))(b+r(r—y))cos(y)

7 cos(y)((1 + Rz — y))h'(z) — R(z — y)h(x))
: ) ((b+r(2))? + (1+ Rz —y))? = 2(b+ r(2))(1 + Rz —y)) cos(y))*/?

dy

—C

2m

+ (%) [ (eosto) (14 e = ) (@) = Rz = )b+ 1(a))))

0

(b+ r(z))h(z) — (1 + R(x — y))h(z) cos(y)
2 ( ((b+7r(x)? + (1 + Rz —y))? = 2(b+ r(x))(1 + R(z — y)) COS(y))”‘”“)dy

2m

/ sin(y) (h(z)(1 + R(z — y)) + W' (2) R'(z — y))
((b+r(@)*+ (1+ Rz —y))* = 2(b+ r(2))(1 + R(x — y)) cos(y))*/?

0

+ Ca dy

2m

- (“) JEm)((1+ R =) (o +0) + B = ) (@)))

o

(b+ r(z))h(z) — (1 + R(z — y))h(zx) cos(y)

: 2<<<b T (@) + (1 + Rlx— 9))? — 20+ r(@) (1 + R(z - y) cOs<y>>a/2+1>dy<z 2)
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Moreover, these functions are continuous in (R, 7).

Proof. Straightforward computation.

The continuity of 0,.F (b, R, r) and OgF (b, R, r) was done in [34] for « = 1, and in [13]
for « < 1 for Holder-based spaces but it can easily be extended to the case o > 1 and
Sobolev-based spaces using the same techniques.

We explain now how to deal with derivatives with respect to b. The only problematic

terms are the ones that contain a factor such as the one below in brackets (the first term
in 9, F%(b, R,7)[h]):

A(b, x)

2T
_ . / cos(y)(h'(z — y)(b+ r(x)) + r'(z — y)h(z) — h(z — y)r'(z) — (b+r(z —y))h'(z))
" @~ 2c0s(y))*2

2 — 2cos(y) o2
. ((b +7(@)?+ O+r(@—y)*=20b+r@)(b+r(z—y)) COS(9)> w

Taking a derivative in b:

Ay A(b, z)
. 7’eos<y><h'<x —y) ~ W)
") T @ 2eo(y)

2 — 2cos(y) o2
(e e e P i e xe e e=) M

o cos@)(W (@ = y) (b +r(x)) +r'(w —y)h(z) — h(z —y)r'(z) — (b+r(z — y))h'(2))
(2 — 2 cos(y))*/?

y ( 2 — 2cos(y) )a/2+1
O+r@)>2+0b+rxz—y)2=20+r@)b+r(z—1y))cos(y)
( (2 —2cos(y)2(b+r(x) +b+r(x —1y)) )dy
(b+r(@)?+ (b+r@—y)*—20b+7)b+r(r—y))cos(y))?

= Al(baz) + AQ(b7 1'),

and both terms can be shown to be bounded and continuous as in the cases of 0, F (b, R, r)
or OpF(b,R,7). O
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2.4. Step 4
2.4.1. Calculation of F

Before proving Step 4, we compute the linearization of F around (0, 0) in the direction
(h(x), H(x)). Note that this is also obtainable from the computation in [13] by setting
Q=0.

Proposition 2.3. Let h(z) = Z ay cos(nz), H(x) = Z A, cos(nx), then we have that:

DF(b,0,0)[H, h] = (U(x)> ,

where
u(z) = Z cpsin(nz), Ul(z) = Z Uy, sin(nz),
and the coefficients satisfy, for any n:
o A —0,, + b2\, (b) —b%A,,(b) A\ [ Uy
(_n)Mn (b) ( a, ) - (—Tl) < bAn(b) blia@n o bAl(b)> ( a, > - (Un>

with

17 1
An(b) = 5/tﬂjn(bt)Jn( it
0
N Gesfa a
STy g 0 Flgnt i)
bn—l p
0 s oS (1 p2) " f
_21_0‘F(1—%)2/x (1—2)"2(1—b*z) *dx. (2.3)
0

0, =A1)— A1)

Proof. We first start by setting r = R =0 in (2.2), yielding:

27

D 0,001 =, [ S E 0T @),

(2 — 2cos(y))*/2

T sin(y)(H(z — ) + H(x))
+ ca/ (2 — 2cos(y))*/? d
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2 .
_ <§>ca / sm(y(>2<H<2xC)O§( j)(f/; 9) g,

cos(y)(bH'(x
1—|—b2—2bcos 0‘/2

dy

sin(y x)b)
14062 — 2bcos (y))a/2

e
.
H(x)(1 - beos(y))

) (sin(y ((1 02— 2bcos<y))@/2+l)dy

(3
/ y(H (@ —y) - H'(2)) ,

(2 —2cos(y))*/2 4

2
sin(y)(H(x —y) + H(z))
- / 2—2cos(y)*?

_ ( « ) . 0/ sin(y()2(if (2330)0; yh)f )(5/2— 9) g,

T cosy)(bH'(2))
—|—coé/<

)
1+ b2 — 2bcos(y))/2 4
0

D FL(b,0,0)[h] —ca/ ’ iozgyz(;l;(:os—(j))))a/z dy — ca/ : sin(y) (h(z — y))
0 0

o) [l (e ),

0

1+ b2 — 2bcos(y))*/? 1+ b2 — 2bcos(y))*/?

~2(3)ee 7<sin<y><b>> (G ;(blc;S?;;)S"(;JQ)L o

0

: [ o) H @) [ sn()H( - y)
DrF2(b,0,0)[H] = ao/( dy + ao/(

0

123

d
1+ b2 — 2bcos(y))*/? Y
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_c7bsin(y)(h( D+h) 1,
“ (2 — 2cos(y))*/2 be

a sm (b*)b(h(z) + h(z —y)) 1
(2) 2 ~2cos(y))/? par2 Y

cos(y) (W (x)) 7 sin@)(h(x))
0/ 14862 — 2bcos( ))e/2 dy + Cao/ (1402 — 2bcos(y))~/?

(3 Joon (o

27
. freos)Wa—y) -~ @) 1
. / @—2com(y)er b

Ca}”bsm(y)(h( P+ha) 1,

(2 —2cos(y))*/2 b
0

o\ Fsin(y)(2b(h(z) + h(z —y)) 1
i <§>Ca / (2 — 2cos(y))*/2 pot2 dy

0

/ cos(y)(h'(x))
1402 — 2bcos( ))e/2
0

We now integrate by parts and obtain:

oo (5)e [ e

oo =-(5)e (e )

By linearity, it suffices to do the calculations when H(xz) = A, cos(nz),h(z) =

ap, cos(nz). In that case:

. B ) sin(y) sin(ny)
D, F*(b,0,0)[h] = 2a,b ( )ca sin(nx /( 1502 — 2beos(y ))a/2+1>dy
0
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DrF2(b,0,0)[H] = —2A,b (%) Ca sin(na) 7( T ;m(ﬁscl;(:yz))a —— ) dy
0

Using Lemma B.2, this shows the off-diagonal entries of M2 (b).

We finally move on to the terms in DrF! and D, F?. The sums of each of the first
three terms were calculated before in [4,20] and equal n®,, and —nb'~*0,, respectively.
The fourth one can be calculated using Lemma B.1 with m = 1. This completes the
proof of the Proposition. 0O

2.4.2. One dimensionality of the Kernel of the linear operator

We will start computing a nontrivial element of the kernel of DF[b, 0, 0] ( IZ ) , where

H(z) = Z A, cos(nz), h(x)= Z ap, cos(nx).

n=1

We have that

DF[b,0,0] <IZ ) =3 (=) M) (‘2:) sin(nz),

n=1

where M2 (b) and A,,(b) were defined in (2.3).

Lemma 2.4. Let « € (0,2) and n > 2. Then:

is a positive, increasing function of b.
Proof. Since i\\?((é’)) is positive by Lemma B.2, it is enough to show that it is increasing.

%EZ; — //&EZ; > 0. Using the integral representation of A, (b):

To do so, we will show that

1

bnfl . o e a

An(b)—21_al_‘(1_%)2/l' 1+2(1*.’L’) 2(1*1)21') 2dx
0

one obtains that

M) _m=1 [y amti b ek W
2

Ay, (b) b fol o3 (1 —2)7 3 (1 — b2z) " 2dx
AO) _ JpattE( - a) 31— )t e
A1 (b) folac%(l—a:)’%(l—ng)*%dx
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AL(b) _ AL(b) :
Thus, ) Ai(b) > 0 iff

wIQ

JyamtE (1 —a) (1 —b*x) % lde fo 2)~%(1—b%x)" 5 dx
[Tt (1 )5 (1 W) Bds folx%(l— ©)~5 (1 - b2x)~ S de

o

11
@//x (1—z)"2(1—0%) *~ 1y%(1—y)_%(1—b2y)_%d9€dy
0 0

1
/y”% y) " (1—by) e R (=) F (1 —bP) Pdy
0

— yx”fl(l — bQJ;))dxdy >0

@/1/1<1—x>—3<1—y>-‘%x%y
0 0

wlR
—~
—
|
>
(]
SN—"
|
—~
—
|
>
]
SN—
|
_
8
3
_
—~
N—
IS
8
I
<
Vv
o

which is true since the integrand is positive. 0O
We can prove the following proposition:
Proposition 2.5. Let A% (b) be
A2 (b) = det(MS (b)) = (—=Om + b*A1 (b)) (b' Oy, — bAL(D)) + bP Ay (b)?
Then, for any a € (0,2) and for any m > 2, there exists a unique bY, such that
A% (b)) = 0. We also have that tk(M2(b%,)) =1 for that value of bf,.

Moreover, for fized a € (0,2), the sequence b, is increasing in m.

Proof. We first show the existence of b},. Fix o and m. Expanding A% (b), we obtain:

AZ(b) = =bO2, + 0., (b A1 (D) + A1 (D)) + b (A (B) — A1 (b)?).
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If by, is a solution of A% (b,,) = 0, then

O = g (M) (b +57) & /M 020+ 15-2)7 — b1 (A4 B2 — A (1)?))
=Qx(b,m) (2.4)

at b = b,,. We note that both Q4 (b,m) are real since the discriminant is equal to
A1 (D)2(b — b37%)2 + 4b*~*A,,(b)? > 0. This also implies Q_(b,m) < Q. (b,m) for all
b, m.

Proposition 2.6. Let m > 2 and let Q_(b,m) be defined as in (2.4). We have that, for all
0<b<1:

Q- (b,m) < Oy,
with equality only if b= 1.

Proof. We start with the following chain of inequalities:

(0 + 622 A1 (b)* — ((0* — 62)2A (b)
(A1 (D) (b + b2) + /A1 (D)2 (b> — b2)2
_ 202 (A1 (0)” — A (b)?)
(A (D) (b + 52) + /AL (D)2(bY — b2)? + 4b2FaA,, (b)?)
_ 20%(A1(0)* — A (b)?)

(A1 (b)(1 + 52-9) + /A (0)2(1 — 02~ )2 + 402~ A, (b)?)
< 20%(A1(0)* — A (b)?)
T (AL (D) (14 b2=2) + /A, (0)2(1 — 027 9)2 + 402 A,, (b)?)
(A (D)2 — A(B)?) 2p?
(A (B) F A (b)) FB27) T (14 b2)
<HME (AL(b) — A (D).

+apPep,, (b)2)
+Ab2ro A, (b)2)

Q-(b,m) = %

(A1(b) — Am(D))

We claim that
D5 (A0() = A (8) < (Aa(1) = A (1)) = Oy

In order to prove it, we will show that the LHS is an increasing function of b. This is
enough since both LHS and RHS agree at b = 1. Taking a derivative, we obtain:

bE ((1 + %) (A1 (D) = A (D)) +b(AL (D) — Ain(b))>’

which is positive if and only if
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bA, () + (1 + ;)Al(b) > A (b) + (1 + ;‘>Am(b).
We now show the following identity:

Lemma 2.7. Let m > 1. Then

|9

bA! () + <1+%)A (b) — (bA;nH + <1+

= (—mﬁ)";?g(%) )bm—2(1 - b))( F1<2 m

@
2

> m+1 )
+%m—|—1 b2)
(b—1)2F1<2 m+1+2 m+1,b2>)

Proof. We first start with the following identity. For every m > 1:

bA’ (b) + <1 + %)Am(b)

- (21041;((?)— g))(?n)!m( Do F1<2 mtg 2 +1’b2)

() By O Dan (5 s 1 Goma)

! <21a1;(§)— %))%!m <1+%>bm 12F1< g m“’bQ)
() B e B G e

+ (5mris ) o <m+%>bm+lm%ﬁﬂ(%“*m“+%’m”ﬁ)

F(%) (%)m—i—l 1 (% (6% 2
= R (S om S om1,b
<2l—ar(1—%)) ml 2\ gm g m L

N ay
+< (5) ,)>(2) Hpmil 2 2F1<%+1,m+1+%,m+2762>

where we have used the expression (A.1) for the derivative of the hypergeometric func-
tion. Using (A.2), we get

5 @
m+1

2F1<%+1,m+1+%,m+2,b2> —2<2F1(2 m+1—|— 2 m+1,62>

_2F1<%;m+%7m+17b2>)
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which implies that

X <2QF1< mA4+1+ = m+1,b2>

—2F1(2 m—|—2 m+1,62>) (25)

We now deal with the term bA7, (b)) + (14 §)An41(b). By (2.5), we have that

bA,, 1 (b) + <1 + %)Am+1(b)

_ I'(3) ($)m+2 ;m )
2F1<§,m+1+(;,m+2,62>)
L(5) ($)mard™ "\ (§ +m+1) 5
= 2, F 2 2
(21—a1“(1—g) ml mi1) o\ 2 3t +2 ym+2,0

—2F1<%,m+1—|—%,m+2,b2>>

By (A.3),

2
m+1+ 5

[e% « (% 2
+ 22F1<27m+1+ 27m+27b ))7

22F1< m+24 = 5 m+2,b2> = ((m+1)2F1( m+14+ = 5 m+17b2)

which implies

2(m+1)2Fl(%7m+1+ %,m+ 17()2)

@ «@ Q@
1-= = 14> 2
m—+ 2>2F1(2,m+ +2,m+2,b>)

Furthermore, by (A.4),

<m+1——>b22F1( m 1+ o m+2,b2)
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= (b* - 1)(m+1)2F1(2 m+1l+ o 5+ 1,b2>
+ (m+ 1)2F1((;,m+ %,m+ 1,b2>-

Finally, putting everything together:

as we wanted to prove. O

The first bracket is always positive, and, since 0 < b < 1, the second bracket can be
bounded below by

1
b<F1<2 m+2 m+1,b2>2F1< m+1+2 m+1,b2>>

+b2F1< m+1+ = m+1,b2>

2’

We will focus on this term. Expanding the hypergeometric functions, we get

il((%)](m—i_%)J (§)ilm+1+5 >b2_] 1+Z (5)k m+1—|— 5 )k 1b2k+1
= j' (m+1)J (erl)j k!

=].11<<j;ﬁ<ﬁs;ﬂ<<m+%>w—<m+1+%>w>

1(5)j(m+1+ %).j>b2j+1
it (m+1);

G R GES) (s
- (m+1+j+ %)) - 1>)b2j+1

P SIS
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Finally, using that the sum telescopes

bA' (b) + <1+ > L(b) — bAL () + <1+%)Am(b)

7:; (bA’ )+ (1 + §>Ak( ) — (bAkH( )+ (1 T j)AkH(b))) >0,

we conclude that @Q_(b,m) < ©,,. This finishes the proof of the proposition. O
In particular, this shows that if there is a solution 0 < b}, < 1, then ©,, = Q(b},,m)

has to be satisfied for some b%, (since 0, = Q_(b%,,m) cannot hold). We now turn to
the study of Q4 (b, m) as a function of b. We have that:

lim Q4 (b,m) > O,
b—1
This follows from Lemma A.2, since
%iHll Q“r(bﬂ m) - em == Am(l) + Al(l) - (Al(l) - Am(l)) = 2Am(1) > 0.
—
Moreover,
gl_I}%) Q+(b,m) =0,

thus, by continuity, there exists 0 < b

. < 1 such that ©,, = Q4 (b%,,m). Moreover, for
that b}, we have that

= @ () > 3 ((05) + (53)") M (05) + 5 (53" = ()" M (05,)
= (551 05) > ((63)) A1 05,) 26)

The next step is to show uniqueness. To do so, we will show that Q4 (b, m) is increasing
in b. We start considering

Q+(b,m) = Qi (bom) = (14+077) 4 /(1 - 122)"  ap2-(b)

1
A1 (b)be

and we will show that Q+(b, m) is increasing in b. This is enough since A;(b)b* is an
increasing function of b as well. Taking a derivative with respect to b, one obtains:

(2 — a)bt—«
V(1= b27)2 - 4b2=j(b)

Q4 (b,m) =
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x <\/(1 —p2=e)? o ape(b) + (B — 1) +ﬁ@+ %bj/(b) )

>0 >0

>0 by Lemma 2.4
>0,

as desired. Finally, we study Q4 (b, m) as a function of m and show that b} > b if n > m.
This follows easily since A, (b) is a decreasing function of m for fixed b. Therefore, since
0,, is an increasing function of n, if n > m, then Q4 (b},,n) < Q+(b},,m) = 0,, < O,
which implies b} > bY,.

The one-dimensionality of the rank of M2 (b%,) follows from the fact that b%, A, (%))
#0. O

Remark 2.8. We remark that this approach breaks down for the 2D Euler case, where
AV (b) # 0 for all 0 < b < 1. Indeed, we have that

o1 1 pmtt

M= |2 g 2 o

2m “2m

Computing A? (b) we obtain

A (b) = <b22 1y 2;) <2’;n) +b<;:;)2 = L (2= m+1))
b - 1) (me 1 m) BB — 1)
2

:W((1—1)+(b2—1)+...+(b2m*2—1))

It is therefore clear that AY (b) never vanishes.

2.4.8. Codimension of the image of the linear operator
Let m > 2 be fixed and let b}, be the value of b found in Proposition 2.5. We now
characterize the image of DF(b%,,0,0). We have the following Lemma:

Lemma 2.9. Let

Z = {(Q,q) cyrbm xykmtm Q(z) = i Qrm sin(kmz), q(x) = f: Qm sin(kmaz),
k=1

= k=1

Qm 7@m =+ (b* )2A1(b* )
=D R s.t. =A m m .
@ © ’ ( qm ) Q1 ( b:nAm(b:n)

Then Z = Im(DF(b},,0,0)).
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Proof. We start proving that Im(DF(b%,,0,0)) C Z. This follows easily since DF maps

Xkm oy xkom if o < 1
X§+log,m % X§+log,m ifa=1 } into Y'ck—l,m, % Y'ck'—l,m
Xkto-lm o yhta-lm o 5 1

and by the explicit formula of the m-th mode contribution of DF.
We now prove the other implication and show that Z C Im(DF(bf,,0,0)). Let
(Q(x),q(x)) € Z. We want to show that there exists a

Xkm o Xkm if v <1
(H(x),h(z)) € ¢ Xktlosm o xktlosgm —if ¢ =1
Xkta=lm o xkta—lm jf o > 1

such that DF(b,,0,0) [IZ] = (Q ) Let us project H, h into Fourier modes as
q

H(z) = Z Hyp, cos(kmaz), h(x) = Z hiem cos(kmax).
k=1 k=1

This yields the following system of equations for any k:

(—km)ME,, (b5) (Hkm )

hkm
= (—k’m) ~Okm + (b;k”)zAl(bj") 7(b:n,)2Akm(bjn,) Hyp,

_ ka
dkm ’
which has as solutions:
Hkm -1 ka
= (M (b

1 1 ()~ Orm — by A (B],) (b)* Mt (B7,) Qrm
=07 Ak (7,) —Okm + (67,)° M1 (7,) )\ qkm

o kAR, (0

whenever k # 1 and:
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Note that there are more solutions for (H,y,, h,,,). This shows the existence of a can-
didate (H,h). We now show that this candidate has the desired regularity. To do so, we
need the following additional asymptotic Lemma:

Lemma 2.10. Let 0 < o < 2,0 < b < 1 and let n € Z. Let A%(b) be defined as in
Proposition 2.5, namely:

AZ(b) = (b1, — bA1 (D)) (—O,, + b7 A1 (D)) + P Ay (b)?

Then A%(b) has the following asymptotic behaviour (with non-zero leading terms) as
n — oo:

flo + w4+ O(is) ifa<l
A%(b) = ¢ —(log(n))2L" + O(log(n))  ifa=1
e + A2 4+ 0(1) ifao>1

with
fta = (—A1(1) + *A1 (b)) (b A1 (1) — bA1(D))
Vo = (1 - %>A1(1)(2b1—%1(1) —b(1+ b7 ) A (b))e*7Fe
L ia (1 —a) 2
== (ger )

I(l—a)

_mbz\l(b)(l +629)

da =
and y,cq some finite constants.

Proof. We start by noticing the exponential decay in n of A, (b) (see [13]). Next, we have
the asymptotic expansion for ©,,:

o L lMm-- DA (D) E2 4 On2) ifa <1
" Llog(n) + O(1) ifa=1

which was proved in [20] for & < 1 we obtain p, and v,. This shows the asymptotics for
a < 1. For a > 1 it follows from the expression (see [4]):

'l -« )(F(1+g) I'(n+%) )

T 2er2(1-9)\T(2-2) Tn+1-9)

On

and the asymptotic formulas for the Gamma function [1, Formula 6.1.46, p. 257].

All we are left to show is that p, # 0 for @ < 1, and that p, # 0 for @« > 1. The
former is an immediate consequence of the monotonicity in b of A, (b) (Lemma B.2) and
the latter is trivial. O
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Using this Lemma, one easily obtains the following asymptotics for the inverse of
Mg (b%,) as k — oo

Corollary 2.11.

(M8, 02))52 =~ gy () e (05)

_1 1 1
~ (M (b)) 5y = —@m(—bﬁl/\km(bfn)) ~O(1)

a * -1 1 1 x| 1-a * *
(Mkm(bm))ll = km Aa (b* )((bm) @km - bmAl (bm))
) 1 1 , % ifa<l
« * - * * 1 .
~ (M (07)) 25 = *%Aa—(b*)(*@km + () M (00) ~ | Fegm Ha=1
fmom =  ifa>1
We now distinguish cases depending on «. For a < 1:
1 ek + 1Bl = Y (Hjm|* + [hjm|?) (1 + jm)** (cosh(cjm)? + sinh(cjm)?)
j=1

1
- W)\QQ@(I + m)?* (cosh(c)? + sinh(c)?)

o0
+ Z (1 + jm)?*(cosh(cjm)? + sinh(cjm)?)
j=2

<AL (07)) 1, @ + (M5 (7)) 15 0ons)”
+ (M3 (872)) 31 Qg + (M (07,)) 3 4ms] )
< CH ORI x-1.m +Cllgl}1-1,m < 00,

where in the last line we have used Corollary 2.11. For a > 1 and « = 1, one obtains
using the same approach and the asymptotics from Corollary 2.11:

W Pgaron + 1l gacsn < C 4 ClQU s+ CllalZpore < 00

IH|% ketlogm + IIhHXk+1og n<C+COQI2 otm + C||q||Y;c 1m < 00,

respectively. This concludes that Z = Im(DF(b%,,0

*.»0,0)) and in particular shows that the

codimension of the image of DF'(b%,,0,0) is 1, as we needed. 0O
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2.5. Step 5

This step is devoted to show the transversality condition. We start writing out the
calculations since everything is explicit, including the characterization of the image done
in the previous subsection. Based on that, we have the following:

0% (1) = (b7,)2 ] (b%,) + 207, A (B,) — (b2 AL (b,) — 265 A (B7,)
PEmOm) T b AL () AR (L= a)(bh) "0, — bi, AL (BE,) — A (b,)

Letting

(GG oy (O (B0 0)
”°(bm)‘((bm?m(bm—@n)’ “’(bm)‘< b (85 )

be the generators of Ker(M2 (b%,)) and Im (M2 (b%,)) respectively, the transversality con-
dition is equivalent to prove that wq (b)) and w(b*,) are not parallel, where

wi (br,) = 9 M, (b7 ) vo (b7,

_ (267, A1 (br,) + (b7,)2 AL (67,)) (7,)* A (b],) — (207, An (b7,) + (b7,)* A7, (87,)) ((b7,)* Av (b],,) — ©n)
(A (b7,) + by, AL (67,)) (07,)* A (b,) + (1 = @) (b;,,) ™" O — Ax(b],,) = by, AL (67,))((b7,)* Ax (b)) — On)

In order to do so, we claim that both components of wq(b},) have the same (positive)
sign, whereas the two components of w(b},) have opposite signs. The latter is easy
to establish and follows from Lemma A.2 and (2.6). We focus on showing that both
components of wy (b)) are positive. The first one is equal to

(07) A3 (5 ) A (07) = (57) " (65) Al (63 + O (25, A (57,) + (b7,) A (87,)

> (55) A5 (05 A (03) = (83) "M (B3 ) A0 (03,) + (03) At (B5,) (207, A (07,
+ (0) A (b7)

= (03) M5 (05) A (65,) + 2(05) "M (83,) A (b7,) > 0,

and the second one is
(b7) Ao (61)”  (57) "N (852) + (1 = ) (01)” "0 (b7,) = (1= ) (b3,) "%,

= (07) A1 (05)" 4 A (67)Om — (67) A% (B5) A (07,) + b5, A% (b7,) O

= a[(45)" (A (07)" = M (63)7) + Omda (0)] + (87)° A0 (B7)
o [0S (05) O = (87) A (b7) A3 (B7,)]

where we have used that
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()" 0% + O ()" A () = O (07) = (87)” (Am (87)” — Aa (07)°)-
Both square brackets are positive by (2.6), and the claim follows.
2.6. Step 6

This follows easily by doing the change of variables y — —y and y — y + 2% inside
the integral operators.
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Appendix A. Hypergeometric function identities

Here we collect a few facts about ©,, and A,,, and about hypergeometric functions
that will be used along the proofs. Recall that ©,, and A,, were defined in (2.3) by:

/
b
0

— bn 1F< _"_g’

Jn(t)dt

> n+1,b2>,

O, = A1 (1) — An(1)

Lemma A.1. We have the following identities for the hypergeometric function:

%gFl(a,b,c,x) = %bgFl(a+1,b+1,c+ 1,2) (A1)
coF1(a,b,c,2) — coFi(a, b+ 1,¢,2) +azoF1(a+1,b+1,¢+1,2) =0 (A.2)
caFy(a,b,e,2) — (e =b)oFi(a,b+1,¢,2) —boFi(a,b+1,¢+1,2) =0 (A.3)

caFy(a,b—1,¢,2) + (a—c)2Fi(a,b,c+ 1,2) + (z — )eaFi(a,bye,2) =0 (A4)
coFi(a,b,c,z) —coFi(a+1,b,¢,2) + bzaFi(a+ 1,0+ 1,c+1,2) =0 (A.5)
baFi(a,b+1,¢,2) —asFi(a+1,b,¢,2) + (a — b)2Fi(a,b,c,z) =0 (A.6)
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Proof. See [33]. O

Lemma A.2. A, (b) is an increasing function of b, it satisfies A, (b) > 0 for any n > 1
and b € (0,1], and

lim A,,(b) > 0.

b—1

Proof. This follows from the integral formula (2.3). O
Lemma A.3. Let a € (0,2) and n > 2. Then:

A (b) < Aq1(b)
for allb e (0,1).
Proof. The proof can be found in [13, Lemma 5.2(1)]. O
Appendix B. Basic integrals

The following two lemmas will deal with the integrals that appear throughout the
calculation of the linear operator:

Lemma B.1. Let 0 < b < 1,0 < a < 2,m € N. We have that:

2m

1 cos(my)
27 | (14 b2 — 2bcos(y))/2
0

dy = bm(g)mgFl (g,m—k g;m—i— 1;b2>

m/! 2 2

Proof. See [13, Lemma 3.2, Eq. (3.19)]: their proof can be extended to the case
0<a<2 O

Lemma B.2. Let 0 < b < 1,0 < a < 2,m € N. We have that:

2
Lo 2sin(y) sin(my) O™ (§)m a a 2
m2 dy = pfo o
m 2 / (1+ 02 — 2bcos(y))/2F1 Y el gem et Som L

2 2

Proof. Using the trigonometric addition formulas and Lemma B.2, the LHS is equal to

vl M ! ! 9
ml <§)m(2F1(§ 1,5 mmsb )

b2 «Q « « «
e (s — 1) =+1, = 2 2: b2
ez tm) (FHm ) (G g emeam )
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Combining formulas (A.5) with a = §,0 = § +m +1,c = m+ 1, (A.3) with a =
$+1,b=S+m,c=mand (A.6) witha = §,b = §+m,c=m+1 yields the result. O
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