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Abstract

In this paper, we prove the existence of smooth initial data for the 2D free boundary

incompressible Navier-Stokes equations, for which the smoothness of the interface

breaks down in finite time into a splash singularity.
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1 Introduction

In this paper, we prove that an initially smooth solution of the 2D water wave equation

with non-zero viscosity may break down in finite time by forming a splash singularity,

see Figure 1.

The analogous result for inviscid water waves was proven in our previous paper

[9]. The strategy there was to start with a splash configuration and solve backwards

in time. To do so, we first made a conformal map (essentially a branch of the square

root) P(z) from physical space to the “tilde domain” and then adapted the proof of

Ambrose-Masmoudi [3] (see also [10]) of short time existence of solutions of the

inviscid water wave equation.

The strategy of [9] cannot work for the present case of nonzero viscosity, since

the equations cannot be solved backwards in time. We will instead make use of the

transformation to the tilde domain in a new way, which we explain below.

We refer the reader to the further historical discussion at the end of the introduction,

including references to alternate proofs by Coutand-Shkoller of several of our results.

Let us first present the inviscid and viscous water wave equations, next define a

splash singularity, and then state our main result.

The 2D water wave equations govern a system consisting of water, vacuum and the

interface between them. At time t ∈ R, the water occupies a region �(t) ⊂ R
2, and
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Fig. 1 How a splash forms

the vacuum occupies the complementary region R
2\�(t). For points x in the water

region �(t), the velocity of the water at position x and time t is u(x, t) ∈ R
2, and the

pressure is p(x, t) ∈ R. Thus, u(x, t), p(x, t) are defined only for x ∈ �(t); finding

�(t) is part of the problem.

We assume here that the interface ∂�(t) ⊂ R is a smooth simple closed curve,

which we write in parametric form:

∂�(t) = {z(α, t) : α ∈ R/Z},

where z : R/Z → R
2 is smooth and satisfies the chord-arc condition

|z(α, t)− z(α′, t)| ≥ C A(t)‖α − α′‖ for α, α′ ∈ R/Z.

Here, C A(t) > 0 is the “chord-arc constant”, and ‖α − α′‖ denotes the distance

from α to α′ in R/Z.

The parametrization of the interface has no physical meaning, and can be picked

to simplify our analysis.

The inviscid water wave equations are as follows:

(∂t + u · ∇x )u(x, t) = −∇x p(x, t) for x ∈ �(t)

divu(x, t) = 0 for x ∈ �(t)

curlu(x, t) = 0 for x ∈ �(t)

p(x, t) = 0 for x ∈ ∂�(t)

∂t z(α, t) = u(z(α, t), t)+ c(α, t)∂αz(α, t) for α ∈ R/Z. (1)

(The last equation asserts that the interface moves with the fluid. The function c(α, t)

affects only the parametrization of the interface, and may be chosen arbitrarily).

The initial conditions for inviscid water waves are as follows:

• �(0) = �0 (a given domain bounded by a smooth simple closed curve).

• u(x, 0) = u0 (a given smooth divergence-free irrotational vector field) for x ∈ �0.
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For water waves with nonzero viscosity, the relevant equations take the following

form in suitable units:

(∂t + u · ∇x )u(x, t) = �x u(x, t)−∇x p(x, t) for x ∈ �(t)

divu(x, t) = 0 for x ∈ �(t)
(

p I−
(
∇u + (∇u)∗

))
n = 0, for x ∈ ∂�(t)

∂t z(α, t) = u(z(α, t), t)+ c(α, t)∂αz(α, t) for α ∈ R/Z. (2)

Again, c(α, t) may be chosen arbitrarily.

The initial conditions are:

• �(0) = �0 (as before).

• u(x, 0) = u0 for x ∈ �0, where u0 is a given smooth divergence-free vector field

on �0, satisfying the constraint

• n⊥0
((
∇u0 + (∇u0)

∗)) n0 = 0 on ∂�0.

Next, we adapt from [9] the definition of a splash singularity for the compact case:

Note that the inviscid water wave equations (1) have a symmetry under time reversal,

but the viscous equations (2) have no such symmetry. This reflects the presence of the

Euler equation in (1) and the Navier-Stokes equation in (2).

Definition 1.1 We say that z(α) = (z1(α), z2(α)) is a splash curve if

1. z1(α), z2(α) are smooth functions and 2π -periodic.

2. z(α) satisfies the arc-chord condition at every point except at α1 and α2, with α1 <

α2 where z(α1) = z(α2) and |zα(α1)|, |zα(α2)| > 0. This means z(α1) = z(α2),

but if we remove either a neighborhood of α1 or a neighborhood of α2 in parameter

space, then the arc-chord condition holds.

3. The curve z(α) separates the complex plane into two regions; a connected

water region and a vacuum region (not necessarily connected). We choose the

parametrization such that the normal vector n = (−∂αz2(α),∂αz1(α))
|∂αz(α)| points to the

vacuum region. We regard the interface to be part of the water region.

4. We can choose a point c outside the water region and a single-valued branch of

the function P(z) =
√

z − c on the water region with the following properties:

The image of the water region under P is bounded by a curve z̃(α) =
(z̃1(α), z̃2(α)) = P(z(α)) satisfying:

(a) z̃1(α) and z̃2(α) are smooth and 2π -periodic.

(b) z̃ is a closed contour.

(c) z̃ satisfies the arc-chord condition.

See Figure 2 and Figure 5 for examples of splash and non-splash curves. Although

we have taken the slit Ŵ in Figure 5 to be a half-line, we could just as well have

taken any smooth arc joining the origin to infinity, passing through the splash point

but otherwise avoiding the water region.

The referee points out another type of splash scenario indicated in Figure 3. Our

proof can be easily adapted to this scenario by replacing P(z) =
√

z − c by a branch

of
√

z−a
z−b

with suitable a and b.
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Fig. 2 Two examples of non splash curves

Fig. 3 An additional splash

scenario

We can now state the main result of this paper:

Theorem 1.2 There exists a solution of the viscous water wave equation that remains

smooth for times t ∈ [0, t∗) but forms a splash singularity at time t∗.

Next, we recall from [9] how to produce the inviscid water waves 1 that end in a

splash at time t∗ > 0. We start with the splash �(t∗), u(·, t∗) and solve the inviscid

equations (1) backwards in time. It is well known that the inviscid equations (1) can

be solved (forward or backwards in time) starting from smooth initial data (See S. Wu

[38] and [25] for a comprehensive list of references) The difficulty here is that the

initial �(t∗) is singular. To overcome this difficulty, we make a slit Ŵ in the complex

plane as in Figure 5, and then make the conformal mapping z̃ = P(z) for z ∈ C\Ŵ;

here P(z) is a branch of
√

z. The inverse map is simply P−1(z̃) ≡ z̃2, which of course

is well defined and smooth on the whole complex plane. We remark that we can apply

this procedure to any splash curve (see Definition 1.1) simply picking the conformal

map P(z) =
√

z − c with a suitable c ∈ C and choosing a branch of the square root

that separates the two splash points.

We want a solution of (1) for which �(t∗) is as in Figure 5, but for times t < t∗
(t close to t∗), �(t) avoids the slit Ŵ. The corresponding domains �̃(t) in the tilde

domain (i.e. �̃(t) = P(�(t)) ) behave as in Figure 6.

1 We treat here the case in which the water region �(t) ⊂ R
2 is a bounded region. In [9], we studied the

case in which �(t) is periodic with respect to horizontal translation as in Figure 4. In this introduction we

ignore the distinction between the compact and periodic cases.
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Fig. 4 Horizontally periodic

setting

(a) The z-plane. (b) The z̃-plane.

Fig. 5 Desingularization of the splash domain

(a) (b)

Fig. 6 Evolution of a splash in the tilde world for t = t∗ and t < t∗

In [9] we give simple transformation laws that allow us to pass from the velocity

u(x, t) and pressure p(x, t) (defined for x ∈ �(t)) to a transformed velocity and

pressure ũ(x̃, t), p̃(x̃, t), defined for x̃ ∈ �̃(t).
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We can then write down the analogue of the inviscid water wave equations (1) in the

tilde domain. We call these equations ˜(1); they govern the evolution of �̃(t), ũ(x̃, t)

backwards in time, with initial conditions at t = t∗.
Note that, whereas �(t∗) is singular (its chord-arc constant is zero), �̃(t∗) is

bounded by a smooth simple closed curve. Moreover, the transformed water wave

equation ˜(1) behave much like the original equations (1). Adapting the energy esti-

mates of Ambrose and Masmoudi [3], we prove existence of a smooth solution of ˜(1)

for times t ∈ [t∗−ε, t∗+ε], with �̃(t∗) as in Figure 5. As long as �̃(t) avoids P(Ŵ) for

all t ∈ [t∗− ε, t∗), we obtain a corresponding solution of (1) with �(t) = P−1(�̃(t))

a smooth simple closed curve for t ∈ [t∗ − ε, t∗), We can guarantee that �̃(t) avoids

P(Ŵ) for t ∈ [t∗ − ε, t∗) by taking ε smaller and carefully picking the initial velocity

ũ at the two points z̃splash,1 and z̃splash,2 in Figure 6. Thus, we have produced an

inviscid water wave that starts out smooth at time t∗ − ε and ends in a splash at time

t∗.
This concludes our discussion of the inviscid water wave equations (1).

We pass to the viscous case, where we no longer have the luxury of solving back-

wards in time. Just as in the inviscid case, there is an analogue of the water wave

equations (2) in the tilde domain, which we call equations ˜(2) (we won’t write them

out in the introduction, see section 2 for a precise definition).

The unknowns in the tilde domain are a time-varying domain �̃(t), a velocity field

ũ(x̃, t) and a pressure p̃(x̃, t) with ũ, p̃ defined for x̃ ∈ �̃(t).

The relationship between equations (2) and equations ˜(2) is as follows:

Every solution �(t), u(·, t), p(·, t) of (2) such that �(t) avoids the slit Ŵ gives

rise to a solution �̃(t), ũ(·, t), p̃(·, t) of ˜(2), with �̃(t) = P(�(t)). On the other

hand, let �̃(t), ũ(·, t), p̃(·, t) be a solution of ˜(2). We would like to define a solu-

tion �(t), u(·, t), p(·, t) of (2) such that �(t) = P−1(�̃(t)). However, this may not

be possible, because P−1(∂�̃(t)) may self-intersect, as in Figures 7(b) and 7(c). In

particular, P−1(∂�̃(t)) in Figure 7(c) is clearly not the boundary of any physically

meaningful water region.

The good news is that Figures 7(b) and 7(c) are the only obstructions; as

long as P−1(∂�̃(t)) is as in Figure 7(a), we can easily pass from our solution

�̃(t), ũ(·, t), p̃(·, t) of ˜(2) to a solution �(t), u(·, t), p(·, t) of (2) with �(t) =
P−1(�̃(t)).

Let us now solve equations ˜(2) for times t > 0, starting with smooth initial �̃(0)

and ũ(·, 0). Adapting the analysis of Beale [5] from (2) to the tilde domain, we prove

that smooth solutions �̃(t), ũ(·, t), p̃(·, t) of ˜(2) with the given initial conditions exist

for short time, i.e. for t ∈ [0, T ] with small positive T depending on �̃(0), ũ(·, 0).

Moreover, the solutions of ˜(2) depend stably on the initial conditions.

For suitable one-parameter families of initial conditions �̃ε(0), ũε(·, 0) depending

on a small parameter ε, there is a family of smooth solutions �̃ε(t), ũε(·, t), p̃ε(·, t)

solving ˜(1) up to time T , with ‖∂�̃ε(t)− ∂�̃(t)‖ = O(ε) in a suitable norm ‖ · ‖.

We are ready to combine the ingredients above. We start with smooth initial con-

ditions �̃(0), ũ(·, 0) with P−1(∂�̃(0)) as in Figure 7(b). Solving ˜(2) for a short time,

we obtain smooth solutions �̃(t), ũ(·, t), p̃(·, t) for times t ∈ [0, T ] (some T > 0).

By making T smaller and picking the initial velocity ũ(·, 0) so that ũ(zsplash,1, 0) and
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(a)

(b)

(c)

Fig. 7 Possibilities for P−1(�̃(t))

ũ(zsplash,2, 0) point in the right direction, we can guarantee that P−1(∂�̃(T )) behaves

as in Figure 7(c).

Next, we pick a one-parameter family of initial conditions �̃ε(0) and ũε(·, 0) per-

turbing our �̃(0), ũ(·, 0). We can easily arrange that for small positive ε, P−1(∂�̃ε(0))

looks like Figure 7(a), even though P−1(∂�̃(0)) is as in Figure 7(b). The perturbed
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Fig. 8 A splash singularity

forms at two points

simultaneously

solution �̃ε(t), ũε(·, t), p̃ε(·, t) will satisfy ‖∂�̃ε(T )− ∂�̃(T )‖ = O(ε). Hence, for

ε > 0 small enough, P−1(∂�̃ε(T )) will be as in Figure 7(c), since the same holds for

P−1(∂�̃(T )). For such ε, P−1(∂�̃ε(t)) starts out as in Figure 7(a) for t = 0 and ends

as in Figure 7(c) for t = T . Fix such an ε and let

t∗ = inf
{

t ∈ [0, T ] : P−1(∂�̃ε(t)) is as in Figure 7(b) or 7(c)
}

Then, 0 < t∗ < T , P−1(∂�̃ε(t∗)) is as in Figure 7(b), and P−1(∂�̃ε(t)) is as

in Figure 7(a) for 0 ≤ t < t∗. Consequently, �̃ε(t), ũε(·, t), p̃ε(·, t) gives rise to a

solution of (2), the viscous water wave equation, for t ∈ [0, t∗), ending in a splash at

time t∗.
The paper is organized as follows: in Section 2 we derive the equations in the tilde

domain, in Section 3 we setup the different spaces and we prove the auxiliary technical

lemmas that we will use throughout the estimates. Section A is devoted to the study

of the linear part of the Navier-Stokes equation, whereas Section 5 incorporates the

effects of the nonlinear part. Section 6 closes the argument by showing the structural

stability of the equation. Finally, in Section 7 we show that we can pick an initial

velocity in such a way that the splash is formed.

We discuss briefly the types of singular interfaces that our methods produce.

Given any splash curve Ŵ, our main result produces initially smooth solutions of

the viscous water wave equations that end in splash curves Ŵ̃ arbitrarily close to Ŵ

in, say, C2. Other scenarios are possible. For instance, we believe it will be easy to

produce initially smooth solutions that end with an interface as in Figure 8. Thus, at

the moment of breakdown, the interface self-intersects at two points A and B.

To do so, we introduce a suitable two-parameter family of initial conditions. Let

these initial conditions be parametrized by (λ, μ) in a small neighborhood of the origin

in R
2. The initial condition corresponding to any (λ, μ) will be smooth and will depend

smoothly on λ,μ when viewed in the tilde domain. We write Ŵ(λ,μ) to denote the

time-zero interface for the initial conditions arising from (λ, μ). We can arrange that

Ŵ(0, 0) is as in Figure 8, and that for small positive λ,μ, the curve Ŵ(λ,μ) is as in

Figure 9, where the distance from A1 to A2 is comparable to λ, and the distance from

B1 to B2 is comparable to μ.
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Fig. 9 Sketch of the situation

before a splash singularity

We arrange the initial velocities so that at time zero, points A1 and A2 are moving

towards each other with velocity ∼ 1, and similarly for points B1 and B2.

The time evolution of a viscous water wave with initial conditions arising from

(λ, μ) can be controlled by passing to the tilde domain and applying the analysis in

the forthcoming sections below. We find that the interface begins to self-intersect near

point A at time tA(λ, μ) ∼ λ. Similarly, the interface begins to self-intersect near

point B at time tB(λ, μ) ∼ μ. If 0 < λ ≪ μ ≪ 1, then tB(λ, μ) < tA(λ, μ); but if

0 < μ ≪ λ ≪ 1, then tA(λ, μ) < tB(λ, μ). Hence, for some small nonzero (λ, μ),

we have that tA(λ, μ) = tB(λ, μ), at which time the interface looks like Figure 8.

Thus, we can produce initially smooth viscous water waves that end with an interface

that self-intersects at two distinct points.

We close the introduction by citing some of the relevant literature on viscous water

waves.

Some of the earliest papers in this topic were written by Solonnikov. He studied

the problem of a viscous fluid bounded by a free boundary in the vacuum (the fluid

domain is bounded). He showed local existence of solutions with [32] using Hölder

spaces in the frame of parabolic systems for bounded domains and without surface

tension [33,34]. Local existence and uniqueness of solutions was shown by Beale in

[5] in Sobolev spaces with non-slip boundary condition at a regular bottom for the

fluid and extended to Lq spaces by Abels [1]. A second theorem in the former paper

showed that for any T > 0 there exist solutions of sufficiently small initial data on

[0, T ]. For the case with surface tension, see also Tani [36] and Coutand-Shkoller

[12]. Masmoudi and Rousset [28] studied the case where the viscosity tends to zero

for the free boundary problem (see [18] for the case with surface tension). The case of

a viscous fluid lying above a bottom has been extensively studied. For the case without

surface tension Sylvester, in [35], showed global well-posedness for small initial data.

Hataya, in [23], showed the existence of solutions which decay algebraically in time

for a periodic in the horizontal variable surface. Guo and Tice, in [20–22], have proved

algebraic decay rate in time for asymptotically flat surfaces and almost exponential

decay rate in time for periodic in the horizontal variable surfaces.

Global in time regularity was first given for small initial data in [6] by adding to the

system surface tension effects (see also [4] for an alternative proof). In [35,37] global

existence is obtained without the help of surface tension. Decay rates have been also

123



   12 Page 10 of 117 A. Castro et al.

considered to understand the long time behavior of the solution. For the case with

surface tension see [7,30].

In the case of a two fluid problem there are some recent results where local well-

posedness and global existence for small data is shown. The situations consider low

regular initial velocities in critical spaces, in some cases within the chain of Besov

spaces (see [16,17,24,26,31] and the references therein for more details).

Existence of splash singularities for inviscid water waves was proven in our paper

[9], see also Coutand-Shkoller [13] for an alternate proof with applications to a 3D

setting.

The inviscid splash is not prevented by taking into account gravity or surface tension

(see [8]), but it is prevented by replacing the vacuum in R
2\�(t) by an incompressible

opposing fluid; see [19] as well as an alternate proof by Coutand-Shkoller [15]. It has

been shown in [11] that there exist “almost splash” stationary solutions in the two fluid

case. We caution that the nonexistence of a splash does not rule out a breakdown in

which the chord-arc constant degenerates and the solution loses smoothness; again,

see [19].

Our strategy for the viscous splash, as outlined above, was announced at the 40èmes

journées EDP (2013) in Biarritz, at the 2013 Clay Research Conference (Oxford) and

more recently at the Minerva Distinguished Visitor Lectures in Princeton in 2014.

Finally, in this paper we provide details.

We remark that the estimates we make in the tilde domain are given in detail in

the Appendices for the reader’s convenience, but they are simply adapted from well

known estimates for the nontilde domain.

We refer the reader to Coutand-Shkoller [14] for a different proof of the formation

of splash singularities for viscous water waves.

2 Equations: Transformation to a Nonsplash Domain

We have to solve the 2D-Navier-Stokes equations in the fluid domain �(t),

∂t u + (u · ∇)u −�u = −∇ p, in �(t), (3)

∇ · u = 0, in �(t), (4)
(

p I−
(
∇u + (∇u)∗

))
n = 0, on ∂�(t), (5)

u(t)|t=0 = u0, in �(0) = �0, (6)

where

�(t) = X(�(0), t)

with X(α, t) solving

d X(α, t)

dt
= u(X(α, t), t)

X(α, 0) = α, α ∈ �(0),
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and n(t) is unit normal vector to ∂�(t) (pointing out). Here, �0 and u0 are given and

satisfy the compatibility conditions

∇ · u0 = 0, in �0

n⊥0
(
∇u0 + (∇u0)

∗) n0 = 0 on ∂�0,

with n0 = n(0). The condition

(
p I−

(
∇u + (∇u)∗

))∣∣
∂�(t)

n = 0

states the continuity of the normal stress through the interface. We will use the symbol
∗ to denote the transpose of a matrix.

We notice that the pressure, p, will be given by the following elliptic problem

−�p =∇ · ((u · ∇)u) in �(t)

p =n
(
∇u + (∇u)∗

)
n on ∂�(t).

Let P(z) be defined as in the introduction and let �̃(t) = P(�(t)). Next we

will write the system (3–6) in the domain �̃(t) and after that, by using Lagrangian

coordinates, we will fix the domain in order to work in the domain �̃(0) rather than

in �̃(t).

Remark 2.1 At this point one should notice that we are assuming that �̃(t) is the pro-

jection by P of �(t) and that �̃(t) is a simply connected bounded domain. Therefore

P−1 is a well defined analytic function. Once we have written the N-S system in �̃(t)

this assumption will not be needed anymore.

We define ũ = u ◦ P−1 and p̃ = p ◦ P−1 and

Q2 =
∣∣∣∣
d P

dz
◦ P−1

∣∣∣∣
2

. (7)

Then

∂ j u
i = (∂k ũi ◦ P)∂ j Pk

and therefore

∂ j u
i ◦ P−1 = Ak j∂k ũi ,

where

Ak j = ∂ j Pk ◦ P−1. (8)

In addition, let’s assume that we traverse (clockwise) the boundary of �(t) using the

parametrization z(γ, t), i.e.,
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∂�(t) = {z(γ, t) ∈ R
2 : γ ∈ [−π, π)× [0, T ]}.

and

n = (−z2
γ (γ, t), z1

γ (γ, t)).

Since the boundary of �̃(t) can be parameterized by z̃(γ, t) = P(z(γ, t)) we have

that

z̃i
γ = ∂k P i ◦ P−1(z̃(γ, t))zk

γ (γ, t)

thus

ñ = −J A|∂�̃(t) Jn,

where

J =
(

0 −1

1 0

)
.

Using the previous expression and the fact that P is a conformal map we can write

the system (3–6) in the domain �̃(t) as follows:

∂t ũ + (Aũ · ∇)ũ − Q2�ũ = −A∗∇ p̃, in �̃(t), (9)

T r (∇ũ A) = 0, in �̃(t), (10)
(

p̃ I−
(
∇ũ A + (∇ũ A)∗

))
A−1ñ = 0, on ∂�̃(t), (11)

ũ(t)|t=0 = ũ0, in �̃(0) = �̃0. (12)

where T r(A) is the trace of the matrix A and

�̃(t) = X̃(�̃(0), t)

with X̃(α, t) solving

d X̃(α, t)

dt
=
(

A ◦ X̃(α, t)
) (

ũ ◦ X̃(α, t)
)

X̃(α, 0) = α, α ∈ �̃(0).

Here we have used that

Q2 A−1 = −J AJ .

Now we will fix the domain by working with the variables

ṽ(α, t) = ũ ◦ X̃(α, t) α ∈ �̃,

q̃(α, t) = p̃ ◦ X̃(α, t) α ∈ �̃.
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The system (9–12) in terms of (ṽ, q̃) reads

∂t ṽi − Q2 ◦ X̃ ζ̃k j∂k

(
ζ̃l j∂l ṽi

)
= −Aki ◦ X̃ ζ̃ jk∂ j q̃ in �̃0, (13)

T r
(
∇ṽζ̃ A ◦ X̃

)
= 0 in �̃0 (14)

(
q̃I−

((
∇ṽζ̃ A ◦ X̃

)
+
(
∇ṽζ̃ A ◦ X̃

)∗))
A−1 ◦ X̃∇J X̃ ñ0 = 0 on ∂�̃0, (15)

ṽ|t=0 ≡ ṽ0 = ũ0, (16)

where

ζ̃ =
(
∇ X̃
)−1

,
(
ζ̃ −1

)
i j
= ∂ j X̃ i , ∇J X̃ = −J∇ X̃ J

and

d X̃(α, t)

dt
= A ◦ X̃(α, t)ṽ(α, t) (17)

X̃(α, 0) = α, α ∈ �̃0. (18)

We will solve the system (13–16) by iteration towards a fixed point. We study first

the linear system that will be used for that purpose.

∂t ṽ
(n+1) − Q2�ṽ(n+1) = −A∗∇q̃(n+1) + f̃ (n) in �̃0, (19)

T r
(
∇ṽ(n+1) A

)
= g̃(n) in �̃0 (20)

(
q̃(n+1)

I−
((
∇ṽ(n+1) A

)
+
(
∇ṽ(n+1) A

)∗))
A−1ñ0 = h̃(n) on ∂�̃0, (21)

ṽ(n+1)|t=0 ≡ ṽ
(n+1)
0 = ũ0, (22)

where

f̃
(n)
i = Q2 ◦ X̃ (n)ζ̃

(n)
k j ∂k

(
ζ̃

(n)
l j ∂l ṽ

(n)
i

)
− Q2�ṽ

(n)
i − Aki ◦ X̃ (n)ζ̃

(n)
jk ∂ j q̃

(n) + Aki∂k q̃(n)

(23)

g̃(n) = −T r
(
∇ṽ(n)ζ̃ (n) A ◦ X̃ (n)

)
+ T r

(
∇ṽ(n) A

)
(24)

h̃(n) =
((
∇ṽ(n)ζ̃ (n) A ◦ X̃ (n)

)
+
(
∇ṽ(n)ζ̃ (n) A ◦ X̃ (n)

)∗)
A−1 ◦ X̃ (n)∇J X̃ (n)ñ0

−
((
∇ṽ(n) A

)
+
(
∇ṽ(n) A

)∗)
A−1ñ0 + q̃(n) A−1ñ0 − q̃(n) A−1 ◦ X̃ (n)∇J X̃ (n)ñ0,

(25)

We define X̃ (n+1) as

X̃ (n+1)(α, t) = α +
∫ t

0

A ◦ X̃ (n)(α, τ )ṽ(n)(α, τ )dτ, (26)
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and

ζ̃ (n) =
(
∇ X̃ (n)

)−1
∇J X̃ (n) = −J∇ X̃ (n) J .

Formally, assuming convergence as n → ∞, it is easy to check that in the limit

we find a solution of the nonlinear system. In what follows, we will either remove the

tilde from the notation or it will become clear from the context.

3 Definitions of the Spaces and Auxiliary Lemmas

This section is devoted to present the main tools used for both the linear and the

nonlinear case. We will also define all the spaces used for the construction of the

solutions, and their norms.

3.1 The Spaces Hs

For a positive integer m, we will denote the standard Sobolev space by Hm([0, T ])
with norm ‖v‖2

Hm =
∑m

j=0 ‖∂
j

t v‖2
L2 . We will indistinctly refer to L2([0, T ]) as either

L2([0, T ]) or H0([0, T ]).
Here we will give a precise definition of the Sobolev spaces with fractional deriva-

tives in time that we are going to use.

As in the classical paper [5] we define H s
(0)

([0, T ]), for 0 < s < 1, as the interpo-

lation between L2([0, T ]) and H1
(0)

([0, T ]), where to interpolate we use the operator

S = 1− ∂2
t , with domain D(S) = {u ∈ H2[0, T ] : v(0) = ∂tv(T ) = 0}. The reader

can consult [27, p. 9], for further information about this interpolation (notice that in

this book the operator S is called 
). After that, one can define the norm in H s
(0)

([0, T ])
as the graph norm of the operator 
s , with 
 = S

1
2 . An explicit computation shows

that

{
sin
(

(2n+1)π
2T

t
)√

2
T

}∞

n=1

is an orthogonal basis of L2([0, T ]) of eigenfunctions

of S, with eigenvalues
{

1+ (2n+1)2π2

4T 2

}∞
n=0

and that H s
(0)

([0, T ]) consists of functions

v ∈ L2([0, T ]) such that

||v||2H s
(0)
=

∞∑

n=0

(
vs

n

)2
(

(2n + 1)π

2T

)2s

< ∞ where

vs
n =

∫ T

0

v(t) sin

(
(2n + 1)π

2T
t

)√
2

T
dt .

For s > 1
2

we have that v ∈ H s
(0)

([0, T ]) implies v(0) = 0. An important fact,

remarked in [5] is, that if A is an operator bounded from L2([0, T ]) to Y and from

H1
0 ([0, T ]) to Z with constant independent of T , where Y and Z are Hilbert spaces
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with Z ⊆ Y , then A maps H s
(0)

onto the interpolated space [Z , Y ]1−s with norm

bounded independent of T .

For larger exponents, the space Hm+s
(0)

([0, T ]), m = 1, 2, 3, ... and 0 ≤ s < 1, is

regarded as the subspace of {v ∈ Hm([0, T ]) : (∂k
t v)(0) = 0, k = 0, ..., m−1}with

∂m
t v ∈ H s

(0)
([0, T ]). We equip this space with the norm

||v||2
Hm+s

(0)
([0,T ]) = ||v||

2
L2([0,T ]) + ||∂tv||2L2([0,T ]) + ...+ ||∂m

t v||2H s
(0)

([0,T ]). (27)

This is the norm for fractional derivatives in time that we will use in this paper.

Again as in [5], we also introduce the space H s([0, T ]). This space is defined,

for 0 < s < 1, as the interpolation of H1([0, T ]) and L2([0, T ]) with S = 1 − ∂2
t

and domain D(S) = {v ∈ H2([0, T ]) : (∂tv)(0) = (∂tv)(T ) = 0}. In this case{
1√
T
,

{
cos
(

nπ
T

t
)√

2
T

}∞

n=1

}
is a basis of L2([0, T ]) of eigenfunctions of S with

eigenvalues
{

1+ n2π2

T 2

}∞
n=0

. Thus we can define

||v||2H s([0,T ]) =
∞∑

n=0

(
1+ n2π2

T 2

)s (
vc

n

)2
, (28)

where

vc
0 =

∫ T

0

v(t)√
T

dt, vc
n =

∫ T

0

v(t) cos
(nπ

T
t
)√ 2

T
dt n ≥ 1.

A similar interpolation statement holds in this space. For larger derivatives we regard

Hm+s([0, T ]), m = 1, 2, 3..., 0 < s < 1 as the subspace of Hm([0, T ]) with ∂m
t v ∈

H s([0, T ]). It happens that Hm+s
(0)

([0, T ]) = {v ∈ Hm+s([0, T ]) : (∂k
t v)(0) =

0, k = 0, 1, ..., m}, for s > 1
2

and Hm+s
(0)

([0, T ]) = {v ∈ Hm+s([0, T ]) : (∂k
t v)(0) =

0, k = 0, 1, ..., m − 1}, for s < 1
2

. Here we remark that this space will always be

equipped with the norm (27).

The space H s(T) will be the classical Sobolev space of 2π -periodic functions such

that

|| f ||2H s (T) =
∑

n∈Z

(1+ |n|2)s | f
p

n |2 is finite with f
p

n = 1

2π

∫ 2π

0

f (θ)e−inθ dθ.

The space H s(Rn), n ≥ 1, will be the classical Sobolev space equipped with the norm

|| f ||2H s(Rn) =
∫

Rn

(
1+ |ξ |2

)s

| f̂ (ξ)|2dξ,

where f̂ is the Fourier transform of f in R
n . For a domain �0 ⊂ R

2 with regular

boundary (see discussion in Theorem 5.2 below for the regularity of ∂�0) the space
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H s(�0) is defined classically as the space of functions with s derivatives in L2(�0)

if s is an integer, or the usual generalization otherwise. It can be related with H s(R2)

through the classical extension map. The space H r (∂�0) is given by functions f

defined on ∂�0 = {z0(θ) : θ ∈ [0, 2π ]} such that f (z0(θ)) ∈ H r (T). In this paper

r > 1/2 so that the classical restriction (or trace) map properties on Sobolev spaces

can be applied. Finally, H−1(�0) is defined as the dual space of H1(�0).

3.2 Space-Time Definitions

Once we have defined the spaces H s we introduce the spaces we will use to solve

the free boundary Navier-Stokes equations in the tilde domain, where ∇ denotes the

space gradient:

H
ht,s+1
(0) ([0, T ];�0) = L2

(
[0, T ]; H s+1(�0)

)
∩ H

s+1
2

(0)

(
[0, T ]; L2(�0)

)
, s > 0

H
ht,s
pr (0) ([0, T ];�0) =

{
q ∈ L∞([0, T ]; Ḣ1(�0)) : ∇q ∈ H

ht,s−1
(0) ([0, T ];�0) ,

q ∈ H
ht,s− 1

2

(0) ([0, T ]; ∂�0)

}
, 2 < s <

5

2

H
ht,s

(0) ([0, T ];�0) = L2([0, T ]; H s(�0)) ∩ H
s+1

2

(0)
([0, T ]; H−1(�0)), s > 0

We now fix s with 2 < s < 5
2

and pick a small enough ε > 0 depending only on s.

We also set

F s+1
γ ([0, T ]; �0) = L∞1/4([0, T ]; H s+1(�0)) ∩ H2

(0)

(
[0, T ]; Hγ (�0)

)
,

s − 1− ε < γ < s − 1

with

|| f ||L∞1/4
= sup

t∈[0,T ]
t−1/4| f (t)|.

For the spaces H ht,s+1 ([0, T ];�0), H
ht,s
pr ([0, T ];�0) and H

ht,s
([0, T ];�0) we

give analogous definitions than above but removing the subscript (0) in the time

Sobolev spaces, i.e., removing the vanishing conditions at t = 0.

Also we will use the following notation:

|| · ||
H

ht,s
(0)

([0,T ],�0)
= || · ||

H
ht,s
(0)

|| · ||
H

ht,s
(0) ([0,T ],�0)

= || · ||
H

ht,s
(0)

|| · ||
H

ht,s
(0)

([0,T ],∂�0)
= | · |

H
ht,s
(0)

|| · ||
Fs+1

γ ([0,T ],�0)
= || · ||Fs+1

|| · ||H r
(0)

([0,T ]; H s (�0)) = || · ||H r
(0)

H s || · ||H r
(0)

([0,T ]; H s (∂�0)) = | · |H r
(0)

H s

|| · ||L∞([0,T ];H s (�0)) = || · ||L∞H s || · ||L∞1/4([0,T ];H s (�0)) = || · ||L∞1/4 H s

|| · ||
H

ht, s
pr (0)

([0,T ],�0)
= || · ||

H
ht, s
pr (0)

.
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3.3 Auxiliary Lemmas

Lemma 3.1 Let B be a Hilbert space.

1. For s ≥ 0, there is a bounded extension operator H s((0, T ); B) → H s((−∞,∞);
B).

2. For 0 ≤ s ≤ 2, s − 1
2

not an integer, there is an extension operator from

{
v ∈ H s((0, T ); B) ; ∂k

t v|t=0 = 0, 0 ≤ k < s − 1

2

}
→ H s((−∞,∞); B)

with norm bounded uniformly if T is bounded above. Furthermore, if v♯ is the

extension of v,

||v♯||H s ((−∞,∞);B) ≤ C ||v||H s
(0)

((0,T );B).

3. Similar statements apply to the extension of H ht,2s and H
ht,2s
(0)

.

Proof The proof can be found in [5, p.365, Lemma 2.2]. In this paper the statements

asserts that the operator extends to H s((0,∞); B) rather than H s((−∞,∞); B). But

one can easily adapt the proof to the case H s((−∞,∞); B). ⊓⊔

Lemma 3.2 (Parabolic Trace).

1. Suppose 1
2

< r ≤ 5. The mapping v → ∂
j

n v extends to a bounded operator

H ht,r ([0, T ];�0) → H ht,r− j− 1
2 ([0, T ]; ∂�0), where j is an integer with 0 ≤

j < r − 1
2

. The mapping v → ∂k
t v(x, 0) also extends to a bounded operator

H ht,r → H r−2k−1(�0) if k is an integer with 0 ≤ k < 1
2
(r − 1).

2. Suppose 3
2

< r < 5, r �= 3, and r − 1
2

is not an integer. Let

W r =
∏

0≤ j<r− 1
2

H ht,r− j− 1
2 ([0, T ]; ∂�0)×

∏

0≤k< r−1
2

H ht,r−2k−1([0, T ];�0),

and let W r
0 be the subspace consisting of {a j , w j } so that

∂k
t a j (x, 0) = ∂

j
n wk(x) x ∈ ∂�,

for j + 2k < r − 3
2

. Then the restrictions at ∂�0 together with the restrictions

at time t = 0 in point 1. above form a bounded operator H ht,r → W r
0 , and this

operator has a bounded right inverse.

Proof See [5, Lemma 2.1]. ⊓⊔
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Lemma 3.3 Suppose 0 ≤ r ≤ 4.

1. The identity extends to a bounded operator

H ht,r → H p H r−2p,

p ≤ r
2

.

2. If r is not an odd integer, the restriction of this operator to the subspace with

∂k
t v|t=0, 0 ≤ k < r−1

2
is bounded uniformly if T is bounded above. Indeed

||v||H p

(0)
H r−2p ≤ C ||v||

H
ht, r
(0)

,

where C does not depend on T if T is bounded above.

Proof The proof can be found in [5, p.365, Lemma 2.3]. ⊓⊔

Lemma 3.4 Let T0 > 0 be arbitrary and B a Hilbert space, and choose T ≤ T0. For

v ∈ H0((0, T ); B), we define V ∈ H1((0, T ); B) by

V (t) =
∫ t

0

v(τ)dτ.

Suppose 0 < s < 1, s �= 1
2

, for s > 1
2

we impose v|t=0 = 0, and 0 ≤ ε < s. Then

v → V is a bounded operator from H s
(0)

((0, T ); B) to H s+1−ε
(0)

((0, T ); B), and

||V ||
H s+1−ε

(0)
((0,T );B)

≤ C0T ε||v||H s
(0)

((0,T );B).

where C0 is independent of T for 0 < T ≤ T0.

Proof By definition

||V ||2
H1+s−ε

(0)
([0,T ];B)

= ||V ||2
L2 + ||∂t V ||2H s−ε

(0)
([0,T ];B)

= ||V ||2
L2 + ||v||2H s−ε

(0)
([0,T ];B)

On one hand, since V (t) =
∫ t

0 v(τ)dτ we have that ||V ||L2([0,T ];B) ≤ CT

||v||L2([0,T ];B). On the other hand

||v||2
H s−ε

(0)
([0,T ];B)

=
∞∑

n=0

(
(2n + 1)2π2

(2T )2

)s−ε

||vn||2B

= T−2s+2ε

∞∑

n=0

((
2n + 1

2

)2

π2

)s−ε

||vn||2B

≤ T−2s+2ε

∞∑

n=0

((
2n + 1

2

)2

π2

)s

||vn||2B = T 2ε||v||2H s
(0)

([0,T ];B).

⊓⊔
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Lemma 3.5 1. Suppose r > 1 and r ≥ s ≥ 0. If v ∈ H r (�) and w ∈ H s(�), then

vw ∈ H s(�), and

||vw||H s ≤ C ||v||H r ||w||H s .

2. If v,w ∈ H1(�), then vw ∈ H0(�), and

||vw||H0 ≤ C ||v||H1 ||w||H1 .

3. If v ∈ H r (�), r > 1, and w ∈ H−1(�), the dual space of H1(�), then vw is

defined in H−1(�) and

||vw||H−1 ≤ ||v||H r ||w||H−1 .

4. If v ∈ H1(�) and w ∈ H0(�), then vw is defined in H−1(�); and

||vw||H−1 ≤ C ||v||H1 ||w||H0 .

Proof The proof can be found in [5, p. 366, Lemma 2.5]. Here we notice that we work

in dimension 2 rather than in dimension 3 as in [5] and the second statement of Lemma

3.5 can be improved in dimension 2. ⊓⊔

Lemma 3.6 If v ∈ H
1
q and w ∈ H

1
p with 1

p
+ 1

q
= 1 and 1 < p < ∞ then

||vw||H0 ≤ C ||v||
H

1
q
||w||

H
1
p
.

Proof Applying Hölder’s inequality yields

||vw||H0 ≤ ||v||L2p ||w||L2q ,

Now the Gagliardo-Nirenberg inequality provides

||v||L2p ≤ C ||v||H s

for 1
2p
= 1

2
− s

2
, that implies s = 1

q
. Proceeding similarly for w we have that

||vw||H0 ≤ C ||v||
H

1
q
||w||

H
1
p
.

⊓⊔

Lemma 3.7 Suppose B, Y , Z are Hilbert spaces, and M : B × Y → Z is a bounded,

bilinear operator. Suppose v ∈ H s((0, T ); B) and w ∈ H s((0, T ); Y ), where s > 1
2

.

If vw is defined by M(v,w), then vw ∈ H s((0, T ); Z) and

1. ||vw||H s((0,T );Z) ≤ C ||v||H s((0,T );B)||w||H s((0,T );Y ).
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2. Also, if s ≤ 2 and v, w satisfy the additional condition ∂k
t v|t=0 = ∂k

t w|t=0 = 0,

0 ≤ k < s− 1
2

, and s− 1
2

is not an integer, then the constant C in 1 can be chosen

independent of T . Indeed

||vw||H s
(0)

((0,T );Z) ≤ C ||v||H s
(0)

((0,T );B)||w||H s
(0)

((0,T );Y )

where C does not depend on T .

Proof The proof of 1 and 2 can be found in [5, p. 366, Lemma 2.6]. ⊓⊔

Lemma 3.8 For 2 < s < 2.5, δ, ε > 0 small enough and v ∈ F s+1 the following

estimates hold:

1. ||v||
H

s+1
2

(0)
H1−ε

≤ C ||v||Fs+1 .

2. ||v||
H

s+1
2
+ε

(0)
H1+δ

≤ C ||v||Fs+1 .

3. ||v||
H

s−1
2
+ε

(0)
H2+δ

≤ C ||v||Fs+1 .

4. ||v||
H

s
2
− 1

4
+ε

(0)
H2+δ

≤ C ||v||Fs+1 .

5. ||v||H1
(0)

H s−1 ≤ C ||v||Fs+1 .

6. ||v||
H

1
2
+2ε

(0)
H s
≤ C ||v||Fs+1 .

Proof We will show the most singular cases, which are 2. and 4. The rest is proved in

an analogous way.

We will use the extension given by the Lemma 3.1 and thus we can consider t ∈ R.

Since �0 is a regular domain, we also consider the extension to the whole plane R
2.

This way, we can think of v : R× R
2 → R.

Case 2: We first consider ε = δ = 0. Using the Fourier transform in R × R
2, we

have

‖v‖2

H
s+1

2 H1
∼
∫

R×R2
(1+ |τ |s+1)(1+ |ξ |2)|v̂(τ, ξ)|2dτdξ

=
∫

R×R2
(1+ |ξ |2 + |τ |s+1 + |τ |s+1|ξ |2)|v̂(τ, ξ)|2dτdξ. (29)

We only need to bound the previous integral by

‖v‖2
L2 H s+1 + ‖v‖2

H2 Hγ ∼
∫

R×R2
(2+ |ξ |2(s+1) + |τ |4 + |ξ |2γ

+ |τ |4|ξ |2γ )|v̂(τ, ξ)|2dτdξ.

We are only left to bound the integral with |τ |s+1|ξ |2. Using Young’s inequality:

|τ |s+1|ξ |2λ|ξ |2(1−λ) ≤ C(|ξ |2λp + |τ |(s+1)q |ξ |2(1−λ)q),
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where p−1+q−1 = 1. Taking q = 4
s+1

, p = 4
3−s

, λ = (s+1)(3−s)
4

, we are only left

to check that

(1− λ)q < γ < s − 1,

but elementary formulas show it as long as s > 1. It is easy to see that in the previous

calculation there is room for the case ε, δ > 0 as long as ε and δ are sufficiently small.

Case 4:

Proceeding similarly to Case 2, it is enough to show that

|τ |s− 1
2 |ξ |4 ≤ C(1+ |τ |4 + |ξ |2(s+1) + |τ |4|ξ |2γ ).

Using Young

|τ |s− 1
2 |ξ |4λ|ξ |4(1−λ) ≤ C(|ξ |4λp + |τ |(s− 1

2 )q |ξ |4(1−λ)q).

Taking q = 4
s−1/2

, p = 4
9/2−s

, λ = (s+1)(9−2s)
16

, we are only left to check that

2(1− λ)q < γ < s − 1,

which is true for s > 3
2

. Similarly, there is room for the case ε, δ > 0 and suffi-

ciently small. Finally, the boundedness with respect to T is shown if one considers the

extension given by Lemma 3.1, part 2. ⊓⊔

Lemma 3.9 Let f ∈ H s([0, T ]) with 0 ≤ s ≤ 2 and ∂k
t f |t=0 = 0, 0 ≤ k < s − 1

2
,

with s − 1
2

not an integer, then:

||t f ||H s
(0)
≤ CT || f ||H s

(0)

||t2 f ||H s
(0)
≤ CT 2|| f ||H s

(0)

Proof We take f ∈ H2([0, T ]) such that, f |t=0 = ∂t f |t=0 = 0. We have that

||t f ||L2(0,T ) ≤ T || f ||L2 and that ||t f ||H2
(0)
[0,T ] ≤ CT || f ||H2

(0)
[0,T ]. This is because

f (t) =
∫ t

0 ∂τ f (τ )dτ ⇒ || f ||L2([0,T ]) ≤ T || ft ||L2([0,T ]) and because of an analo-

gous inequality for ∂t f (t). We get the inequality for the rest of the exponents by

interpolation. A similar proof holds for ||t2 f ||H s
(0)

. ⊓⊔

In the following lemmas we deal with the estimation of composition of functions.

The functions A and Q given by the expressions (8) and (7) respectively will appear

together with the initial velocity v0 : �̃ → R
2 which we assume regular enough (see

discussion in Theorem 5.2 below). To indicate the dependence of a constant, C , with

respect to a quantity, K , we will use the notation C[K ].
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Lemma 3.10 Let X − α − Av0t ∈ F s+1 with 2 < s < 2.5. Then, for T > 0 less than

a small enough constant determined by v0, infα∈�̃ |α| and ||X − α − Av0t ||Fs+1 ,

||A ◦ X ||L∞H s+1 ≤ C[M, ||X − α − Av0t ||Fs+1, v0, ||α||L2(�̃)]
||A ◦ X − A||L∞H s+1 ≤ C[M, ||X − α − Av0t ||Fs+1, v0, ||α||L2(�̃)](

||X − α − Av0t ||L∞H s+1 + ||Av0t ||L∞H s+1

)
.

with

M = 1

infα∈�̃ |α| − C[v0]T − T
1
4 ||X − α − Av0t ||Fs+1

.

Proof By definition the matrix Ak j = ∂ j Pk ◦ P−1 contains terms of the form x i

|x |2 and

therefore, three derivatives of A ◦ X contains terms of the form

∂3
jki X l

|X |2 ,
X l∂ j Xr ∂2

ik Xu

|X |4 ,
∂ j X i∂k X l∂u Xr

|X |4 ,
X p Xq∂ j X i∂k X l∂u Xr

|X |6 ,
X i X j∂3

lmn Xr

|X |4 ,

X i X j Xk∂
2
m X l∂2

rn Xn

|X |6 ,
X i X j X k X l∂r Xu∂m X p∂n Xq

|X |8 , for i, j, k, l, m, n, r , u, p, q = 1, 2.

Now we notice that || f ||H s+1 = || f ||H3+δ = || f ||L2 +
∑2

i, j,k=1 ||∂3
i jk f ||H δ for some

0 < δ < 1
2

. And then, using that, || f g||H δ ≤ || f ||H2 ||g||H δ and that H2 is an algebra

we can check that

||A ◦ X ||H s+1 ≤ C

(∣∣∣∣
∣∣∣∣

1

|X |

∣∣∣∣
∣∣∣∣
2

L∞
+
∣∣∣∣
∣∣∣∣

1

|X |

∣∣∣∣
∣∣∣∣
12

L∞

)(
||X ||H s+1 + ||X ||12

H s+1

)

In addition,

|X | ≥ |α| − |X − α| ≥ inf
α∈�̃

|α| − ||X − α||L∞(�),

and

||X − α||L∞(�) ≤ ||X − α||L∞H s+1 ≤ ||X − α − Av0t ||L∞H s+1 + T ||Av0||H s+1

≤ T
1
4 ||X − α − Av0t ||L∞1/4 H s+1 + T ||Av0||H s+1 . (30)

Thus

∣∣∣∣
∣∣∣∣

1

|X |

∣∣∣∣
∣∣∣∣
L∞

≤ 1

infα∈�̃ |α| − T ||Av0||H s+1 − T
1
4 ||X − α − Av0t ||L∞1/4 H s+1
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In addition we have that

||X ||L∞H s+1 ≤ ||X − α − Av0t ||L∞H s+1 + ||α + Av0t ||L∞H s+1 . (31)

The proof of the second inequality follows similar steps. ⊓⊔

Lemma 3.11 Let X − α − Av0t ∈ F s+1 with 2 < s < 2.5. Then, for T > 0 less than

a small enough constant determined by v0, infα∈�̃ |α|, and ||X − α − Av0t ||Fs+1 ,

||A ◦ X − A||H1
(0)

Hγ ≤ C[M, ||X − α − Av0t ||Fs+1 , v0] ||X − α||H1
(0)

Hγ .

with

M = 1

infα∈�̃ |α| − C[v0]T − T
1
4 ||X − α − Av0t ||Fs+1

.

Proof By definition ||A ◦ X − A||H1
(0)

Hγ = ||A ◦ X − A||L2 Hγ +
||∂t (A ◦ X − A)||L2 Hγ . To control ||A ◦ X − A||L2 Hγ we first notice that we can

write γ = 1 + δ with 0 < δ < 1/2, thus we need to control ||A ◦ X − A||L2 H0 +
||∂α (A ◦ X − A)||L2 H δ . We focus on the term ||∂α (A ◦ X − A)||L2 H δ . Since A ◦ X

contains terms of the form Xi

|X |2 , one spatial derivative of A ◦ X − A contains terms of

the form
∂ j X i

|X |2 −
∂ j α

i

|α|2 and
X i X l∂ j Xk

|X |4 − αi αl∂ j α
k

|α|4 . The bound for these different kinds of

terms follows similar steps. For example,

∣∣∣∣∣

∣∣∣∣∣
∂ j X i − ∂ jα

i

|X |2

∣∣∣∣∣

∣∣∣∣∣
H δ

≤ || 1

|X |2 ||H2 ||∂ j (X i − αi )||H δ ≤ C[||X ||H2 ]C
[

1

inf |α| − ||X − α||H s+1

]
||X − α||Hγ .

This type of estimate allows to prove that

||A ◦ X − A||L2 Hγ ≤ C[||X ||L∞H2 ]C
[

1

inf |α| − ||X − α||L∞H s+1

]
||X − α||H0 Hγ .

The time derivative of A ◦ X − A contains terms of the form ∂t X i

|X |2 −
∂t α

i

|α|2

and X i X j ∂t X l

|X |4 − αi α j ∂t α
l

|α|4 . In addition the most singular term we need to control in

||∂t (A ◦ X − A)||L2 Hγ is ||∂t∂α (A ◦ X − A)||L2 H δ . Therefore we can check that

||∂t (A ◦ X)||L2 Hγ ≤ C[||X ||L∞H2 ]C
[

1

inf |α| − ||X − α||L∞H s+1

]
||∂t (X − α)||H0 Hγ .

Finally we use (30) and (31) and that ||X − α||H1
(0)

Hγ ≤ ||X − α − Av0t ||H1
(0)

Hγ +
||Av0t ||H1

(0)
Hγ . ⊓⊔
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Lemma 3.12 Let X − α − Av0t , Y − α − Av0t ∈ F s+1 with 2 < s < 2.5.

Then, for T > 0 less than a small enough constant determined by v0, infα∈�̃ |α|,
||X − α − Av0t ||Fs+1 and ||Y − α − Av0t ||Fs+1 ,

||A ◦ X − A ◦ Y ||L∞H s+1

≤ C
[
M, ||X − α − Av0t ||Fs+1 , ||Y − α − Av0t ||Fs+1

]
||X − Y ||L∞H s+1 ,

||A ◦ X − A ◦ Y ||H1
(0)

Hγ

≤ C
[
M, ||X − α − Av0t ||Fs+1 , ||Y − α − Av0t ||Fs+1

]
||X − Y ||H1

(0)
Hγ

where

M = max

⎧
⎨
⎩

1

inf |α| − C[v0]T − CT
1
4 ||X − α − Av0t ||L∞1/4 H s+1

,

1

inf |α| − C[v0]T − CT
1
4 ||Y − α − Av0t ||L∞1/4 H s+1

⎫
⎬
⎭

Proof The proof follows similar steps to those in the proofs of Lemmas 3.10 and 3.11.

⊓⊔

Lemma 3.13 Let X−α− Av0t ∈ F s+1 with 2 < s < 2.5 and ζ = (∇X)−1. Then, for

T > 0 less than a small enough constant determined by v0 and ||X − α − Av0t ||Fs+1 ,

||ζ ||L∞H s−1 +
2∑

j=1

||∂ jζ ||L∞H s−1 ≤ C[M, ||X − α − Av0t ||Fs+1 ]

||ζ − I||
H

s−1
2
+ε

(0)
H1+δ

≤ C[M, ||X − α − Av0t ||Fs+1 ] ||X − α||
H

s−1
2
+ε

(0)
H2+δ

where

M = 1

1− C[v0]T − CT
1
4 ||X − α − Av0t ||Fs+1 − CT

1
2 ||X − α − Av0t ||2

Fs+1

.

Proof For the first estimate we proceed as follows. We estimate det (∇X) from below.

We have that det (∇X) = ∂1 X1∂2 X2−∂1 X2∂2 X1 = 1+∇ ·(X−α)+det∇ (X − α).

Therefore

| det (∇X) | ≥ 1− ||∇ (X − α) ||L∞(�) − ||∇ (X − α) ||2L∞(�)

≥ 1− C ||X − α||L∞H1+s − C ||X − α||2
L∞H1+s . (32)

The rest of the proof follows similar steps to those in the proof of Lemma 3.10. Indeed,

since s = δ + 2 with 0 < δ < 1
2

we need to look at two derivatives of ζ . In addition
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ζ contains terms of the form
∂ j X i

det(∇X)
. Thus, for example we need to control

∂3
i jk X l

det(∇X)
in

H δ . To do it we can proceed as follows,

∣∣∣∣
∣∣∣∣

∂3
i jk X l

det(∇X)

∣∣∣∣
∣∣∣∣

H δ

≤
∣∣∣
∣∣∣ 1

det(∇X)

∣∣∣
∣∣∣

H2

∣∣∣
∣∣∣∂3

i jk X l
∣∣∣
∣∣∣

H δ
≤

C[M]C[||X ||L∞H s+1 ] thanks to (32). Finally we proceed as in (30) and (31).

For the second estimate we first write

ζ = (∇X)−1 = 1

det∇X
(∇X)† =

(
1

det∇X
− 1

)
(∇X − I)† +

(
1

det∇X
− 1

)
I

+ (∇X − I)† + I,

where for a matrix

(
a b

c d

)
we define

(
a b

c d

)†

=
(

d −b

−c a

)
.

Since det∇X = 1+ det∇ (X − α)+∇ · (X − α) we have that

ζ − I = − det∇ (X − α)+ ∇ · (X − α)

1+∇ · (X − α)+ det∇ (X − α)
(∇ (X − α))†

− det∇ (X − α)+ ∇ · (X − α)

1+ ∇ · (X − α)+ det∇ (X − α)
I+ (∇ (X − α))†

Then, we can estimate using Lemma 3.7

||ζ − I||
H

s−1
2
+ε

(0)
H1+δ

≤
∣∣∣∣
∣∣∣∣
∇ · (X − α)+ det∇ (X − α)

1+∇ · (X − α)+ det∇ (X − α)

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε

(0)
H1+δ

||∇ (X − α)||
H

s−1
2
+ε

(0)
H1+δ

+
∣∣∣∣
∣∣∣∣
∇ · (X − α)+ det∇ (X − α)

1+∇ · (X − α)+ det∇ (X − α)

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε

(0)
H1+δ

+ ||∇ (X − α)||
H

s−1
2
+ε

(0)
H1+δ

,

where we see that it is enough to estimate

∣∣∣
∣∣∣ det∇(X−α)+∇·(X−α)

1+∇·(X−α) det∇(X−α)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

. In

order to do it we notice that since X − α − Av0t ∈ F s+1 and ||∇X − α||L∞L∞ ≤
||X − α − Av0t ||L∞H s+1 +CT ≤ C[v0, ||X − α − Av0t ||Fs+1 ]T 1

4 . Therefore, for T

small enough, we have that

∇ · (X − α)+ det∇ (X − α)

1+ ∇ · (X − α)+ det∇ (X − α)
=

∞∑

n=1

(−1)n+1 (∇ · (X − α)+ det∇ (X − α))n .

Thus using the inequality || f g||
H

s−1
2
+ε

(0)
H1+δ

≤ C || f ||L∞H1+δ ||g||
H

s−1
2
+ε

(0)
H1+δ

+

C || f ||
H

s−1
2
+ε

(0)
H1+δ

||g||L∞H1+δ yields
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∣∣∣∣
∣∣∣∣
∇ · (X − α)+ det∇ (X − α)

1+∇ · (X − α)+ det∇ (X − α)

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ C

||∇ (X − α)||
H

s−1
2
+ε

(0)
H1+δ

+ ||∇ (X − α)||2
H

s−1
2
+ε

(0)
H1+δ

(
1− C ||∇ (X − α)||L∞H1+δ − C ||∇ (X − α)||2

L∞H1+δ

)2 .

This concludes the proof of the lemma. ⊓⊔

Lemma 3.14 Let X (n)− α− Av0t ∈ F s+1 and ζφ = I+ t∂tζ
(n)|t=0 = I− t∇ (Av0).

Then, for T > 0 less than a small enough constant determined by v0 and∣∣∣∣X (n) − α − Av0t
∣∣∣∣

Fs+1 ,

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ C[v0, M]
(∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H2+δ

+ T
1
2

)
.

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H0
≤ C[v0, M]

(∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H1
+ T

1
2

)

where

M = 1

1− C[v0]T − CT
1
4

∣∣∣∣X (n) − α − Av0t
∣∣∣∣

Fs+1−CT
1
2

∣∣∣∣X (n) − α − Av0t
∣∣∣∣2

Fs+1

.

Proof We write

ζ (n) = 1

det∇X (n)

(
∇X (n)

)†

=
(

1

det∇X (n)
− 1+ t∇ · (Av0)

)(
∇(X (n) − α − Av0t)

)†

+
(

1

det∇X (n)
− 1+ t∇ · (Av0)

)
(∇ (α + t Av0))

†

+ (1− t∇ · (Av0))
(
∇
(

X (n) − α − Av0t
))†

+ (1− t∇ · (Av0)) (∇ (α + Av0t))† .

Since −∇ · (Av0) I+ (∇ (Av0))
† = −∇ (Av0) we find that

ζ (n) − ζφ =
1

det∇X (n)

(
∇X (n)

)†

=
(

1

det∇X (n)
− 1+ t∇ · (Av0)

)(
∇(X (n) − α − Av0t)

)†
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+
(

1

det∇X (n)
− 1+ t∇ · (Av0)

)
(∇ (α + t Av0))

†

+ (1− t∇ · (Av0))
(
∇
(

X (n) − α − Av0t
))†

+ M[v0]t2,

where M[v0] is a matrix whose coefficients just depend on v0, α. Since ||t2||H2[0,T ] ≤
CT

1
2 we only need to care about the terms different from M[v0]t2 in the previous

expression. Using lemmas 3.6, 3.7 and 3.9 we also see that actually it is enough to

care about the term, 1
det∇X (n) − 1 + t∇ · (Av0). For this term, since det∇X (n) =

1+ ∇ · (X (n) − α)+ det∇(X (n) − α), we have that

1

det∇X
− 1+ t∇ · (Av0)

=
−∇ · (X (n) − α − Av0t)− det(∇

(
X (n) − α

)
)+ t∇ · (Av0)∇ · (X (n) − α)+ t∇ · (Av0) det(∇(X (n) − α))

1+ ∇ · (X (n) − α)+ det∇(X (n) − α)

In the previous expression we can use that ∇ · (Av0)∇ · (X (n)−α) = ∇ · (Av0)∇ ·
(X (n)−α− Av0t)+ t(∇ · (Av0))

2. In addition, since det∇(X (n)−α) = O(t2) when

t goes to zero, we can check that, det∇(X (n) − α) = det∇(X (n) − α − Av0t) +
F[v0](∇(X (n)−α− Av0t)+G[v0]t2, where F[v0](α) is a function linear in α whose

coefficients just depend on v0 and G[v0] is a coefficient that just depends on v0. The

previous splitting allows us to prove the lemma by using a similar strategy to the one

in the proof of Lemma 3.13. ⊓⊔
Lemma 3.15 Let X (n) − v0 − Av0t, X (n−1) − v0 − Av0t ∈ F s+1 with 2 <

s < 2.5. Then, for T > 0 less than a small enough constant determined by v0,∣∣∣∣X (n) − α − Av0t
∣∣∣∣

Fs+1 and
∣∣∣∣X (n−1) − α − Av0t

∣∣∣∣
Fs+1 ,

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ C[v0, M]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H2+δ

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H0
≤ C[v0, M]

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H1

where

M = max
m=n,n−1

{
1

1− C[v0]T − CT
1
4

∣∣∣∣X (m) − α − Av0t
∣∣∣∣

Fs+1 − CT
1
2

∣∣∣∣X (m) − α − Av0t
∣∣∣∣2

Fs+1

}
.

Proof The strategy to prove this lemma is similar to the one of Lemma 3.14. Here we

need to make the splitting

ζ (n) − ζ (n−1) = 1

det∇X (n)

(
∇X (n)

)†
− 1

det∇X (n−1)

(
∇X (n−1)

)†

=
(

1

det∇X (n)
− 1

det∇X (n−1)

)(
∇X (n)

)†

+ 1

det∇X (n−1)

(
∇(X (n) − X (n−1))

)†
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=
(

1

det∇X (n)
− 1

det∇X (n−1)

)(
∇(X (n) − α − Av0t)

)†

+
(

1

det∇X (n)
− 1

det∇X (n−1)

)
(∇(α − Av0t))†

+
(

1

det∇X (n−1)
+ 1− t∇ · (Av0)

)(
∇(X (n) − X (n−1))

)†

− (1− t∇ · (Av0))
(
∇
(

X (n) − X (n−1)
))†

.

⊓⊔

Lemma 3.16 Let X − v0− Av0t ∈ F s+1 with 2 < s < 2.5. Then, for T > 0 less than

a small enough constant determined by v0, infα∈�̃ |α| and ||X − α − Av0t ||Fs+1 ,

||A ◦ X − A||L∞H s−1

≤ C[M, ||X − α − Av0t ||Fs+1 , v0]
(
||X − α − Av0t ||L∞H s+1 + T ||Av0||H s+1

)

||A ◦ X − A||
H

s−1
2

(0)
H1+δ

≤ C[M, ||X − α − Av0t ||Fs+1 , v0]
(
||X − α − Av0t ||

H
s−1

2
+ε

(0)
H1+δ

+ T

)

||Q2 ◦ X − Q2||L∞H s−1

≤ C[M, ||X − α − Av0t ||Fs+1 , v0]
(
||X − α − Av0t ||L∞H s+1 + T ||Av0||H s+1

)
∣∣∣
∣∣∣Q2 ◦ X − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

≤ C[M, ||X − α − Av0t ||Fs+1 , v0]
(
||X − α − Av0t ||

H
s−1

2
+ε

(0)
H1+δ

+ T

)

with

M = 1

infα∈�̃ |α| − C[v0]T − CT
1
4 ||X − α − Av0t ||H s+1

.

Proof The proof is similar to the ones of lemmas 3.10, 3.11 and 3.13. Notice that

Q2(α) = 1
|α|2 . ⊓⊔

Lemma 3.17 Let X (n) − v0 − Av0t ∈ F s+1, with 2 < s < 2.5, and
(

Aφ

)
i j
=

Ai j + t
(

d
dt

(
Ai j ◦ X (n)

))∣∣
t=0

= Ai j + t∂k Ai j Aklv0l . Then, for T > 0 less than a

small enough constant determined by v0, infα∈�̃ |α| and
∣∣∣∣X (n) − α − Av0t

∣∣∣∣
Fs+1 ,

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ C[v0, M]
(∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
+ T

1
2

)
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∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H1+δ

≤ C[v0, M]
(∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H
s+1

2
(0)

H1+δ
+ T

1
2 )

)

with

M = 1

infα∈�̃ |α| − C[v0]T − CT
1
4 ||X − α − Av0t ||H s+1

.

Proof The proof is similar to that one for lemma 3.14. ⊓⊔

4 Solving the Linear Equation

In this section we want to solve the system given by:

vt − νQ2�v + A∗∇q = f in �0 × [0, T ]
T r(∇vA) = g in �0 × [0, T ]

(q + (∇vA)+ (∇vA)∗)A−1n = h on ∂�0 × [0, T ]
v(x, 0) = 0 in �0 (33)

Defining the following spaces:

X0 := {(v, q) : v ∈ H
ht,s+1
(0)

, q ∈ H
ht,s
pr , (0)

}

Y0 := {( f , g, h) : f ∈ H
ht,s−1
(0)

, g ∈ H
ht,s

(0) , h ∈ H
ht,s− 1

2

(0)
(∂�× [0, T ]), }

(here we remark that in X0 and Y0: v(0) = ∂tv(0) = q(0) = f (0) = g(0) = ∂t g(0) =
h(0) = 0), then, we can write (33) as:

L(v, q) = ( f , g, h, 0); L : X0 → Y0, 2 < s <
5

2
.

Theorem 4.1 L : X0 → Y0 is invertible for 2 < s < 5
2

. Moreover, ‖L−1‖ is bounded

uniformly if T is bounded above.

Proof of Theorem 4.1 The proof can be found in “Appendix A”. ⊓⊔

5 Fixed Point Argument

In section A the system (19), (20) and (21) was solved uniformly in T (for small T )

but with the initial conditions ṽ|t=0 = 0 and ∂t ṽ|t=0 = 0. Then we still need to carry

out a small modification of (19–22) to be able to apply the result of that section.

Let’s define the approximated solution φ in �̃0 × R as follows

φ = ṽ0 + t
(

Q2�ṽ0 − A∗∇q̃φ

)
≡ ṽ0 + tψ, (34)
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We shall show we can choose q̃φ in such a way that ∂tφ|t=0 = ∂tv
(n)|t=0 for all n.

We specify who q̃φ is. Given the system (19–22), for

v(n) =ṽ(n) ◦ P

q(n) =q̃(n) ◦ P

we have that

∂tv
(n+1) −�v(n+1) =− ∇q(n+1) + f (n) in �0

∇ · v(n+1) =g(n) in �0(
q(n+1)

I− (∇v(n+1) + (∇v(n+1))∗)
)

n0 =h(n) on ∂�0

v(n+1)|t=0 =v0,

where v0 = ṽ0 ◦ P , f (n) = f̃ (n) ◦ P , g(n) = g̃(n) ◦ P and h(n) = h̃(n) ◦ P . Taking the

divergence on the first equation yields

∂t∇ · v(n+1) −�∇ · v(n+1) = −�q(n+1) +∇ · f (n).

Thus, taking into account the third equation, we find q(n+1) by solving

−�q(n+1) =∂t g
(n) −�g(n) − ∇ · f (n) in �0

q(n+1)|∂�0 =n0

(
∇v(n) + (∇v(n))∗

)
|∂�0 · n0 + h(n)|∂�0 · n0.

Next notice that f̃ (n), g̃(n) and h̃(n) in (23), (24) and (25) are equal to zero at t = 0.

Thus, calling q
(n)
0 = q(n)|t=0, we have that

−�q
(n+1)
0 =(∂t g

(n))|t=0

q
(n)
0 |∂�0 =n0

(
∇v0 + (∇v0)

∗) n0.

Now we focus our attention in the structure of g̃(n) in (24). It easy to check that g̃(n)◦P

can be written as

g̃(n) ◦ P = −T r

(
∇v′(n)

(
∇X (n)

)−1
)
+ T r

(
∇v′(n)

)
,

where

v′(n) = ṽ(n) ◦ X̃−1 ◦ P ◦ X

with

d X (n)

dt
=v′(n)(α, t)

X (n)(α, 0) =α α ∈ �0
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Therefore

(∂t g
(n))|t=0 = T r (∇u0∇u0) = ∇ · ((u0 · ∇)u0) .

Because of the previous discussion we will choose qφ solving

−�qφ =∇ · ((u0 · ∇)u0) in �0

qφ |∂�0 =n0

(
∇u0 + (∇u0)

∗) |∂�0 n0.

which is independent on the superscript n.

Finally one finds q̃φ changing from �0 to �̃0,

−Q2�q̃φ =T r (∇ũ0 A∇ũ0 A) in �̃0 (35)

q̃φ |∂�̃0

(
A−1ñ0 · A−1ñ0

)
=A−1ñ0

(
∇ũ0 A + (∇ũ0 A)∗

)
A−1ñ0 on ∂�̃0. (36)

Once we have defined φ we define the velocity w̃(n) and the pressure q
(n)
w by the

expression

w̃(n) = ṽ(n) − φ q(n)
w = q(n) − qφ

Now it is easy to check that

w̃(n)|t=0 = 0,
(
∂t w̃

(n)
)
|t=0 = 0.

Then it is better for our purpose to write the system (19–22) in terms of w̃(n) rather

than in terms of ṽ(n). We obtain that

∂t w̃
(n+1) − Q2�w̃(n+1) = −A∗∇q̃(n+1)

w + f̃ (n) − ∂tφ+Q2�φ − A∗∇q̃φ in �̃0,

(37)

T r
(
∇w̃(n+1) A

)
= g̃(n) − T r (∇φ A) in �̃0 (38)

(
q̃(n+1)
w I−

((
∇w̃(n+1) A

)
+
(
∇w̃(n+1) A

)∗))
A−1ñ0

= h̃(n) − q̃φ A−1ñ0 +
(
(∇φ A)+ (∇φ A)∗

)
A−1ñ0 on ∂�̃0,

(39)

w̃(n+1)|t=0 = 0 (40)

where f̃ (n), g̃(n) and h̃(n) are given by (23), (24) and (25) with ṽ(n) = w̃(n) + φ.

Remark 5.1 With this choice of the function φ we lose regularity of the solution with

respect to the initial data. One could look for more sophisticated choices of φ, like

Beale in [5], in order to avoid this loss. However, this exceeds the scope of this paper.

We now prove the following theorem:
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Theorem 5.2 Let
(
{w̃(n)}∞n=0, {q̃

(n)
w }∞n=0, {X̃ (n)}∞n=0

)
be the sequence given by the

system (37), (38), (39) and (40) and (26) with

w̃(0) = 0, q̃(0)
w = 0, X̃ (0) = α + Aṽ0t,

where q̃φ is given by (35) and (36), φ is given by (34) and ṽn = w̃(n) + φ. Then

(
{w̃(n)}∞n=0, {q̃(n)

w }∞n=0, {X̃ (n)}∞n=0 − α − Av0t
)

is a Cauchy sequence in

H
ht,s+1
(0) ([0, T ], �0)× H

ht,s
pr (0) ([0, T ], �0)× F s+1 ([0, T ], �0)

for 1 < γ < s − 1, 2 < s < 2.5 and

||ũ0||H100(�̃0)
< C |∂�̃0|C100 < C,

for T sufficiently small 2.

In order to prove this result we use propositions 5.3 and 5.4 presented below con-

cerning the system (37–40), together with (26). We start by writing this system in the

more concise form

L(w(n+1), q(n+1)
w ) =

(
f (n), g(n), h(n)

)
+
(

f L
φ , gL

φ , hL
φ

)
. (41)

where

f L
φ = −∂tφ + Q2�φ − A∗∇qφ,

gL
φ = −T r(∇φ A),

hL
φ = −qφ A−1n0 + (∇φ A + (∇φ A)∗)A−1n0. (42)

For technical reasons we rewrite the right hand side in a different way. First we

notice that

∂tζ
(n) = ∂t

[(
∇X (n)

)−1
]
= −

(
∇X (n)

)−1
∇∂t X (n)

(
∇X (n)

)−1
,

and therefore

∂tζ
(n)|t=0 = −∇ (Av0) .

2 We assume a large number of derivatives mostly to simplify the exposition. However one can likely

reduce this space to, say, H10 by a slightly more careful analysis.
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We define ζφ , independent of n by the following expression

ζφ = I+ t
(
∂tζ

(n)|t=0

)
,

and also we define Aφ as the matrix with entries

(
Aφ

)
i j
= Ai j + t

(
d

dt

(
Ai j ◦ X

))∣∣∣∣
t=0

= Ai j + t∂k Ai j Aklv0l .

By using ζφ , Aφ , we will write the system (41) in the following way

L(w(n+1), q(n+1)
w ) = ( f (n), g(n), h(n))+ ( f L

φ , gL
φ , hL

φ ),

with

g(n) =g(n) + T r
(
∇φζφ Aφ

)
− T r (∇φ A) (43)

=− T r
(
∇w(n)ζ (n) A ◦ X (n)

)
+ T r

(
∇w(n) A

)

− T r
(
∇φζ (n) A ◦ X (n)

)
+ T r

(
∇φζφ Aφ

)
(44)

and

gL
φ = gL

φ − T r
(
∇φζφ Aφ

)
+ T r (∇φ A) = −T r

(
∇φζφ Aφ

)
. (45)

In this way we have that ∂t g
L
φ |t=0 = gL

φ |t=0 = 0.

In this situation we have the following result.

Proposition 5.3 1. Let X (n) − α− Av0t ∈ F s+1, q
(n)
w ∈ H

ht, s
pr (0)

and w(n) ∈ H
ht,s+1
(0)

and such that

X (n) − α − Av0t ∈
{

X − α − Av0t ∈ F s+1 :
∣∣∣∣
∣∣∣∣X − α −

∫ t

0

Aφ dτ

∣∣∣∣
∣∣∣∣
Fs+1

≤ N

}

≡ BAψ

(w(n), q(n)
w ) ∈

{
(w, q) ∈ H

ht, s+1
(0)

× H
ht,s
pr (0)

: w|t=0 = 0, ∂tw|t=0 = 0,
∣∣∣
∣∣∣(w, q)− L−1( fφ, gφ, hφ)

∣∣∣
∣∣∣

H
ht,s+1
(0)

×H
ht,s
pr (0)

≤ N }

≡ BL−1( fφ ,gφ ,hφ)

where

N ≡ max

{∣∣∣∣
∣∣∣∣
∫ t

0

τ Aψ dτ

∣∣∣∣
∣∣∣∣
Fs+1

,

∣∣∣
∣∣∣L−1( fφ, gφ, hφ)

∣∣∣
∣∣∣

H
ht,s+1
(0)

×H
ht,s
pr (0)

, ||v0||H100

}
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Then, for small enough T > 0, depending only on v0.

X (n+1) − α − Av0t ∈BAψ

2. Let X (n) − α, X (n−1) − α ∈ BAφ and
(
w(n), q(n)

)
,
(
w(n−1), q(n−1)

)
∈

BL−1( fφ ,gφ ,hφ) Then

||X (n+1) − X (n)||Fs+1 ≤ C[v0]T ε

(∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+||X (n) − X (n−1)||Fs+1

)

for a small enough ε.

Proof We refer the reader to “Appendix B.1” for details about the proof. ⊓⊔

Proposition 5.4 1. Let X (n)−α− Av0t ∈ F s+1, q
(n)
w ∈ H

ht, s
pr (0)

and w(n) ∈ H
ht,s+1
(0)

,

and such that

X (n) − α − Av0t ∈
{

X − α − Av0t ∈ F s+1 :
∣∣∣∣
∣∣∣∣X − α −

∫ t

0

Aφ dτ

∣∣∣∣
∣∣∣∣
Fs+1

≤ N

}

≡ BAψ

(w(n), q(n)
w ) ∈

{
(w, q) ∈ H

ht, s+1
(0)

× H
ht,s
pr (0)

: w|t=0 = 0, ∂tw|t=0 = 0, qw|t=0 = 0,
∣∣∣
∣∣∣(w, q)− L−1( fφ, gφ, hφ)

∣∣∣
∣∣∣

H
ht,s+1
(0)

×H
ht,s
pr (0)

≤ N }

≡ BL−1( fφ ,gφ ,hφ )

where

N ≡ max

{∣∣∣∣
∣∣∣∣
∫ t

0

Aψ τdτ

∣∣∣∣
∣∣∣∣
Fs+1

,

∣∣∣
∣∣∣L−1( fφ, gφ, hφ)

∣∣∣
∣∣∣

H
ht,s+1
(0)

×H
ht,s
pr (0)

, ||v0||H100

}

Then

(w(n+1), q(n+1)
w ) ∈BL−1( fφ ,gφ ,hφ).

2. Let X (n) − α, X (n−1) − α ∈ BAφ and
(
w(n), q(n)

)
,
(
w(n−1), q(n−1)

)
∈

BL−1( fφ ,gφ ,hφ) Then

∣∣∣
∣∣∣w(n+1) − w(n)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+ ||q(n+1) − q(n)||
H

ht,s
pr (0)

≤ C[v0]T ε

(∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

+||q(n) − q(n−1)||
H

ht,s
pr (0)

)
,

for ε small enough.
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Proof We refer the reader to “Appendix B.2” for details about the proof. ⊓⊔

Corollary 5.5 By the contraction mapping principle, there is a unique fixed point (X−
α− Av0t, w, qw) ∈ F s+1× H

ht,s+1
(0)

× H
ht, s
pr (0)

, with 2 < s < 2.5, for T small enough

which is the solution of (13–16).

6 Structural Stability

Let us assume that (v, q, X) is a solution with initial data v0 and �0, where �0 is the

projection by P of a splash domain. We choose v0 so that the normal component of

v0 in a neighbourhood of the splash points is directed towards P(Ŵ), as shown in the

next section. We also assume that (v′ε, q ′ε, X ′ε) is a solution with initial data v′ε 0 and

�ε where �ε is a translation of �0 of size ε, i.e.,

�ε = �0 + εb

where b is a constant vector, |b| = 1 and such that P−1(�ε) is a good domain. We

define (vε, qε, Xε) in the following way

vε(α, t) = v′ε(α + εb, t), qε(α, t) = q ′ε(α + εb, t), Xε(α, t) =X ′ε(α + εb, t),

for α ∈ �0.

For ε > 0, P−1(�ε) is a good domain without self-intersections (as opposed to

ε ≤ 0). By Corollary 5.5, we have local existence of solutions, and we can find a time

of existence which is uniform in ε. The existence of a splash singularity follows from

the perturbative argument explained in the introduction.

We choose v′ε0 to have vε(α, 0) = v0(α). Since the change of variables from the

variables with prime to the variables without prime is just a constant translation, the

functions (vε, qε, Xε) satisfy (13)–(16) and (17). However instead of (18) we have

that Xε(α, 0) = α + εb.

We denote by Q2
ε(α) and Aε(α) the following functions:

Q2
ε(α) = Q2(α + εb), Aε(α) = A(α + εb).

Therefore, we have

∂tvε − Q2
ε�vε + A∗ε∇qε = fε in �0

T r(∇vε Aε) = gε in �0

(qεI− ((∇vε Aε)+ (∇vε Aε)
∗))A−1

ε n0 = hε in ∂�0,

where

fε,i = Q2 ◦ Xε(ζε)k j∂k((ζε)l j∂lvi )− Q2
ε�vε,i + (Aε)ki∂kqε − Aki ◦ Xε(ζε) jk∂ j qε

gε = T r(∇vε Aε)− T r(∇vεζε A ◦ Xε)
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hε = qε A−1
ε n0 − qε A−1 ◦ Xε∇J Xεn0 + (∇vεζε A ◦ Xε

+ (∇vεζε A ◦ Xε)
∗)A−1 ◦ Xε∇J Xεn0

− (∇vε Aε + (∇vε Aε)
∗)A−1

ε n0

We construct φε in an analogous way: ensuring that vε = wε + φε, with wε =
∂twε = 0. This yields:

φε = v0 + t(Q2
ε�v0 − A∗ε∇qφ,ε) ≡ v0 + tψε,

where

−Q2
ε�qφ,ε = T r(∇v0 Aε∇v0 Aε) in �0

qφ,ε(A−1
ε n0 · A−1

ε n0) = A−1
ε n0(∇v0 Aε + (∇v0 Aε)

∗)A−1
ε n0 in ∂�0,

and we also take qw,ε = qε − qφ,ε.

Thus, we have the following system:

∂twε − Q2
ε�wε + A∗ε∇qw,ε = fε + f L

φ,ε in �0,

T r(∇wε Aε) = gε + gL
φ,ε in �0,

(qw,ε I − ((∇wε Aε)+ (∇wε Aε)
∗))A−1

ε n0 = hε + hL
φ,ε on ∂�0,

where

f L
φ,ε = −∂tφε + Q2

ε�φε − A∗ε∇qφε

gL
φ,ε = −T r(∇φε Aε)

hL
φ,ε = −qφ,ε A−1

ε n0 + (∇φε Aε + (∇φε Aε)
∗)A−1

ε n0. (46)

The next step will be to compare both solutions (w, qw, X) and (wε, qw,ε, Xε).

Subtracting one equation from the other:

∂t (w − wε)− Q2�(w − wε)+ A∗∇(qw − qw,ε) = Fε

T r(∇(w − wε)A) = Gε

((qw − qw,ε)I − ((∇(w − wε)A)+ (∇(w − wε)A)∗))A−1n0 = Hε,

where Fε, Gε, Hε are given by

Fε = f − fε + f L
φ − f L

φ,ε − (Q2 − Q2
ε)�wε + (A − Aε)

∗∇qw,ε (47)

Gε = g − gε + gL
φ − gL

φ,ε − T r(∇wε(A − Aε)) (48)

Hε = h − hε + hL
φ − hL

φ,ε − qw,ε(A−1 − A−1
ε )n0 − ((∇wε(A − Aε))

+ (∇wε(A − Aε))
∗)A−1

ε n0

− (∇wε A + (∇wε A)∗)(A−1 − A−1
ε )n0. (49)
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This means

(w − wε, qw − qw ε) = L−1(Fε, Gε, Hε, 0).

Taking norms as in the previous section, we obtain the following estimates:

‖w − wε‖H
ht,s+1
(0)

+ ‖qw − qw,ε‖H
ht,s
pr (0)

≤ C

(
‖Fε‖H

ht,s−1
(0)

+ ‖Gε‖H
ht,s
(0)

+ |Hε|
H

ht,s− 1
2

(0)

)
.

Our goal is to prove the next lemmas:

Lemma 6.1 We have the following estimate, for δ > 0 small enough:

||X − Xε + bε + (Aε − A)v0t ||Fs+1

≤ C[v0]ε + C[v0]T δ

(
‖w − wε‖H

ht,s+1
(0)

+ ||X − Xε + bε + (Aε − A)v0t ||Fs+1

)

Lemma 6.2 We have the following estimate, for δ > 0 small enough:

‖Fε‖H
ht,s−1
(0)

+ ‖Gε‖H
ht,s
(0)

+ |Hε|
H

ht,s− 1
2

(0)

≤ Cε + CT δ(‖w − wε‖H
ht,s+1
(0)

+ ‖qw − qw,ε‖H
ht,s
pr (0)

+ ‖X − Xε + bε + (Aε − A)v0t‖Fs+1).

We remark that the constants in the previous lemmas are uniformly bounded if T

is bounded above. Combining both inequalities, for 0 < T ≤ 1
(2C)1/δ :

‖w − wε‖H
ht,s+1
(0)

+ ‖qw − qw,ε‖H
ht,s
pr (0)

+ ‖X − Xε + bε + (Aε − A)v0t‖Fs+1 ≤ 2Cε

Thus, for 0 < T ≤ 1
(2C)1/δ :

‖X − Xε + bε + (Aε − A)v0t‖L∞H s+1 ≤ 2Cε ⇒ ‖X − Xε‖L∞H s+1 ≤ Cε

and therefore both functions are as close as we want for a time that only depends on

the local existence time of the solution, but it does not depend on ε. We therefore have

X(�0, t) ≈ Xε(�0,ε, t)

and for ε small enough there exists a ts such that

P−1(Xε(�0,ε, ts)) = P−1(Xε(�0 + εb, ts))

is a splash domain. Next, we will show the proofs of the lemmas:

123



   12 Page 38 of 117 A. Castro et al.

Proof of Lemma 6.1 We recall that

d Xε

dt
= A ◦ Xεvε, Xε(α, 0) = α + εb.

and that, for T < T0, T0 small enough, we control the following norms,

||X − α − Av0t ||Fs+1 ≤ C[v0], ||Xε − α − bε − Aεv0t ||Fs+1 ≤ C[v0],
||w||

H
ht,s+1
(0)

≤ C[v0] ||wε||H ht,s+1
(0)

≤ C[v0],

||q|| ≤ C[v0] ||qε|| ≤ C[v0].

We first deal with the L∞1
4

H s+1-norm. We can write

‖X − Xε + bε − (A − Aε)v0t‖H s+1(t) ≤
∫ t

0

‖A ◦ Xv − A ◦ Xεvε

− (A − Aε)v0‖H s+1 dτ

In order to bound this norm we will split in the following way, A◦Xv−A◦Xεvε−(A−
Aε)v0 = A◦Xw−A◦Xεwε+(A◦X−A◦Xε−A+Aε)v0+t(A◦Xψ−A◦Xεψε) =
d1+d2+d3. For d1 we write d1 = (A◦X−A−A◦Xε+Aε)w+(A−Aε)w+A◦Xε(w−
wε) and estimate

∫ t

0 ||d1||H s+1 ≤ ||A◦ X− A− A◦ Xε+ Aε||L∞H s+1 t
1
2 ||w||L2 H s+1 +

||A− Aε||H s+1 t
1
2 ||w||L2 H s+1+||A◦Xε||L∞H s+1 t

1
2 ||w−wε||L2 H s+1 . The second term

on the right hand side of the this last inequality is bounded by C[v0]εt
1
2 and the third

one, by using Lemma 3.10, by C[v0]t
1
2 ||w − wε||L2 H s+1 . For the first one we have

that

||A ◦ X − A − A ◦ Xε + Aε||L∞H s+1 ≤ ||A ◦ (X + bε)− A ◦ Xε||L∞H s+1

+ ||A ◦ X − A − A ◦ (X + bε)+ Aε||L∞H s+1

and therefore

||A ◦ X − A − A ◦ Xε + Aε||L∞H s+1 ≤ C[v0](||X − Xε + bε||L∞H s+1 + ε)

≤ C[v0](||X − Xε + bε − (A − Aε)v0t ||Fs+1 + ε),

where this last inequality is proven in the same way that Lemma 3.12. This is enough

to bound ||
∫ t

0 d1||. The term d2 can be bounded in a similar way after estimating

||
∫ t

0 d2||H s+1 ≤ ||A ◦ X − A− A ◦ Xε + Aε||L∞H s+1 tC[v0]. To bound d3 we proceed

in a similar way, the main difference is that we have to get the estimate ||ψ−ψε||H s+1 ≤
C[v0]ε. Let us prove this estimate. We have that

‖A − Aε‖H r ≤ Cε, ‖Q2 − Q2
ε‖H r ≤ Cε, for all r , (50)
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since Q and A are C∞ functions in �. Thus

−�(qφ − qφ,ε) =
1

Q2
T r(∇v0 A∇v0 A)− 1

Q2
ε

T r(∇v0 Aε∇v0 Aε) in �0

qφ − qφ,ε =
A−1n0(∇v0 A + (∇v0 A)∗)A−1n0

|A−1n0|2

− A−1
ε n0((∇v0 Aε)+ (∇v0 Aε)

∗)A−1
ε n0

|A−1
ε n0|2

on ∂�0.

This implies:

‖qφ − qφ,ε‖H r+1 ≤ C(‖�(qφ − qφ,ε)‖H r−1 + |qφ − qφ,ε|
H

r+ 1
2
) ≤ Cε, for all r ≥ 0.

(51)

Using the definition of ψ,ψε:

ψ − ψε = ((Q − Qε)�v0 − (A∗∇qφ − A∗ε∇qφ,ε))

yields

‖ψ − ψε‖H s+1 ≤ Cε,

for sufficiently smooth v0.

To get the H2 Hγ estimate, we find that for all t ≤ 1:

‖X − Xε + bε − (A − Aε)v0t‖H2
(0)

Hγ

≤
∥∥∥∥
∫ t

0

(A ◦ Xv − A ◦ Xεvε)− (A − Aε)v0dτ

∥∥∥∥
H2

(0)
Hγ

.

We will need to make the same splitting as before A ◦ Xv− A ◦ Xεvε− (A− Aε)v0 =
A◦Xw− A◦Xεwε+(A ◦ X − A ◦ Xε − (A − Aε)) v0+ t (A ◦ Xψ − A ◦ Xεψε) ≡
d1 + d2 + d3.

In addition we split d1 = (A ◦ X − A ◦ Xε − (A − Aε))w + (A − Aε)w + (A ◦
Xε − Aε)(w − wε)+ Aε(w − wε) = d11 + d12 + d13 + d14. We have that

∣∣∣∣
∣∣∣∣
∫ t

0

d11

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

≤ ||d11||H1
(0)

Hγ ≤||A ◦ X − A ◦ Xε−(A − Aε)||H1
(0)

Hγ ||w||H1
(0)

Hγ .

Analogous to the proof of Lemma 3.12 we can prove that

||A ◦ X − A ◦ Xε − (A − Aε)||H1
(0)

Hγ ||w||H1
(0)

Hγ ≤ C[v0](||X − Xε + bε||H1
(0)

Hγ+
ε) ≤ C[v0](T δ ||X − Xε + bε||

H1+δ
(0)

Hγ + ε). In addition, we have that

||X − Xε + bε||
H1+δ

(0)
Hγ ≤ ||X − Xε + bε + (Aε − A)v0t ||

H1+δ
(0)

Hγ + C[v0]εT
1
2−δ .
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For

∣∣∣
∣∣∣
∫ t

0 d12

∣∣∣
∣∣∣

H2
(0)

Hγ
we find the bound C[v0]ε. For

∣∣∣
∣∣∣
∫ t

0 d13

∣∣∣
∣∣∣

H2
(0)

Hγ
we have the

bound C[v0]T δ and

∣∣∣
∣∣∣
∫ t

0 d14

∣∣∣
∣∣∣

H2
(0)

Hγ
≤ C[v0]T δ . To bound

∣∣∣
∣∣∣
∫ t

0 d2

∣∣∣
∣∣∣

H2
(0)

Hγ
we use that

||A ◦ X − A ◦ Xε − (A − Aε)||H1
(0)

Hγ ≤ C[v0](||X − Xε + bε||H1
(0)

Hγ +ε), thus we

can bound finally by C[v0]
(
T δ ||X − Xε + bε + (A − Aε)v0t ||Fs+1 + ε

)
. In order to

be done for d3 we have that d3 = (A◦ X− A)tψ+ t(Aψ− Aεψ)−(A◦ Xε− Aε)tψε.

By using this splitting and Lemma 3.9 we find that

∣∣∣
∣∣∣
∫ t

0 d3

∣∣∣
∣∣∣

H2
(0)

Hγ
≤ C[v0]εT . This

concludes the estimation of ‖X − Xε + bε − (A − Aε)v0t‖H2
(0)

Hγ . ⊓⊔

Proof of Lemma 6.2: Part I: Estimates for Fε:

We consider first in (47) the terms

−(Q2 − Q2
ε)�wε + (A − Aε)

∗∇qw,ε.

Using (50) it is easy to check that

‖(Q2 − Q2
ε)�wε‖H

ht,s−1
(0)

+ ‖(A − Aε)
∗∇qw,ε‖H

ht,s−1
(0)

≤ C[v0]ε.

Concerning f , we split as in (75) (ignoring the superindices), with f = fw+ fφ +
fq . In an analogous way, in (47) we consider fε = fw,ε + fφ,ε + fq,ε.

We then split as:

fw − fw,ε = Q2 ◦ Xζ∂(ζ∂w)− Q2�w − (Q2 ◦ Xεζε∂(ζε∂wε)− Q2
ε�wε)

= de
1 + de

2 + de
3 + de

4 + de
5 + de

6 + de
1,ε,

with

de
1 = (Q2 ◦ X − Q2 ◦ Xε)ζ ∂(ζ∂w), de

2 = Q2 ◦ Xε(ζ − ζε)∂(ζ∂w)

de
3 = Q2 ◦ Xεζε∂((ζ − ζε)∂w), de

4 = (Q2 ◦ Xε − Q2
ε)ζε∂(ζε∂(w − wε))

de
5 = Q2

ε(ζε − I )∂(ζε∂(w − wε)), de
6 = Q2

ε∂((ζε − I )∂(w − wε))

de
1,ε = (Q2

ε − Q2)�w

As before, (50) yields

‖de
1,ε‖H

ht,s−1
(0)

≤ C[v0]ε.

To estimate de
j , 1 ≤ j ≤ 6, we will compare the procedure with the one for d j

(83). It is easy to see that they are similar, by identifying Xn, ζ n, wn with X , ζ, w

and Xn−1, ζ n−1, wn−1 with Xε, ζε, wε. As an illustration, we will discuss de
1 with

detail. We first split de
1 = (Q2 ◦ X − Q2 ◦ Xε − (Q2 − Q2

ε))ζ ∂(ζ∂w) + (Q2 −
Q2

ε)ζ ∂(ζ∂w). Then
∣∣∣∣(Q2 − Q2

ε)ζ ∂(ζ∂w)
∣∣∣∣

L2 H s−1 ≤ C[v0]ε and, in addition, the

||·||L2 H s−1 -norm of the first one is bounded by C[v0]||X − Xε + bε||L∞H s−1 ≤
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C[v0]
(
ε + T

1
4 ||X − Xε + bε − (A − Aε)v0t ||Fs+1

)
. Concerning the H

s−1
2 L2 the

same splitting yields

‖de
1‖

H
s−1

2
(0)

L2
≤ Cε + CT δ(‖w − wε‖H

ht,s+1
(0)

+ ‖X − Xε + bε − (A − Aε)v0t‖Fs+1 ,

Analogous estimates can be deduced for de
j , 2 ≤ j ≤ 6, achieving

6∑

j=1

‖de
j‖H

ht,s−1
(0)

≤Cε+CT δ(‖w − wε‖H
ht,s+1
(0)

+ ‖X − Xε + bε − (A − Aε)v0t‖Fs+1)

We next consider

fφ − fφ,ε = Q2 ◦ Xζ∂(ζ∂φ)− Q2�φ − Q2 ◦ Xεζε∂(ζε∂φε)+ Q2
ε�φε.

We need to make the following splitting

fφ − fφ,ε =((Q2 ◦ X − Q2 ◦ Xε)ζ ∂(ζ∂φ)− Q2�φ + Q2
ε�φ)

+ Q2 ◦ Xε(ζ − ζε)∂ (ζ∂φ)

+ Q2 ◦ Xεζε∂ ((ζ − ζε)∂φ)

+ Q2 ◦ Xεζε∂ (ζε∂(φ − φε)) ≡ d
φ
1 + d

φ
2 + d

φ
3 + d

φ
4 .

In addition

d
φ
1 =(Q2 ◦ X − Q2 ◦ Xε − Q2 + Q2

ε)ζ ∂(ζ∂φ)+ (Q2 − Q2
ε)(ζ − I)∂(ζ∂φ)

+ (Q2 − Q2
ε)∂((ζ − I)∂φ)+ (Q2 − Q2

ε)�φ − Q2�φ + Q2
ε�φε.

where we notice that (Q2 − Q2
ε)�φ − Q2�φ + Q2

ε�φε = t Q2
ε�(ψε − ψ). This

splitting allows us to prove a suitable bound for d
φ
1 . The rest of the term d

φ
i needs of

similar splitting in order to be bounded.

We now estimate fq − fq,ε. We split fq − fq,ε = fqw − fqwε + fqφ
− fqφε

where

fqw − fqwε = (A ◦ Xεζε)
∗ ∇qwε − (A ◦ Xζ )∗∇qw − A∗ε∇qwε + A∗∇qw

fqφ
− fqφε

= (A ◦ Xεζε)
∗ ∇qφε − (A ◦ Xζ )∗∇qφ − A∗ε∇qφε + A∗∇qφ

For fqw − fqwε we can write

fqw − fqwε = ((A ◦ Xε − A ◦ X − Aε + A)ζε)
∗ ∇qwε + ((Aε − A)(ζε − I))∗ ∇qwε

+ ((A ◦ X − A)(ζ − ζε))
∗ ∇qwε

(A(ζ − ζε))
∗ ∇qw + ((A ◦ X − A)(ζ − I))∗ ∇(qwε − qw)

+ ((A ◦ X − A))∗ ∇(qwε − qw)+ A∗∇(qwε − qw).
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After this splitting the way to control || fqw − fqwε ||H ht, s−1
(0)

is similar to the way we

control f
(n)
qw
− f

(n−1)
qw

in proposition 5.4.

To control || fqφ
− fqφε

||
H

ht, s−1
(0)

we make a similar splitting

fqφ − fqφε = ((A ◦ Xε − A ◦ X − Aε + A)ζε)
∗ ∇qφε + ((Aε − A)(ζε − I))∗ ∇qφε

+ ((A ◦ X − A)(ζ − ζε))
∗ ∇qφε

(A(ζ − ζε))
∗ ∇qφ + ((A ◦ X − A)(ζ − I))∗ ∇(qφε − qφ)

+ ((A ◦ X − A))∗ ∇(qφε − qφ)+ A∗∇(qφε − qφ).

And we just need to use the definitions of qφ and qφε to obtain a suitable estimate.

With this estimate we finish the control of f − fε. We are left to estimate f L
φ − f L

φ,ε

given in (42) and (46). Here we notice that f L
φ = t Q2�ψ , f L

φε
= t Q2

ε�ψε, thus,

proceeding as before, the control for ψ − ψε, Q − Qε, A − Aε makes us conclude

that

‖ f L
φ − f L

φ,ε‖H
ht,s−1
(0)

≤ Cε,

and we are done with Fε.

Part II: Estimates for Gε:

We consider first the following splitting

Gε = −T r(∇wε(A − Aε))+ (g − gε)+ (gL
φ − gL

φ,ε).

The first term can be estimated using (50) in a way such that

‖T r(∇wε(A − Aε))‖H
ht,s
(0)

≤ C[v0]ε,

due to wε = ∂twε = 0 and A − Aε does not depend on time.

Next we consider the L2 H s norm for the two terms left. We consider g − gε =∑5
j=1 de

j where

de
1 = −T r(∇(v − vε)(ζ − I )A ◦ X), de

2 = −T r(∇vε(ζ − ζε)A ◦ X),

de
3 = −T r(∇vεζε(A ◦ X − A ◦ Xε)), de

4 = −T r(∇(v − vε)(A ◦ X − A),

de
5 = −T r(∇vε(Aε − A)).

To estimate de
1 we compare it with (85). In an analogous way we get

‖de
1‖L2 H s ≤ ‖∇(w − wε)(ζ − I )A ◦ X‖L2 H s + ‖∇(φ − φε)(ζ − I )A ◦ X‖L2 H s

≤ C[v0](‖X − α − Av0t‖L∞H s+1 + C[v0]T )‖w − wε‖L2 H s+1 + C[v0]ε

≤ C[v0]ε + C[v0]T
1
4 ‖w − wε‖L2 H s+1 .
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For de
2 , we have:

‖de
2‖L2 H s ≤ C[v0]‖ζ − ζε‖L∞H s ≤ C[v0]‖X − Xε + εb

− (A − Aε)v0t‖L∞H s+1 + C[v0]ε

≤ C[v0]ε + C[v0]T
1
4 ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 ,

as before. The same procedure applied to de
3 yields:

‖de
3‖L2 H s ≤ C[v0]‖X − Xε‖L∞H s ≤ C[v0]ε + C[v0]T

1
4 ‖X − Xε + εb

− (A − Aε)v0t‖Fs+1 .

In an analogous way to de
1 we get for de

4 :

‖de
4‖L2 H s ≤ C[v0]ε + C[v0]T

1
4 ‖w − wε‖L2 H s+1 .

Finally, it is easy to check using (50) that

‖de
5‖L2 H s ≤ C[v0]ε.

We are then done with g− gε. It remains to control gL
φ − gL

φ,ε, but in a similar manner

to de
5 we find

‖gL
φ − gL

φ,ε‖L2 H s ≤ C[v0]ε,

due to the formulas for φ and φε. We now move on to the H
s+1

2 H−1 norm. In order

to handle it, we consider a different splitting taking

g − gε + gL
φ − gL

φ,ε = (gw − gw,ε)+ (gφ − gφ,ε)+ (gL
φ − gL

φ,ε),

where

gw,ε = − T r(∇wεζε A ◦ Xε)+ T r(∇wε Aε), gφ,ε = −T r(∇φεζε A ◦ Xε)

+T r(∇φεζφ,ε Aφ,ε),

and

gL
φ,ε = − T r(∇φεζφ,ε Aφ,ε),

are defined analogously as g(n) and gL
φ in (43) and (45) respectively. Above

ζφ,ε = I+ t(∂tζε)|t=0 = I− t∇(Aεv0), and

Aφ,ε = Aε + t(∂t A ◦ Xε)|t=0 = Aε + t∇Aε Aεv0.
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The terms g, gφ and gL
φ are defined similarly removing the epsilons everywhere as it

was done before.

We consider first the following splitting gw − gw,ε =
∑14

j=1 De
j where

De
1 = −T r(∇(w − wε)(ζ − ζφ)(A ◦ X − Aφ)),

De
2 = −T r(∇(w − wε)(ζ − ζφ)Aφ),

De
3 = −T r(∇(w − wε)ζφ(A ◦ X − Aφ)),

De
4 = −T r(∇(w − wε)(ζφ − I)Aφ),

De
5 = −T r(∇wε(ζ − ζφ − (ζε − ζφ,ε))(A ◦ X − Aφ)),

De
6 = −T r(∇wε(ζ − ζφ − (ζε − ζφ,ε))Aφ),

De
7 = −T r(∇wε(ζφ − ζφ,ε)(A ◦ X − Aφ)), De

8 = −T r(∇wε(ζφ − ζφ,ε)Aφ),

De
9 = −T r(∇wε(ζε−ζφ,ε)(A ◦ X−Aφ−(A ◦ Xε−Aφ,ε))),

De
10 = −T r(∇wε(ζε − ζφ,ε)(Aφ − Aφ,ε)),

De
11 = −T r(∇wεζφ,ε(A ◦ X−Aφ−(A ◦ Xε−Aφ,ε))),

De
12 = −T r(∇wεζφ,ε(Aφ − Aφ,ε)),

De
13 = T r(∇(w − wε)(A − Aφ)), De

14 = T r(∇wε(A − Aε)), (52)

Next we decompose further De
1 = De

1,1 + De
1,2 + De

1,3 so that

De
1,1 = −

∫ t

0

T r(∇(∂t (w − wε))(ζ − ζφ)(A ◦ X − Aφ))dτ,

De
1,2 = −

∫ t

0

T r(∇(w − wε)∂t (ζ − ζφ)(A ◦ X − Aφ))dτ,

De
1,3 = −

∫ t

0

T r(∇(w − wε)(ζ − ζφ)∂t (A ◦ X − Aφ))dτ.

One obtains

‖De
1,1‖

H
s+1

2
(0)

H−1

≤ ‖∇(∂t (w − wε))(ζ − ζφ)(A ◦ X − Aφ)‖
H

s−1
2

(0)
H−1

≤ C‖∇(∂t (w − wε)‖
H

s−1
2

(0)
H−1

‖ζ − ζφ‖
H

s−1
2

(0)
H1+δ

‖A ◦ X − Aφ‖
H

s−1
2

(0)
H1+δ

≤ C[v0]T δ‖w − wε‖
H

s+1
2

(0)
L2
‖X − α − Av0t‖

H
s−1

2
+δ

(0)
H2+δ

≤ C[v0]T δ‖w − wε‖H
ht,s+1
(0)

.

We share derivatives in a different way to estimate De
1,2:

‖De
1,2‖

H
s+1

2
(0)

H−1

≤ C‖∇(w − wε)‖
H

s−1
2

(0)
H1
‖∂t (ζ − ζφ)‖

H
s−1

2
(0)

L2
‖A ◦ X − Aφ‖

H
s−1

2
(0)

H1+δ
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≤ C[v0]T δ‖w − wε‖
H

s−1
2

(0)
H2
‖X − α − Av0t‖

H
s+1

2
+δ

(0)
H1

≤ C[v0]T δ‖w − wε‖H
ht,s+1
(0)

.

The term De
1,3 is estimated as De

1,2 yielding:

‖De
1,3‖

H
s+1

2
(0)

H−1

≤ C[v0]‖∇(w − wε)‖
H

s−1
2

(0)
H1
‖X − α − Av0t‖

H
s−1

2
(0)

H2+δ
‖∂t (A ◦ X−Aφ)‖

H
s−1

2
(0)

L2

≤ C[v0]T δ‖w − wε‖H
ht,s+1
(0)

.

We are done with De
1. In order to deal with De

2 we split it further into

De
2,1 = −T r(∇(w − wε)(ζ − ζφ)A), De

2,2 = −T r(t∇(w − wε)(ζ − ζφ)∇AAv0).

The term De
2,1 is estimated as De

1 and De
2,2 is controlled using Lemma 3.9. The same

approach works to bound De
3 and De

4.

In order to deal with De
5 one could consider the following splitting De

5 = De
5,1 +

De
5,2 + De

5,1 where

De
5,1 = −

∫ t

0

T r(∇∂twε(ζ − ζφ − (ζε − ζφ,ε))(A ◦ X − Aφ))dτ,

De
5,2 = −

∫ t

0

T r(∇wε∂t (ζ − ζφ − (ζε − ζφ,ε))(A ◦ X − Aφ))dτ,

De
5,3 = −

∫ t

0

T r(∇wε(ζ − ζφ − (ζε − ζφ,ε))∂t (A ◦ X − Aφ))dτ.

We share derivatives as for De
1,1 to get

‖De
5,1‖

H
s+1

2
(0)

H−1

≤ C‖∇∂twε‖
H

s−1
2

(0)
H−1

‖ζ − ζφ − (ζε − ζφ,ε)‖
H

s−1
2

(0)
H1+δ

‖A ◦ X − Aφ‖
H

s−1
2

(0)
H1+δ

≤ C[v0]T δ‖wε‖
H

s+1
2

(0)
L2
‖X − Xε + εb − (A − Aε)v0t‖

H
s−1

2
+δ

(0)
H2+δ

≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .

Next we consider De
5,2 as De

1,2 to find:

‖De
5,2‖

H
s+1

2
(0)

H−1

≤ C‖∇wε‖
H

s−1
2

(0)
H1
‖∂t (ζ − ζφ − (ζε − ζφ,ε))‖

H
s−1

2
(0)

L2
‖A ◦ X − Aφ‖

H
s−1

2
(0)

H1+δ

≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .
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As for De
1,3 it is possible to get

‖De
5,3‖

H
s+1

2
(0)

H−1
≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .

We are done with De
5. To bound De

6 it is possible to split further using identity Aφ =
A + t∇AAv0 and Lemma 3.9 getting

‖De
6‖

H
s+1

2
(0)

H−1
≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .

Sharing the time derivative as before, the terms De
7 and De

8 are bounded by

‖De
7‖

H
s+1

2
(0)

H−1
≤ C[v0]ε, ‖De

8‖
H

s+1
2

(0)
H−1

≤ C[v0]ε,

using (50). An analogous approach to the composition lemma 3.17 provides

‖De
9‖

H
s+1

2
(0)

H−1
≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1

by a similar splitting as for De
5. We control the terms De

10 and De
12 as De

7 to obtain

‖De
10‖

H
s+1

2
(0)

H−1
≤ C[v0]ε, ‖De

12‖
H

s+1
2

(0)
H−1

≤ C[v0]ε.

As for De
6, the use of Lemmas 3.4, 3.8 and 3.9 provides

‖De
11‖

H
s+1

2
(0)

H−1
≤ C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .

At this point, it is easy to find as before

‖De
13‖

H
s+1

2
(0)

H−1
≤ C[v0]T δ‖w − wε‖H

ht,s+1
(0)

, ‖De
14‖

H
s+1

2
(0)

H−1
≤ C[v0]ε.

We are therefore done with gw − gw,ε. The same approach can be used to handle

gφ − gφ,ε but replacing w by φ and wε by φε. This provides

‖gφ − gφ,ε‖
H

s+1
2

(0)
H−1

≤ C[v0]ε + C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 .

It remains to deal with gL
φ − gL

φ,ε. Using that gL
φ = O(t2) = gL

φ,ε, (50) together with

Lemma 3.9 we finally obtain

‖gL
φ − gL

φ,ε‖
H

s+1
2

(0)
H−1

≤ C[v0]ε.
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Part III: Estimates for Hε:

We first consider in formula (49) the splitting

Hε = h − hε + hL
φ − hL

φ,ε + H ε

where the term H ε is given by

H ε =− qw,ε(A−1 − A−1
ε )n0 − ((∇wε(A − Aε))+ (∇wε(A − Aε))

∗)A−1
ε n0

− ((∇wε A)+ (∇wε A)∗)(A−1 − A−1
ε )n0

The first estimate in (50) yields

|H ε|
H

ht,s− 1
2

(0)

≤ C(|qw,ε|
H

ht,s− 1
2

(0)

|A−1−A−1
ε |

H
s− 1

2

+ |∇wε|
H

ht,s− 1
2

(0)

(
|A − Aε|

H
s− 1

2
+ |A−1−A−1

ε |
H

s− 1
2

)

≤ C[v0]ε

Next, the use of (50), (51) and the smallness of φ − φε allows us to obtain

|hL
φ − hL

φ,ε|
L2 H

s− 1
2
≤ C‖hL

φ − hL
φ,ε‖L2 H s ≤ C[v0]ε.

The compatibility condition and the formulas for qφ,ε, qφ provide

|hL
φ − hL

φ,ε|
H

s
2
− 1

4
(0)

L2
= |t exp(−t2)((∇ψ A + (∇ψ A)∗)A−1

− (∇ψε Aε + (∇ψε Aε)
∗)A−1

ε )n0|
H

s
2
− 1

4
(0)

L2
.

Together with (50), (51) yield

|hL
φ − hL

φ,ε|
H

s
2
− 1

4
(0)

L2
≤ C[v0]ε, and finally |hL

φ − hL
φ,ε|

H
ht,s− 1

2
(0)

≤ C[v0]ε.

It remains to deal with h − hε. As we did in (80), we split h = hv + hv∗ + hq , and

similarly hε = hv,ε + hv∗,ε + hq,ε. We estimate first hv − hv,ε using the splitting

hv − hv,ε = de
1 + de

2 + de
3 + de

4,

where

de
1 = ∇v(ζ − ζε)∇J Xn0, de

2 = ∇vζε(∇J X −∇J Xε)n0,

de
3 = ∇(v − vε)(ζε − I)∇J Xεn0, de

4 = ∇(v − vε)(∇J Xε − I)n0,
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in a similar way to (89). As before, using the splitting v = w + v0 + tψ , we are able

to bound as follows:

|de
1 |

H
ht,s− 1

2
(0)

+ |de
2 |

H
ht,s− 1

2
(0)

≤ C[v0]ε + C[v0]
(
‖X − Xε + εb − (A − Aε)v0t‖L∞H s+1

+‖X − Xε + εb − (A − Aε)v0t‖
H

s
2
− 1

4
(0)

H2+η

)

≤ C[v0]ε + C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1 ,

where η > 0 small enough and we have used Lemma 6.1. Thus, we have obtained the

appropriate estimate. Repeating the procedure in the splitting (89) to de
3 and de

4 , we

find

|de
3 |

H
ht,s− 1

2
(0)

+ |de
4 |

H
ht,s− 1

2
(0)

≤ C[v0]ε + C[v0]T δ‖w − wε‖H
ht,s+1
(0)

.

We split further for hv∗ − hv∗,ε =
∑5

j=1 d
∗,e
j , where

d
∗,e
1 = [(∇vζ(A ◦ X−A))∗(A−1 ◦ X−A−1)∇J X

−(∇vεζε(A ◦ Xε−Aε))
∗(A−1 ◦ Xε−A−1

ε )∇J Xε]n0,

d
∗,e
2 = [(∇vζ(A ◦ X − A))∗A−1∇J X − (∇vεζε(A ◦ Xε − Aε))

∗A−1
ε ∇J Xε)]n0,

d
∗,e
3 = [(∇vζ A)∗(A−1 ◦ X − A−1)∇J X − (∇vεζε Aε)

∗(A−1 ◦ Xε − A−1
ε )∇J Xε]n0,

d
∗,e
4 = [(∇v(ζ − I)A)∗A−1∇J X − (∇vε(ζε − I)Aε)

∗A−1
ε ∇J Xε]n0,

and

d
∗,e
5 = [(∇vA)∗A−1(∇J Xε − I )− (∇vε Aε)

∗A−1
ε (∇J Xε − I )]n0.

Further decomposing provides d
∗,e
1 =

∑5
j=1 d

∗,e
1, j with

d
∗,e
1,1 = (∇v(ζ − ζε)(A ◦ X−A))∗(A−1 ◦ X−A−1)∇J Xn0,

d
∗,e
1,2 = (∇vζε)(A ◦ X−A − A ◦ Xε+Aε))

∗(A−1 ◦ X−A−1)∇J Xn0,

d
∗,e
1,3 = (∇vζε(A ◦ Xε−Aε))

∗(A−1 ◦ X−A−1 − A−1 ◦ Xε+A−1
ε )∇J Xn0,

d
∗,e
1,4 = (∇vζε(A ◦ Xε−Aε))

∗(A−1 ◦ Xε−A−1
ε )(∇J X − ∇J Xε)n0,

and

d
∗,e
1,5 = (∇(v − vε)ζε(A ◦ Xε−Aε))

∗(A−1 ◦ Xε−A−1
ε )∇J Xεn0.
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As for de
1 and de

2 we can find

4∑

j=1

|d∗,e1, j |
H

ht,s− 1
2

(0)

≤ C[v0]ε + C[v0]
(
‖X − Xε + εb − (A − Aε)v0t‖L∞H s+1

+‖X − Xε + εb − (A − Aε)v0t‖
H

s
2
− 1

4
(0)

H2+η

)

≤ C[v0]ε + C[v0]T δ‖X − Xε + εb − (A − Aε)v0t‖Fs+1,

for η > 0 small enough. As we did for de
3 and de

4 it is possible to get

|d∗,e1,5 |
H

ht,s− 1
2

(0)

≤ C[v0]ε + C[v0]T δ‖w − wε‖H
ht,s+1
(0)

.

In an analogous manner, we estimate d
∗,e
j for j = 2, ..., 5 so that

5∑

j=2

|d∗,ej |
H

ht,s− 1
2

(0)

≤ C[v0]ε + C[v0]T δ(‖w − wε‖H
ht,s+1
(0)

+ ‖X − Xε + εb − (A − Aε)v0t‖Fs+1).

The estimates for hv∗−hv∗,ε are done. To finish, we consider hq−hq,ε = d
q,e
1 +d

q,e
2 ,

where

d
q,e
1 = [qε(A−1 ◦ Xε − A−1

ε )∇J Xε − q(A−1 ◦ X − A−1)∇J X ]n0,

d
q,e
2 = [qε A−1

ε (∇J Xε − I)− q A−1(∇J X − I)]n0.

The last detailed splitting d
q,e
1 = d

q,e
1,1 + d

q,e
1,2 + d

q,e
1,3 provides

d
q,e
1,1 = qε(A−1 ◦ Xε − A−1

ε − A−1 ◦ X + A−1)∇J Xεn0,

d
q,e
1,2 = qε(A−1 ◦ X − A−1)(∇J Xε − ∇J X)n0,

d
q,e
1,3 = (qε − q)(A−1 ◦ X − A−1)∇J Xn0,

which allows us to estimate as before

3∑

j=1

|dq,e

1, j |
H

ht,s− 1
2

(0)

≤ C[v0]ε + C[v0]T δ(‖qw − qw,ε‖H
ht,s
pr (0)

+ ‖X − Xε + εb − (A − Aε)v0t‖Fs+1).
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We end the bounds getting

|dq,e
2 |

H
ht,s− 1

2
(0)

≤ C[v0]ε + C[v0]T δ(‖qw − qw,ε‖H
ht,s
pr (0)

+ ‖X − Xε + εb − (A − Aε)v0t‖Fs+1).

by a similar splitting. We are done with hq − hq,ε and therefore with Hε. ⊓⊔

7 Setting the Right Initial Normal Velocity

We consider the following parametrization of the boundary of �:

z(s), |zs(s)| = 1,

we also consider a small enough neighborhood of the boundary, U . In U one can use

the coordinates (s, λ) given by

x(s, λ) = z(s)+ λz⊥s (s).

The stream function ψ , in U ,will be given by

ψ(s, λ) = ψ0(s)+ ψ1(s)λ+
1

2
ψ2(s)λ

2

ψ(x(s, λ)) = ψ(s, λ).

Then we can extend in a smooth way ψ to the rest of the domain � and take v0 = ∇⊥ψ .

v0 is clearly divergence free.

The initial velocity v0(x) must satisfy

t
(
∇v0 +∇v∗0

)∣∣
∂�

n = 0,

where t and n are the tangential and normal vectors to the boundary of � respectively.

If T and N are an extension of t and n to U respectively, we can write

(
T
(
∇v0 + ∇v∗0

)
N
)
|∂� = 0.

We will take

T (s, λ) = xs(s, λ) = zs(s)+ λz⊥ss(s) = (1− λκ(s))zs(s)

N (s, λ) = xλ(s, λ) = zs(s)
⊥,

where

κ(s) = zss(s) · z⊥s ,
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and we notice that

∇ψ ◦ x(s, λ) = 1

1− κλ
ψ s zs + ψλ z⊥s .

By defining

v0(s, λ) = v0 ◦ x(s, λ)

we have that

v0(s, λ) = 1

1− κλ
ψ s z⊥s − ψλ zs .

Now we can compute that

T i∂iv
j
0 ◦ x(s, λ) = ∂sv0

j (s, λ)

N j∂ jv
i
0 ◦ x(s, λ) = ∂λv0

i (s, λ).

And then

T i∂iv
j
0 ◦ x(s, λ)N j = ∂s (v0 · N )− v0 · Ns

N j∂ jv
i
0 ◦ x(s, λ)T i = ∂λ (v0 · T )− v0 · Tλ.

But

Tλ = z⊥ss(s)

Ns = z⊥ss(s) = −κ(s)zs(s).

In addition

v0 · N = 1

1− λκ
ψ s .

Then

∂s(v0 · N )|λ=0 = ∂2
s ψ(s, 0).

Also

v0 · T = −(1− λκ)ψλ.

Therefore

∂λ(v0 · T )|λ=0 = κ(s)∂λψ(s, 0)− ∂2
λψ(s, 0).
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Finally

(v0 · Tλ)|λ=0 = v0 · Ns |λ=0 = κψλ(s, 0).

Thus, we have that

∂2
s ψ(s, 0)− κ∂λψ(s, 0)− ∂2

λψ(s, 0) = 0.

Taking ψ1 = 0 yields

∂2
s ψ0 = ψ2(s).

Just to conclude we notice that v0 · n|∂� = ∂sψ0(s). We first pick up ψ0 in order to

choose the normal component of the velocity to be strictly positive and outward at the

interface to guarantee a splash. Then ψ2 is taken to satisfy the continuity of the stress

tensor.
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A Results on the Linear System

This appendix is devoted to prove Theorem 4.1. The proof is an adaptation of [5,

Theorem 4.3] to the tilde domain.

A.1 Case g = h = v0 = 0

We would like to solve the following system:

vt − Q2�v + A∗∇q = f

T r(∇vA) = 0

(q I − ((∇vA)+ (∇vA)∗)B1n = 0

v|t=0 = 0, (53)

where

B1 = −J A−1 J = 1

Q2
A∗
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and

Ai j = ∂ j P i ◦ P−1.

Our first purpose will be to obtain a weak formulation of the time independent part

of this system. In order to do it we will use the following identities

AA∗ = Q2 I

�v = div

(
AA∗

1

Q2
∇v

)

and also

Q2∂l

(
1

Q2
Al j (Ak j∂kv

i + Aki∂kv
j )

)
= Q2�v

Using this relation it is easy to arrive to the following identity:

∫

�

∂l

(
1

Q2
Al j (Ak j∂kv

i + Aki∂kv
j )

)
φi dx

= −
∫

�

1

Q2
Al j (Ak j∂kv

i + Aki∂kv
j )∂lφ

i dx

+
∫

∂�

nl Al j (Ak j∂kv
i + Aki∂kv

j )φi 1

Q2
dσ

= −
∫

�

1

Q2
(Ak j∂kv

i + Aki∂kv
j )Al j∂lφ

i dx

+
∫

∂�

nl Al j (Ak j∂kv
i + Aki∂kv

j )φi 1

Q2
dσ

= −1

2

∫

�

1

Q2
(Ak j∂kv

i + Aki∂kv
j )(Al j∂lφ

i + Ali∂lφ
j )dx

+
∫

∂�

nl Al j (Ak j∂kv
i + Aki∂kv

j )φi 1

Q2
dσ

for φi ∈ C∞(�).

We also have that

∫

�

Aki∂kqφi 1

Q2
dx = −

∫

�

q∂k

(
Akiφ

i 1

Q2

)
dx +

∫

∂�

q Aki n
kφi dσ

Q2

The following identities hold:

∂k

(
Akiφ

i 1

Q2

)
= Aki∂kφ

i 1

Q2
, ∂k

(
Aki

Q2

)
= 0
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The energy identity for the time independent version of (53) reads:

1

2

∫

�

1

Q2
(Ak j∂kv

i + Aki∂kv
j )(Al j∂lφ

i + Ali∂lφ
j )dx −

∫

�

q∂k

(
Aki

1

Q2
φi

)
dx

−
∫

∂�

nl Al j (Ak j∂kv
i + Aki∂kv

j )φi 1

Q2
dσ +

∫

∂�

φi q Aki n
k dσ

Q2
=
∫

�

f · φ 1

Q2
dx

and therefore

1

2

∫

�

1

Q2
(Ak j∂kv

i + Aki∂kv
j )(Al j∂lφ

i + Ali∂lφ
j )dx −

∫

�

q∂k

(
Aki

1

Q2
φi

)
dx

= −
∫

∂�

(qδi j − (Ak j∂kv
i + Aki∂kv

j ))Al j n
lφi dσ

Q2
+
∫

�

f · φ 1

Q2
dx,

where

∂k

(
Aki

1

Q2
φi

)
= Aki

Q2
∂kφ

i = 1

Q2
T r(∇φ A),

so that we finally write as follows

1

2

∫

�

T r
((
∇vA + A∗∇v∗

) (
∇φ A + A∗∇φ∗

)) 1

Q2
dx −

∫

�

q T r(∇φ A)
1

Q2
dx

=
∫

�

f · φ dx

Q2
−
∫

∂�

(
qI−

(
∇vA + A∗∇v∗

))
A∗n · φ 1

Q2
dσ. (54)

Therefore (54) is the time independent weak formulation of our system.

Next we will define a kind of Leray projector. Let H0
d the subspace of H0 formed

by vectors A∗∇φ such that φ ∈ H1
0 . Let H0

σ the orthogonal complement of H0
d with

the following vector valued H0 scalar product:

( f , g)H0 =
∫

�

f · g
1

Q2
dx .

Then it is easy to check that if v ∈ H1 ∩ H0
σ , then v must satisfy

T r(∇vA) = 0.

For v ∈ L2 we define Rv to be the orthogonal projection of v onto H0
σ . For v ∈ H1

we have that

Rv = v − A∗∇ψ, (55)
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where

Q2�ψ = T r(∇vA) in �0

ψ = 0 on ∂�0, (56)

The next lemma will deal with some properties about this projector R. Note that

we have defined R for functions of x . For functions of (x, t) we apply R for every t .

Lemma A.1 Let 0 ≤ s ≤ 4. We have:

i) R is a bounded operator on H s .

ii) R is a bounded operator on H
ht,s
(0)

, with norm bounded uniformly if T is bounded

above.

iii) If φ ∈ H s+1, then R(A∗∇φ) = A∗∇φ1, with Q2�φ1 = 0 in �0, φ1 = φ on ∂�0.

Proof i) For v ∈ H s, 0 ≤ s ≤ 4, it is easy to see that T r(∇vA) ∈ H s−1. Therefore

the solution of the system (56) satisfies:

‖ψ‖H s+1 ≤ C

∥∥∥∥
T r(∇vA)

Q2

∥∥∥∥
H s−1

≤ ‖v‖H s ,

by elliptic theory, since both A and Q2 are regular. The identity (55) provides

‖Rv‖H s ≤ ‖v‖H s + ‖∇ψ‖H s ≤ C‖v‖H s .

ii) It is easy to check that ∂t commutes with R, since

∂k
t Rv = ∂k

t v − A∗∇∂k
t ψ = R∂k

t v.

This proves the result for an integer number of derivatives. By interpolation we

get the result for fractional derivatives.

iii) For φ ∈ H s+1, if v = A∗∇φ, then

R(A∗∇φ) = A∗∇φ − A∗∇ψ = A∗∇(φ − ψ).

Thus, we have that

0 = T r(∇(R(A∗∇φ))A) = Q2�(φ − ψ), ψ |∂�0
= 0,

which implies that φ − ψ |∂�0
= φ and we can take φ1 = φ − ψ .

⊓⊔

Once we have obtained the energy identity (54) and Lemma A.1 we pass to announce

the main theorem of this section:
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Theorem A.2 Let f ∈ H
ht,s−1
(0)

, let v, q solve (53) and 2 < s ≤ 3. Then

‖v‖
H

ht,s+1
(0)

+ ‖∇q‖
H

ht,s−1
(0)

+ |q|
H

ht,s− 1
2

(0)

≤ C‖ f ‖
H

ht,s−1
(0)

.

The constant is independent of T .

The rest of this subsection is devoted to prove this theorem.

First of all we will modify the equation by considering the new variables

u = e−tv; p = e−t q; f = e−t f

We should remark that f ∈ H
ht,s−1
(0)

⇔ f ∈ H
ht,s−1
(0)

. Then, the equation reads

∂t u = −e−tv + e−tvt = −u + e−t (Q2�v − A∗∇q + f )

= −u + Q2�u − A∗∇ p + f .

We will solve therefore

∂t u + u − Q2�u + A∗∇ p = f .

Let’s start projecting onto H0
σ to obtain

∂t u + u − Q2�u + A∗∇q1 = R f ,

since T r(∇(Q2�ṽ)A) = 0 and therefore R(Q2�u) = Q2�u, where A∗∇q1 =
R A∗∇ p.

We now introduce the operator

SA : V s+1(�) → RH s−1

defined via:

SAu = −Q2�u + u + A∗∇q1, A∗∇q1 ≡ R A∗∇ p,

where V r (�) = {u ∈ RH r , A∗t0 (∇u A + A∗∇u∗) A∗n0 = 0 on ∂�} and

RH s−1 = {R f , f ∈ H s−1}.
The following lemma deals with the invertibility of SA.

Lemma A.3 SA has a bounded inverse for 1 ≤ s ≤ 3, and

‖S−1
A f ‖H s+1 ≤ C‖ f ‖H s−1 .
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Proof Let f ∈ RH s−1. We will show that there exists u ∈ V s+1 such that SAu = f ,

i.e. u−Q2�u+ A∗∇q1 = R f (we will keep in the notation R f instead of f , although

R f = f , to keep in mind this fact). Using the energy identity (54), we observe that

(u, φ)+ 〈u, φ〉 = −
∫

∂�

h · φ dσ

Q2
+
∫

�

R f · φ dx

Q2
+
∫

�

q1T r(∇φ A)
dx̃

Q2

is the weak formulation of

u − Q2�u + A∗∇q1 = R f
(
q1 −

(
∇u A + A∗∇u∗

))
A∗n0 = h,

where

(u, φ) =
∫

uφ
dx

Q2
(57)

〈u, φ〉 =
∫

�

T r((∇u A + A∗∇u∗)(∇φ A + A∗∇φ∗))
dx

Q2
(58)

If we look for h = 0 we then have to solve

(u, φ)+ 〈u, φ〉 =
∫

�

R f · φ dx

Q2
+
∫

�

q1T r(∇φ A)
dx̃

Q2
. (59)

We will find a solution to this equation in RH1. By this we mean that there exists

u ∈ RH1 such that (59) holds for all φ ∈ RH1. We notice that the last term vanishes

since φ ∈ RH1, and henceforth, in RH1, the equation (59) is equivalent to

(u, φ)+ 〈u, φ〉 =
∫

�

R f φ
dx

Q2
. (60)

for all φ ∈ RH1.

Via [29, Corollary 4.7],

(u, u)+ 〈u, u〉 ≥ C ||u||2
H1

and therefore it is a coercive bilinear form. That implies Lax-Milgram’s Theorem can

be applied in RH1 to obtain a solution u ∈ RH1 of (60).

The next step is to show that there exists p ∈ L2 such that

(u, φ)+ 〈u, φ〉 =
∫

�

R f φ +
∫

�

p T r(∇φ A) ∀φ ∈ H1.

To do this, we decompose φ = Rφ + A∗∇πφ , and then

(u, φ)+ 〈u, φ〉 = (u, Rφ)+ 〈u, Rφ〉 + 〈u, A∗∇πφ〉 + (u, A∗∇πφ)︸ ︷︷ ︸
0

= (R f , Rφ)+ 〈u, A∗∇πφ〉 = (R f , φ)+ 〈u, A∗∇πφ〉.
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Therefore we have to show that there exists p ∈ L2 such that

(p, T r(∇φ A)) = 〈u, A∗∇πφ〉 ∀φ ∈ H1.

Let us assume that u is smooth and suppose we take p satisfying:

Q2�p = 0

p|∂� = (A∗n, ((∇u A)+ (∇u A)∗)A∗n) (61)

= Q2(n(A∇u +∇u∗A∗)n). (62)

Then, on the one hand

∫
pT r(∇φ A)

dx

Q2
=
∫

p�πφdx =
∫

pdiv

(
AA∗

Q2
∇πφ

)
dx

= −
∫

�

∇ p · AA∗∇πφ

dx

Q2
+
∫

∂�

p · n AA∗∇πφ

dx

Q2

= −
∫

�

∇ pQ2∇πφ

dx

Q2

︸ ︷︷ ︸
0

+
∫

∂�

p(A∗n) · A∗∇πφ

dx

Q2
. (63)

On the other hand

〈u, A∗∇πφ〉 =
1

2

∫
T r((∇u A + A∗∇u∗)(∇(A∗∇πφ)A + A∗∇(A∗∇πφ))∗)

dx

Q2
,

where

(∇(A∗∇πφ)A)i j = ∂l(A∗∇πφ)i Al j = ∂l(Aki∂kπφ)Al j

= Al j∂l Aki∂kπφ + Aki Al j∂
2
lkπφ

〈u, A∗∇πφ〉 =
∫

(∂lu
i Al j + ∂lu

j Ali )Amj∂m(∂kπφ Aki )
dx

Q2

= −
∫

∂m

((
Amj∂lu

i Al j + Amj∂lu
j Ali

) 1

Q2

)
∂kπφ Aki dx

+
∫

∂�

(n0)m

(
Amj∂lu

i Al j + Amj∂lu
j Ali

)
∂kπφ Aki

dx

Q2

= −
∫

∂m

((
δml∂lu

i + Amj∂lu
j Ali

) 1

Q2

)
∂kπφ Aki dx

+
∫

∂�

A∗n0 · (∇u A + A∗∇u)A∗∇πφ

dx

Q2
.

The first term is zero because of the orthogonality and because of the condition

T r(∇u A) = 0. We do the calculations for the second term:
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∫

∂�

(A∗n0) · (∇u A + A∗∇u∗)A∗∇πφ

dσ

Q2
=
∫

n0(A∇u + ∇u∗A∗)∇πφ

=
∫

n0(A∇u + ∇u∗A∗)n0∂nπφ,

since t0 · ∇πφ = 0. Comparing with (62) we have that

(p, T r(∇φ A)) = 〈u, A∗∇πφ〉, ∀φ ∈ H1.

for smooth u. Let u ∈ H1 and {um}∞m=1 such that um ∈ H∞, and tr(∇um A) = 0 for

every m, and um → u strongly in H1 (for example we extend u by zero to R
2, we

make the convolution with a mollifier ρ 1
m

and finally we project onto Hσ ). Let pm be

given by

�pm = 0

pm |∂� = A−1n0(∇um A + A∗∇(um)∗)A−1n0.

Then, we have that

(pm, T r(∇φ A)) = 〈um, A∗∇πφ〉 ∀φ ∈ H1.

In particular, we take φm such that T r(∇φm A) = pm . This implies that Q2�πφm =
pm, πφm

∣∣
∂�
= 0. Showing the existence of such φm is trivial since one can choose

φm = A∗∇ψ , with Q2�ψ = pm . Then, we can bound the L2 norm of pm in the

following way:

‖pm‖2
L2 ≤ C〈um, A∗∇πφm 〉 ≤ C‖um‖H1‖πφm‖H2 ≤ C‖u‖H1‖pm‖L2 ,

which shows that pm is bounded in L2. Therefore there exists a subsequence pmi

which converges weakly to a function p in L2 and

(p, T r(∇φ A)) = 〈u,∇πφ〉 ∀φ ∈ H1.

We have shown that there exist (u, p) ∈ H1 × L2 such that

(u, φ)+ 〈u, φ〉 = (R f , φ)+
∫

pT r(∇φ A)
dx

Q2
∀φ ∈ H1.

Indeed, u ∈ H2, p ∈ H1. We now show that improvement on the regularity.

For every �♭
⋐ �, it is easy to obtain the interior regularity estimate ‖u‖H2(�♭) ≤

C, ‖p‖H1(�♭) ≤ C . We focus here on the boundary estimates. We perform the follow-

ing change of coordinates in �′, where �′ is a tubular neighborhood of ∂�:

x(s, λ) = z(s)+ λz⊥s (s)
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We would like to check that it is indeed a diffeomorphism. We have following:

|zs |2 = 1

xs(s) = zs(s)+ λz⊥ss(s)

z⊥ss = 〈z⊥ss, zs(s)〉zs(s) = −κ(s)zs(s)

xs(s) = (1− λκ(s))zs(s)

xλ = z⊥s (s)

Computing more,

det

(
x1

s x2
s

x1
λ x2

λ

)
= x1

s x2
λ − x2

s x2
λ = x⊥s xλ = 1− λκ(s)

This fixes the width of the tubular neighborhood to be λ0 < sups
1

κ(s)
. Under these

assumptions x(s, λ) is a diffeomorphism. Fix x0 ∈ ∂�, and consider the following

cutoff function ψ , defined by

ψ(x) =

⎧
⎨
⎩

1 B
(

x0,
λ0
2

)
∩�′

0
(

B
(

x0,
3λ0

4

)
∩�′

)c

⎫
⎬
⎭ , 0 ≤ ψ(x) ≤ 1, ψ(x) ∈ C∞.

We extend ψ to � by zero. We define the set C as C = x−1(B(x0, λ0) ∩�′), and

the set C/2 = x−1(B(x0,
λ0
2

) ∩�′).
The energy identity can be written down as:

1

2

∫

�

(∂lu
i Al j + ∂lu

j Ali )(∂kφ
i Ak j + ∂kφ

j Aki )
dx

Q2
+
∫

�

uiφi dx

Q2

=
∫

�

f iφi dx

Q2
+
∫

�

p∂lφ
i Ali

dx

Q2

We choose as test function φ = ϕψ . Then:

∫

�

(∂lu
i Al j + ∂lu

j Ali )(∂k(ϕ
iψ)Ak j + ∂k(ϕ

jψ)Aki )
dx

Q2
+
∫

�

uiφi dx

Q2

=
∫

�

f iφi dx

Q2
+
∫

�

p∂lφ
i Ali

dx

Q2

M1 + M2 = M3 + M4

We start developing each of the terms one by one

M1 =
∫

�′
(∂lu

i Al j + ∂lu
j Ali )(∂k(ϕ

i )Ak j + ∂k(ϕ
j )Aki )ψ

dx

Q2

+
∫

�′
(∂lu

i Al j + ∂lu
j Ali )(ϕ

i∂kψ Ak j + ϕ j∂kψ Aki )
dx

Q2
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=
∫

�′
(∂lu

i Al j + ∂lu
j Ali )ψ(∂k(ϕ

i )Ak j + ∂k(ϕ
j )Aki )

dx

Q2

+
∫

�′
(∂lu

i Al j + ∂lu
j Ali )∂kψ(ϕi Ak j + ϕ j Aki )

dx

Q2

We now do the change of variables

dx =
(

dx

dsdλ

)
dsdλ = (1+ κ(s)λ)︸ ︷︷ ︸

J (s,λ)

dsdλ,

and define

A(s, λ) = A ◦ x(s, λ), Q(s, λ) = Q ◦ x(s, λ), u(s, λ) = u ◦ x(s, λ),

p(s, λ) = p ◦ x(s, λ),

ϕ(s, λ) = ϕ ◦ x(s, λ), ψ(s, λ) = ψ ◦ x(s, λ), f (s, λ) = f ◦ x(s, λ).

We can compute the derivatives in the bar-coordinates

u(x) = u ◦ s(x), ∂lu
i = ∂kui ◦ s(x)∂ls

k

∂lu
i ◦ x(s, λ) = ∂kui (s, λ)∂ls

k ◦ x(s, λ)

Setting x = x(s, λ), x j = x j (s, λ), we obtain:

∂l x
j = ∂l x

j (s, λ)
∂sl

∂x i

δi j = ∂l x
j (s, λ)

∂sl

∂x i

δi j = ∂l x
j ◦ s(x)

∂sl

∂x i
(x)

δi j = (∇x) jl(∇s)li ◦ x(s, λ) = (∇x∇s) j i

I = ∇x∇s ◦ x(s, λ), ∇s ◦ x(s, λ) = (∇x)−1 ≡ �

Plugging this result into the equation for the derivatives of u, we get

∂lu
i ◦ x(s, λ) = �kl∂kui

� = 1

1− κ(s)λ

(
x2
λ −x1

λ

−x2
s x1

s

)

Plugging this expression into M1, and letting � A = B, we obtain

2M1 =
∫

C

(∂lu
i ◦ x(s, λ)Al j + ∂lu

j ◦ x(s, λ)Ali )

(
ψ(∂kϕ

i ◦ x(s, λ)Ak j + ∂kϕ
j ◦ x(s, λ)Aki

) J

Q
2

dsdλ
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+
∫

C

∂aψ(∂mui Bmj + ∂mu j Bmi )(ϕ
i Baj + ϕ j Bai )

J

Q
2

dsdλ

=
∫

C

(∂mui�ml Al j + ∂mu j�ml Ali )ψ(∂aϕi�ak Ak j + ∂aϕ j�ak Aki )
J

Q
2

dsdλ

+
∫

C

∂aψ(∂mui Bmj + ∂mu j Bmi )(ϕ
i Baj + ϕ j Bai )

J

Q
2

dsdλ

=
∫

C

ψ(∂mui Bmj + ∂mu j Bmi )(∂aϕi Baj + ∂aϕ j Bai )
J

Q
2

dsdλ

+
∫

C

∂aψ(∂mui Bmj + ∂mu j Bmi )(ϕ
i Baj + ϕ j Bai )

J

Q
2

dsdλ

Moreover,

M2 =
∫

�′
uiϕiψ

dx

Q2
=
∫

C

uiϕiψ
J

Q
2

dsdλ

M3 =
∫

C

f
i
ϕiψ

J

Q
2

dsdλ

M4 =
∫

C

p∂a(ϕiψ)Bai

J

Q
2

dsdλ,

with

M1 + M2 = M3 + M4 ⇒ M1 = −M2 + M3 + M4.

We start computing M1. We have that

2M1 =
∫

C

(∂lu
i Bl j + ∂lu j Bli )(∂kϕ

i Bk j + ∂kϕ
j Bki )ψ

J

Q
2

+
∫

C

(∂lu
i Bl j + ∂lu j Bli )(ϕ

i Bk j + ϕ j Bki )∂kψ
J

Q
2

= m + l1.

We will use the convention that the m terms will denote bad terms from now on.

We further split m into four terms:

m =
∫

C

∂lu
i Bl j∂kϕ

i Bk jψ
J

Q
2
+
∫

C

∂lu
j Bli∂kϕ

i Bk jψ
J

Q
2

+
∫

C

∂lu
i Bl j∂kϕ

j Bkiψ
J

Q
2
+
∫

C

∂lu
j Bli∂kϕ

j Bkiψ
J

Q
2

= m1 + m2 + m3 + m4.
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If we are able to estimate any one of them we can estimate all of them.

We will use the following formulas related to finite differences:

Dh
s ( f g) = f (s + h)g(s + h)− f (s)g(s)

h
= ( f (s + h)− f (s))g(s + h)

h

+ f (s)
g(s + h)− g(s)

h

= g(s + h)Dh
s f + f (s)Dh

s g,

D−h
s Dh

s ( f g) = D−h
s (Dh

s f g(s))+ D−h
s ( f (s)Dh

s g)

= (D−h
s Dh

s f )g(s)+ Dh
s f D−h

s (g(s + h))+ D−h
s f Dh

s g(s − h)

+ f (s)D−h
s Dh

s g,

D−h
s (g(s + h)) = g(s)− g(s + h)

−h
= Dh

s g,

Dh
s (g(s − h)) = g(s)− g(s − h)

h
= D−h

s g,

⇒ D−h
s Dh

s ( f g) = (D−h
s Dh

s f )g(s)+ Dh
s f Dh

s g + D−h
s f D−h

s g + f (s)D−h
s Dh

s g.

We take ϕ = D−h
s Dh

s u. Since divergence free condition, we have that

D−h
s Dh

s (Bl j∂lu
j ) = 0 = (D−h

s Dh
s Bl j )∂lu

j (s)+ Dh
s Bl j Dh

s ∂lu
j + D−h

s Bl j D−h
s ∂lu

j

+ Bl j∂l D−h
s Dh

s u j .

Therefore

Bl j∂l D−h
s Dh

s u j =− (D−h
s Dh

s Bl j )∂lu
j (s)− Dh

s Bl j Dh
s ∂lu

j − D−h
s Bl j D−h

s ∂lu
j

Bl j∂l D−h
s Dh

s (u jψ) =D−h
s Dh

s (Bl j∂l(u
jψ))− D−h

s Dh
s Bl j∂l(u

j (s)ψ(s))

− Dh
s Bl j Dh

s ∂l(u
jψ)− D−h

s Bl j D−h
s (∂l(u

jψ)),

and

Bl j∂l(ψu j ) = Bl j∂lψu j .

Expanding the calculations, we obtain

Bl j∂l D−h
s Dh

s (u jψ) =D−h
s Dh

s (Bl j∂ jψu j )− D−h
s Dh

s Bl j∂l(u
j (s)ψ(s))

− Dh
s Bl j Dh

s ∂l(u
jψ)− D−h

s Bl j D−h
s (∂lu

jψ))

ψ Bl j∂l D−h
s Dh

s (u jψ) =ψ D−h
s Dh

s (Bl j∂lψu j )− ψ D−h
s Dh

s Bl j∂l(u
jψ)

− ψ Dh
s Bl j Dh

s ∂l(u
jψ)− ψ D−h

s Bl j D−h
s (∂l(u

jψ)).
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Finally, we get to

ψ D−h
s Dh

s (Bl j∂lψu j ) = D−h
s Dh

s (Bl j∂lψu jψ)

− D−h
s (Bl j∂lψu j )D−h

s ψ − Dh
s (Bl j∂lψu j )Dh

s ψ − Bl j∂lψu j D−h
s Dh

s ψ.

Therefore

ψ Bl j∂l D−h
s Dh

s (u jψ) = D−h
s Dh

s (Bl j∂lψu jψ)− ψ Dh
s Bl j Dh

s ∂l(u
jψ)

− ψ Dh
s Bl j Dh

s ∂l(u
jψ)+ LOW

= Bl j∂lψ D−h
s Dh

s (u jψ)− ψ Dh
s Bl j D−h

s ∂l(u
jψ)

− ψ D−h
s Bl j Dh

s ∂l(u
jψ)+ LOW,

where we say that a term T is LOW is ‖T ‖L2 ≤ C‖u‖H1 . We also say that a term

T is SAFE if, for any δ > 0,

‖T ‖L2 ≤ Cδ + δ(‖∇D−h
s (uψ)‖2

L2 + ‖∇Dh
s (uψ)‖2

L2),

where Cδ may depend on ‖u‖H1 , ‖p‖L2 , ‖ f ‖L2 and ψ, B, Q or J . We now look

at what the terms M1, . . . , M4 look like. We have that

M2 =
∫

C

ψui D−h
s Dh

s ui J

Q
2
=
∫

C

Dh
s (ψui )Dh

s ui J

Q2
+ LOW,

M3 =
∫

C

f
i
D−h

s Dh
s ui J

Q
2
≤ Cδ‖ f

i‖2
L2 + δ‖D−h

s Dh
s (uψ)‖2

L2 + LOW,

M4 =
∫

C

pBl j∂ jψ D−h
s Dh

s ui J

Q2
≤ Cδ‖p‖2

L2 + δ‖D−h
s Dh

s (uψ)‖2
L2 ,

l1 =
∫

C

∂lu
i Bl jφ

j∂kψ Bk j

J

Q
2
≤ Cδ‖u‖2

H1 + δ‖D−h
s Dh

s (uψ)‖2
L2 ,

M1 =
∫

C

∂lu
i Bl j Bk j∂k D−h

s Dh
s (uiψ)ψ

J

Q
2

=
∫

C

Dh
s

(
ψ∂lu

i Bl j Bk j

J

Q
2

)
Dh

s (∂k(u
iψ))

=
∫

C

Bl j Bk j Dh
s (ψ∂lu

i )Dh
s ∂k(u

iψ)
J

Q
2
+ SAFE

=
∫

C

Bl j Bk j Dh
s (∂lψui )Dh

s ∂k(u
iψ)

J

Q
2
+ SAFE.
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We can then bound

∫

C

|∇Dh
s (ψu)|2 ≤ M1 ≤ Cδ + δ‖∇D−h

s (uψ)‖2
L2 + δ‖∇Dh

s (uψ)‖2
L2 ,

∫

C

|∇D−h
s (ψu)|2 ≤ M1 ≤ Cδ + δ‖∇D−h

s (uψ)‖2
L2 + δ‖∇Dh

s (uψ)‖2
L2 .

Similar computations show that we can control ‖∇∂su‖L2 . This implies that

‖∂su‖H1(C/2) ≤ C .

We proceed to control the pressure terms. From the energy identity:

1

2

∫

C

(∂lu
i Bl j + ∂lu

j Bli )(∂kϕ
i Bk j + ∂kϕ

j Bki )
J

Q
2

+
∫

C

(∂lu
i Bl j + ∂lu

j Bli )(ϕ
i Bk j + ϕ j Bki )∂kψ

J

Q
2
+
∫

C

ui∂
i
ψ

J

Q
2

=
∫

C

f
i
ϕiψ

J

Q
2
+
∫

C

pT r(∇ϕB)ψ
J

Q
2
+ pB∇ψϕ

J

Q
2

P1 + P2 = P3 + P4 + P5

We choose ϕ = B∗∇�, with

J

Q
2

D−h
s Dh

s (pψ) = div(J��∗∇�).

Then:

P4 =
∫

C

pT r(∇ϕB)ψ
J

Q
2
=
∫

C

ψ pD−h
s Dh

s (pψ)
J

Q
2

= −
∫

C

(Dh
s (ψ p))2 J

Q
2
+
∫

C

(
Dh

s

(
J

Q
2
ψ p

)
− J

Q
2

Dh
s (ψ p)

)

= m5 + l1,

where

|l1| ≤ c‖p‖L2 .

So, if we control m5 we can control ‖∂s p‖L2(C/2). It is not hard to see that

|P1| + |P2| + |P3| + |P5| ≤ Cδ(‖u‖2
L2 + ‖∇∂su‖2

L2 + ‖∇u‖2
L2 + ‖p‖2

L2)

+ δ‖Dh
s (pψ)‖2

L2
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which implies that ‖Dh
s (pψ)‖L2 ≤ C independent of h. Because of the interior

regularity estimate we have that the solution is strong in the interior of � and we can

write

Q
2

J
div

(
1

J

(
1 0

0 J 2

)
∇ui

)
+ ui + (B∗∇ p)i = f

i
, T r(∇u B) = 0

where we recall that J = (1+ λκ(s)) and that we have used

�u ◦ x(s, λ) = 1

J (s, λ)
div
(
J (s, λ)��∗∇u

)
(s, λ)

��∗ = 1

(1+ κ(s)λ)2

(
x2
λ −x1

λ

−x2
s x1

s

)(
x2
λ −x2

s

−x1
λ x1

s

)

= 1

(1+ κ(s)λ)2

(
|xλ|2 −xλ · xs

−xλ · xs |xs |2
)

This implies that

1

J (s, λ)
div

(
1

(1+ κ(s)λ)2

(
|xλ|2 −xλ · xs

−xλ · xs |xs |2
)
∇ui

)

= 1

J (s, λ)
div

(
1

(1+ κ(s)λ)2

(
1 0

0 (1+ κ(s)λ)2

)
∇ui

)
.

Let us define

β =
(

1/J 0

0 J

)

div(β∇ui ) = ∂k(βkl∂lu
i ) = ∂k Bkl︸ ︷︷ ︸

Ŵl

∂lu
i + βkl∂k∂lu

i

= Ŵ∇ui + 1

J
∂2

s ui + J∂2
λui .

And then:

Q
2

J
∂2

s ui + Q
2
∂2
λui + Ŵ∇ui + Bli∂l p = f

i

⇒ Q
2
∂2
λui + Bli∂l p = −Q

2

J
∂2

s ui − Ŵ∇ui + f
i = gi ,

and we know that gi ∈ L2 (C/2). We also have that

(∂lu
i Bli ) = 0

∂su1 B11 + ∂λui B21 + ∂su2 B12 + ∂λu2 B22 = 0
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Thus

∂2
λu1 B21 + ∂2

λu2 B22 = g3, where g3 ∈ L2

Plus

Q
2
∂2
λu1 + B11∂s p + B21∂λ p = g1

Q
2
∂2
λu2 + B12∂s p + B22∂λ p = g2

Q
2

B21∂
2
λu1 + B12 B11∂s p + B2

12∂λ p = B12g1

Q
2

B22∂
2
λu2 + B22 B12∂s p + B2

22∂λ p = B22g2

This implies

(B2
21 + B2

22)∂λ p = g4, where g4 ∈ L2 (C/2) ,

and since (B2
21+ B2

22) > 0 for a small enough λ0, and we get that ∂λ p ∈ L2 (C/2).

Finally, we use this to get that

Q
2
∂2
λu1 = g5, where g5 ∈ L2 (C/2) .

Q
2
∂2
λu2 = g6, where g6 ∈ L2 (C/2) .

This completes the regularity proof, since we can cover a λ0
2

neighborhood by a

finite number of sets of type C/2.

We are only left to show that we can apply [2, Theorem 10.5, p.78] to our system

in order to obtain higher regularity. Indeed we can apply this theorem to show:

‖u‖H s+1 + ‖p‖H s ≤ ‖ f ‖H s−1 . (64)

What follows is a confirmation that our problem fulfills the elliptical conditions of

[2]. To adapt our notation to the one in [2] we will write (u1, u2, u3) = (u1, u2, p).

In [2, pp.38, 42] the system is written like

li j (x, ∂)u j = Fi ,

with the boundary condition

Bh, j (x, ∂)u j = φh .

In our case we have the correspondence

l11 = 1− Q2�, l12 = 0, l13 = Ak1∂l , F1 = f1

l21 = 0, l22 = 1− Q2�, l23 = Ak2∂l , F2 = f2

l31 = Ak1∂k, l32 = Ak2∂k, l33 = 0, F3 = 0
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And the indices t j and s j can be taken as

t1 = 2, t2 = 2, t3 = 1

s1 = 0, s2 = 0, s3 = −1

It can be checked that with this choice l ′i j is given by

l ′11 = −Q2�, l ′12 = 0, l ′13 = Ak1∂l ,

l ′21 = 0, l ′22 = −Q2�, l ′23 = Ak2∂l ,

l ′31 = Ak1∂k, l ′32 = Ak2∂k, l ′33 = 0,

where l ′i j is defined in pages 38-39 of [2]. Also

B2l = (t i Ailn j + t j Ailni )∂ j , l = 1, 2

B23 = 0

and the indices r1 = −1 and r2 = −1. With this choice B ′i j = Bi j (see [2, p.42]).

We can write

(l ′(x, ξ))i j =

⎛
⎝
−Q2(ξ2

1 + ξ2
2 ) 0 Ak1ξk

0 −Q2(ξ2
1 + ξ2

2 ) Ak2ξk

Ak1ξk Ak2ξk 0

⎞
⎠

and

B(x, ξ)i j =
(

−2ni Ai1(n · ξ) −2ni Ai2(n · ξ) 1

t i Ai1(ξ · n)+ ni Ai1(t · ξ) t i Ai2(ξ · n)+ ni Ai2(t · ξ) 0

)

Let L = det(l ′i j (x, ξ)), i.e.

L(x, ξ) = det(l ′(x, ξ)) = Q2(ξ2
1 + ξ2

2 )(Ak1ξk)
2 + Q2(ξ2

1 + ξ2
2 )(Ak2ξk)

2

(A11ξ1 + A21ξ2)
2 = A2

11ξ
2
1 + A2

21ξ
2
2 + 2A11 A21ξ1ξ2

(A12ξ1 + A22ξ2)
2 = A2

12ξ
2
1 + A2

22ξ
2
2 + 2A12 A22ξ1ξ2

⇒ L(P, ξ) = Q2(ξ2
1 + ξ2

2 )Q2(ξ2
1 + ξ2

2 ) = Q4(ξ2
1 + ξ2

2 )2 = Q4|ξ |4

To know whether the system is uniformly elliptic, we are left to check that it satisfies

the Supplementary condition (see [2, p.39]). The degree is 4 and therefore m = 2.

We need to compute the solutions of L(P, ξ + τξ ′) = 0, which are the solutions to

|ξ + τξ ′|2 = 0.

|ξ + τξ ′|2 = |ξ |2 + τ 2|ξ ′|2 + 2τξ · ξ ′ = 0
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Solving in τ yields

τ = −2ξ · ξ ′ +
√

4(ξ · ξ ′)2 − 4|ξ |2|ξ ′|2
2|ξ ′|2 .

If ξ and ξ ′ are linearly independent, then the discriminant is strictly negative, which

implies that there is a complex root with positive imaginary part. Since the roots have

multiplicity 2, the Supplementary condition is satisfied. In addition uniform ellipticity

is easy to obtain. Next we check that the Complementing Boundary Condition is

satisfied ([2, p. 42]).

Let t0 be tangential vector and n0 the normal one.

Since i is a double root of L(x, t0 + τn) and M+(x, ξ, τ ) ([2, p. 42]) is given by

M+(x, ξ, τ ) = (τ − i)2.

In addition

(l ′(x, t0 + τn))i j =

⎛
⎝
−Q2(1+ τ 2) 0 Ak1(t

k
0 + τnk)

0 −Q2(1+ τ 2) Ak2(t
k
0 + τnk)

Ak1(t
k
0 + τnk) Ak2(t

k
0 + τnk) 0

⎞
⎠

We define L i j as in [2, p.42], and we have that. L(x, t0 + τn) = l ′(x, t + τn). Also,

it can be computed that

B(x, t + τn) =
(

−2ni Ai1τ −2ni Ai2τ 1

(n + τ t)i Ai1 (n + τ t)i Ai2 0

)

L i j (x, t0 + τn) =

⎛
⎜⎝
−Q2(1+ τ 2) 0 Ak1(t + τn)k

0 −Q2(1+ τ 2) Ak2(t + τn)k

Ak1(t + τn)k Ak2(t + τn)k 0

⎞
⎟⎠

(B(x,t+τn)L(x,t+τn))i j

=

⎛
⎝ 2nk Ak1τ Q2(1+ τ 2)+ Ak1(t + τn)k 2nk Ak2τ Q2(1+ τ 2)+ Ak2(t + τn)k ni Ai1τ Ak1(t + τn)k + τni Ai2 Ak2(t + τn)k

−(n + τ t)k Ak1 Q2(1+ τ 2) −(n + τ t)i Ai2 Q2(1+ τ 2) (n + τ t)i Ai1 Ak1(t + τn)k + (n + τ t)i Ai2 Ak2(t + τn)k

⎞
⎠

If the rows of (BL)i j are linearly independent modulo (τ − i)2, that means that the

condition

Ch Bh j L jk = 0 mod M+

implies that all Ch = 0 ([2, p.43]). If this condition is satisfied in particular

Ch Bh j L jk |τ=i = 0.

Then c3 must be zero and the following system of equations must be satisfied:

c1 Ak1tk + c2 Ak2tk = 0

c1 Ak1nk + c2 Ak2nk = 0
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In matrix form:

(
Ak1tk Ak2tk

Ak1nk Ak2nk

)(
c1

c2

)
=
(

0

0

)

But the determinant of this matrix satisfies

Ak1tk Ak2nk − Ak2tk Ak1nk

(A∗t)1(A∗n)2 − (A∗t)2(A∗n)1

(A∗t, J A∗n) = (t, AJ A∗n) �= 0,

and therefore c1 = c2 = 0. Thus we have checked that the complementing Boundary

Condition is satisfied.

Finally we notice that our system can be written as in [2, p. 71], where the coeffi-

cients ai j,P are smooth. In our case the index l1 in [2, p. 77] is l1 = 0. The index l in [2]

coincides with s− 1. That means l = 0, 1, 2. The regularity we ask for the coefficient

bh j,σ is C l−rh (cf. [2, p. 77]). The most we need is therefore bh j,σ ∈ C3. Since these

coefficients are one derivative less regular that the boundary, a C4 boundary is enough

for our purpose. This fact finishes the proof of the inequality (64) if s is an integer.

For the rest of the values we proceed by interpolation.

This concludes the proof of Lemma A.3. ⊓⊔

Once we have studied the operator SA we will solve the time evolution. First we

will show the following lemma.

Lemma A.4 Let 1 ≤ s ≤ 3, λ ∈ C, ℜ(λ) ≥ 0. Then the operator λ + SA : V s+1 →
RH s−1 is invertible. The inverse satisfies:

‖(λ+ SA)−1 R f ‖H s+1 ≤ C(‖R f ‖H s−1 + |λ|
s−1

2 ‖R f ‖L2) (65)

Proof As before, we look for a weak solution of (λ+SA)v = R f , f ∈ L2. Therefore,

(1+ λ)(v,w)+ 〈v,w〉 =
∫

�

R f w̄
dx

Q2
∀w ∈ RH1.

The solution is given by Lax-Milgram’s Theorem. For w = v, by virtue of Korn’s

inequality and ℜ(λ) ≥ 0, one obtains

|(1+ λ)(v, v)+ 〈v, v〉| ≥ C((1+ |λ|)‖v‖2
L2 + ‖∇v‖2

L2),

with C independent of λ. Easily, the following bound is obtained:

‖v‖L2 ≤ 1

1+ |λ| ‖R f ‖L2 . (66)
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If f ∈ H s−1, then Lemma A.3 gives v = S−1
A (R f − λv) ∈ H s+1, and we can get the

following bounds:

‖v‖H s+1 ≤ C‖SAv‖H s−1 ≤ C(‖(SA + λ)v‖H s−1 + |λ|‖v‖H s−1)

≤ C‖R f ‖H s−1 + |λ|‖v‖
s−1
s+1

H s+1‖v‖
2

s+1

L2 .

The case s = 1 is already solved using (66). Young’s inequality provides

‖v‖H s+1 ≤ C‖R f ‖H s−1 + 1

2
‖v‖H s+1 + |λ|

s+1
2 ‖v‖L2 .

and we can get (65) using (66). ⊓⊔

In order to find the solution of

vt + SA(v) = R f in V s+1,

we take Fourier transforms in time. Since f ∈ H
ht,s−1
(0)

, R f (0) = 0, we can extend

R f to a function R f defined in H ht,s−1(�×R), with R f (t) = 0 for all t < 0. Since
s−1

2
≤ 3

4
< 1, using Lemma 3.1 (ii) we get

‖R f ‖
H

ht,s−1
(0)

(R×�0)
≤ C‖R f ‖

H
ht,s−1
(0)

([0,T ]×�0)
≤ C‖ f ‖

H
ht,s−1
(0)

([0,T ]×�0)
,

with C independent of T . We look for a solution of

vt + SA(v) = R f , ∀t ∈ R, v(0) = 0.

By Fourier, iτ v̂(τ )+ SA(v̂)(τ ) = R̂ f , and therefore the solution is given by v̂(τ ) =
(iτ + SA)−1 R̂ f . Using (65) and (66) we can bound

‖v‖2
H ht,s+1(R×�0)

=
∫

R

(‖v̂‖2
H s+1(τ )+ |τ |s+1‖v̂‖2

L2(τ ))dτ

≤ C

∫

R

(‖R f ‖2
H s−1(τ )+ |τ |s−1‖R f ‖2

L2)dτ

≤ C‖R f ‖2
H ht,s−1 ≤ C‖ f ‖2

H
ht,s−1
(0)

.

Since R f (t) = 0 for every t < 0, R̂ f (τ ) has an analytic extension in τ to

ℑ(τ ) < 0. Using Lemma A.4, v̂(τ ) also has that extension. Moreover, (66) gives

‖v̂(τ )‖L2 ≤ C‖ ˆR f (τ )‖L2 . Thus, Paley-Wiener provides v(t) = 0 ∀t < 0. Since

v ∈ H
s+1

2 (R; L2) and 3
2

< s+1
2

we have continuity in time and hence v(0) = 0.
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Since v̂ ∈ L2(R; V s+1(�)) we have that v ∈ L2([0, T ]; V s+1(�)) and therefore

T r(∇vA) = 0 and (q +∇vA + (∇vA)∗)A−1n = 0. We have already solved

vt − Q2�v + A∗∇q1 = R f ,

where q1 satisfies

Q2�q1 = 0, in �0 × [0, T ]
q1 = A−1n(∇vA + (∇vA)∗)A−1n, on ∂�× [0, T ].

We have that ∂tv(0) = 0 and then ||v||
H

ht,s+1
(0)

≤ C || f ||
H

ht,s−1
(0)

. Definition

A∗∇q = (I − R) f + A∗∇q1,

gives us the solution that we were looking for

vt − Q2�v + A∗∇q = f .

The properties of R allow us to obtain

‖∇q‖
H

ht,s−1
(0)

≤ C‖A∗∇q‖
H

ht,s−1
(0)

≤ ‖(I − R) f ‖
H

ht,s−1
(0)

+ ‖A∗∇q1‖H
ht,s−1
(0)

≤ C(‖ f ‖
H

ht,s−1
(0)

+ ‖A∗∇q1‖H
ht,s−1
(0)

).

We have the following bounds:

‖A∗∇q1‖L2 H s−1 ≤ ‖∇q1‖L2 H s−1 ≤ |A−1n((∇vA)+ (∇vA)∗)A−1n|
L2 H

s− 1
2

≤ ‖(∇vA)+ (∇vA)∗‖L2 H s ≤ ‖∇v‖L2 H s ≤ ‖v‖L2([0,T ];H s+1),

‖A∗∇q1‖
H

s−1
2

(0)
L2
≤ |A−1n((∇vA)+ (∇vA)∗)A−1n|

H
s−1

2
(0)

H
1
2

.

Decomposing ∇vi into the tangential and normal components: ∇vi = (∇vi · n0)n0+
(∇vi · t0)t0, we can bound each of them by

|∇vi · t0|
H

s−1
2

(0)
H

1
2

≤ C |vi |
H

s−1
2

(0)
H

3
2

≤ C‖vi‖
H

s−1
2

(0)
H2
≤ C‖vi‖H

ht,s+1
(0)

,

|∇vi · n0|
H

s−1
2

(0)
H

1
2

≤ |∇vi · n0|
H

ht,s− 1
2

(0)

≤ C‖vi‖H
ht,s+1
(0)

.

Above we have used Lemma 3.2 (i). This yields

‖A∗∇q1‖
H

s−1
2

(0)
L2
≤ C‖v‖

H
ht,s+1
(0)

.
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and therefore

‖A∗∇q‖
H

ht,s−1
(0)

≤ C‖ f ‖
H

ht,s−1
(0)

.

Since (I − R) f |∂�0 = 0, we have that q = q1 on ∂�0. This implies

|q|
H

ht,s− 1
2

(0)

= |q1|
H

ht,s− 1
2

(0)

= |A−1n((∇vA)+ (∇vA)∗)A−1n|
H

ht,s− 1
2

(0)

≤ |A−1n((∇vA)+ (∇vA)∗)A−1n|
L2 H

s− 1
2

+ |A−1n((∇vA)+ (∇vA)∗)A−1n|
H

s
2
− 1

4
(0)

L2
.

Decomposing into the tangential and normal components as before, we find finally

|q|
H

ht,s− 1
2

(0)

≤ ‖∇v‖L2 H s + |∇vi · t0|
H

s
2
− 1

4
(0)

L2
+ |∇vi · n0|

H
s
2
− 1

4
(0)

L2

≤ ‖v‖L2 H s+1 + |vi |
H

s
2
− 1

4
(0)

H1
+ |∇vi · n0|

H
ht,s− 1

2
(0)

≤ ‖v‖
H

ht,s+1
(0)

+ ‖v‖
H

s
2
− 1

4
(0)

H
1+ 1

2

+ ‖v‖
H

ht,s+1
(0)

≤ ‖v‖
H

ht,s+1
(0)

.

A.2 Reduction for Arbitrary g and h

In this section we want to extend the result with g = 0 and h = 0 to the case:

vt − νQ2�v + A∗∇q = f in �0 × [0, T ]
T r(∇vA) = g in �0 × [0, T ]

(q + (∇vA)+ (∇vA)∗)A−1n = h on ∂�0 × [0, T ]
v(x, 0) = 0 in �0 (67)

To get the space where g belongs we proceed as follows. For φ ∈ H1
0 it is easy to find

∫
∂

j
t (T r(∇vA))φ(x)

dx

Q2(x)
=
∫

T r(∇∂
j

t vA)φ(x)
dx

Q2(x)
=
∫

∂
j

t vA∗∇φ
dx

Q2(x)
.

Then

∣∣∣∣
∫

∂
j

t (T r(∇vA))φ(x)
dx

Q2(x)

∣∣∣∣ ≤ ‖∂
j

t v‖L2(t)‖∇φ‖H1 ,

and duality provides

‖∂ j
t (T r(∇vA))‖H−1 ≤ ‖∂ j

t v‖L2(t), with H−1 = (H1
0 )∗.
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For j = s+1
2

, integration in time yields

‖T r(∇vA)‖
H

s+1
2 H−1

≤ ‖v‖H ht,s+1 .

Here we remark that we use (28) for the norm of fractional derivatives on time. Also,

T r(∇vA) ∈ L2([0, T ]; H s), which implies:

T r(∇vA) ∈ L2([0, T ]; H s) ∩ H
s+1

2 ([0, T ]; H−1),

To prove this fact, one can proceed for an integer number of derivatives, then interpolate

for fractional ones (see [27]).

We check next the compatibility conditions of the initial data:

T r(∇v0 A) = g(0) in �0 (68)

(A−1n)⊥(∇v0 A + (∇v0 A)∗)A−1n = h(0)(A−1n)⊥ on ∂�0. (69)

Defining the following spaces:

X0 := {(v, q) : v ∈ H
ht,s+1
(0)

, q ∈ H
ht,s
pr , (0)

}

Y0 := {( f , g, h) : f ∈ H
ht,s−1
(0)

, g ∈ H
ht,s

(0) , h ∈ H
ht,s− 1

2

(0)
(∂�× [0, T ]), }

(here we remark that in X0 and Y0: v(0) = ∂tv(0) = q(0) = f (0) = g(0) = ∂t g(0) =
h(0) = 0), then, for ( f , g, h) ∈ Y0, (33) is equivalent to solve:

L(v, q) = ( f , g, h, 0); L : X0 → Y0, 2 < s <
5

2
.

Theorem A.5 L : X0 → Y0 is invertible for 2 < s < 5
2

. Moreover, ‖L−1‖ is bounded

uniformly if T is bounded above.

Proof of Theorem 4.1 We structure the proof in 3 steps, in order to get to the previous

case (g = h = v0 = 0). Let ( f , g, h) ∈ Y0.

Step 1: A-divergence adjustment. We want to find (v1, q1) ∈ X such that L(v1, q1) =
( f 1, g1, h1, 0) with

f 1(0) = 0; g1(t) = g(t); ∀t ∈ [0, T ] h1(0) = 0. (70)

We define φ by solving the following elliptic problem for every t ∈ (−∞,∞),

after extending g to the whole real line:

Q2�φ = g(t) in �0 × R

φ = 0 on ∂�0 × R
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This system satisfies ‖φ‖H s+2(t) ≤ C‖g‖H s (t). In particular

‖∇φ‖H s+1(t) ≤ C‖g‖H s (t). (71)

Taking the Fourier Transform in time, one has, for every τ :

Q2�φ̂(τ) = ĝ(τ ) in �0 × R,

φ̂(τ ) = 0 on ∂�0 × R.

For λ ∈ H1
0 it is possible to find

∫
ĝ(τ )λ

dx

Q2
=
∫

�φ̂(τ)λdx =
∫
∇(∇φ̂ A)Aλ

dx

Q2
= −

∫
∇φ̂ A∇λA︸︷︷︸

A∗∇λ

dx

Q2

= −
∫
∇φ̂∇λdx

Therefore:
∫
∇φ̂∇λdx = −

∫
ĝ(τ )λ

dx

Q2
∀λ ∈ H1

0 .

This implies:

‖∇φ̂‖L2(τ ) ≤ C‖ĝ‖H−1(τ )

⇒
∫
|τ | s+1

2 ‖∇φ̂‖L2(τ )dτ ≤ C

∫
|τ | s+1

2 ‖ĝ‖H−1(τ )dτ.

We can conclude that ∇φ ∈ H
ht,s+1
(0)

. We now define

v1 = A∗∇φ ∈ H
ht,s+1
(0)

, q1 = q.

It is easy to check that

f 1(0) = A∗∇φt (0) = 0.

By construction, it is obvious that g1(t) = g(t) for every t ∈ [0, T ]. Since

φ(0) = 0, h1(0) = 0. This shows that (70) is satisfied.

Step 2: Adjusting the boundary conditions in the tangential direction without

modifying the A-divergence.

We want to find (v2, q2) ∈ X0 such that L(v2, q2) = ( f 2, g2, h2, 0) with

f 2(0) = 0; g2(t) = g(t); ∀t ∈ [0, T ]
h2(t) · (A−1n)⊥ = h(t) · (A−1n)⊥; ∀t ∈ [0, T ], h2(0) = 0. (72)

We will use the following Lemma:
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Lemma A.6 Let η ∈ H
ht,s− 1

2

(0)
(∂�0 × [0, T ]), 2 < s < 5

2
, η(0) = 0. Then there exists

w ∈ H
ht,s+1
(0)

such that ‖w‖
H

ht,s+1
(0)

≤ C |η|
H

ht,s− 1
2

(0)

, w(0) = wt (0) = T r(∇wA) = 0

and

(A−1n)⊥(∇wA + (∇wA)∗)A−1n = η on ∂�0 × [0, T ].

Proof Let ψ ∈ H
ht,s+2
(0)

, with ψ(0) = ψt (0) = 0, ψ(x) = ∂nψ(x) = 0, ∀x ∈ ∂�0,

and moreover ∂2
n ψ(x) = η(x) ∀x ∈ ∂�0 × [0, T ]. This choice is possible because of

the parabolic trace. All that is left is to check that the compatibility conditions from

Lemma 3.2. Defining

w = ∇⊥A ψ = (−∂2 P1 ◦ P−1∂1ψ − ∂2 P2 ◦ P−1∂2ψ, ∂1 P1 ◦ P−1∂1ψ + ∂1 P2 ◦ P−1∂2ψ),

it is immediate that w(0) = wt (0) = 0. A straightforward, but long calculation

gives:

T r(∇(∇⊥A ψ)A) = 0 = T r(∇wA).

We will now show that (A−1n)⊥(∇wA + (∇wA)∗)(A−1n) = η. Let x0 ∈ ∂�0.

We perform an euclidean change of coordinates in a way that x0 = 0, n0 = (0, 1).

Thus, ψ(0, 0) = 0, as well as ∂1ψ(0, 0) and ∂2
1 ψ(0, 0). The condition ∂nψ(0, 0) = 0

implies ∂2ψ(0, 0) = 0, ∂1∂2ψ(0, 0) = 0. That gives:

∇(∇⊥A ψ) =
(

0 −∂2 P2 ◦ P−1∂2
2 ψ(0, 0)

0 ∂1 P2 ◦ P−1∂2
2 ψ(0, 0)

)
.

Computing further:

∇(∇⊥A ψ)A = ∂2
2 ψ(0, 0)

(
−∂2 P2∂1 P2 −(∂2 P2)

2

(∂1 P2)
2 ∂1 P2∂2 P2

)
◦ P−1

Thus

((∇(∇⊥A ψ)A)+ (∇(∇⊥A ψ)A)∗)

= ∂2
2 ψ(0, 0)

(
−2∂2 P2∂1 P2 (∂1 P2)

2 − (∂2 P2)
2

(∂1 P2)
2 − (∂2 P2)

2 2∂1 P2∂2 P2

)
◦ P−1.

We also have that

A−1n0 =
1

Q2

(
−∂2 P1

∂1 P1

)
◦ P−1; (A−1n0)

⊥ = 1

Q2

(
−∂1 P1

−∂2 P1

)
◦ P−1;

Combining everything, we get

((∇(∇⊥A ψ)A)+ (∇(∇⊥A ψ)A)∗)A−1n0
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= ∂2ψ(0, 0)

Q2
(−∂1 P1 ◦ P−1 Q2, ∂1 P2 ◦ P−1 Q2)

⇒ (A−1n)⊥((∇(∇⊥A ψ)A)+ (∇(∇⊥A ψ)A)∗)A−1n0 = ∂2
2 ψ(0, 0)

Since ∂2
n ψ(0, 0) =

∑
i, j (n0)i∂i∂ jψ(n0) j = ∂2

2 ψ(0, 0), we are done. ⊓⊔

We now apply Lemma A.6 to η = h(t)(A−1n)⊥ − h1(t)(A−1n)⊥. Equation (70)

shows that η(0) = 0. Then, we can take:

v2 = v1 + w, q2 = q1.

Since w(0) = wt (0) = 0, we have that f 2(0) = 0. Also, since T r(∇wA) = 0,

by (70), g2(t) = g(t) ∀t ∈ [0, T ]. By construction, one has that h2(t)(A−1n)⊥ =
h(t)(A−1n)⊥ and since η(0) = 0 we have that h2(0) = 0.

Step 3: h(t) = h3(t)∀t without modifying the rest. We want to have (v3, q3) ∈ X0. We

have that L(v3, q3) = ( f 3, g3, h3, 0) with

f 3(0) = 0; g3(t) = g(t); ∀t ∈ [0, T ]
h3(t) = h(t); ∀t ∈ [0, T ]. (73)

We first take v3 = v2 and define q by

q = h(t) · A−1n0

|A−1n0|2
− (q2 I + (∇v2 A)+ (∇v2 A)∗)A−1n0︸ ︷︷ ︸

h2(t)

· A−1n0

|A−1n0|2
on ∂�0 × [0, T ],

q(x, 0) = 0, in �0.

Using once again the parabolic trace, the compatibility condition is satisfied since

q(x, 0) = 0 in ∂�× [0, T ] by means of (72). Therefore, we take q3 = q2 + q .

Since ∇q(x, 0) = 0 we have as before f 3(0) = 0, and T r(∇v3 A) = 0 because

the velocity was not modified. At the boundary we find:

((q3 I + (∇v3 A)+ (∇v3 A)∗)A−1n

= q A−1n + (q2 I + (∇v2 A)+ (∇v2 A)∗)A−1n

= q A−1n + h2(t) = h(t) · A−1n

|A−1n|
A−1n

|A−1n| − h2(t) · A−1n

|A−1n|
A−1n

|A−1n| + h2(t)

= h(t) · A−1n

|A−1n|
A−1n

|A−1n| + h2(t) · (A−1n)⊥

|A−1n|
(A−1n)⊥

|A−1n|
(72)= h(t) · A−1n

|A−1n|
A−1n

|A−1n| + h(t) · (A−1n)⊥

|A−1n|
(A−1n)⊥

|A−1n| = h(t).
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We find v3(0) = 0 trivially. By construction, we conclude that

‖(v3, q3)‖X0 ≤ C‖( f , g, h)‖Y0 .

If we consider the variables v
f̃
= v − v3, q

f̃
= q − q3, we obtain the following

problem:

∂tv f̃
− Q2�v

f̃
+ A∗∇q

f̃
= f̃ in �× [0, T ]

T r(∇v
f̃

A) = 0 in �× [0, T ]
(q

f̃
+ (∇v

f̃
A)+ (∇v

f̃
A)∗)A−1n = 0 in ∂�× [0, T ]

v
f̃
(x, 0) = 0 in �, (74)

with f̃ (0) = 0. Using Theorem A.2, the Theorem is proved.

⊓⊔

B Proofs of Structural Stability Theorems

B.1 Proof of Proposition 5.3

Part 1:

First we notice that ||
∫ t

0 τψ ||Fs+1 = 1
2

∣∣∣∣t2ψ
∣∣∣∣

Fs+1 thus we need to control∣∣∣∣t2ψ
∣∣∣∣

L∞1/4 H s+1 ≤ C[v0]T 1.75 and
∣∣∣∣t2ψ

∣∣∣∣
H2

(0)
Hγ ≤ C[v0]||t2||H2

(0)
≤ C[v0].

In addition, we have that

fφ ≡ −∂tφ + Q2�φ − A∗∇qφ = t Q2�
(

Q2�v0 − A∗∇qφ

)
≡ t Q2�ψ.

Therefore fφ |t=0 = 0. By definition (36) of qφ we have that A−1n0 · hφ |t=0 = 0

and the tangential component of hφ |t=0 = 0 by the choice of the initial data. Then

hφ |t=0 = 0 and in fact hφ = O(t) when t → 0 . Also gφ | = O(t2), when t → 0 by

the choice of the initial data (incompressibility condition). Then we can apply theorem

4.1 to obtain that
∣∣∣∣L−1( fφ, gφ, hφ)

∣∣∣∣
H

ht,s+1
(0)

×H
ht,s
pr (0)

is bounded independently of T for

T small if the norms || fφ ||H ht,s−1
(0)

, ||g||
H

ht,s
(0)

and |h|
H

ht,s− 1
2

(0)

are bounded independently

of T for T small. Since ||tn||
H

s−1
2

(0)

≤ C[n], for n = 1, 2, ..., we see that fφ is under

control. Since ||tn||
H

s+1
2

(0)

≤ C[n], for n = 2, ..., gφ is under control. Finally hφ is

under control because ||tn||
H

s
2
− 1

4
(0)

≤ C[n], for n = 1, 2, ....

Therefore N is a number that does not depend on T for T small. Indeed N ≤ C[v0].
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The definition of F s+1 and v(n) imply

∣∣∣∣
∣∣∣∣X

(n+1) − α −
∫ t

0

Aφ

∣∣∣∣
∣∣∣∣
Fs+1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)

∣∣∣∣
∣∣∣∣
Fs+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
φdτ

∣∣∣∣
∣∣∣∣
Fs+1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)

∣∣∣∣
∣∣∣∣
Fs+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
v0dτ

∣∣∣∣
∣∣∣∣
Fs+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
τψdτ

∣∣∣∣
∣∣∣∣
Fs+1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)

∣∣∣∣
∣∣∣∣
L∞1/4 H s+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
v0dτ

∣∣∣∣
∣∣∣∣
L∞1/4 H s+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
v0dτ

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
τψdτ

∣∣∣∣
∣∣∣∣
L∞1/4 H s+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
τψdτ

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

≡ I1 + I2 + I3 + I4 + I5 + I6.

To estimate I1 we proceed as follows. Applying Hölder and Minkowski inequalities

yields

∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)dτ

∣∣∣∣
∣∣∣∣
L∞1/4 H s+1

≤ T
1
4

∣∣∣
∣∣∣A ◦ X (n)w(n)

∣∣∣
∣∣∣
L2 H s+1

≤ T
1
4

∣∣∣
∣∣∣A ◦ X (n)

∣∣∣
∣∣∣
L∞H s+1

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H0
(0)

H s+1
,

In order to bound
∣∣∣∣A ◦ X (n)

∣∣∣∣
L∞H s+1 we will use Lemma 3.10. Therefore

I1 ≤ T
1
4 C[v0]

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣
L2 H s+1

≤ T
1
4 C[v0]||w(n)||

H
ht,s+1
(0)

≤ T
1
4 C[v0].

For I2 we have that

I2 ≤
∣∣∣∣
∣∣∣∣
∫ t

0

A ◦ X (n)w(n)

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

≤ C

∣∣∣
∣∣∣A ◦ X (n)w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

≤ C

∣∣∣
∣∣∣
(

A ◦ X (n) − A
)

w(n)
∣∣∣
∣∣∣

H1
(0)

Hγ
+
∣∣∣
∣∣∣Aw(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

≤ C

(∣∣∣
∣∣∣A ◦ X (n) − A

∣∣∣
∣∣∣

H1
(0)

Hγ

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ
+
∣∣∣
∣∣∣Aw(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

)
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By lemma 3.11, we have that I2 ≤ C[v0] ||w||H1
(0)

Hγ . In addition

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ
≤
∣∣∣∣
∣∣∣∣
∫ t

0

∂tw
(n)

∣∣∣∣
∣∣∣∣

H1
(0)

Hγ

≤ C

∣∣∣∣
∣∣∣∣
∫ t

0

∂tw
(n)

∣∣∣∣
∣∣∣∣

H1+δ−ε
(0)

Hγ

≤ CT ε
∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H1+δ
(0)

Hγ
≤ CT εC[v0].

Here ε > 0, ε < δ, δ <
s−1−γ

2
and we have used Lemmas 3.3 and 3.4.

For I3 we have that

∣∣∣∣
∣∣∣∣
∫ t

0

(A ◦ X − A) v0dτ

∣∣∣∣
∣∣∣∣
L∞1/4 H1+s

= sup
t∈[0,T ]

1

t
1
4

∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n) − A

)
v0dτ

∣∣∣∣
∣∣∣∣

H s+1

≤ C[v0]T
3
4 ||A ◦ X − A||L∞H1+s ≤ C[v0]T

3
4

by lemma 3.10.

For I4 by applying the second part of Lemma 3.4 with ε = 0 we have that

I4 ≤
∣∣∣
∣∣∣(A ◦ X (n) − A)v0

∣∣∣
∣∣∣

H1
(0)

Hγ
≤ C[v0]

∣∣∣
∣∣∣(A ◦ X (n) − A)

∣∣∣
∣∣∣

H1
(0)

Hγ

Now we apply Lemma 3.11 and we obtain that, for small enough T , I4 ≤
C[v0]||X (n) − α||H1

(0)
Hγ . In addition

∣∣∣
∣∣∣X (n) − α

∣∣∣
∣∣∣

H1
(0)

Hγ
≤
∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H1
(0)

Hγ
+ ||Av0t ||H1

(0)
Hγ

with ||Av0t ||H1
(0)

Hγ ≤ C[v0]||t ||H1
(0)
≤ C[v0]T

1
2 . Also

∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H1
(0)

Hγ
=
∣∣∣∣
∣∣∣∣
∫ t

0

∂t (X (n) − α − Av0t)

∣∣∣∣
∣∣∣∣

H1
(0)

Hγ

≤
∣∣∣∣
∣∣∣∣
∫ t

0

∂t (X (n) − α − Av0t)

∣∣∣∣
∣∣∣∣

H1+δ−ε
(0)

Hγ

≤ CT ε
∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H1+δ
(0)

Hγ
≤ CT ε

∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H1+δ
(0)

Hγ
≤ CT εC[v0].

where we have applied Lemma 3.4, for ε > 0 and ε < δ < 1
2

. This concludes the

estimate for I4. The estimates for I5 and I6 follow in a similar way. Therefore

∣∣∣∣
∣∣∣∣X

(n+1) − α −
∫ t

0

Aφ

∣∣∣∣
∣∣∣∣
Fs+1

≤ C[v0]T ε

This concludes the proof of part 1 of proposition 5.3.

123



Splash Singularities for the Free Boundary Navier-Stokes… Page 81 of 117    12 

Part 2:

From (26) we have that

∣∣∣
∣∣∣X (n+1) − X (n)

∣∣∣
∣∣∣
Fs+1

=
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)

)
dτ

∣∣∣∣
∣∣∣∣
Fs+1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)

)
dτ

∣∣∣∣
∣∣∣∣
L∞1/4 H s+1

+
∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)

)
dτ

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

≡ I1 + I2

In order to bound I1 we notice that

∣∣∣∣
∣∣∣∣
∫ t

0

(
A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)

)
dτ

∣∣∣∣
∣∣∣∣

H s+1

≤ t
1
2

∣∣∣
∣∣∣A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)dτ

∣∣∣
∣∣∣
L2 H s+1

Therefore

I1 ≤ T
1
4

∣∣∣
∣∣∣
(

A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)
)∣∣∣
∣∣∣
L2 H s+1

≤ T
1
4

∣∣∣
∣∣∣
(

A ◦ X (n) − A ◦ X (n−1)
)

v(n)
∣∣∣
∣∣∣
L2 H s+1

+ T
1
4

∣∣∣
∣∣∣
(
v(n) − v(n−1)

)
A ◦ X (n−1)

∣∣∣
∣∣∣
L2 H s+1

≡ I11 + I12

In addition

I11 ≤ T
1
4

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s+1

∣∣∣
∣∣∣v(n)

∣∣∣
∣∣∣
L2 H s+1

.

Here we notice that
∣∣∣∣v(n)

∣∣∣∣
L2 H s+1 ≤

∣∣∣∣w(n)
∣∣∣∣

L2 H s+1 + ||v0||L2 H s+1 + ||tψ ||L2 H s+1 ≤
C[v0]. Then by applying Lemma 3.12 we have that I11 ≤ C[v0]T

1
2

∣∣∣∣X (n) − X (n−1)
∣∣∣∣

Fs+1

Also we have, by applying Lemma 3.10, that

I12 ≤ C[v0]T
1
4

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣
L2 H s+1

Thus

I1 ≤ C[v0]T
1
4

(∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞1/4 H s+1

+
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

)
.
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It remains to bound I2.

I2 =
∣∣∣∣
∣∣∣∣
∫ t

0

(A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1))dτ

∣∣∣∣
∣∣∣∣

H2
(0)

Hγ

and applying Lemma 3.4 with ε = 0 we have that

I2 ≤
∣∣∣
∣∣∣A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
.

We will decompose that term in the following way

A ◦ X (n)v(n) − A ◦ X (n−1)v(n−1) =(A ◦ X (n) − A ◦ X (n−1))w(n)

+ (A ◦ X (n) − A ◦ X (n−1))φ

+ A ◦ X (n−1)(w(n) − w(n−1)).

Thus

I2 ≤ I21 + I22 + I23

with

I21 =
∣∣∣
∣∣∣(A ◦ X (n) − A ◦ X (n−1))w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

I22 =
∣∣∣
∣∣∣(A ◦ X (n) − A ◦ X (n−1))φ

∣∣∣
∣∣∣

H1
(0)

Hγ

I23 =
∣∣∣
∣∣∣A ◦ X (n−1)(w(n) − w(n−1))

∣∣∣
∣∣∣

H1
(0)

Hγ
.

For I21, by applying Lemma 3.7 (1 < γ < s − 1), we have that

∣∣∣
∣∣∣(A ◦ X (n) − A ◦ X (n−1))w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

≤ C

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H1
(0)

Hγ

≤ C[v0]
∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
≤ C[v0]

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
,

because of Lemma 3.12. Then

I21 ≤C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
≤
∣∣∣∣
∣∣∣∣
∫ t

0

(∂t

(
X (n) − X (n−1)

)
dτ)

∣∣∣∣
∣∣∣∣

H1+δ−ε
(0)

Hγ

≤ C[v0]T ε
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H1+δ
(0)

Hγ
,
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where we have applied Lemma 3.4 with ε > 0, δ > ε and δ < 1
2

.

The term I22 is quite similar to I21. The only difference is that we can not take

||φ||H1
(0)

Hγ . Instead of that,

∣∣∣
∣∣∣(A ◦ X (n)−A ◦ X (n−1))φ

∣∣∣
∣∣∣

H1
(0)

Hγ
≤C[v0]||v0||Hγ

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ

+ C[v0] ||tψ ||H1
(0)

Hγ

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
.

Finally

I23 ≤ C

(∣∣∣
∣∣∣A ◦ X (n−1) − A

∣∣∣
∣∣∣

H1
(0)

Hγ
+ 1

) ∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ

≤ C[v0]
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H1
(0)

Hγ
,

by applying Lemma 3.10. Also we can compute

I23 ≤C[v0]
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H1+δ−ε
(0)

Hγ
≤ C[v0]T ε

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H1+δ
(0)

Hγ

≤C[v0]T ε
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

for ε > 0, δ > ε and δ <
s−1−γ

2
.

This concludes the proof of part 2 of proposition 5.3. Therefore proposition 5.3 is

shown.

B.2 Proof of Proposition 5.4

Proof of Part 1:

We split the proof in three parts, corresponding with the functions f (n), g(n) and h(n):

P1.1. Estimate for f (n):

In this section we have to deal with f (n) to estimate

∣∣∣
∣∣∣ f (n)

∣∣∣
∣∣∣

H
ht,s−1
(0)

=
∣∣∣
∣∣∣ f (n)

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣ f (n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
.

We will gather terms by writing f (n) = f
(n)
w + f

(n)
φ + f

(n)
q as follows,

f (n)
w = Q2 ◦ X (n)ζ (n)∂

(
ζ (n)∂w(n)

)
− Q2�w(n),

f
(n)
φ = Q2 ◦ X (n)ζ (n)∂

(
ζ (n)∂φ

)
− Q2�φ, (75)
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and

f (n)
q = −A ◦ X (n)ζ (n)∂q(n) + A∂q(n).

Above we removed subscripts to alleviate notation. Next we also ignore the super-

scripts for the same reason. We firstly bound ||·||L2 H s−1 :

|| fw||L2 H s−1 ≤
∣∣∣
∣∣∣(Q2 ◦ X − Q2)ζ ∂(ζ∂w)

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣Q2(ζ − I)∂(ζ∂w)

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣Q2∂((ζ − I)∂w)

∣∣∣
∣∣∣
L2 H s−1

≡ I1 + I2 + I3.

We can deal with these three terms as follows. For I1 one can get

I1 ≤
∣∣∣
∣∣∣(Q2 ◦ X − Q2)ζ ∂ζ∂w

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣(Q2 ◦ X − Q2)ζ ζ∂2w

∣∣∣
∣∣∣
L2 H s−1

≤
∣∣∣
∣∣∣Q2 ◦ X − Q2

∣∣∣
∣∣∣
L∞H s−1

||ζ ||L∞H s−1 ||∂ζ ||L∞H s−1 ||∂w||L2 H s−1

+
∣∣∣
∣∣∣Q2 ◦ X − Q2

∣∣∣
∣∣∣
L∞H s−1

||ζ ||2
L∞H s−1

∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣
L2 H s−1

,

By applying Lemma 3.16 we have that
∣∣∣∣Q2 ◦ X − Q2

∣∣∣∣
L∞H s−1 ≤ C[v0]

||X − α||L∞H s−1 and by applying Lemma 3.13, ||ζ ||L∞H s−1 and ||ζ ||L∞H s−1 ≤ C[v0].

I1 ≤ C

∣∣∣
∣∣∣Q2 ◦ X − Q2

∣∣∣
∣∣∣
L∞H s−1

||X ||2
L∞H s+1 ||w||H ht,s+1

(0)

≤ C[v0] ||X − α||L∞H s−1 ||w||
H

ht,s+1
(0)

≤ C[v0]T
1
4 .

Also, by Lemma 3.13,

I2 ≤
∣∣∣
∣∣∣Q2(ζ − I)∂ζ∂w

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣Q2(ζ − I)ζ ∂2w

∣∣∣
∣∣∣
L2 H s−1

≤C ||ζ − I||L∞H s−1 (||∂ζ ||L∞H s−1 ||∂w||L2 H s−1 + ||ζ ||L∞H s−1

∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣
L2 H s−1

)

≤C[v0] ||ζ − I||L∞H s−1 ||w||
H

ht,s+1
(0)

.

The identity ζ − I = ζ (I− ∇X) = ζ∇ (α − X), together with Lemma 3.13, allows

us to get

||ζ − I||L∞H s ≤ ||ζ ||L∞H s ||X − α||L∞H s+1

≤ C[v0]
(
||X − α − Av0t ||L∞H s+1 + T ||Av0||s+1

)
≤ C[v0]T

1
4 ,

(76)

Thus

I2 ≤ C[v0]T
1
4 .
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It remains I3 for which we compute

I3 =
∣∣∣
∣∣∣Q2∂((ζ − I)∂w)

∣∣∣
∣∣∣
L2 H s−1

≤
∣∣∣
∣∣∣Q2∂ζ∂w

∣∣∣
∣∣∣
L2 H s−1

+
∣∣∣
∣∣∣Q2(ζ − I)∂2w

∣∣∣
∣∣∣
L2 H s−1

≤C[v0](||∂ζ ||L∞H s−1 ||w||L2 H s + ||ζ − I||L∞H s−1 ||w||L2 H s+1)

≤C[v0] ||ζ − I||L∞H s ||w||
H

ht,s+1
(0)

≤ C[v0]T
1
4 .

We are done with || fw||L2 H s−1 . At this point it is easy to check that an analogous

procedure yields

∣∣∣∣ fφ
∣∣∣∣

L2 H s−1 ≤ C[v0]T
1
4 ||φ||L2 H s+1 ≤ C[v0]T

1
4 .

We notice that in the bound of || fw||L2 H s−1 the only bound we really need on w is for

||w||L2 H s+1 . In addition ||φ||L2 H s+1 ≤ C[v0].
Next we deal with

∣∣∣∣ fq

∣∣∣∣
L2 H s−1 . We separate into two terms,

∣∣∣∣ fqw + fqφ

∣∣∣∣
L2 H s−1 ≤∣∣∣∣ fqw

∣∣∣∣
L2 H s−1 +

∣∣∣∣ fqφ

∣∣∣∣
L2 H s−1 Indeed, by lemmas 3.10, 3.13 and expression (76) he

have that

∣∣∣∣ fqw

∣∣∣∣
L2 H s−1 ≤ ||A ◦ X(ζ − I)∂qw||L2 H s−1 + ||(A − A ◦ X)∂qw||L2 H s−1

≤(||A ◦ X ||L∞H s−1 ||ζ − I||L∞H s−1

+ ||A ◦ X − A||L∞H s−1) ||∂qw||L2 H s−1

≤C[v0]T
1
4 ||qw||H ht,s

pr (0)

≤ C[v0]T
1
4 .

Here we notice that in the previous inequality the only bound we really need on qw is

for the norm ||∂qw||L2 H s−1 . Therefore we have that

∣∣∣∣ fqφ

∣∣∣∣
L2 H s−1 ≤ C[v0]T

1
4

∣∣∣∣∂qφ

∣∣∣∣
L2 H s−1 ≤ C[v0]T

1
4 .

Thus we are done with || f ||L2 H s−1 .

Using the same splitting we now deal with || f ||
H

s−1
2

(0)
L2

:

|| fw||
H

s−1
2

(0)
L2
≤
∣∣∣
∣∣∣(Q2 ◦ X − Q2)ζ ∂(ζ∂w)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
+
∣∣∣
∣∣∣Q2(ζ − I)∂(ζ∂w)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

+
∣∣∣
∣∣∣Q2∂((ζ − I)∂w)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
≡ I4 + I5 + I6.

We need to split

(Q2 ◦ X − Q2)ζ ∂ (ζ∂w)

= (Q2 ◦ X − Q2)(ζ − I)∂ (ζ∂w)

+ (Q2 ◦ X − Q2)∂ ((ζ − I)∂w)+ (Q2 ◦ X − Q2)∂2w
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= (Q2 ◦ X − Q2)(ζ − I)∂ ((ζ − I)∂w)+ (Q2 ◦ X − Q2)(ζ − I)∂2w

+ (Q2 ◦ X − Q2)∂ ((ζ − I)∂w)

+ (Q2 ◦ X − Q2)∂2w.

We bound I4 by using lemma 3.7 as follows,

I4 ≤
∣∣∣
∣∣∣Q2 ◦ X − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

(
1+ ||ζ − I||

H
s−1

2
(0)

H1+δ

)

(
||∂ ((ζ − I)∂w)||

H
s−1

2
(0)

H0
+
∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

H0

)
.

Using lemma 3.6, with 1
q
= ε, yields

||∂(ζ − I)∂w||
H

s−1
2

(0)
L2
≤ ||∂(ζ − I)||

H
s−1

2
(0)

H ε
||∂w||

H
s−1

2
(0)

H1−ε

≤ C[v0] ||X − α||
H

s−1
2

(0)
H2+ε

||w||
H

s−1
2

(0)
H2−ε

≤ C[v0]
(
||X − α − Av0t ||

H
s−1

2
(0)

H2+ε
+ ||tv0||

H
s−1

2
(0)

H2+ε

)
≤ C[v0],

for ε > 0 and small enough. Also

∣∣∣
∣∣∣(ζ − I)∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
≤ ||ζ − I||

H
s−1
2

(0)
H1+δ

∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
≤ C[v0].

Finally,

∣∣∣
∣∣∣Q2 ◦ X−Q2

∣∣∣
∣∣∣

H
s−1
2

(0)
H1+δ

≤ C[v0]
(
||X−α − Av0t ||

H
s−1
2

(0)
H1+δ

+ ||t Av0||
H

s−1
2

(0)
H1+δ

)

(77)

and we have that ||t ||
H

s−1
2

(0)

≤ C
√

T . Also,

∣∣∣∣
∣∣∣∣∂t

∫ t

0

(X−α − Av0t)

∣∣∣∣
∣∣∣∣

H
s−1
2

(0)
H1+δ

≤ C[v0]
∣∣∣∣
∣∣∣∣
∫ t

0

(X−α − Av0t)

∣∣∣∣
∣∣∣∣

H
s−1
2
+ε+1−ε

(0)
H1+δ

≤ C[v0]T ε ||X − α − Av0t ||
H

s−1
2
+ε

(0)
H1+δ

≤ C[v0]T ε ||X − α − Av0t ||Fs+1 ≤ C[v0]T ε,

where we have used lemma 3.4, with 1
2

< s−1
2
+ ε < 1 and Lemma 3.8 . With this

last inequality we conclude the estimate for I4.
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For I5 we have to make the following splitting Q2(ζ−I)∂(ζ∂w) = Q2(ζ−I)∂((ζ−
I)∂w)+ Q2(ζ − I)∂2w and then

I5 ≤ ||Q2||H1+δ ||ζ − I||
H

s−1
2

(0)
H1+δ

(
||∂ ((ζ − I)∂w)||

H
s−1

2
(0)

H0
+
∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

H0

)
.

The terms inside of the parenthesis in the previous expression have already been

estimated in I4. Using lemmas 3.8 and 3.4 we find that

||ζ − I||
H

s−1
2

(0)
H1+δ

≤ C[v0]T ε ||ζ − I||
H

s−1
2
+ε

(0)
H1+δ

≤ C(M)T ε ||X − α||
H

s−1
2
+ε

(0)
H2+δ

,

by Lemma 3.13. Proceeding as for I4 we have that I5 ≤ C[v0]T ε. We are done with

I5. For I6 we have that

I6 ≤
∣∣∣
∣∣∣Q2∂(ζ − I)∂w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
+
∣∣∣
∣∣∣Q2(ζ − I)∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
.

Both terms can be handled as before. In fact

∣∣∣
∣∣∣Q2(ζ − I)∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
≤||Q2||H1+δ ||ζ − I||

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣∂2w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤C[v0]T ε ||w||
H

ht,s+1
(0)

≤ C[v0]T ε,

and

∣∣∣∣Q2∂(ζ − I)∂w
∣∣∣∣

H
s−1

2
(0)

L2
≤ ||Q2||H1+δ ||∂(ζ − I)||

H
s−1

2
(0)

H ε
||∂w||

H
s−1

2
(0)

H1−ε

≤ C ||ζ − I||
H

s−1
2

(0)
H1+ǫ

||w||
H

s−1
2

(0)
H2−ε

≤ C[v0]T ε ||w||
H

ht,s+1
(0)

≤ C[v0]T ε,

for ε > 0 and small enough. We are done with I6 and therefore with || fw||
H

s−1
2

(0)
L2

. A

similar procedure allows us to get

∣∣∣∣ fφ
∣∣∣∣

H
s−1

2
(0)

L2
≤ C[v0]T ǫ .

Here we remark the main differences to get it. We need split φ = v0 + tψ . For the

terms coming from v0 we do not find any problem because v0 does not depend on

time, and for the terms coming from tψ we can use that ψ does not depend on t and

||t ||
H

s−1
2

(0)

≤ C
√

T .
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The estimate of
∣∣∣∣ fq

∣∣∣∣
H

s−1
2

(0)
L2

is obtained as follows. First we split fq = fqw + fqφ
,

we can write

fqw = (−A ◦ X + A) (ζ − I) ∂qw + (−A ◦ X + A)∂qw − A(ζ − I)∂qw.

Then we can estimate

∣∣∣∣ fqw

∣∣∣∣
H

s−1
2

(0)
L2

≤ ||(A ◦ X − A)(ζ − I)∂qw||
H

s−1
2

(0)
H0
+ ||(A ◦ X − A)∂qw ||

H
s−1

2
(0)

H0

+ ||A(ζ − I)∂qw||
H

s−1
2

(0)
H0

≤ C[v0]
(
||(A ◦ X − A)||

H
s−1

2
(0)

H0
||(ζ − I)||

H
s−1

2
(0)

H0
+ ||(A ◦ X − A)||

H
s−1

2
(0)

H0
+ ||(ζ − I)||

H
s−1

2
(0)

H0

)

≤ C[v0]T ε .

For fqφ
we have that

fqφ
= (−A ◦ X + A) (ζ − I) ∂qφ + (−A ◦ X + A)∂qφ − A(ζ − I)∂qφ .

Here we can not take
∣∣∣∣∇qφ

∣∣∣∣
H

s−1
2

(0)
H0

because ∇qφ |t=0 �= 0. Fortunately we do not

need it since qφ does not depend on t . Similarly to
∣∣∣∣ fqw

∣∣∣∣
H

s−1
2

(0)
H0

we have that

∣∣∣∣ fqφ

∣∣∣∣
H

s−1
2

(0)
H0

≤ C[v0]T ε. This finishes the bounds for || f ||
H

s−1
2

(0)
L2

and therefore

we are done with || f ||
H

ht,s−1
(0)

.

P1.2. Estimate for g(n):

We recall that

∣∣∣
∣∣∣g(n)

∣∣∣
∣∣∣

H
ht,s
(0)

=
∣∣∣
∣∣∣g(n)

∣∣∣
∣∣∣
L2 H s

+
∣∣∣
∣∣∣g(n)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1
.

We will first estimate the H0 H s-norm and after that the H
s+1

2 H−1-norm. We will

split g(n) in the following terms,

g(n) = −T r
(
∇v(n)ζ (n) A ◦ X (n)

)
+ T r

(
∇v(n) A

)

+ T r
(
∇φζφ Aφ

)
− T r (∇φ A)

= −T r
(
∇w(n)ζ (n) A ◦ X (n)

)
− T r

(
∇φ(ζ (n) A ◦ X (n) − ζφ Aφ)

)

+ T r
(
∇w(n) A

)
+ T r

(
∇φζφ Aφ

)
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= −T r
(
∇w(n)

(
ζ (n) − I

)
A ◦ X (n)

)
− T r

(
∇φ
(
ζ (n) − ζφ

)
A ◦ X (n)

)

+ T r
(
∇w(n)

(
A − A ◦ X (n)

))
+ T r

(
∇φζφ

(
Aφ − A ◦ X (n)

))
,

From the partition of g(n) we have that

∣∣∣
∣∣∣g(n)

∣∣∣
∣∣∣
L2 H s

=
∣∣∣
∣∣∣∇w(n)

(
ζ (n) − I

)
A ◦ X (n)

∣∣∣
∣∣∣
L2 H s

+
∣∣∣
∣∣∣∇φ

(
ζ (n)−ζφ

)
A ◦ X (n)

∣∣∣
∣∣∣
L2 H s

+
∣∣∣
∣∣∣∇w(n)

(
A − A ◦ X (n)

)∣∣∣
∣∣∣
L2 H s

+
∣∣∣
∣∣∣∇φ

(
Aφ − A ◦ X (n)

)∣∣∣
∣∣∣
L2 H s

≡ I1 + I2 + I3 + I4.

Since H s is an algebra for s > 1 as stated in Lemma 3.5 we have that

I1 ≤
∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣A ◦ X (n)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣
L2 H s

.

Therefore, applying lemma 3.10 yields

I1 ≤ C[v0]
∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

and using (76) we get I1 ≤ C[v0]
∣∣∣∣w(n)

∣∣∣∣
H

ht,s+1
(0)

T
1
4 . Similarly we obtain that I2 ≤

C[v0]T
1
4 . In addition, by using lemma 3.10 it can be checked that I3 ≤ C[v0]T

1
4 ,

since ||∇φ||L2 H s ≤ C[v0]. And by lemma 3.10 I4 ≤ C[v0]T
1
4 .

Then we have proved that
∣∣∣∣g(n)

∣∣∣∣
L2 H s ≤ C[v0]T

1
4 .

To estimate the H
s+1

2 H−1-norm of g(n), we split in a different way

g(n) = −T r
(
∇w(n)ζ (n) A ◦ X (n)

)
+ T r

(
∇w(n) A

)

− T r
(
∇φ(ζ (n) − ζφ)A ◦ X (n)

)
+ T r

(
∇φζφ(Aφ − A ◦ X (n))

)

≡ −g(n)
w − g

(n)
φ , (78)

where

g(n)
w = T r

(
∇w(n)ζ (n) A ◦ X (n)

)
− T r

(
∇w(n) A

)

= T r
(
∇w(n)(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

)
+ T r

(
∇w(n)(ζ (n) − ζφ)Aφ

)

+ T r
(
∇w(n)ζφ(A ◦ X (n) − Aφ)

)
+ T r

(
∇w(n)(ζφ − I)Aφ

)

+ T r
(
∇w(n)(Aφ − A)

)
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and

g
(n)
φ = T r

(
∇φ(ζ (n) − ζφ)A ◦ X (n)

)
− T r

(
∇φζφ(Aφ − A ◦ X (n))

)

= T r
(
∇φ(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

)
− T r

(
∇φζφ(Aφ − A ◦ X (n))

)

+ T r
(
∇φζφ Aφ

)
.

First we will bound g(n)
w and then we will do the same with g

(n)
φ . Taking H

s+1
2 H−1-

norms yields,

∣∣∣
∣∣∣g(n)

w

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1
≤
∣∣∣
∣∣∣∇w(n)(ζ (n) − ζφ)

(
A ◦ X (n) − Aφ

)∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

+
∣∣∣
∣∣∣∇w(n)(ζ (n) − ζφ)Aφ

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

+
∣∣∣
∣∣∣∇w(n)ζφ(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

+
∣∣∣
∣∣∣∇w(n)(Aφ − A)+ ∇w(n)(ζφ − I)Aφ

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

= I1 + I2 + I3 + I4. (79)

For I1 we have that

I1 =
∣∣∣
∣∣∣∇w(n)(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

=
∣∣∣∣
∣∣∣∣
∫ t

0

∂t

(
∇w(n)(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

)∣∣∣∣
∣∣∣∣

H
s+1

2
(0)

H−1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

∂t∇w(n)(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣∣
∣∣∣∣

H
s+1

2
(0)

H−1

+
∣∣∣∣
∣∣∣∣
∫ t

0

∇w(n)∂t (ζ
(n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣∣
∣∣∣∣

H
s+1

2
(0)

H−1

+
∣∣∣∣
∣∣∣∣
∫ t

0

∇w(n)(ζ (n) − ζφ)∂t (A ◦ X (n) − Aφ)

∣∣∣∣
∣∣∣∣

H
s+1

2
(0)

H−1

≡ I11 + I12 + I13.

And we bound I11, I12 and I13 as follows

I11 ≤
∣∣∣
∣∣∣∂t∇w(n)(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1
,
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since 0 < s−1
2

< 1 and we can apply Lemma 3.4 with ε = 0. Moreover, applying

Lemma 3.7 we obtain that

I11 ≤ C[v0]
∣∣∣
∣∣∣∇∂tw

(n)
∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
.

In addition

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
≤
∣∣∣∣
∣∣∣∣∂t

∫ t

0

ζ (n) − ζφ

∣∣∣∣
∣∣∣∣

H
s−1

2
(0)

H1+δ

≤ C

∣∣∣∣
∣∣∣∣
∫ t

0

ζ (n) − ζφ

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε+1−ε

(0)
H1+δ

≤ CT ε
∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

by Lemma 3.4, for 0 < s−1
2
+ ε < 1. In addition, by Lemma 3.14,

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ C[v0]
∣∣∣
∣∣∣X (n) − α − Av0t

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H2+δ

.

Then Lemmas 3.17 and 3.8 close the estimate for I11.

For I12 we have that, applying lemma 3.5 and lemma 3.7,

I12 ≤ C[v0]
∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣∂t (ζ

(n) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
.

By Lemmas 3.3 and 3.17 we obtain

I12 ≤ C[v0]
∣∣∣
∣∣∣∂t (ζ

(n) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
.

Again we can apply Lemma 3.4 to get

I12 ≤ C[v0]T ε
∣∣∣
∣∣∣∂t (ζ

(n) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H0
≤ C[v0]T ε

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s+1

2
+ε

(0)
H0

for 0 < s−1
2
+ ε < 1. Therefore lemmas 3.14 and 3.8 yield a suitable estimate for I12.

The term I13 is bounded in a similar way by using lemmas 3.17, 3.8 and 3.3.

Next we bound the second term in (79). In order to do it we split ζφ = I− t∇(Av0).

The terms coming from the identity can be bounded as I13. For the terms containing

the factor t∇(Av0) we just notice that we can proceed as for I13 but putting the factor

t together with w(n) (here we remark that we can not take ||t ||
H

s+1
2

(0)

since s+1
2

> 1.5).

Indeed
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I2 =
∣∣∣
∣∣∣t∇w(n)∇(Av0)(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

≤ C[v0]
∣∣∣
∣∣∣t∇w(n)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s+1

2
(0)

H1+δ
,

where

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s+1

2
(0)

H1+δ
=
∣∣∣∣
∣∣∣∣
∫ t

0

∂t (A ◦ X (n) − Aφ)

∣∣∣∣
∣∣∣∣

H
s−1

2
+1

(0)
H1+δ

≤ CT ε
∣∣∣
∣∣∣∂t (A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

,

for 0 < s−1
2
+ ε < 1. Finally we can apply lemma 3.17, 3.8 and 3.9.

For I3 we can proceed in a similar way that for I2. Finally for I4 we just need to

use Lemma 3.9.

The estimate of
∣∣∣∣gφ

∣∣∣∣
H

s+1
2

(0)
H−1

follows similar steps. We just notice the need to

split φ = v0 + tψ and use Lemma 3.9 and the fact that T r
(
∇φζφ Aφ

)
= O(t2).

P1.3. Estimate for h(n):

We will show the appropriate estimate for h(n) decomposing h(n) = h
(n)
v +h

(n)
v∗ +h

(n)
q

given by

h(n)
v = (∇v(n)ζ (n)∇J X (n) − ∇v(n))n0,

h(n)
v∗ = ((∇v(n)ζ (n) A ◦ X (n))∗A−1 ◦ X (n)∇J X (n) − (∇v(n) A)∗A−1)n0,

h(n)
q = (−q(n) A−1 ◦ X (n)∇J X (n) + q(n) A−1)n0. (80)

As before, we ignore the superscripts for simplicity. We deal first with the | · |
L2 H

s− 1
2

norm. Then

|hv|
L2 H

s− 1
2
≤ |∇v(ζ − I)∇J X |

L2 H
s− 1

2
+ |∇v(∇J X − I)|

L2 H
s− 1

2
≡ I1 + I2.

For I1 we find

I1 ≤ C |∇v|
L2 H

s− 1
2
|ζ − I|

L∞H
s− 1

2
|∇X |

L∞H
s− 1

2

≤ C ||v||L2 H s+1 ||ζ − I||L∞H s ||X ||L∞H s+1

≤ C[v0] ||X − α||L∞H s+1 ≤ C[v0]T
1
4 ||X − α||L∞1/4 H s+1 ≤ C[v0]T

1
4 .

For I2 the computation is analogous:

I2 ≤ C |∇v|
L2 H

s− 1
2
|∇X − I|

L∞H
s− 1

2
≤ C[v0] ||X − α||L∞H s+1

≤ C[v0]T
1
4 ||X − α||L∞1/4 H s+1 ≤ C[v0]T

1
4 .
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We are done with |hv|
L2 H

s− 1
2

. Next we deal with |hv∗|
L2 H

s− 1
2

. Indeed

|hv∗|
L2 H

s− 1
2
≤
∣∣∣(∇v(ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
L2 H

s− 1
2

+
∣∣∣(∇v(A◦X−A))∗A−1◦X∇J X

∣∣∣
L2 H

s−1
2

+
∣∣∣(∇vA)∗(A−1◦X−A−1)∇J X

∣∣∣
L2 H

s−1
2

+
∣∣∣(∇vA)∗A−1(∇J X − I)

∣∣∣
L2 H

s− 1
2
≡ I3 + I4 + I5 + I6.

It is possible to obtain

I3 ≤ C |∇v|
L2 H

s− 1
2
|ζ − I|

L∞H
s− 1

2
|X |2

L∞H
s− 1

2

|∇X |
L∞H

s− 1
2

≤ C ||v||L2 H s+1 ||ζ − I||L∞H s ||X ||3
L∞H s+1 ≤ C[v0] ||X − α||L∞H s+1

≤ C[v0]T
1
4 .

Similarly, using Lemma 3.10

I4+ I5+ I6 ≤ C[v0] |∇v|
L2 H

s− 1
2
||X−α||L∞H s+1 (||X ||2

L∞H s+1+||X ||L∞H s+1+1)

≤ C[v0]T
1
4 ||X − α||L∞1/4 H s+1 ≤ C[v0]T

1
4 .

It remains to control
∣∣hq

∣∣
L2 H

s− 1
2

. We proceed as follows:

∣∣hq

∣∣
L2 H

s− 1
2
≤
∣∣∣q(A−1 ◦ X − A−1)∇J X

∣∣∣
L2 H

s− 1
2
+
∣∣∣q A−1(∇J X − I)

∣∣∣
L2 H

s− 1
2

≤C[v0] |q|
L2 H

s− 1
2
||X − α||L∞H s+1 (||∇X ||L∞H s+1 + 1)

≤C[v0]T 1/4,

using again Lemma 3.10 to end with the bounds for |h|
L2 H

s− 1
2

.

The next step is to deal with |h|
H

s
2
− 1

4
(0)

L2
.

|hv|
H

s
2
− 1

4
(0)

L2
≤ |∇v(ζ − I)∇J X |

H
s
2
− 1

4
(0)

L2
+ |∇v(∇J X − I)|

H
s
2
− 1

4
(0)

L2
≡ K1 + K2.

This splitting provides

K1 ≤ |∇w(ζ − I)∇J X |
H

s
2
− 1

4
(0)

L2
+ |∇v0(ζ − I)∇J X |

H
s
2
− 1

4
(0)

L2

+ |t∇ψ(ζ − I)∇J X |
H

s
2
− 1

4
(0)

L2
≡ K11 + K12 + K13.
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and therefore

K11 ≤ |∇w(ζ − I)(∇J X − I)|
H

s
2
− 1

4
(0)

L2
+ |∇w(ζ − I)|

H
s
2
− 1

4
(0)

L2

≤ C |∇w|
H

s
2
− 1

4
(0)

L2
|ζ − I|

H
s
2
− 1

4
(0)

H
1
2
+δ

(
|∇J X − I|

H
s
2
− 1

4
(0)

H
1
2
+δ
+ 1

)
.

We remark that the constant above is independent of time due to Lemma 3.7. Then we

use that ∇wi = (∇wi · n0)n0 + (∇wi · t0)t0 for i = 1, 2 and

|(∇wi · t0)t0|
H

s
2
− 1

4
(0)

L2
≤ C |∇wi · t0|

H
s
2
− 1

4
(0)

L2
≤ C |wi |

H
s
2
− 1

4
(0)

H1

≤ C ||wi ||
H

s
2
− 1

4
(0)

H
3
2

≤ C ||wi ||H ht,s+1
(0)

,

together with

|(∇wi · n0)n0|
H

s
2
− 1

4
(0)

L2
≤ C |∇wi · n0|

H
s
2
− 1

4
(0)

L2
≤ |∇wi · n0|

H
ht,s− 1

2
(0)

≤C ||wi ||H ht,s+1
(0)

.

These two yield
|∇w|

H
s
2
− 1

4
(0)

L2
≤ C ||w||

H
ht,s+1
(0)

, (81)

and therefore

K11 ≤ C ||w||
H

ht,s+1
(0)

||ζ − I||
H

s
2
− 1

4
(0)

H1+δ

(
||X − α||

H
s
2
− 1

4
(0)

H2+δ
+ 1

)

≤ C[v0]
(
||X − α − Av0t ||

H
s
2
− 1

4
(0)

H2+δ
+ T

1
2

)

≤ C[v0]
(

T ǫ ||X − α − Av0t ||
H

s
2
− 1

4
+ǫ

(0)
H2+δ

+ T
1
2

)

≤ C[v0]
(

T ǫ ||X − α − Av0t ||Fs+1 + T
1
2

)
≤ C[v0]T ǫ .

For K12 it is easy to find

K12 ≤ C‖v0‖
H

3
2
|(ζ − I)∇J X |

H
s
2
− 1

4
(0)

H
1
2
+δ
≤ C[v0]T ǫ,

proceeding as before. For the last term K13 we obtain

K13 ≤ C |t∇ψ |
H

s
2
− 1

4
(0)

L2
|(ζ − I)∇J X |

H
s
2
− 1

4
(0)

H
1
2
+δ

≤ CT
1
2 ‖ψ‖

H
3
2
|(ζ − I)∇J X |

H
s
2
− 1

4
(0)

H
1
2
+δ
≤ C[v0]T ǫ,

as before. We are then done with K1.
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Using that v = w+v0+ tψ , it is possible to estimate K2 similarly as K1. Therefore

the appropriate estimate for |hv|
H

s
2
− 1

4
(0)

L2
follows.

Next we deal with |hv∗|
H

s
2
− 1

4
(0)

L2
. Indeed

|hv∗|
H

s
2
− 1

4
(0)

L2
≤
∣∣∣(∇v(ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣∣(∇v(A ◦ X − A))∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣∣(∇vA)∗(A−1 ◦ X − A−1)∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣∣(∇vA)∗A−1(∇J X − I)

∣∣∣
H

s
2
− 1

4
(0)

L2

≡ K3 + K4 + K5 + K6.

Taking v = w + v0 + tψ , we find

K3 ≤
∣∣∣(∇w(ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣∣(∇v0(ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣∣t(∇ψ(ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

L2
≡ K31 + K32 + K33.

Then using (81) we find

K31 ≤C |∇w|
H

s
2
− 1

4
(0)

L2

∣∣∣((ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

≤C ||w||
H

ht,s+1
(0)

∣∣∣
∣∣∣((ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
,

where the constant is independent of time due to Lemma 3.7. The splitting

((ζ − I)A ◦ X)∗A−1 ◦ X∇J X = ((ζ − I)(A ◦ X − A))∗(A−1 ◦ X − A−1)(∇J X − I)

+ ((ζ − I)(A ◦ X − A))∗(A−1 ◦ X − A−1)+ ((ζ − I)(A ◦ X − A))∗A−1(∇J X − I)

+ ((ζ − I)(A ◦ X − A))∗A−1 + ((ζ − I)A)∗(A−1 ◦ X − A−1)(∇J X − I)

+ ((ζ − I)A)∗(A−1 ◦ X − A−1)+ ((ζ − I)A)∗A−1(∇J X − I)+ ((ζ − I)A)∗A−1

(82)

allows us to bound K31 with bounds independent of time due to Lemma 3.11 to find

K31 ≤ C[v0] ||ζ − I||
H

s
2
− 1

4
(0)

H1+δ
≤ C[v0](||X − α − Av0t ||

H
s
2
− 1

4
(0)

H2+δ
+ T

1
2 ) ≤ C[v0]T ǫ .
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We proceed for K32 as for K12 getting

K32 ≤ C‖v0‖H3/2

∣∣∣((ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

,

so that splitting (82) allows us to bound as before K32 ≤ C[v0]T ǫ . We continue by

using previous estimates to obtain

K33 ≤ C |t∇ψ |
H

s
2
− 1

4
(0)

L2

∣∣∣((ζ − I)A ◦ X)∗A−1 ◦ X∇J X

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ
≤ C[v0]T

1
2 .

We are done with K3. Taking v = w + v0 + tψ it is possible to control K4, K5 and

K6 analogously

K4 + K5 + K6 ≤ C[v0]T ǫ .

The term |hv∗ |
H

s
2
− 1

4
(0)

L2
is then controlled and it remains to handle

∣∣hq

∣∣
H

s
2
− 1

4
(0)

L2
. We

proceed as follows:

∣∣hq

∣∣
H

s
2
− 1

4
(0)

L2
≤
∣∣q(A−1 ◦ X − A−1)(∇J X − I)

∣∣
H

s
2
− 1

4
(0)

L2
+
∣∣q(A−1 ◦ X − A−1)

∣∣
H

s
2
− 1

4
(0)

L2

+
∣∣q A−1(∇J X − I)

∣∣
H

s
2
− 1

4
(0)

L2
≡ L1 + L2 + L3.

In L1 we split q = qw + qφ to find

L1 ≤C(|qw|
H

s
2
− 1

4
(0)

L2
+ |qφ |L2)

∣∣∣(A−1 ◦ X − A−1)(∇J X − I)

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

≤C(||qw||H ht,s
pr (0)

+ C[v0])
∣∣∣
∣∣∣(A−1 ◦ X − A−1)(∇J X − I)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
≤ C[v0]T ǫ,

where the time T ǫ is found as before using Lemmas 3.7, 3.4, 3.16 and 3.13. The terms

L2 and L3 are estimated analogously to get L2 + L3 ≤ C[v0]T ǫ and finally

∣∣hq

∣∣
H

s
2
− 1

4
(0)

L2
≤ C[v0]T ǫ,

to end with the bounds for |h|
H

s
2
− 1

4
(0)

L2
. We are done with h.

Proof of Part 2:

It will be enough to show that
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∣∣∣
∣∣∣ f (n) − f (n−1)

∣∣∣
∣∣∣

H
ht,s−1
(0)

≤C[v0]
(∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

+
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+||q(n) − q(n−1)||
H

ht,s
pr (0)

)
,

∣∣∣
∣∣∣g(n) − g(n−1)

∣∣∣
∣∣∣

H
ht,s
(0)

≤C[v0]
(∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

+
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

)
,

∣∣∣h(n) − h(n−1)
∣∣∣

H
ht,s− 1

2
(0)

≤C[v0]
(∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

+
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+||q(n) − q(n−1)||
H

ht,s
pr (0)

)
.

Again we split the proof in three parts:

P2.1. Estimate for f (n) − f (n−1)

We split as in (75): f ( j) = f
( j)
w + f

( j)
φ + f

( j)
q . In f

(n)
w − f

(n−1)
w we split further

f
(n)
w − f

(n−1)
w = d1 + ...+ d6 with the following differences

d1 = (Q2 ◦ X (n) − Q2 ◦ X (n−1))ζ (n)∂
(
ζ (n)∂w(n)

)
,

d2 = Q2 ◦ X (n−1)(ζ (n) − ζ (n−1))∂
(
ζ (n)∂w(n)

)
,

d3 = Q2 ◦ X (n−1)ζ (n−1)∂
(
(ζ (n) − ζ (n−1))∂w(n)

)
,

d4 = (Q2 ◦ X (n−1) − Q2)ζ (n−1)∂
(
ζ (n−1)∂(w(n) − w(n−1))

)
,

d5 = Q2(ζ (n−1) − I)∂
(
ζ (n−1)∂(w(n) − w(n−1))

)
,

d6 = Q2∂
(
(ζ (n−1) − I)∂(w(n) − w(n−1))

)
. (83)

Above we do not distinguish from coordinates and partial derivatives, as all the cases

can be handled in the same manner. Next we estimate d1. In order to do that we split

further d1 = d11 + d12 with

d11 = (Q2 ◦ X (n) − Q2 ◦ X (n−1))ζ (n)∂ζ (n)∂w(n),

d12 = (Q2 ◦ X (n) − Q2 ◦ X (n−1))ζ (n)ζ (n)∂2w(n).

We take

||d11||L2 H s−1

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n) − Q2 ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n)∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

123



   12 Page 98 of 117 A. Castro et al.

and, since

d11 =
(

Q2 ◦ X (n) − Q2 ◦ X (n−1)
) (

ζ (n) − I

)
∂
(
ζ (n) − I

)
∂w(n)

+
(

Q2 ◦ X (n) − Q2 ◦ X (n−1)
)

∂(ζ (n) − I)∂w(n),

||d11||
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣Q2 ◦ X (n) − Q2 ◦ X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
(∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1

) ∣∣∣
∣∣∣∂(ζ (n) − I)∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂(ζ (n) − I)

∣∣∣
∣∣∣

H
s−1

2
(0)

H ǫ

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−ǫ
.

We deal with above terms as before to get

||d11||
H

s−1
2

(0)
L2
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

For d12 we find

||d12||L2 H s−1 ≤ C

∣∣∣
∣∣∣Q2 ◦ X (n) − Q2 ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n)

∣∣∣
∣∣∣
2

L∞H s−1

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

and

||d12||
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣Q2 ◦ X (n) − Q2 ◦ X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

× (

∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣
2

H
s−1

2
(0)

H1+ǫ
+ 1)

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

In order to continue we decompose the next term, d2 = d21 + d22 where

d21 = Q2 ◦ X (n−1)(ζ (n) − ζ (n−1))∂ζ (n)∂w(n),

d22 = Q2 ◦ X (n−1)(ζ (n) − ζ (n−1))ζ (n)∂2w(n).

We take

||d21||L2 H s−1 ≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n)∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣∂ζ (n)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.
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||d21||
H

s−1
2

(0)
L2
≤ C(

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1)

×
∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂ζ (n)∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H2+ǫ

∣∣∣
∣∣∣∂(ζ (n) − I)

∣∣∣
∣∣∣

H
s−1

2
(0)

H ǫ

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−ǫ

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

For d22 we find

||d22||L2 H s−1 ≤ C[v0]
∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

||d22||
H

s−1
2

(0)
L2
≤ C[v0]

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H2+ǫ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

In d3 we split as follows d3 = d31 + d32 with

d31 = Q2 ◦ X (n−1)ζ (n−1)∂(ζ (n) − ζ (n−1))∂w(n),

and

d32 = Q2 ◦ X (n−1)ζ (n−1)(ζ (n) − ζ (n−1))∂2w(n).

For d31 it is possible to get

||d31||L2 H s−1

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂(ζ (n) − ζ (n−1))∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣∂(ζ (n) − ζ (n−1))

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

||d31||
H

s−1
2

(0)
L2
≤ C(

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1)

×
(∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1

) ∣∣∣
∣∣∣∂(ζ (n) − ζ (n−1))∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2
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≤ C[v0]
∣∣∣
∣∣∣∂(ζ (n) − ζ (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H δ

∣∣∣
∣∣∣∂w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−δ

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H2+δ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

Here, in order to bound
∣∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣∣
H

s−1
2

(0)
H1+ǫ

we can do the same than in

(77).

Next, for d32 we obtain

||d32||L2 H s−1

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣(ζ (n) − ζ (n−1))∂2w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

The usual approach also gives

||d32||
H

s−1
2

(0)
L2
≤ C

( ∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
)

×
( ∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣(ζ (n) − ζ (n−1))∂2w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣∂2w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H2+δ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

In d4 we proceed by considering d4 = d41 + d42 with

d41 = (Q2 ◦ X (n−1) − Q2)ζ (n−1)∂ζ (n−1)∂(w(n) − w(n−1)),

and

d42 = (Q2 ◦ X (n−1) − Q2)ζ (n−1)ζ (n−1)∂2(w(n) − w(n−1)).

For d41 it is possible to get

||d41||L2 H s−1

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣
L∞H s−1

×
∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n−1)∂(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n−1) − α

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

123



Splash Singularities for the Free Boundary Navier-Stokes… Page 101 of 117    12 

and

||d42||
H

s−1
2

(0)
L2

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
( ∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣∂ζ (n−1)∂(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n−1) − α

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂(ζ (n−1) − I)

∣∣∣
∣∣∣

H
s−1

2
(0)

H δ

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

For d42 it is possible to get

||d42||L2 H s−1

≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
2

L∞H s−1

∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]
∣∣∣
∣∣∣X (n) − α

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

and

||d42||
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣Q2 ◦ X (n−1) − Q2

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
( ∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
2

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]
∣∣∣
∣∣∣X (n) − α

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

Analogously, one could take d5 = d51 + d52 with

d51 = Q2(ζ (n−1) − I)∂ζ (n−1)∂(w(n) − w(n−1)),

and

d52 = Q2(ζ (n−1) − I)ζ (n−1)∂2(w(n) − w(n−1)).
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The splitting yields

||d51||L2 H s−1 ≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

and

||d51||
H

s−1
2

(0)
L2

≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∂(ζ (n−1) − I)

∣∣∣
∣∣∣

H
s−1

2
(0)

H δ

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

For d52 we proceed as follows

||d52||L2 H s−1 ≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

||d52||
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
( ∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣∂2(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

Finally, writing d6 = d61 + d62 where

d61 = Q2∂ζ (n−1)∂(w(n) − w(n−1)), and d62 = Q2(ζ (n−1) − I)∂2(w(n) − w(n−1)),

it is possible to find

||d61||L2 H s−1 ≤ C

∣∣∣
∣∣∣∂ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

and

||d61||
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣∂ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H δ

∣∣∣
∣∣∣∂(w(n) − w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H1−δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.
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For d62 we proceed as for d52 to get

||d62||L2 H s−1 ≤ C[v0]T 1/4
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

||d62||
H

s−1
2

(0)
L2
≤ C[v0]T ǫ

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

We are done with f
(n)
w − f

(n−1)
w . To continue with f

(n)
φ − f

(n−1)
φ we decompose as

before but this time using f
(n)
φ − f

(n−1)
φ = d7 + d8 + d9 where

d7 = (Q2 ◦ X (n) − Q2 ◦ X (n−1))ζ (n)∂
(
ζ (n)∂φ

)
,

d8 = Q2 ◦ X (n−1)(ζ (n) − ζ (n−1))∂
(
ζ (n)∂φ

)
,

d9 = Q2 ◦ X (n−1)ζ (n−1)∂
(
(ζ (n) − ζ (n−1))∂φ

)
.

Here we need to split φ = v0 + tψ . After that we proceed as for d1, d2 and d3 to find

||d7 + d8 + d9||H ht,s−1
(0)

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

We move to the f term involving q. We split f
(n)
q = f

(n)
qw

+ f
(n)
qφ

. The splitting

f
(n)
qw
− f

(n−1)
qw

= d
q
1 + d

q
2 + d

q
3 + d

q
4 with

d
q
1 = −(A ◦ X (n)(ζ (n) − ζ (n−1)))∗∇q(n)

w ,

d
q
2 = −((A ◦ X (n) − A ◦ X (n−1))ζ (n−1))∗∇q(n)

w ,

d
q
3 = −(A ◦ X (n−1)(ζ (n−1) − I))∗∇(q(n)

w − q(n−1)
w ),

d
q
4 = −(A ◦ X (n−1) − A)∗∇(q(n)

w − q(n−1)
w ), (84)

allows us to do the work. In fact

∣∣∣∣dq
1

∣∣∣∣
L2 H s−1 ≤ C

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣A ◦ X (n)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∇q(n)

w

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

∣∣∣∣dq
1

∣∣∣∣
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
( ∣∣∣
∣∣∣A ◦ X (n) − A

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣∇q(n)

w

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.
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Sharing norms in the same manner gives

∣∣∣∣dq
2

∣∣∣∣
L2 H s−1 ≤ C[v0]T 1/4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

∣∣∣∣dq
2

∣∣∣∣
H

s−1
2

(0)
L2
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

In a similar way

∣∣∣∣dq
3

∣∣∣∣
L2 H s−1

≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣A ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4
∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4‖q(n)
w − q(n−1)

w ‖
H

ht,s
pr (0)

,

and

∣∣∣∣dq
3

∣∣∣∣
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

×
( ∣∣∣
∣∣∣A ◦ X (n−1) − A

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ
+ 1
) ∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ
∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ‖q(n)
w − q(n−1)

w ‖
H

ht,s
pr (0)

.

Finally

∣∣∣∣dq
4

∣∣∣∣
L2 H s−1 ≤ C

∣∣∣
∣∣∣A ◦ X (n−1) − A

∣∣∣
∣∣∣
L∞H s−1

∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣
L2 H s−1

≤ C[v0]T 1/4‖q(n)
w − q(n−1)

w ‖
H

ht,s
pr (0)

,

and

∣∣∣∣dq
4

∣∣∣∣
H

s−1
2

(0)
L2
≤ C

∣∣∣
∣∣∣A ◦ X (n−1) − A

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+ǫ

∣∣∣
∣∣∣∇(q(n)

w − q(n−1)
w )

∣∣∣
∣∣∣

H
s−1

2
(0)

L2

≤ C[v0]T ǫ‖q(n)
w − q(n−1)

w ‖
H

ht,s
pr (0)

.

The estimation for f
(n)
qφ
− f

(n−1)
qφ

follows similar steps. We only need to take into

account that qφ does not depend on time.

P2.2. Estimate for g(n) − g(n−1):
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We are concerned with the estimates of the norms

∣∣∣
∣∣∣g(n) − g(n−1)

∣∣∣
∣∣∣

H
ht,s
(0)

≤
∣∣∣
∣∣∣g(n) − g(n−1)

∣∣∣
∣∣∣
L2 H s

+
∣∣∣
∣∣∣g(n) − g(n−1)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1
,

We will split g(n) = −g(n)
w − g

(n)
φ (see (78)). First we will estimate the ||·||L2 H s -

norm. For g(n)
w − g(n−1)

w we have that

g(n)
w − g(n−1)

w = T r
((
∇w(n) − ∇w(n−1)

)
ζ (n) A ◦ X (n)

)

+ T r
(
∇w(n−1)(ζ (n) − ζ (n−1))A ◦ X (n)

)

T r
(
∇w(n−1)ζ (n−1)

(
A ◦ X (n) − A ◦ X (n−1)

))
− T r

((
∇w(n) −∇w(n−1)

)
A
)

= T r
((
∇w(n) − ∇w(n−1)

)
(ζ (n) − I)A ◦ X (n)

)

+ T r
(
∇w(n−1)(ζ (n) − ζ (n−1))A ◦ X (n)

)

T r
(
∇w(n−1)ζ (n−1)

(
A ◦ X (n) − A ◦ X (n−1)

))

+ T r
((
∇w(n) −∇w(n−1)

)
(A ◦ X (n) − A

)

= d1 + d2 + d3 + d4.

With d1 we proceed as follows

||d1||L2 H s =
∣∣∣
∣∣∣(∇w(n) −∇w(n−1))(ζ (n) − I)A ◦ X (n)

∣∣∣
∣∣∣
L2 H s

≤
∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣A ◦ X (n)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣∇w(n) −∇w(n−1)

∣∣∣
∣∣∣
L2 H s

. (85)

Then lemma 3.13 and (76) implies

||d1||L2 H s ≤ C[v0]
∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

≤ C[v0]T
1
4

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

For d2 we have that

||d2||L2 H s ≤
∣∣∣
∣∣∣∇w(n−1)

∣∣∣
∣∣∣
L2 H s

∣∣∣
∣∣∣A ◦ X (n)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s

.

Thus, using Lemma 3.15 yields,

||d2||L2 H s ≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞1/4 H s+1

.
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The estimate for d3 follows the next steps

||d3||L2 H s ≤
∣∣∣
∣∣∣∇w(n−1)

∣∣∣
∣∣∣
L2 H s

∣∣∣
∣∣∣ζ (n−1)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣
L∞H s

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞1/4 H s

.

And for d4 we have that, using 3.10 and proceeding as in (77)

||d4||L2 H s ≤
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

∣∣∣
∣∣∣A ◦ X (n) − A

∣∣∣
∣∣∣
L∞H s

≤ C[v0]
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

∣∣∣
∣∣∣X (n) − α

∣∣∣
∣∣∣
L∞H s

≤ C[v0]T
1
4

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

It remains to estimate the || · ||
H

s+1
2

(0)
H−1

-norm.

We will split g(n)
w − g(n−1)

w in the following terms

g(n)
w − g(n−1)

w

= T r
(
(∇w(n) − ∇w(n−1))(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

)

+ T r
(
(∇w(n) −∇w(n−1))(ζ (n) − ζφ)Aφ

)

+ T r
(
(∇w(n) −∇w(n−1))ζφ(A ◦ X (n) − Aφ)

)

+ T r
(
∇w(n−1)(ζ (n) − ζ (n−1))(A ◦ X (n) − Aφ)

)

+ T r
(
∇w(n−1)(ζ (n) − ζ (n−1))Aφ

)

+ T r
(
∇w(n−1)(ζ (n−1) − ζφ)(A ◦ X (n) − A ◦ X (n−1))

)

+ T r
(
∇w(n−1)ζφ

(
A ◦ X (n) − A ◦ X (n−1)

))

+ T r
(
(∇w(n) −∇w(n−1))(ζφ − I)Aφ + (∇w(n) − ∇w(n−1))(Aφ − A)

)

= D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8.

For D1 we have that

D1 = −
∫ t

0

T r(∂t ((∇w(n) −∇w(n−1))(ζ (n) − ζφ)(A ◦ X (n) − Aφ)))dτ

= D11 + D12 + D13

123



Splash Singularities for the Free Boundary Navier-Stokes… Page 107 of 117    12 

where

D11 =−
∫ t

0

T r(∂t (∇w(n) −∇w(n−1))(ζ (n) − ζφ)(A ◦ X (n) − Aφ))dτ,

D12 =−
∫ t

0

T r((∇w(n) −∇w(n−1))∂t (ζ
(n) − ζφ)(A ◦ X (n) − Aφ))dτ,

D13 =−
∫ t

0

T r((∇w(n) −∇w(n−1))(ζ (n) − ζφ)∂t (A ◦ X (n) − Aφ))dτ. (86)

By applying Lemma 3.4 with ε = 0 we obtain

||D11||
H

s+1
2

(0)
H−1

≤
∣∣∣
∣∣∣∂t (∇w(n) −∇w(n−1))(ζ (n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1
.

Now we use Lemma 3.5 to yield

||D11||
H

s+1
2

(0)
H−1

≤
∣∣∣
∣∣∣∂t (∇w(n) −∇w(n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

In addition Lemmas 3.17, 3.8 and 3.3 and proceeding as in (77) imply

||D11||
H

s+1
2

(0)
H−1

≤ C[v0]
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
.

And we can apply Lemma 3.4 to get

∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
≤
∣∣∣∣
∣∣∣∣∂t

∫ t

0

(ζ (n) − ζφ)

∣∣∣∣
∣∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣∣
∣∣∣∣
∫ t

0

(ζ (n) − ζφ)

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε+1−ε

(0)
H1+δ

≤ CT ε
∣∣∣
∣∣∣ζ (n) − ζφ

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

,

for 0 < s−1
2
+ ε < 1. Thus, by lemmas 3.14 and 3.8,

||D11||
H

s+1
2

(0)
H−1

≤ C[v0]T ε
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

Next we bound D12. Indeed

||D12||
H

s+1
2

(0)
H−1

=
∣∣∣
∣∣∣(∇w(n) − ∇w(n−1))∂t (ζ

(n) − ζφ)(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1
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≤ C

∣∣∣
∣∣∣(∇w(n) − ∇w(n−1))∂t (ζ

(n) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

≤ C[v0]
∣∣∣
∣∣∣∇w(n) −∇w(n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣∂t (ζ

(n) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
.

Since,
∣∣∣∣∂tζ

(n) − ∂tζφ

∣∣∣∣
H

s−1
2

(0)
H0

≤ C[v0]T ε, and
∣∣∣∣∇w(n) − ∇w(n−1)

∣∣∣∣
H

s−1
2

(0)
H1

≤

C[v0]T ε
∣∣∣∣w(n) − w(n−1)

∣∣∣∣
H

ht,s+1
(0)

we obtain a suitable estimate for D12.

The term D13 does not cause any difficulty and it can be handled as before.

For D2 we just split (Aφ)i j = Ai j + t∂k Ai j Aklv
l
0. For the terms coming from A

we just notice that A does not depend on t . For the term coming from t∂k Ai j Aklv
l
0 we

use Lemma 3.9 and the fact that ∂k Ai j Aklv
l
0 does not depend on t . For D3 a similar

argument holds after splitting ζφ = t −∇(Av0).

The estimate for D4 follows the following steps,

||D4||
H

s+1
2

(0)
H−1

≤
∣∣∣
∣∣∣∇w(n−1)(ζ (n) − ζ (n−1))(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s+1

2
(0)

H−1

≤
∣∣∣∣
∣∣∣∣
∫ t

0

∂t (∇w(n−1)(ζ (n) − ζ (n−1))(A ◦ X (n) − Aφ))

∣∣∣∣
∣∣∣∣

H
s+1

2
(0)

H−1

,

(87)

and therefore

||D4||
H

s+1
2

(0)
H−1

≤
∣∣∣
∣∣∣∂t∇w(n−1)(ζ (n) − ζ (n−1))(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

+
∣∣∣
∣∣∣∇w(n−1)∂t (ζ

(n) − ζ (n−1))(A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

+
∣∣∣
∣∣∣∇w(n−1)(ζ (n) − ζ (n−1))∂t (A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1
.

Each addend is estimated in a different manner as follows

||D4||
H

s+1
2

(0)
H−1

≤ C[v0]
∣∣∣
∣∣∣∇∂tw

(n−1)
∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

+ C[v0]
∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣∂t (ζ

(n) − ζ (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H0

∣∣∣
∣∣∣A ◦ X (n) − Aφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

+ C[v0]
∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H0

∣∣∣
∣∣∣∂t (A ◦ X (n) − Aφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
,

and we have already bounded every term in here.

For D5 we proceed as for D2 and D3.
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We will give full detail for D6.

D6 = −
∫ t

0

T r∂t (∇w(n−1)(ζ (n−1) − ζφ)(A ◦ X (n) − A ◦ X (n−1)))dτ = d31 + d32 + d33

where

D61 =−
∫ t

0

T r(∂t∇w(n−1)(ζ (n−1) − ζφ)(A ◦ X (n) − A ◦ X (n−1)))dτ

D62 =−
∫ t

0

T r(∇w(n−1)∂t (ζ
(n−1) − ζφ)(A ◦˙X (n) − A ◦ X (n−1)))dτ

D63 =−
∫ t

0

T r(∇w(n−1)(ζ (n−1) − ζφ)∂t (A ◦ X (n) − A ◦ X (n−1)))dτ. (88)

The estimates of these three terms follow similar steps as those one for D1 and D4.

First we apply lemma 3.4 with ε = 0 since 0 < s−1
2

< 1 to find

||D61||
H

s+1
2

(0)
H−1

≤
∣∣∣
∣∣∣∂t∇w(n−1)(ζ (n−1) − ζφ)(A ◦ X (n) − A ◦ X (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

≤ C[v0]
∣∣∣
∣∣∣∇∂tv

(n−1)
∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

∣∣∣
∣∣∣ζ (n−1) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
)

∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

≤ C[v0]
∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
≤ C[v0]

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
.

Above lemma 3.5, lemma 3.7, lemma 3.14 and lemma 3.17. In addition

||D61||
H

s+1
2

(0)
H−1

≤C[v0]
∣∣∣∣
∣∣∣∣∂t

∫ t

0

X (n) − X (n−1)

∣∣∣∣
∣∣∣∣

H
s−1

2
(0)

H1+δ

≤
∣∣∣∣
∣∣∣∣
∫ t

0

X (n) − X (n−1)

∣∣∣∣
∣∣∣∣

H
s−1

2
+ε+1−ε

(0)
H1+δ

≤CT ε
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H1+δ

≤ CT ε
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

for 0 < s−1
2
+ ε < 1. The estimate for D62 is quite similar. Indeed, lemma 3.4 with

ε = 0 to obtain

||D62||
H

s+1
2

(0)
H−1

≤ C

∣∣∣
∣∣∣∇w(n−1)∂t (ζ

(n−1) − ζφ)(A ◦ X (n) − A ◦ X (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H−1

≤ C[v0]
∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣∂t (ζ

(n−1) − ζφ)

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
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∣∣∣
∣∣∣A ◦ X (n) − A ◦ X (n−1)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ
.

Above we apply lemma 3.5 and the rest of the estimate follows the same steps. Next

we can make use of 3.4 with ε = 0 since 0 < s−1
2

< 1 to obtain

||D63||
H

s+1
2

(0)
H−1

≤ C[v0]
∣∣∣
∣∣∣∇w(n)

∣∣∣
∣∣∣

H
s−1

2
(0)

H1

∣∣∣
∣∣∣ζ (n−1) − ζφ

∣∣∣
∣∣∣

H
s−1

2
(0)

H1+δ

∣∣∣
∣∣∣∂t (A ◦ X (n) − A ◦ X (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
,

and therefore, it is enough to estimate
∣∣∣∣∂t (X (n) − X (n−1))

∣∣∣∣
H

s−1
2

(0)
H0

. As we did before

we obtain

∣∣∣
∣∣∣∂t (X (n) − X (n−1))

∣∣∣
∣∣∣

H
s−1

2
(0)

H0
≤CT ε

∣∣∣
∣∣∣∂t (X (n) − X (n−1))

∣∣∣
∣∣∣

H
s−1

2
+ε

(0)
H0

≤CT ε
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

To estimate D7 we just split ζφ = I − t∇(Av0) and use lemma 3.9. Finally we

estimate D8 by using lemma 3.9.

P2.3. Estimate for h(n) − h(n−1):

We split using (80) and decompose further h
(n)
v −h

(n−1)
v = d1+d2+d3+d4 where

the differences are given by

d1 = ∇v(n)(ζ (n) − ζ (n−1))∇J X (n)n0, d2 = ∇v(n)ζ (n−1)(∇J X (n) − ∇J X (n−1))n0,

d3 = ∇(v(n) − v(n−1))(ζ (n−1) − I)∇J X (n−1)n0,

d4 = ∇(v(n) − v(n−1))(∇J X (n−1) − I)n0. (89)

We estimate as follows. For d1 we find:

|d1|
L2 H

s− 1
2
≤ C

∣∣∣∇v(n)
∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n) − ζ (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣∇X (n)
∣∣∣
L∞H

s− 1
2

≤ C

∣∣∣
∣∣∣v(n)

∣∣∣
∣∣∣
L2 H s+1

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣X (n)

∣∣∣
∣∣∣
L∞H s+1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s+1

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

The time norm needs the splitting v(n) = w(n) + v0 + tψ which gives

|d1|
H

s
2
− 1

4
(0)

L2
≤ C

( ∣∣∣∇w(n)
∣∣∣

H
s
2
− 1

4
(0)

L2
+ ‖v0‖H3/2 + |t∇ψ |

H
s
2
− 1

4
(0)

L2

)

∣∣∣(ζ (n) − ζ (n−1))∇J X (n)
∣∣∣

H
s
2
− 1

4
(0)

H
1
2
+δ
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≤ C
( ∣∣∣
∣∣∣w(n)

∣∣∣
∣∣∣

H
ht,s+1
(0)

+ C[v0]
) ∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ

( ∣∣∣
∣∣∣∇J X (n) − I

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
+ 1
)

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H2+δ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

Above we have used (81) together with Lemmas 3.4, 3.7 and 3.15. Similarly

|d2|
L2 H

s− 1
2
≤ C

∣∣∣∇v(n)
∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣∇X (n) −∇X (n−1)
∣∣∣
L∞H

s− 1
2

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

|d2|
H

s
2
− 1

4
(0)

L2
≤ C

( ∣∣∣∇w(n)
∣∣∣

H
s
2
− 1

4
(0)

L2
+‖v0‖H3/2+|t∇ψ |

H
s
2
− 1

4
(0)

L2

)

∣∣∣ζ (n−1)(∇J X (n) −∇J X (n−1))

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]
( ∣∣∣
∣∣∣ζ (n) − I

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
+ 1
) ∣∣∣
∣∣∣∇J X (n) −∇J X (n−1)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

For d3 we find:

|d3|
L2 H

s− 1
2
≤ C

∣∣∣∇(v(n) − v(n−1))

∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n−1) − I

∣∣∣
L∞H

s− 1
2

∣∣∣∇X (n)
∣∣∣
L∞H

s− 1
2

≤ C

∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣
L2 H s+1

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣X (n)

∣∣∣
∣∣∣
L∞H s+1

≤ C[v0]T
1
4

∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

and

|d3|
H

s
2
− 1

4
(0)

L2
≤ C

∣∣∣∇(v(n) − v(n−1))

∣∣∣
H

s
2
− 1

4
(0)

L2

∣∣∣ζ (n−1) − I

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

( ∣∣∣∇J X (n) − I

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ
+ 1
)

≤ C

∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ

( ∣∣∣
∣∣∣X (n) − α

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H2+δ
+ 1
)

≤ C[v0]T ǫ
∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.
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Above we have used (81) together with Lemmas 3.4, 3.8 and 3.13. Similarly

|d4|
L2 H

s− 1
2
≤ C[v0]T

1
4

∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

, and

|d4|
H

s
2
− 1

4
(0)

L2
≤ C[v0]T ǫ

∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

We are done with h
(n)
v − h

(n−1)
v . In order to deal with h

(n)
v∗ − h

(n−1)
v∗ = d∗1 + ...+ d∗8

we use the splitting where

d∗1 = (∇v(n)(ζ (n) − ζ (n−1))A ◦ X (n))∗A−1 ◦ X (n)∇J X (n)n0,

d∗2 = (∇v(n)ζ (n−1)(A ◦ X (n) − A ◦ X (n−1)))∗A−1 ◦ X (n)∇J X (n)n0,

d∗3 = (∇v(n)ζ (n−1) A ◦ X (n−1))∗(A−1 ◦ X (n) − A−1 ◦ X (n−1)))∇J X (n)n0,

d∗4 = (∇v(n)ζ (n−1) A ◦ X (n−1))∗A−1 ◦ X (n−1)(∇J X (n) − ∇J X (n−1))n0,

d∗5 = (∇(v(n) − v(n−1))(ζ (n−1) − I)A ◦ X (n−1))∗A−1 ◦ X (n−1)∇J X (n−1)n0,

d∗6 = (∇(v(n) − v(n−1))(A ◦ X (n−1) − A))∗A−1 ◦ X (n−1)∇J X (n−1)n0,

d∗7 = (∇(v(n) − v(n−1))A)∗(A−1 ◦ X (n−1) − A−1)∇J X (n−1)n0,

d∗8 = (∇(v(n) − v(n−1))A)∗A−1(∇J X (n) − I)n0. (90)

Then

∣∣d∗1
∣∣
L2 H

s− 1
2
≤ C

∣∣∣∇v(n)
∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n) − ζ (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣X (n)
∣∣∣
2

L∞H
s− 1

2

∣∣∣∇X (n)
∣∣∣
L∞H

s− 1
2

≤ C

∣∣∣
∣∣∣v(n)

∣∣∣
∣∣∣
L2 H s+1

∣∣∣
∣∣∣ζ (n) − ζ (n−1)

∣∣∣
∣∣∣
L∞H s

∣∣∣
∣∣∣X (n)

∣∣∣
∣∣∣
3

L∞H s+1

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
L∞H s+1

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

For the norm in time we split as follows

∣∣d∗1
∣∣

H
s
2
− 1

4
(0)

L2
≤ C

( ∣∣∣∇w(n)
∣∣∣

H
s
2
− 1

4
(0)

L2
+ ‖v0‖H3/2 + |t∇ψ |

H
s
2
− 1

4
(0)

L2

)

×
∣∣∣((ζ (n) − ζ (n−1))A ◦ X (n))∗A−1 ◦ X (n)∇J X (n)

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]
∣∣∣
∣∣∣((ζ (n) − ζ (n−1))A ◦ X (n))∗A−1 ◦ X (n)∇J X (n)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
.

With a decomposition similar to (82), it is possible to find

∣∣d∗1
∣∣

H
s
2
− 1

4
(0)

L2
≤ C[v0]

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H2+δ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,
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with the use of Lemmas 3.4 and 3.8. In an analogous manner

∣∣d∗2
∣∣
L2 H

s− 1
2

≤ C[v0]
∣∣∣∇v(n)

∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣X (n) − X (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣
∣∣∣X (n)

∣∣∣
∣∣∣
2

L∞H s+1

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

∣∣d∗2
∣∣

H
s
2
− 1

4
(0)

L2
≤ C[v0]

∣∣∣((ζ (n−1))(A ◦ X (n) − A ◦ X (n−1))∗A−1 ◦ X (n)∇J X (n)
∣∣∣

H
s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

We proceed for d∗3 and d∗4 as for d∗2 to find

∣∣d∗3
∣∣
L2 H

s− 1
2
+
∣∣d∗4
∣∣
L2 H

s− 1
2
≤ C[v0]T

1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

∣∣d∗3
∣∣

H
s
2
− 1

4
(0)

L2
+
∣∣d∗4
∣∣

H
s
2
− 1

4
(0)

L2
≤ C[v0]T ǫ

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

A similar approach is used to find

∣∣d∗5
∣∣
L2 H

s− 1
2
≤ C[v0]

∣∣∣∇(v(n) − v(n−1))

∣∣∣
L2 H

s− 1
2

∣∣∣ζ (n−1) − I

∣∣∣
L∞H

s− 1
2( ∣∣∣

∣∣∣X (n−1)
∣∣∣
∣∣∣
3

L∞H s+1
+ 1
)

≤ C[v0]
∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣
L2 H s+1

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣
L∞H s

≤ C[v0]T
1
4

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,

and

∣∣d∗5
∣∣

H
s
2
− 1

4
(0)

L2

≤ C

∣∣∣∇(v(n)−v(n−1))

∣∣∣
H

s
2
− 1

4
(0)

L2

∣∣∣(ζ (n−1)−I)A ◦ X (n−1))∗A−1 ◦ X (n−1)∇J X (n−1)
∣∣∣

H
s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]
∣∣∣
∣∣∣v(n) − v(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

∣∣∣
∣∣∣ζ (n−1) − I

∣∣∣
∣∣∣

H
s
2
− 1

4
(0)

H1+δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

It is possible to distribute the norms in a similar manner as in d∗5 to conclude that

∣∣d∗6
∣∣
L2 H

s− 1
2
+
∣∣d∗7
∣∣
L2 H

s− 1
2
+
∣∣d∗8
∣∣
L2 H

s− 1
2
≤ C[v0]T

1
4

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

,
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∣∣d∗6
∣∣

H
s
2
− 1

4
(0)

L2
+
∣∣d∗7
∣∣

H
s
2
− 1

4
(0)

L2
+
∣∣d∗8
∣∣
L2 H

s− 1
2
≤ C[v0]T ǫ

∣∣∣
∣∣∣w(n) − w(n−1)

∣∣∣
∣∣∣

H
ht,s+1
(0)

.

Next, we deal with h
(n)
q − h

(n−1)
q = d

q
1 + d

q
2 + d

q
3 + d

q
4 where

d
q
1 = q(n−1)(A−1 ◦ X (n−1) − A−1 ◦ X (n))∇J X (n−1)n0,

d
q
2 = q(n−1) A−1 ◦ X (n)(∇J X (n−1) − ∇J X (n))n0,

d
q
3 = (q(n−1)

w − q(n)
w )(A−1 ◦ X (n) − A−1)∇J X (n)n0,

d
q
4 = (q(n−1)

w − q(n)
w )A−1(∇J X (n) − I)n0. (91)

We start as follows

∣∣dq
1

∣∣
L2 H

s− 1
2
≤ C

∣∣∣q(n−1)
∣∣∣
L2 H

s− 1
2

∣∣∣X (n) − X (n−1)
∣∣∣
L∞H

s− 1
2

∣∣∣∇X (n−1)
∣∣∣
L∞H

s− 1
2

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

∣∣dq
1

∣∣
H

s
2
− 1

4
(0)

L2

≤ C
( ∣∣∣q(n−1)

w

∣∣∣
H

s
2
− 1

4
(0)

L2
+ |qφ |L2

) ∣∣∣(A−1 ◦ X (n−1) − A−1 ◦ X (n))∇J X (n−1)
∣∣∣

H
s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

following before estimates. Likewise, it is possible to find next

∣∣dq
2

∣∣
L2 H

s− 1
2
≤ C

∣∣∣q(n−1)
∣∣∣
L2 H

s− 1
2

∣∣∣X (n)
∣∣∣
L∞H

s− 1
2

∣∣∣∇X (n) − ∇X (n−1)
∣∣∣
L∞H

s− 1
2

≤ C[v0]T
1
4

∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

,

and

∣∣dq
2

∣∣
H

s
2
− 1

4
(0)

L2

≤ C
( ∣∣∣q(n−1)

w

∣∣∣
H

s
2
− 1

4
(0)

L2
+ |qφ |L2

) ∣∣∣A−1 ◦ X (n)(∇J X (n−1) −∇J X (n))

∣∣∣
H

s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]T ǫ
∣∣∣
∣∣∣X (n) − X (n−1)

∣∣∣
∣∣∣
Fs+1

.

The next term provides

∣∣dq
3

∣∣
L2 H

s− 1
2
≤ C

∣∣∣q(n)
w − q(n−1)

w

∣∣∣
L2 H

s− 1
2

∣∣∣X (n) − α

∣∣∣
L∞H

s+ 1
2

∣∣∣∇X (n−1)
∣∣∣
L∞H

s− 1
2

≤ C[v0]T
1
4 ‖q(n)

w − q(n−1)
w ‖

H
ht,s
pr (0)

,
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and

∣∣dq
3

∣∣
H

s
2
− 1

4
(0)

L2
≤ C

∣∣∣q(n)
w − q(n−1)

w

∣∣∣
H

s
2
− 1

4
(0)

L2

∣∣∣(A−1 ◦ X (n) − A−1)∇J X (n)
∣∣∣

H
s
2
− 1

4
(0)

H
1
2
+δ

≤ C[v0]T ǫ‖q(n)
w − q(n−1)

w ‖
H

ht,s
pr (0)

.

As for d
q
3 we find

∣∣dq
4

∣∣
L2 H

s− 1
2
≤ C[v0]T

1
4 ‖q(n)

w − q(n−1)
w ‖

H
ht,s
pr (0)

,

∣∣dq
4

∣∣
H

s
2
− 1

4
(0)

L2
≤ C[v0]T ǫ‖q(n)

w − q(n−1)
w ‖

H
ht,s
pr (0)

.
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