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1. Introduction

In this paper, we consider the generalized surface-quasigeostrophic equations (gSQG):

⎧

⎪⎨

⎪⎩

∂tθ + u · ∇θ = 0, (x, t) ∈ R
2 × R+,

u = −∇⊥(−Δ)−1+ α
2 θ,

θ|t=0 = θ0,

(1.1)

where α ∈ (0, 2). The case α = 1 corresponds to the surface quasi-geostrophic (SQG) 

equation and the limiting case α = 0 refers to the 2D incompressible Euler equation. 

The case α = 2 produces stationary solutions.
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The pioneering articles of Constantin–Majda–Tabak [7] and Held–Pierrehumbert–

Garner–Swanson [21] motivated the study of the SQG (α = 1) from a mathematical 

point of view. Since then, a lot of effort has been devoted to understanding these equa-

tions: the problem of whether the gSQG system presents global solutions or not is yet 

not completely understood.

The existence of weak solutions starts with the work of Resnick [35], where he proves 

the existence of global weak solutions in L2 in the SQG case α = 1. In bounded domains, 

Constantin–Nguyen and Nguyen [8,32] proved that the same results hold. Buckmaster–

Shkoller–Vicol [2] have shown non-uniqueness of weak solutions for the SQG equation in 

certain spaces less regular than L2. See also [30], [6], and [31] for more general classes of 

weak solutions.

In this paper, we will focus on a particular class of weak solutions, the so-called 

α-patches, which are solutions for which θ is a step function

θ(x, t) =

{

θ1, if x ∈ Ω(t)

θ2, if x ∈ Ω(t)c,
(1.2)

where Ω(0) ⊂ R
2 is a regular set given by the initial distribution of θ, θ1 and θ2 are 

constants, and Ω(t) is the evolution of Ω(0) under the velocity field u.

In this setting, local existence of patch solutions has been obtained by Rodrigo [36]

(for a C∞ boundary ∂Ω(0) in the case α = 1), Gancedo [17] (for Sobolev regularity 

and 0 < α ≤ 1) and Chae–Constantin–Cordoba–Gancedo–Wu [6] in the more singular 

case 1 < α < 2. Uniqueness for the patch equations was proved for 0 < α < 1 by 

Kiselev–Yao–Zlatos [28] and for α = 1 by Córdoba–Córdoba–Gancedo [9]. Garra [19]

obtained estimates of the growth of the support of the patch in time for 0 < α < 1. 

See also [25,26] for local existence results of cubic models of the α-patch problem in the 

range 0 < α ≤ 1.

Several authors have done numerical simulations suggesting finite time singularities. 

There are two scenarios: the first one (done by Córdoba–Fontelos–Mancho–Rodrigo [10]), 

starting from two patches, suggests an asymptotically self-similar collapse between the 

two patches, and at the same time a blowup of the curvature at the touching point; 

the second one (by Scott–Dritschel [38]) evolves a thin elliptical patch and indicates a 

self-similar filamentation cascade ending at a singularity with a blowup of the curvature. 

This is consistent with the rule out of splash singularities by Gancedo–Strain [18]. In 

the case with boundaries (more concretely on the halfspace), Kiselev–Ryzhik–Yao–Zlatos 

[27] proved the formation of finite time singularities for certain patches that touch the 

boundary at all times.

Very little is known concerning nontrivial global solutions for the gSQG equations. 

Córdoba–Gómez-Serrano–Ionescu [11] proved a generic global existence result for small 

solutions in the case 1 < α < 2, with initial data ∂Ω(0) close to the halfplane.

Another perspective is to look for uniformly rotating solutions. These solutions are 

known as V-states. Deem–Zabusky [15] investigated this problem numerically and found 
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the first set of families bifurcating from disks. Since then, there has been work by 

other authors improving the methods and computing larger classes (see for example 

[39,16,29,37]). The theoretical study of V-states of the Euler equations was initiated by 

Burbea [3] proving their existence and was continued later in a series of works by Hmidi–

Mateu–Verdera and de la Hoz–Hmidi–Mateu–Verdera [23,14,24] in different settings and 

directions (regularity of the boundary, different topologies, etc.).

Bifurcating from disks, Hassainia–Hmidi [20] proved the existence of V-states with 

Ck boundary regularity in the case 0 < α < 1. In [4], Castro–Córdoba–Gómez-Serrano 

showed existence and C∞ regularity of convex global rotating solutions for the remaining 

open cases: α ∈ [1, 2) for the existence, α ∈ (0, 2) for the regularity. This boundary 

regularity was subsequently improved to analytic in [5]. See also [22] for another family 

of rotating solutions.

Another scenario that has been investigated is the doubly connected case. Bifurcating 

from annuli, de la Hoz–Hassainia–Hmidi [13] established the existence of doubly con-

nected Ck V-states for 0 < α < 1, and Renault [34] proved their existence for α = 1

in the analytic setting. In their paper, de la Hoz–Hassainia–Hmidi perform numerical 

simulations that suggest the existence of certain V-states with zero angular velocity and 

pose the question of establishing analytically the existence of stationary V-states (cf. [13, 

p. 1213, Remark 2]).

Our goal in this paper is to solve this open question, and prove the existence of 

stationary patches of the gSQG equation for all 0 < α < 2. To our knowledge, this is the 

first nontrivial construction of stationary solutions for any α.

The main difficulty is that even if one could find an annulus from which bifurcate at 

Ω∗ = 0 using the previous ideas, there is no control on the branch and it is not clear if 

the continuation of the branch would intersect Ω = 0 at a nontrivial point or only at the 

bifurcation one (which is an annulus). Another possibility is to study the local behaviour 

of the branch close to a bifurcation point of sufficiently small Ω∗. However, this approach 

would require a nontrivial quantitative (or uniform in Ω∗) control of the neighbourhoods 

in which the local approximation is accurate. In order to circumvent these issues, we 

impose stationarity and look for a different parameter in which perform the bifurcation 

analysis. In our case, this will be the inner radius of the annulus b. Specifically, we 

will find that for every m ≥ 2, there exists a certain radius b∗
m at which nontrivial 

stationary m-fold solutions bifurcate from the annulus. The precise theorem is stated in 

Theorem 1.1 below. This choice of the parameter leads to a nontrivial spectral analysis 

in which one has to check carefully all the conditions from the Crandall–Rabinowitz [12]

theorem.

From now on, we will assume that θ2 − θ1 = 1.

1.1. The equations

The evolution equation for the interface of an annular α-patch, which we parametrize 

as two 2π periodic curves Z(x) (outer boundary) and z(x) (inner), can be written as
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∂tZ(x, t) · ∂⊥
x Z(x, t) =

(
−S(Z, Z) + S(z, Z)

)
· ∂⊥

x Z(x, t) (1.3)

∂tz(x, t) · ∂⊥
x z(x, t) =

(
−S(Z, z) + S(z, z)

)
· ∂⊥

x z(x, t) (1.4)

S(p, q) = cα

2π∫

0

∂xp(x − y) − ∂xq(x)

|p(x − y) − q(x)|α
dy, (1.5)

where the normalizing constant cα is given by:

cα =
1

2π

Γ(α
2 )

21−αΓ( 2−α
2 )

.

Let z(x, t) = (b + r(x, t))(cos(x), sin(x)), Z(x, t) = (1 + R(x, t))(cos(x), sin(x)) be the 

inner and outer boundaries of the patch respectively, where b is a constant. Imposing 

stationarity, we are left to solve the following system for (r, R) ≡ (r(x), R(x)) and b:

0 = F 1(b, R, r) = T1(1 + R) + T2(b + r, 1 + R)

0 = F 2(b, R, r) = −T2(1 + R, b + r) − T1(b + r), (1.6)

where

T1(u) = cα

2π∫

0

cos(x − y)(u′(y)u(x) − u(y)u′(x))

(u(x)2 + u(y)2 − 2u(x)u(y) cos(x − y))α/2
dy

+ cα

2π∫

0

sin(x − y)(u(x)u(y) + u′(x)u′(y)

(u(x)2 + u(y)2 − 2u(x)u(y) cos(x − y))α/2
dy

T2(p, q) = cα

2π∫

0

cos(x − y)(p(y)q′(x) − p′(y)q(x))

(q(x)2 + p(y)2 − 2q(x)p(y) cos(x − y))α/2
dy

− cα

2π∫

0

sin(x − y)(p(y)q(x) + p′(y)q′(x))

(q(x)2 + p(y)2 − 2q(x)p(y) cos(x − y))α/2
dy

We remark that the case r = R = 0 corresponds to an annulus of radii b and 1, 

yielding a stationary (though trivial) solution for any 0 < b < 1.

1.2. Functional spaces

We refer to the space of analytic functions in the strip |ℑ(z)| ≤ c as Cw(c). In our 

proofs, we will use the following analytic spaces. For k ∈ Z:
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Xk
c =

{

f(x) ∈ Cw(c), f(x) =
∞∑

j=1

aj cos(jx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx < ∞

}

Xk,m
c =

{

f(x) ∈ Cw(c), f(x) =
∞∑

j≥1

ajm cos(jmx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx < ∞

}

Y k
c =

{

f(x) ∈ Cw(c), f(x) =
∞∑

j=1

aj sin(jx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx < ∞

}

Y k,m
c =

{

f(x) ∈ Cw(c), f(x) =

∞∑

j≥1

ajm sin(jmx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx < ∞

}

Xk+α
c =

{

f(x) ∈ Cw(c), f(x) =
∞∑

j=1

aj cos(jx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx

+
∑

±

∥
∥
∥
∥

∫

T

∂kf(x ± ic − y) − ∂kf(x ± ic)

| sin(y
2 )|1+α

dy

∥
∥
∥
∥

L2(x)

< ∞

}

, α ∈ (0, 1)

Xk+α,m
c =

{

f(x) ∈ Cw(c), f(x) =

∞∑

j=1

ajm cos(jmx),
∑

±

∫

|f(x ± ic)|2dx

+
∑

±

∫

|∂kf(x ± ic)|2dx

+
∑

±

∥
∥
∥
∥

∫

T

∂kf(x ± ic − y) − ∂kf(x ± ic)

| sin(y
2 )|1+α

dy

∥
∥
∥
∥

L2(x)

< ∞

}

, α ∈ (0, 1)



J. Gómez-Serrano / Advances in Mathematics 343 (2019) 110–140 115

Xk+log
c =

{

f(x) ∈ Cw(c), f ∈ Xk
c , f(x) =

∞∑

j=1

aj cos(jx),

∑

±

∥
∥
∥
∥

∫

T

∂kf(x ± ic − y) − ∂kf(x ± ic)

| sin(y
2 )|

dy

∥
∥
∥
∥

L2(x)

< ∞

}

Xk+log,m
c =

{

f(x) ∈ Cw(c), f ∈ Xk
c , f(x) =

∞∑

j=1

ajm cos(jmx),

∑

±

∥
∥
∥
∥

∫

T

∂kf(x ± ic − y) − ∂kf(x ± ic)

| sin(y
2 )|

dy

∥
∥
∥
∥

L2(x)

< ∞

}

.

The norm is given in the last two cases by the sum of the Xk
c -norm and the additional 

finite integral in the definition.

1.3. Theorems and outline of the proofs

The paper is organized as follows. In Section 2, we prove the following theorem:

Theorem 1.1. Let k ≥ 3, m ∈ N, m ≥ 2, 0 < α < 2 and let 0 < b∗
m < 1 be defined in 

Proposition 2.5. Then, there exists a family of m-fold stationary solutions (b, R, r) and a 

c > 0, where (R(x), r(x)) ∈ Xk+1,m
c × Xk+1,m

c (for α < 1), (R(x), r(x)) ∈ Xk+1+log,m
c ×

Xk+1+log,m
c (for α = 1) or (R(x), r(x)) ∈ Xk+α,m

c × Xk+α,m
c (for α > 1) of the equation 

(1.6) with 0 < α < 2 that bifurcate from the annulus of radii 1 and b∗
m.

The proof will be carried out by means of a combination of a Crandall–Rabinowitz 

theorem and a priori estimates. Finally, in the Appendices we will include useful formulas 

and identities involving the special functions that appear throughout the proofs.

2. Checking the hypotheses

The proof will be divided into 6 steps. These steps correspond to check the hypotheses 

of the Crandall–Rabinowitz theorem [12] for

F (b, R, r) =
(
F 1(b, R, r), F 2(b, R, r)

)
,

with

F 1(b, R, r) = T1(1 + R) + T2(b + r, 1 + R)

F 2(b, R, r) = −T2(1 + R, b + r) − T1(b + r), (2.1)

and
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T1(u) = cα

2π∫

0

cos(y)(u′(x − y)u(x) − u(x − y)u′(x))

(u(x)2 + u(x − y)2 − 2u(x)u(x − y) cos(y))α/2
dy

+ cα

2π∫

0

sin(y)(u(x)u(x − y) + u′(x)u′(x − y)

(u(x)2 + u(x − y)2 − 2u(x)u(x − y) cos(y))α/2
dy

= cα

2π∫

0

cos(y)(u′(x − y)u(x) − u(x − y)u′(x))

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

u(x)2 + u(x − y)2 − 2u(x)u(x − y) cos(y)

)α/2

dy

+ cα

2π∫

0

sin(y)(u(x)u(x − y) + u′(x)u′(x − y)

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

u(x)2 + u(x − y)2 − 2u(x)u(x − y) cos(y)

)α/2

dy

T2(p, q) = cα

2π∫

0

cos(y)(p(x − y)q′(x) − p′(x − y)q(x))

(q(x)2 + p(x − y)2 − 2q(x)p(x − y) cos(y))α/2
dy

− cα

2π∫

0

sin(y)(p(x − y)q(x) + p′(x − y)q′(x))

(q(x)2 + p(x − y)2 − 2q(x)p(x − y) cos(y))α/2
dy

The hypotheses are the following:

1. The functional F satisfies

F (b, R, r) : (0, 1) ×
{

V ε
}


→ Y k−1
c × Y k−1

c ,

where V ε is the open neighbourhood of 0

V ε =

⎧

⎪⎪⎨

⎪⎪⎩

(f, g) ∈ Xk
c × Xk

c : ||f ||Xk
c

+ ||g||Xk
c

< ε if α < 1

(f, g) ∈ Xk+log
c × Xk+log

c : ||f ||Xk+log
c

+ ||g||Xk+log
c

< ε if α = 1

(f, g) ∈ Xk+α−1
c × Xk+α−1

c : ||f ||Xk+α−1
c

+ ||g||Xk+α−1
c

< ε if α > 1

,

for all 0 < ε < ε0(m) and k ≥ 3.

2. F (b, 0, 0) = 0 for every 0 < b < 1.

3. The partial derivatives Fr, FR, FbR and Fbr exist and are continuous.

4. Ker(F) and Y k−1
c /Range(F) are one-dimensional, where F is the linearized operator 

around r = R = 0 at b = b∗
m (see Proposition 2.5 for a definition of b∗

m).

5. ∂bDF (b∗
m, 0, 0)[h0] /∈ Range(F), where Ker(F) = 〈h0〉.
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6. Step 1 can be applied to the spaces:

⎧

⎪⎨

⎪⎩

Xk,m
c × Xk,m

c if α < 1

Xk+log,m
c × Xk+log,m

c if α = 1

Xk+α−1,m
c × Xk+α−1,m

c if α > 1

and Y k−1,m
c × Y k−1,m

c instead of

⎧

⎪⎨

⎪⎩

Xk
c × Xk

c if α < 1

Xk+log
c × Xk+log

c if α = 1

Xk+α−1
c × Xk+α−1

c if α > 1

and Y k−1
c × Y k−1

c respectively.

Remark 2.1. For the choices of u that will appear in the Theorem (of the form constant 

+O(ε)), the function inside the parenthesis in T1(u) is uniformly bounded from below 

in y for every x by a strictly positive constant. Then we can analytically extend the 

integrand in x to the strip |ℑ(z)| ≤ c for a small enough c.

2.1. Step 1

The regularity step of the functional F was already shown in [34] for α = 1, in [13]

for α < 1 and can be easily adapted from the proof of [5] for α > 1.

2.2. Step 2

This is trivial since T1(1), T1(b), T2(1, b) and T2(b, 1) consist of integrands which are 

either zero or odd (and therefore have integral zero).

2.3. Step 3

We need to prove the existence and the continuity of the Gateaux derivatives 

∂RF (b, R, r), ∂rF (b, R, r), ∂bRF (b, R, r) and ∂brF (b, R, r). We have the following Lemma:

Lemma 2.2. For all (R, r) ∈ V r and for all (H, h) ∈ X, where X = (Xk
c ×Xk

c ), (Xk+log
c ×

Xk+log
c ) or (Xk+α−1

c × Xk+α−1
c ) depending on α, such that ||(h, H)||X = 1 we have that:

DRF 1(b, R, r)[H]

= cα

2π∫

0

cos(y)(H ′(x − y)(1 + R(x)) + R′(x − y)H(x) − H(x − y)R′(x) − (1 + R(x − y))H ′(x))

(2 − 2 cos(y))α/2
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×

(
2 − 2 cos(y)

(1 + R(x))2 + (1 + R(x − y))2 − 2(1 + R(x))(1 + R(x − y)) cos(y)

)α/2

dy

−

(
α

2

)

cα

2π∫

0

cos(y)(R′(x − y)(1 + R(x)) − (1 + R(x − y))R′(x))

(2 − 2 cos(y))α/2

× 2

(
(1 + R(x))H(x) + (1 + R(x − y))H(x − y) − ((1 + R(x))H(x − y) + (1 + R(x − y))H(x)) cos(y)

2 − 2 cos(y)

)

×

(
2 − 2 cos(y)

(1 + R(x))2 + (1 + R(x − y))2 − 2(1 + R(x))(1 + R(x − y)) cos(y)

)α/2+1

dy

+ cα

2π∫

0

sin(y)((1 + R(x))H(x − y) + H(x)(1 + R(x − y)) + R′(x)H ′(x − y) + H ′(x)R′(x − y)

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

(1 + R(x))2 + (1 + R(x − y))2 − 2(1 + R(x))(1 + R(x − y)) cos(y)

)α/2

dy

−

(
α

2

)

cα

2π∫

0

sin(y)((1 + R(x − y))(1 + R(x)) + R′(x − y)R′(x))

(2 − 2 cos(y))α/2

× 2

(
(1 + R(x))H(x) + (1 + R(x − y))H(x − y) − ((1 + R(x))H(x − y) + (1 + R(x − y))H(x)) cos(y)

2 − 2 cos(y)

)

×

(
2 − 2 cos(y)

(1 + R(x))2 + (1 + R(x − y))2 − 2(1 + R(x))(1 + R(x − y)) cos(y)

)α/2+1

dy

+ cα

2π∫

0

cos(y)((b + r(x − y))H ′(x) − r′(x − y)H(x))

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2
dy

−

(
α

2

)

cα

2π∫

0

(
cos(y)

((
b + r(x − y)

)
R′(x) − r′(x − y)

(
1 + R(x)

)))

× 2

(
(1 + R(x))H(x) − (b + r(x − y))H(x) cos(y)

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2+1

)

dy

− cα

2π∫

0

sin(y)(H(x)(b + r(x − y)) + H ′(x)r′(x − y))

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2
dy

+

(
α

2

)

cα

2π∫

0

(
sin(y)

((
b + r(x − y)

)(
1 + R(x)

)
+ r′(x − y)R′(x)

))

× 2

(
(1 + R(x))H(x) − (b + r(x − y))H(x) cos(y)

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2+1

)

dy
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DrF 1(b, R, r)[h]

= cα

2π∫

0

cos(y)(h(x − y)R′(x) − h′(x − y)(1 + R(x)))

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2
dy

−

(
α

2

)

cα

2π∫

0

(
cos(y)

((
b + r(x − y)

)
R′(x) − r′(x − y)

(
1 + R(x)

)))

× 2

(
(b + r(x))h(x) − (1 + R(x))h(x − y) cos(y)

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2+1

)

dy

− cα

2π∫

0

sin(y)((1 + R(x))h(x − y) + R′(x)h′(x − y))

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2
dy

+

(
α

2

)

cα

2π∫

0

(
sin(y)

((
b + r(x − y)

)(
1 + R(x)

)
+ r′(x − y)R′(x)

))

× 2

(
(b + r(x))h(x) − (1 + R(x))h(x − y) cos(y)

((1 + R(x))2 + (b + r(x − y))2 − 2(1 + R(x))(b + r(x − y)) cos(y))α/2+1

)

dy

DRF 2(b, R, r)[H]

= −cα

2π∫

0

cos(y)(H(x − y)r′(x) − H ′(x − y)(b + r(x)))

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2
dy

+

(
α

2

)

cα

2π∫

0

(
cos(y)

((
1 + R(x − y)

)
r′(x) − R′(x − y)

(
b + r(x)

)))

× 2

(
(1 + R(x − y))H(x − y) − (b + r(x))H(x − y) cos(y)

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2+1

)

dy

+ cα

2π∫

0

sin(y)((b + r(x))H(x − y) + r′(x)H ′(x − y))

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2
dy

−

(
α

2

)

cα

2π∫

0

(
sin(y)

((
1 + R(x − y)

)(
b + r(x)

)
+ R′(x − y)r′(x)

))

× 2

(
(1 + R(x − y))H(x − y) − (b + r(x))H(x − y) cos(y)

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2+1

)

dy

DrF 2(b, R, r)[h]

= −cα

2π∫

0

cos(y)(h′(x − y)(b + r(x)) + r′(x − y)h(x) − h(x − y)r′(x) − (b + r(x − y))h′(x))

(2 − 2 cos(y))α/2
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×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2

dy

+

(
α

2

)

cα

2π∫

0

cos(y)(r′(x − y)(b + r(x)) − (b + r(x − y))r′(x))

(2 − 2 cos(y))α/2

× 2

(
(b + r(x))h(x) + (b + r(x − y))h(x − y) − ((b + r(x))h(x − y) + (b + r(x − y))h(x)) cos(y)

2 − 2 cos(y)

)

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2+1

dy

− cα

2π∫

0

sin(y)((b + r(x))h(x − y) + h(x)(b + r(x − y)) + r′(x)h′(x − y) + h′(x)r′(x − y)

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2

dy

+

(
α

2

)

cα

2π∫

0

sin(y)((b + r(x − y))(b + r(x)) + r′(x − y)r′(x))

(2 − 2 cos(y))α/2

× 2

(
(b + r(x))h(x) + (b + r(x − y))h(x − y) − ((b + r(x))h(x − y) + (b + r(x − y))h(x)) cos(y)

2 − 2 cos(y)

)

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2+1

dy

− cα

2π∫

0

cos(y)((1 + R(x − y))h′(x) − R′(x − y)h(x))

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2
dy

+

(
α

2

)

cα

2π∫

0

(
cos(y)

((
1 + R(x − y)

)
r′(x) − R′(x − y)

(
b + r(x)

)))

× 2

(
(b + r(x))h(x) − (1 + R(x − y))h(x) cos(y)

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2+1

)

dy

+ cα

2π∫

0

sin(y)(h(x)(1 + R(x − y)) + h′(x)R′(x − y))

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2
dy

−

(
α

2

)

cα

2π∫

0

(
sin(y)

((
1 + R(x − y)

)(
b + r(x)

)
+ R′(x − y)r′(x)

))

× 2

(
(b + r(x))h(x) − (1 + R(x − y))h(x) cos(y)

((b + r(x))2 + (1 + R(x − y))2 − 2(b + r(x))(1 + R(x − y)) cos(y))α/2+1

)

dy

(2.2)
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Moreover, these functions are continuous in (R, r).

Proof. Straightforward computation.

The continuity of ∂rF (b, R, r) and ∂RF (b, R, r) was done in [34] for α = 1, and in [13]

for α < 1 for Hölder-based spaces but it can easily be extended to the case α > 1 and 

Sobolev-based spaces using the same techniques.

We explain now how to deal with derivatives with respect to b. The only problematic 

terms are the ones that contain a factor such as the one below in brackets (the first term 

in ∂rF 2(b, R, r)[h]):

A(b, x)

= −cα

2π∫

0

cos(y)(h′(x − y)(b + r(x)) + r′(x − y)h(x) − h(x − y)r′(x) − (b + r(x − y))h′(x))

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2

dy

Taking a derivative in b:

∂bA(b, x)

= −cα

2π∫

0

cos(y)(h′(x − y) − h′(x))

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2

dy

+ cα

(
α

2

) 2π∫

0

×
cos(y)(h′(x − y)(b + r(x)) + r′(x − y)h(x) − h(x − y)r′(x) − (b + r(x − y))h′(x))

(2 − 2 cos(y))α/2

×

(
2 − 2 cos(y)

(b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y)

)α/2+1

×

(
(2 − 2 cos(y))2(b + r(x) + b + r(x − y))

((b + r(x))2 + (b + r(x − y))2 − 2(b + r(x))(b + r(x − y)) cos(y))2

)

dy

= A1(b, x) + A2(b, x),

and both terms can be shown to be bounded and continuous as in the cases of ∂rF (b, R, r)

or ∂RF (b, R, r). ✷
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2.4. Step 4

2.4.1. Calculation of F

Before proving Step 4, we compute the linearization of F around (0, 0) in the direction 

(h(x), H(x)). Note that this is also obtainable from the computation in [13] by setting 

Ω = 0.

Proposition 2.3. Let h(x) =
∑

n

an cos(nx), H(x) =
∑

n

An cos(nx), then we have that:

DF (b, 0, 0)[H, h] =

(

U(x)

u(x)

)

,

where

u(x) =
∑

n

cn sin(nx), U(x) =
∑

n

Un sin(nx),

and the coefficients satisfy, for any n:

(−n)Mα
n (b)

(

An

an

)

= (−n)

(

−Θn + b2Λ1(b) −b2Λn(b)

bΛn(b) b1−αΘn − bΛ1(b)

)(

An

an

)

=

(

Un

un

)

with

Λn(b) ≡
1

b

∞∫

0

1

t1−α
Jn(bt)Jn(t)dt

=
Γ(α

2 )

Γ(1 − α
2 )21−α

(α
2 )n

n!
bn−1F

(
α

2
, n +

α

2
, n + 1, b2

)

,

=
bn−1

21−αΓ(1 − α
2 )2

1∫

0

xn−1+ α
2 (1 − x)− α

2

(
1 − b2x

)− α
2 dx. (2.3)

Θn ≡ Λ1(1) − Λn(1)

Proof. We first start by setting r = R = 0 in (2.2), yielding:

DRF 1(b, 0, 0)[H] = cα

2π∫

0

cos(y)(H ′(x − y) − H ′(x))

(2 − 2 cos(y))α/2
dy

+ cα

2π∫

0

sin(y)(H(x − y) + H(x))

(2 − 2 cos(y))α/2
dy
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−

(
α

2

)

cα

2π∫

0

sin(y)(H(x) + H(x − y))

(2 − 2 cos(y))α/2
dy

+ cα

2π∫

0

cos(y)(bH ′(x))

(1 + b2 − 2b cos(y))α/2
dy

− cα

2π∫

0

sin(y)(H(x)b)

(1 + b2 − 2b cos(y))α/2
dy

+ 2

(
α

2

)

cα

2π∫

0

(
sin(y)(b)

)
(

H(x)(1 − b cos(y))

(1 + b2 − 2b cos(y))α/2+1

)

dy

= cα

2π∫

0

cos(y)(H ′(x − y) − H ′(x))

(2 − 2 cos(y))α/2
dy

+ cα

2π∫

0

sin(y)(H(x − y) + H(x))

(2 − 2 cos(y))α/2
dy

−

(
α

2

)

cα

2π∫

0

sin(y)(H(x) + H(x − y))

(2 − 2 cos(y))α/2
dy

+ cα

2π∫

0

cos(y)(bH ′(x))

(1 + b2 − 2b cos(y))α/2
dy

DrF 1(b, 0, 0)[h] = −cα

2π∫

0

cos(y)(h′(x − y))

(1 + b2 − 2b cos(y))α/2
dy − cα

2π∫

0

sin(y)(h(x − y))

(1 + b2 − 2b cos(y))α/2
dy

+ 2

(
α

2

)

cα

2π∫

0

(
sin(y)b

)
(

h(x − y)(b − cos(y))

(1 + b2 − 2b cos(y))α/2+1

)

dy

DRF 2(b, 0, 0)[H] = cα

2π∫

0

cos(y)(H ′(x − y)b)

(1 + b2 − 2b cos(y))α/2
dy + cα

2π∫

0

sin(y)(bH(x − y))

(1 + b2 − 2b cos(y))α/2
dy

− 2

(
α

2

)

cα

2π∫

0

(
sin(y)(b)

)
(

H(x − y)(1 − b cos(y))

(1 + b2 − 2b cos(y))α/2+1

)

dy

DrF 2(b, 0, 0)[h] = −cα

2π∫

0

b cos(y)(h′(x − y) − h′(x))

(2 − 2 cos(y))α/2

1

bα
dy
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− cα

2π∫

0

b sin(y)(h(x − y) + h(x))

(2 − 2 cos(y))α/2

1

bα
dy

+

(
α

2

)

cα

2π∫

0

sin(y)(b2)b(h(x) + h(x − y))

(2 − 2 cos(y))α/2

1

bα+2
dy

− cα

2π∫

0

cos(y)(h′(x))

(1 + b2 − 2b cos(y))α/2
dy + cα

2π∫

0

sin(y)(h(x))

(1 + b2 − 2b cos(y))α/2
dy

− 2

(
α

2

)

cα

2π∫

0

(
sin(y)b

)
(

h(x)(b − cos(y))

(1 + b2 − 2b cos(y))α/2+1

)

dy

= −cα

2π∫

0

b cos(y)(h′(x − y) − h′(x))

(2 − 2 cos(y))α/2

1

bα
dy

− cα

2π∫

0

b sin(y)(h(x − y) + h(x))

(2 − 2 cos(y))α/2

1

bα
dy

+

(
α

2

)

cα

2π∫

0

sin(y)(b2)b(h(x) + h(x − y))

(2 − 2 cos(y))α/2

1

bα+2
dy

− cα

2π∫

0

cos(y)(h′(x))

(1 + b2 − 2b cos(y))α/2
dy

We now integrate by parts and obtain:

DrF 1(b, 0, 0)[h] = 2b2

(
α

2

)

cα

2π∫

0

(
sin(y)h(x − y)

(1 + b2 − 2b cos(y))α/2+1

)

dy

DRF 2(b, 0, 0)[H] = −2b

(
α

2

)

cα

2π∫

0

(
sin(y)H(x − y)

(1 + b2 − 2b cos(y))α/2+1

)

dy

By linearity, it suffices to do the calculations when H(x) = An cos(nx), h(x) =

an cos(nx). In that case:

DrF 1(b, 0, 0)[h] = 2anb2

(
α

2

)

cα sin(nx)

2π∫

0

(
sin(y) sin(ny)

(1 + b2 − 2b cos(y))α/2+1

)

dy
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DRF 2(b, 0, 0)[H] = −2Anb

(
α

2

)

cα sin(nx)

2π∫

0

(
sin(y) sin(ny)

(1 + b2 − 2b cos(y))α/2+1

)

dy

Using Lemma B.2, this shows the off-diagonal entries of Mα
n (b).

We finally move on to the terms in DRF 1 and DrF 2. The sums of each of the first 

three terms were calculated before in [4,20] and equal nΘn and −nb1−αΘn respectively. 

The fourth one can be calculated using Lemma B.1 with m = 1. This completes the 

proof of the Proposition. ✷

2.4.2. One dimensionality of the Kernel of the linear operator

We will start computing a nontrivial element of the kernel of DF [b, 0, 0] 

(

H

h

)

, where

H(x) =

∞∑

n=1

An cos(nx), h(x) =

∞∑

n=1

an cos(nx).

We have that

DF [b, 0, 0]

(

H

h

)

=

∞∑

n=1

(−n)Mα
n (b)

(

An

an

)

sin(nx),

where Mα
n (b) and Λn(b) were defined in (2.3).

Lemma 2.4. Let α ∈ (0, 2) and n ≥ 2. Then:

j(b) =

(
Λn(b)

Λ1(b)

)2

is a positive, increasing function of b.

Proof. Since Λn(b)
Λ1(b) is positive by Lemma B.2, it is enough to show that it is increasing. 

To do so, we will show that 
Λ′

n(b)
Λn(b) −

Λ′

1(b)
Λ1(b) > 0. Using the integral representation of Λn(b):

Λn(b) =
bn−1

21−αΓ(1 − α
2 )2

1∫

0

xn−1+ α
2 (1 − x)− α

2

(
1 − b2x

)− α
2 dx

one obtains that

Λ′
n(b)

Λn(b)
=

n − 1

b
+ αb

∫ 1

0
xn+ α

2 (1 − x)− α
2 (1 − b2x)− α

2
−1dx

∫ 1

0
xn−1+ α

2 (1 − x)− α
2 (1 − b2x)− α

2 dx

Λ′
1(b)

Λ1(b)
= αb

∫ 1

0
x1+ α

2 (1 − x)− α
2 (1 − b2x)− α

2
−1dx

∫ 1

0
x

α
2 (1 − x)− α

2 (1 − b2x)− α
2 dx
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Thus, 
Λ′

n(b)
Λn(b) −

Λ′

1(b)
Λ1(b) > 0 iff

∫ 1

0
xn+ α

2 (1 − x)− α
2 (1 − b2x)− α

2
−1dx

∫ 1

0
xn−1+ α

2 (1 − x)− α
2 (1 − b2x)− α

2 dx
>

∫ 1

0
x1+ α

2 (1 − x)− α
2 (1 − b2x)− α

2
−1dx

∫ 1

0
x

α
2 (1 − x)− α

2 (1 − b2x)− α
2 dx

⇔

1∫

0

1∫

0

xn+ α
2 (1 − x)− α

2

(
1 − b2x

)− α
2

−1
y

α
2 (1 − y)− α

2

(
1 − b2y

)− α
2 dxdy

>

1∫

0

1∫

0

y1+ α
2 (1 − y)− α

2

(
1 − b2y

)− α
2

−1
xn−1+ α

2 (1 − x)− α
2

(
1 − b2x

)− α
2 dy

⇔

1∫

0

1∫

0

(1 − x)− α
2 (1 − y)− α

2 x
α
2 y

α
2

(
1 − b2x

)− α
2

−1(
1 − b2y

)− α
2

−1(
xn
(
1 − b2y

)

− yxn−1
(
1 − b2x

))
dxdy > 0

⇔

1∫

0

1∫

0

(1 − x)− α
2 (1 − y)− α

2 x
α
2 y

α
2

(
1 − b2x

)− α
2

−1(
1 − b2y

)− α
2

−1
xn−1(x − y)dxdy > 0

⇔
1

2

1∫

0

1∫

0

(1 − x)− α
2 (1 − y)− α

2 x
α
2 y

α
2

(
1 − b2x

)− α
2

−1

×
(
1 − b2y

)− α
2

−1(
xn−1 − yn−1

)
(x − y)dxdy > 0,

which is true since the integrand is positive. ✷

We can prove the following proposition:

Proposition 2.5. Let Δα
m(b) be

Δα
m(b) = det

(
Mα

m(b)
)

=
(
−Θm + b2Λ1(b)

)(
b1−αΘm − bΛ1(b)

)
+ b3Λm(b)2

Then, for any α ∈ (0, 2) and for any m ≥ 2, there exists a unique b∗
m such that 

Δα
m(b∗

m) = 0. We also have that rk(Mα
m(b∗

m)) = 1 for that value of b∗
m.

Moreover, for fixed α ∈ (0, 2), the sequence b∗
m is increasing in m.

Proof. We first show the existence of b∗
m. Fix α and m. Expanding Δα

m(b), we obtain:

Δα
m(b) = −b1−αΘ2

m + Θm

(
b3−αΛ1(b) + bΛ1(b)

)
+ b3

(
Λm(b)2 − Λ1(b)2

)
.
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If bm is a solution of Δα
m(bm) = 0, then

Θm =
1

2b1−α

(
Λ1(b)

(
b + b3−α

)
±

√

Λ1(b)2
(
b + b3−α

)2
− 4b4−α

(
Λ1(b)2 − Λm(b)2

))

≡ Q±(b, m) (2.4)

at b = bm. We note that both Q±(b, m) are real since the discriminant is equal to 

Λ1(b)2(b − b3−α)2 + 4b4−αΛm(b)2 ≥ 0. This also implies Q−(b, m) ≤ Q+(b, m) for all 

b, m.

Proposition 2.6. Let m ≥ 2 and let Q−(b, m) be defined as in (2.4). We have that, for all 

0 < b ≤ 1:

Q−(b, m) ≤ Θm,

with equality only if b = 1.

Proof. We start with the following chain of inequalities:

Q−(b, m) =
1

2

(bα + b2)2Λ1(b)2 − ((bα − b2)2Λ1(b)2 + 4b2+αΛm(b)2)

(Λ1(b)(bα + b2) +
√

Λ1(b)2(bα − b2)2 + 4b2+αΛm(b)2)

=
2b2+α(Λ1(b)2 − Λm(b)2)

(Λ1(b)(bα + b2) +
√

Λ1(b)2(bα − b2)2 + 4b2+αΛm(b)2)

=
2b2(Λ1(b)2 − Λm(b)2)

(Λ1(b)(1 + b2−α) +
√

Λ1(b)2(1 − b2−α)2 + 4b2−αΛm(b)2)

≤
2b2(Λ1(b)2 − Λm(b)2)

(Λ1(b)(1 + b2−α) +
√

Λm(b)2(1 − b2−α)2 + 4b2−αΛm(b)2)

=
2b2(Λ1(b)2 − Λm(b)2)

(Λ1(b) + Λm(b))(1 + b2−α)
=

2b2

(1 + b2−α)

(
Λ1(b) − Λm(b)

)

≤ b1+ α
2

(
Λ1(b) − Λm(b)

)
.

We claim that

b1+ α
2

(
Λ1(b) − Λm(b)

)
≤
(
Λ1(1) − Λm(1)

)
= Θm.

In order to prove it, we will show that the LHS is an increasing function of b. This is 

enough since both LHS and RHS agree at b = 1. Taking a derivative, we obtain:

b
α
2

((

1 +
α

2

)
(
Λ1(b) − Λm(b)

)
+ b
(
Λ′

1(b) − Λ′
m(b)

)
)

,

which is positive if and only if
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bΛ′
1(b) +

(

1 +
α

2

)

Λ1(b) > bΛ′
m(b) +

(

1 +
α

2

)

Λm(b).

We now show the following identity:

Lemma 2.7. Let m ≥ 1. Then

bΛ′
m(b) +

(

1 +
α

2

)

Λm(b) −

(

bΛ′
m+1(b) +

(

1 +
α

2

)

Λm+1(b)

)

=

(
(α

2 )m+1Γ(α
2 )

m!21−αΓ(1 − α
2 )

bm−2(1 − b)

)(

2F1

(
α

2
, m +

α

2
, m + 1, b2

)

+ (b − 1)2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

))

Proof. We first start with the following identity. For every m ≥ 1:

bΛ′
m(b) +

(

1 +
α

2

)

Λm(b)

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m

m!
(m − 1)bm−1

2F1

(
α

2
, m +

α

2
, m + 1, b2

)

+

(
Γ( α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m

m!
2bm+1 (α

2 )(m + α
2 )

m + 1
2F1

(
α

2
+ 1, m + 1 +

α

2
, m + 2, b2

)

+

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m

m!

(

1 +
α

2

)

bm−1
2F1

(
α

2
, m +

α

2
, m + 1, b2

)

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m

m!

(

m +
α

2

)

bm−1
2F1

(
α

2
, m +

α

2
, m + 1, b2

)

+

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m

m!

(

m +
α

2

)

bm+1 α

m + 1
2F1

(
α

2
+ 1, m + 1 +

α

2
, m + 2, b2

)

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m+1

m!
bm−1

2F1

(
α

2
, m +

α

2
, m + 1, b2

)

+

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m+1

m!
bm+1 α

m + 1
2F1

(
α

2
+ 1, m + 1 +

α

2
, m + 2, b2

)

where we have used the expression (A.1) for the derivative of the hypergeometric func-

tion. Using (A.2), we get

b2 α

m + 1
2F1

(
α

2
+ 1, m + 1 +

α

2
, m + 2, b2

)

= 2

(

2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

− 2F1

(
α

2
, m +

α

2
, m + 1, b2

))
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which implies that

bΛ′
m(b) +

(

1 +
α

2

)

Λm(b) =

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
( α

2 )m+1

m!
bm−1

×

(

22F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

− 2F1

(
α

2
, m +

α

2
, m + 1, b2

))

(2.5)

We now deal with the term bΛ′
m+1(b) + (1 + α

2 )Λm+1(b). By (2.5), we have that

bΛ′
m+1(b) +

(

1 +
α

2

)

Λm+1(b)

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

)
(α

2 )m+2

(m + 1)!
bm

(

22F1

(
α

2
, m + 2 +

α

2
, m + 2, b2

)

− 2F1

(
α

2
, m + 1 +

α

2
, m + 2, b2

))

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

( α
2 )m+1bm−1

m!

)
(α

2 + m + 1)

(m + 1)
b

(

22F1

(
α

2
, m + 2 +

α

2
, m + 2, b2

)

− 2F1

(
α

2
, m + 1 +

α

2
, m + 2, b2

))

By (A.3),

22F1

(
α

2
, m + 2 +

α

2
, m + 2, b2

)

=
2

m + 1 + α
2

(

(m + 1)2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

+
α

2
2F1

(
α

2
, m + 1 +

α

2
, m + 2, b2

))

,

which implies

bΛ′
m+1(b) +

(

1 +
α

2

)

Λm+1(b) =

(
Γ( α

2 )(α
2 )m+1bm−1

21−αΓ(1 − α
2 )m!

)
b

(m + 1)

×

(

2(m + 1)2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

+

(

m + 1 −
α

2

)

2F1

(
α

2
, m + 1 +

α

2
, m + 2, b2

))

Furthermore, by (A.4),

(

m + 1 −
α

2

)

b2
2F1

(
α

2
, m + 1 +

α

2
, m + 2, b2

)
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=
(
b2 − 1

)
(m + 1)2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

+ (m + 1)2F1

(
α

2
, m +

α

2
, m + 1, b2

)

.

Finally, putting everything together:

bΛ′
m(b) +

(

1 +
α

2

)

Λm(b) −

(

bΛ′
m+1(b) +

(

1 +
α

2

)

Λm+1(b)

)

=

(
Γ(α

2 )

21−αΓ(1 − α
2 )

(α
2 )m+1bm−1

m!

(1 − b)

b

)(

2F1

(
α

2
, m +

α

2
, m + 1, b2

)

+ (b − 1)2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

))

,

as we wanted to prove. ✷

The first bracket is always positive, and, since 0 < b < 1, the second bracket can be 

bounded below by

1

b

(

2F1

(
α

2
, m +

α

2
, m + 1, b2

)

− 2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

))

+ b2F1

(
α

2
, m + 1 +

α

2
, m + 1, b2

)

We will focus on this term. Expanding the hypergeometric functions, we get

∞∑

j=1

1

j!

(
(α

2 )j(m + α
2 )j

(m + 1)j
−

(α
2 )j(m + 1 + α

2 )j

(m + 1)j

)

b2j−1 +

∞∑

k=0

(α
2 )k(m + 1 + α

2 )k

(m + 1)k

1

k!
b2k+1

=

∞∑

j=0

(
1

(j + 1)!

(α
2 )j+1

(m + 1)j+1

((

m +
α

2

)

j+1

−

(

m + 1 +
α

2

)

j+1

)

−
1

j!

(α
2 )j(m + 1 + α

2 )j

(m + 1)j

)

b2j+1

=
∞∑

j=0

(
1

j!

(α
2 )j(m + 1 + α

2 )j

(m + 1)j

(
1

j + 1

( α
2 + j

m + 1 + j

)(

m +
α

2

−

(

m + 1 + j +
α

2

))

− 1

))

b2j+1

=
∞∑

j=0

(
1

j!

(α
2 )j(m + 1 + α

2 )j

(m + 1)j

(
m + 1 − α

2

m + 1 + j

))

b2j+1 > 0
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Finally, using that the sum telescopes

bΛ′
1(b) +

(

1 +
α

2

)

Λ1(b) − bΛ′
m(b) +

(

1 +
α

2

)

Λm(b)

=
m−1∑

k=1

(

bΛ′
k(b) +

(

1 +
α

2

)

Λk(b) −

(

bΛ′
k+1(b) +

(

1 +
α

2

)

Λk+1(b)

))

> 0,

we conclude that Q−(b, m) ≤ Θm. This finishes the proof of the proposition. ✷

In particular, this shows that if there is a solution 0 < b∗
m < 1, then Θm = Q+(b∗

m, m)

has to be satisfied for some b∗
m (since Θm = Q−(b∗

m, m) cannot hold). We now turn to 

the study of Q+(b, m) as a function of b. We have that:

lim
b→1

Q+(b, m) > Θm

This follows from Lemma A.2, since

lim
b→1

Q+(b, m) − Θm = Λm(1) + Λ1(1) −
(
Λ1(1) − Λm(1)

)
= 2Λm(1) > 0.

Moreover,

lim
b→0

Q+(b, m) = 0,

thus, by continuity, there exists 0 < b∗
m < 1 such that Θm = Q+(b∗

m, m). Moreover, for 

that b∗
m, we have that

Θm = Q+

(
b∗

m, m
)

>
1

2

((
b∗

m

)α
+
(
b∗

m

)2)
Λ1

(
b∗

m

)
+

1

2

((
b∗

m

)α
−
(
b∗

m

)2)
Λ1

(
b∗

m

)

=
((

b∗
m

)α)
Λ1

(
b∗

m

)
>
((

b∗
m

)2)
Λ1

(
b∗

m

)
(2.6)

The next step is to show uniqueness. To do so, we will show that Q+(b, m) is increasing 

in b. We start considering

Q̃+(b, m) =
1

Λ1(b)bα
Q+(b, m) =

(
1 + b2−α

)
+

√
(
1 − b2−α

)2
+ 4b2−αj(b)

and we will show that Q̃+(b, m) is increasing in b. This is enough since Λ1(b)bα is an 

increasing function of b as well. Taking a derivative with respect to b, one obtains:

∂bQ̃+(b, m) =
(2 − α)b1−α

√

(1 − b2−α)2 + 4b2−αj(b)
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×

(√
(
1 − b2−α

)2
+ 4b2−αj(b) +

(
b2−α − 1

)

︸ ︷︷ ︸

>0

+ 2j(b)
︸ ︷︷ ︸

>0

+
2

2 − α
bj′(b)

︸ ︷︷ ︸

>0 by Lemma 2.4

)

> 0,

as desired. Finally, we study Q+(b, m) as a function of m and show that b∗
n > b∗

m if n > m. 

This follows easily since Λm(b) is a decreasing function of m for fixed b. Therefore, since 

Θn is an increasing function of n, if n > m, then Q+(b∗
m, n) < Q+(b∗

m, m) = Θm < Θn

which implies b∗
n > b∗

m.

The one-dimensionality of the rank of Mα
m(b∗

m) follows from the fact that b∗
mΛm(b∗

m)

�= 0. ✷

Remark 2.8. We remark that this approach breaks down for the 2D Euler case, where 

Δ0
m(b) �= 0 for all 0 < b < 1. Indeed, we have that

M0
m(b) =

⎛

⎜
⎝

b2

2
−

1

2
+

1

2m
−

bm+1

2m
bm

2m
−

b

2m

⎞

⎟
⎠

Computing Δ0
m(b) we obtain

Δ0
m(b) =

(
b2

2
−

1

2
+

1

2m

)(

−
b

2m

)

+ b

(
bm

2m

)2

=
b

4m2

(
b2m −

((
b2 − 1

)
m + 1

))

=
b(b2 − 1)

4m2

(
b2m − 1

b2 − 1
− m

)

=
b(b2 − 1)

4m2

(
(1 − 1) +

(
b2 − 1

)
+ . . . +

(
b2m−2 − 1

))

It is therefore clear that Δ0
m(b) never vanishes.

2.4.3. Codimension of the image of the linear operator

Let m ≥ 2 be fixed and let b∗
m be the value of b found in Proposition 2.5. We now 

characterize the image of DF (b∗
m, 0, 0). We have the following Lemma:

Lemma 2.9. Let

Z =

{

(Q, q) ∈ Y k−1,m
c × Y k−1,m

c , Q(x) =
∞∑

k=1

Qkm sin(kmx), q(x) =
∞∑

k=1

qkm sin(kmx),

∃λQ,q ∈ R s.t.

(

Qm

qm

)

= λQ,q

(

−Θm + (b∗
m)2Λ1(b∗

m)

b∗
mΛm(b∗

m)

)}

.

Then Z = Im(DF (b∗
m, 0, 0)).
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Proof. We start proving that Im(DF (b∗
m, 0, 0)) ⊂ Z. This follows easily since DF maps

⎧

⎪⎨

⎪⎩

Xk,m
c × Xk,m

c if α < 1

Xk+log,m
c × Xk+log,m

c if α = 1

Xk+α−1,m
c × Xk+α−1,m

c if α > 1

} into Y k−1,m
c × Y k−1,m

c

and by the explicit formula of the m-th mode contribution of DF .

We now prove the other implication and show that Z ⊂ Im(DF (b∗
m, 0, 0)). Let 

(Q(x), q(x)) ∈ Z. We want to show that there exists a

(
H(x), h(x)

)
∈

⎧

⎪⎨

⎪⎩

Xk,m
c × Xk,m

c if α < 1

Xk+log,m
c × Xk+log,m

c if α = 1

Xk+α−1,m
c × Xk+α−1,m

c if α > 1

⎫

⎪⎬

⎪⎭

such that DF (b∗
m, 0, 0) 

[

H

h

]

=

(

Q

q

)

. Let us project H, h into Fourier modes as

H(x) =

∞∑

k=1

Hkm cos(kmx), h(x) =

∞∑

k=1

hkm cos(kmx).

This yields the following system of equations for any k:

(−km)Mα
km

(
b∗

m

)

(

Hkm

hkm

)

= (−km)

(

−Θkm + (b∗
m)2Λ1(b∗

m) −(b∗
m)2Λkm(b∗

m)

b∗
mΛkm(b∗

m) (b∗
m)1−αΘkm − b∗

mΛ1(b∗
m)

)(

Hkm

hkm

)

=

(

Qkm

qkm

)

,

which has as solutions:

(

Hkm

hkm

)

=
(
Mα

km

(
b∗

m

))−1

(

Qkm

qkm

)

= −
1

km

1

Δα
km(b∗

m)

(

(b∗
m)1−αΘkm − b∗

mΛ1(b∗
m) (b∗

m)2Λkm(b∗
m)

−b∗
mΛkm(b∗

m) −Θkm + (b∗
m)2Λ1(b∗

m)

)(

Qkm

qkm

)

whenever k �= 1 and:

Hm = −
1

m
λQ,q, hm = 0.
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Note that there are more solutions for (Hm, hm). This shows the existence of a can-

didate (H, h). We now show that this candidate has the desired regularity. To do so, we 

need the following additional asymptotic Lemma:

Lemma 2.10. Let 0 < α < 2, 0 < b < 1 and let n ∈ Z. Let Δα
n(b) be defined as in 

Proposition 2.5, namely:

Δα
n(b) =

(
b1−αΘn − bΛ1(b)

)(
−Θn + b2Λ1(b)

)
+ b3Λn(b)2

Then Δα
n(b) has the following asymptotic behaviour (with non-zero leading terms) as 

n → ∞:

Δα
n(b) =

⎧

⎪⎨

⎪⎩

µα + να

n1−α + O( 1
n2−α ) if α < 1

−(log(n))2 b1−α

π2 + O(log(n)) if α = 1
pα

n2−2α + qα

n1−α + O(1) if α > 1

with

µα =
(
−Λ1(1) + b2Λ1(b)

)(
b1−αΛ1(1) − bΛ1(b)

)

να =

(

1 −
α

2

)

Λ1(1)
(
2b1−αΛ1(1) − b

(
1 + b2−α

)
Λ1(b)

)
eαγ+cα

pα = −b1−α

(
Γ(1 − α)

21−αΓ2(1 − α
2 )

)2

qα = −
Γ(1 − α)

21−αΓ2(1 − α
2 )

bΛ1(b)
(
1 + b2−α

)

and γ, cα some finite constants.

Proof. We start by noticing the exponential decay in n of Λn(b) (see [13]). Next, we have 

the asymptotic expansion for Θn:

Θn ∼

{

Λ1(1) − (1 − α
2 )Λ1(1) eαγ+cα

n1−α + O(nα−2) if α < 1
1
π log(n) + O(1) if α = 1

which was proved in [20] for α ≤ 1 we obtain µα and να. This shows the asymptotics for 

α ≤ 1. For α > 1 it follows from the expression (see [4]):

Θn =
Γ(1 − α)

21−αΓ2(1 − α
2 )

(
Γ(1 + α

2 )

Γ(2 − α
2 )

−
Γ(n + α

2 )

Γ(n + 1 − α
2 )

)

and the asymptotic formulas for the Gamma function [1, Formula 6.1.46, p. 257].

All we are left to show is that µα �= 0 for α < 1, and that pα �= 0 for α > 1. The 

former is an immediate consequence of the monotonicity in b of Λn(b) (Lemma B.2) and 

the latter is trivial. ✷
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Using this Lemma, one easily obtains the following asymptotics for the inverse of 

Mα
km(b∗

m) as k → ∞:

Corollary 2.11.

(
Mα

km

(
b∗

m

))−1

12
= −

1

km

1

Δα
km(b∗

m)

(
b∗

m

)2
Λkm

(
b∗

m

)

∼
(
Mα

km

(
b∗

m

))−1

21
= −

1

km

1

Δα
km(b∗

m)

(
−b∗

mΛkm

(
b∗

m

))
∼ O(1)

(
Mα

km

(
b∗

m

))−1

11
= −

1

km

1

Δα
km(b∗

m)

((
b∗

m

)1−α
Θkm − b∗

mΛ1

(
b∗

m

))

∼
(
Mα

km

(
b∗

m

))−1

22
= −

1

km

1

Δα
km(b∗

m)

(
−Θkm +

(
b∗

m

)2
Λ1

(
b∗

m

))
∼

⎧

⎪⎨

⎪⎩

1
k if α < 1
1

k log(k) if α = 1
1

kα if α > 1

We now distinguish cases depending on α. For α < 1:

‖H‖2
Xk,m

c
+ ‖h‖2

Xk,m
c

=
∞∑

j=1

(
|Hjm|2 + |hjm|2

)
(1 + jm)2k

(
cosh(cjm)2 + sinh(cjm)2

)

=
1

m2
λ2

Q,q(1 + m)2k
(
cosh(c)2 + sinh(c)2

)

+

∞∑

j=2

(1 + jm)2k
(
cosh(cjm)2 + sinh(cjm)2

)

×
{[(

Mα
jm

(
b∗

m

))−1

11
Qmj +

(
Mα

jm

(
b∗

m

))−1

12
qmj

]2

+
[(

Mα
jm

(
b∗

m

))−1

21
Qmj +

(
Mα

jm

(
b∗

m

))−1

22
qmj

]2}

≤ C + C‖Q‖2
Y k−1,m

c
+ C‖q‖2

Y k−1,m
c

< ∞,

where in the last line we have used Corollary 2.11. For α > 1 and α = 1, one obtains 

using the same approach and the asymptotics from Corollary 2.11:

‖H‖2
Xk+α−1,m

c
+ ‖h‖2

Xk+α−1,m
c

≤ C + C‖Q‖2
Y k−1,m

c
+ C‖q‖2

Y k−1,m
c

< ∞

‖H‖2
Xk+log,m

c
+ ‖h‖2

Xk+log,m
c

≤ C + C‖Q‖2
Y k−1,m

c
+ C‖q‖2

Y k−1,m
c

< ∞,

respectively. This concludes that Z = Im(DF (b∗
m, 0, 0)) and in particular shows that the 

codimension of the image of DF (b∗
m, 0, 0) is 1, as we needed. ✷
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2.5. Step 5

This step is devoted to show the transversality condition. We start writing out the 

calculations since everything is explicit, including the characterization of the image done 

in the previous subsection. Based on that, we have the following:

∂bMα
m

(
b∗

m

)
=

(

(b∗
m)2Λ′

1(b∗
m) + 2b∗

mΛ1(b∗
m) −(b∗

m)2Λ′
n(b∗

m) − 2b∗
mΛn(b∗

m)

b∗
mΛ′

n(b∗
m) + Λn(b∗

m) (1 − α)(b∗
m)−αΘn − b∗

mΛ′
1(b∗

m) − Λ1(b∗
m)

)

Letting

v0

(
b∗

m

)
=

(

(b∗
m)2Λn(b∗

m)

(b∗
m)2Λ1(b∗

m) − Θn

)

, w
(
b∗

m

)
=

(

−Θn + (b∗
m)2Λ1(b∗

m)

b∗
mΛn(b∗

m)

)

,

be the generators of Ker(Mα
m(b∗

m)) and Im(Mα
m(b∗

m)) respectively, the transversality con-

dition is equivalent to prove that w1(b∗
m) and w(b∗

m) are not parallel, where

w1

(
b∗

m

)
= ∂bMα

m

(
b∗

m

)
v0

(
b∗

m

)

=

(
(2b∗

mΛ1(b∗

m) + (b∗

m)2Λ′

1(b∗

m))(b∗

m)2Λn(b∗

m) − (2b∗

mΛn(b∗

m) + (b∗

m)2Λ′

n(b∗

m))((b∗

m)2Λ1(b∗

m) − Θn)

(Λn(b∗

m) + b∗

mΛ′

n(b∗

m))(b∗

m)2Λn(b∗

m) + ((1 − α)(b∗

m)−αΘn − Λ1(b∗

m) − b∗

mΛ′

1(b∗

m))((b∗

m)2Λ1(b∗

m) − Θn)

)

In order to do so, we claim that both components of w1(b∗
m) have the same (positive) 

sign, whereas the two components of w(b∗
m) have opposite signs. The latter is easy 

to establish and follows from Lemma A.2 and (2.6). We focus on showing that both 

components of w1(b∗
m) are positive. The first one is equal to

(
b∗

m

)4
Λ′

1

(
b∗

m

)
Λm

(
b∗

m

)
−
(
b∗

m

)4
Λ1

(
b∗

m

)
Λ′

m

(
b∗

m

)
+ Θm

(
2b∗

mΛm

(
b∗

m

)
+
(
b∗

m

)2
Λ′

m

(
b∗

m

))

>
(
b∗

m

)4
Λ′

1

(
b∗

m

)
Λm

(
b∗

m

)
−
(
b∗

m

)4
Λ1

(
b∗

m

)
Λ′

m

(
b∗

m

)
+
(
b∗

m

)2
Λ1

(
b∗

m

)(
2b∗

mΛm

(
b∗

m

)

+
(
b∗

m

)2
Λ′

m

(
b∗

m

))

=
(
b∗

m

)4
Λ′

1

(
b∗

m

)
Λm

(
b∗

m

)
+ 2
(
b∗

m

)3
Λ1

(
b∗

m

)
Λm

(
b∗

m

)
> 0,

and the second one is

(
b∗

m

)2
Λm

(
b∗

m

)2
+
(
b∗

m

)3
Λ′

m

(
b∗

m

)
+ (1 − α)

(
b∗

m

)2−α
ΘmΛ1

(
b∗

m

)
− (1 − α)

(
b∗

m

)−α
Θ2

m

−
(
b∗

m

)2
Λ1

(
b∗

m

)2
+ Λ1

(
b∗

m

)
Θm −

(
b∗

m

)3
Λ′

1

(
b∗

m

)
Λ1

(
b∗

m

)
+ b∗

mΛ′
1

(
b∗

m

)
Θm

= α
[(

b∗
m

)2(
Λm

(
b∗

m

)2
− Λ1

(
b∗

m

)2)
+ ΘmΛ1

(
b∗

m

)]
+
(
b∗

m

)3
Λ′

m

(
b∗

m

)

+
[
b∗

mΛ′
1

(
b∗

m

)
Θm −

(
b∗

m

)3
Λ1

(
b∗

m

)
Λ′

1

(
b∗

m

)]

where we have used that
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−
(
b∗

m

)−α
Θ2

m + Θm

(
b∗

m

)2−α
Λ1

(
b∗

m

)
= −ΘmΛ1

(
b∗

m

)
−
(
b∗

m

)2(
Λm

(
b∗

m

)2
− Λ1

(
b∗

m

)2)
.

Both square brackets are positive by (2.6), and the claim follows.

2.6. Step 6

This follows easily by doing the change of variables y → −y and y → y + 2π
m inside 

the integral operators.
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Appendix A. Hypergeometric function identities

Here we collect a few facts about Θm and Λm, and about hypergeometric functions 

that will be used along the proofs. Recall that Θm and Λm were defined in (2.3) by:

Λn(b) ≡
1

b

∞∫

0

1

t1−α
Jn(bt)Jn(t)dt

=
Γ(α

2 )

Γ(1 − α
2 )21−α

(α
2 )n

n!
bn−1F

(
α

2
, n +

α

2
, n + 1, b2

)

,

=
bn−1

21−αΓ(1 − α
2 )2

1∫

0

xn−1+ α
2 (1 − x)− α

2

(
1 − b2x

)− α
2 dx.

Θn ≡ Λ1(1) − Λn(1)

Lemma A.1. We have the following identities for the hypergeometric function:

∂

∂x
2F1(a, b, c, x) =

ab

c
2F1(a + 1, b + 1, c + 1, x) (A.1)

c2F1(a, b, c, z) − c2F1(a, b + 1, c, z) + az2F1(a + 1, b + 1, c + 1, z) = 0 (A.2)

c2F1(a, b, c, z) − (c − b)2F1(a, b + 1, c, z) − b2F1(a, b + 1, c + 1, z) = 0 (A.3)

c2F1(a, b − 1, c, z) + (a − c)2F1(a, b, c + 1, z) + (z − 1)c2F1(a, b, c, z) = 0 (A.4)

c2F1(a, b, c, z) − c2F1(a + 1, b, c, z) + bz2F1(a + 1, b + 1, c + 1, z) = 0 (A.5)

b2F1(a, b + 1, c, z) − a2F1(a + 1, b, c, z) + (a − b)2F1(a, b, c, z) = 0 (A.6)
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Proof. See [33]. ✷

Lemma A.2. Λn(b) is an increasing function of b, it satisfies Λn(b) ≥ 0 for any n ≥ 1

and b ∈ (0, 1], and

lim
b→1

Λn(b) > 0.

Proof. This follows from the integral formula (2.3). ✷

Lemma A.3. Let α ∈ (0, 2) and n ≥ 2. Then:

Λn(b) < Λ1(b)

for all b ∈ (0, 1).

Proof. The proof can be found in [13, Lemma 5.2(1)]. ✷

Appendix B. Basic integrals

The following two lemmas will deal with the integrals that appear throughout the 

calculation of the linear operator:

Lemma B.1. Let 0 < b < 1, 0 < α < 2, m ∈ N. We have that:

1

2π

2π∫

0

cos(my)

(1 + b2 − 2b cos(y))α/2
dy = bm (α

2 )m

m!
2F1

(
α

2
, m +

α

2
; m + 1; b2

)

Proof. See [13, Lemma 3.2, Eq. (3.19)]: their proof can be extended to the case 

0 < α < 2. ✷

Lemma B.2. Let 0 < b < 1, 0 < α < 2, m ∈ N. We have that:

1

m

α

2

2π∫

0

2 sin(y) sin(my)

(1 + b2 − 2b cos(y))α/2+1
dy =

bm−1(α
2 )m

m!
2F1

(
α

2
, m +

α

2
, m + 1; b2

)

Proof. Using the trigonometric addition formulas and Lemma B.2, the LHS is equal to

bm−1

m!

(
α

2

)

m

(

2F1

(
α

2
+ 1,

α

2
+ m, m; b2

)

−
b2

m(m + 1)

(
α

2
+ m

)(
α

2
+ m + 1

)

2F1

(
α

2
+ 1,

α

2
+ m + 2, m + 2; b2

))
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Combining formulas (A.5) with a = α
2 , b = α

2 + m + 1, c = m + 1, (A.3) with a =
α
2 +1, b = α

2 +m, c = m and (A.6) with a = α
2 , b = α

2 +m, c = m +1 yields the result. ✷
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