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Abstract

In this paper, we prove the existence of smooth initial data for the 2D free boundary
incompressible Navier-Stokes equations, for which the smoothness of the interface
breaks down in finite time into a splash singularity.
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1 Introduction

In this paper, we prove that an initially smooth solution of the 2D water wave equation
with non-zero viscosity may break down in finite time by forming a splash singularity,
see Figure 1.

The analogous result for inviscid water waves was proven in our previous paper
[9]. The strategy there was to start with a splash configuration and solve backwards
in time. To do so, we first made a conformal map (essentially a branch of the square
root) P(z) from physical space to the “tilde domain” and then adapted the proof of
Ambrose-Masmoudi [3] (see also [10]) of short time existence of solutions of the
inviscid water wave equation.

The strategy of [9] cannot work for the present case of nonzero viscosity, since
the equations cannot be solved backwards in time. We will instead make use of the
transformation to the tilde domain in a new way, which we explain below.

We refer the reader to the further historical discussion at the end of the introduction,
including references to alternate proofs by Coutand-Shkoller of several of our results.

Let us first present the inviscid and viscous water wave equations, next define a
splash singularity, and then state our main result.

The 2D water wave equations govern a system consisting of water, vacuum and the
interface between them. At time 7 € R, the water occupies a region Q2(f) C R?, and
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Fig.1 How a splash forms

the vacuum occupies the complementary region R?\€2(¢). For points x in the water
region €2 (t), the velocity of the water at position x and time ¢ is u(x, t) € R?, and the
pressure is p(x, t) € R. Thus, u(x, t), p(x, t) are defined only for x € (t); finding
€2(¢) is part of the problem.

We assume here that the interface 92(r) C R is a smooth simple closed curve,
which we write in parametric form:

0Q2() ={z(a, 1) @ € R/Z},
where z : R/Z — R? is smooth and satisfies the chord-arc condition
lz(a, t) — z(a', 1) > CA@)||la — || for o, o’ € R/Z.

Here, CA(t) > 0 is the “chord-arc constant”, and || — «’|| denotes the distance
from a to o’ in R/Z.

The parametrization of the interface has no physical meaning, and can be picked
to simplify our analysis.

The inviscid water wave equations are as follows:

O +u-Vou(x,t) = —=Vyp(x,t) forx € Q(¢)
divu(x,t) =0 forx € Q(¢)
curlu(x,t) = 0 forx € Q(r)
p(x,t) =0forx € 90Q2(¢)
0 z(a, t) = u(z(a, t),t) + c(o, 1)y z(e, t) for @ € R/Z. @))

(The last equation asserts that the interface moves with the fluid. The function c(«, 1)
affects only the parametrization of the interface, and may be chosen arbitrarily).
The initial conditions for inviscid water waves are as follows:

e Q(0) = 0 (a given domain bounded by a smooth simple closed curve).
e u(x,0) = up (a given smooth divergence-free irrotational vector field) for x € Q.
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For water waves with nonzero viscosity, the relevant equations take the following
form in suitable units:

@ +u-Vou(x,t) = Axu(x,t) — Vip(x,t) forx € Q(¢)
divu(x,t) =0 forx € Q(r)
(pI—(Vu+ (Vu)*))n =0, forx € 9Q(1)
0 z(a, t) = u(z(a, t),t) + c(o, t)dgz(e, t) fora € R/Z.  (2)

Again, c(a, t) may be chosen arbitrarily.
The initial conditions are:

o Q(0) = Qq (as before).

e u(x,0) = ug for x € Qp, where ug is a given smooth divergence-free vector field
on ), satisfying the constraint

° né‘ ((Vuo + (Vu())*)) no = 0 on 9%2.

Next, we adapt from [9] the definition of a splash singularity for the compact case:

Note that the inviscid water wave equations (1) have a symmetry under time reversal,
but the viscous equations (2) have no such symmetry. This reflects the presence of the
Euler equation in (1) and the Navier-Stokes equation in (2).

Definition 1.1 We say that z(«) = (z1 (@), z2(@)) is a splash curve if

1. z1(@), z2(«) are smooth functions and 2 -periodic.

2. z(w) satisfies the arc-chord condition at every point except at &1 and o2, with 0 <
oy where z(ap) = z(ap) and |z (a1)], |z¢(@2)] > 0. This means z(«;) = z(2),
but if we remove either a neighborhood of 1 or a neighborhood of &, in parameter
space, then the arc-chord condition holds.

3. The curve z(«) separates the complex plane into two regions; a connected
water region and a vacuum region (not necessarily connected). We choose the
parametrization such that the normal vector n = W points to the
vacuum region. We regard the interface to be part of the water region.

4. We can choose a point ¢ outside the water region and a single-valued branch of
the function P(z) = /7 — ¢ on the water region with the following properties:
The image of the water region under P is bounded by a curve Z(¢) =

(Z1(@), Z2(a)) = P(z(x)) satisfying:

(a) z1(a) and Z»(«) are smooth and 27 -periodic.
(b) Zis a closed contour.
(c) z satisfies the arc-chord condition.

See Figure 2 and Figure 5 for examples of splash and non-splash curves. Although
we have taken the slit I' in Figure 5 to be a half-line, we could just as well have
taken any smooth arc joining the origin to infinity, passing through the splash point
but otherwise avoiding the water region.

The referee points out another type of splash scenario indicated in Figure 3. Our
proof can be easily adapted to this scenario by replacing P(z) = +/z — ¢ by a branch

of ./ i‘TZ with suitable a and b.
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Water region

Water region

Fig.2 Two examples of non splash curves

Fig.3 An additional splash
scenario

Water region

We can now state the main result of this paper:

Theorem 1.2 There exists a solution of the viscous water wave equation that remains
smooth for times t € [0, t) but forms a splash singularity at time t,.

Next, we recall from [9] how to produce the inviscid water waves ! that end in a
splash at time 7, > 0. We start with the splash Q(z,), u(-, ¢,) and solve the inviscid
equations (1) backwards in time. It is well known that the inviscid equations (1) can
be solved (forward or backwards in time) starting from smooth initial data (See S. Wu
[38] and [25] for a comprehensive list of references) The difficulty here is that the
initial €2(z,) is singular. To overcome this difficulty, we make a slit I" in the complex
plane as in Figure 5, and then make the conformal mapping z = P(z) for z € C\T;
here P(z) is a branch of \/z. The inverse map is simply P! (%) = z2, which of course
is well defined and smooth on the whole complex plane. We remark that we can apply
this procedure to any splash curve (see Definition 1.1) simply picking the conformal
map P(z) = +/z — ¢ with a suitable ¢ € C and choosing a branch of the square root
that separates the two splash points.

We want a solution of (1) for which 2(z,) is as in Figure 5, but for times ¢ < 1,
(t close to 1), 2(¢) avoids the slit I'. The corresponding domains Q(¢) in the tilde
domain (i.e. Q(t) = P(€2(¢)) ) behave as in Figure 6.

1 We treat here the case in which the water region Q(t) C R? is a bounded region. In [9], we studied the
case in which Q(7) is periodic with respect to horizontal translation as in Figure 4. In this introduction we
ignore the distinction between the compact and periodic cases.
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Fig.4 Horizontally periodic
- ﬂ

gsplash,Q

Zsplash,1

P(T)

splash domain
(a) The z-plane. (b) The Z-plane.

Fig.5 Desingularization of the splash domain

2splash,2

gsplash,l

(a) (b)

Fig.6 Evolution of a splash in the tilde world for t = #, and ¢ < #,

In [9] we give simple transformation laws that allow us to pass from the velocity
u(x,t) and pressure p(x,t) (defined forNx € Q(t)) to a transformed velocity and
pressure (X, t), p(x,t), defined for x € Q(¢).
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We can then write down the analogue of the inviscid water wave equations (1) in the
tilde domain. We call these equations (I they govern the evolution of Q), i(x,1)
backwards in time, with initial conditions at ¢ = ¢,.

Note that, whereas €2(z,) is singular (its chord-arc constant is zero), fl(t*) is
bounded by a smooth simple closed curve. Moreover, the transformed water wave
equation (1) behave much like the original equations (1). Adapting the energy esti-
mates of Ambrose and Masmoudi [3], we prove existence of a smooth solution of (1)
fortimest € [t, —e, t. +¢&], with Q(t*) asin Figure 5. Aslong as fZ(t) avoids P(I") for
allt € [t, — ¢, t,), we obtain a corresponding solution of (1) with Q2 (¢) = p-! (fZ(t))
a smooth simple closed curve for ¢ € [z, — ¢, t,), We can guarantee that Q(t) avoids
P(I") fort € [t — ¢, t,) by taking & smaller and carefully picking the initial velocity
i at the two points Zspiash,1 and Zspiash,2 in Figure 6. Thus, we have produced an
inviscid water wave that starts out smooth at time 7, — ¢ and ends in a splash at time
Ty.

This concludes our discussion of the inviscid water wave equations (1).

We pass to the viscous case, where we no longer have the luxury of solving back-
wards in time. Just as in the inviscid case, there is an analogue of the water wave
equations (2) in the tilde domain, which we call equations (2) (we won’t write them
out in the introduction, see section 2 for a precise definition).

The unknowns in the tilde domain are a time-varying domain €(¢), a velocity field
u(x,t) and a pressure p(x, t) with u, p defined for x € Q).

The relationship between equations (2) and equations (2) is as follows:

Every solution 2(¢), u(-, t), p(-,t) of (2) such that Q(¢) avoids the slit I" gives
rise to a solution Q(7), i(-, 1), p(-, 1) of (2), with (r) = P(2(r)). On the other
hand, let (1), @(-, 1), p(-, 1) be a solution of (2). We would like to define a solu-
tion Q(¢), u(-, 1), p(-,t) of (2) such that Q(t) = P~ 1(Q(t)) However, this may not
be possible, because P~ L)) may self-intersect, as in Figures 7(b) and 7(c). In
particular, P~'(3€2(r)) in Figure 7(c) is clearly not the boundary of any physically
meaningful water region.

The good news is that Figures 7(b) and 7(c) are the only obstructions; as
long as P~ l(E)SZ(I)) is as in Figure 7(a), we can easily pass from our solution
Q) a(-, 1), p(,t) of (2) to a solution (1), u(-, 1), p(,t) of (2) with Q(¢) =

P~H Q). i i

Let us now solve equations (2) for times # > 0, starting with smooth initial €2(0)
and u(-, 0). Adapting the analysis of Beale [5] from (2) to the tilde domain, we prove
that smooth solutions fZ(t), u(-, 1), p(-, t) of (i) with the given initial conditions exist
for short time, i.e. for ¢t € [0, T'] with small positive 7 depending on Q0), (-, 0).
Moreover, the solutions of (2) depend stably on the initial conditions.

For suitable one-parameter families of initial conditions Qs (0), g (-, 0) depending
on a small parameter ¢, there is a family of smooth solutions Qs @), ug(-, 1), pe(-, 1)
solving (1) up to time T, with |32, (1) — 3€2(r)|| = O(e) in a suitable norm || - |

We are ready to combine the ingredients above. We start with smooth initial con-
ditions Q(0), i (-, 0) with P~1(3$2(0)) as in Figure 7(b). Solving (2) for a short time,
we obtain smooth solutions (z), (-, 1), p(-, 1) for times ¢t € [0, T] (some T > 0).
By making T smaller and picking the initial velocity i (-, 0) so that it (zspiasn,1, 0) and

@ Springer



Splash Singularities for the Free Boundary Navier-Stokes... Page 7 of 117 12

P~H(Q(t)) P(I)

Fig. 7 Possibilities for p-! (Q(t))

u(Zsplash,2, 0) point in the right direction, we can guarantee that P~L® fZ(T)) behaves
as in Figure 7(c).

Next, we pick a one-parameter family of initial conditions €, (0) and i (-, 0) per-
turbing our Q(O), (-, 0). We can easily arrange that for small positive ¢, P~ 1® 528 0))
looks like Figure 7(a), even though P_1(8§2(O)) is as in Figure 7(b). The perturbed
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Fig.8 A splash singularity
forms at two points
simultaneously

a

solution Q¢ (1), i (-, 1), Pe(-, 1) will satisfy |02 (T) — 9Q(T)|| = O(e). Hence, for
& > 0 small enough, p-! (aflg(T)) will be as in Figure 7(c), since the same holds for
p! (BQ(T)). Forsuche, P! (8525 (1)) starts out as in Figure 7(a) for t = 0 and ends
as in Figure 7(c) for t = T. Fix such an ¢ and let

t, = inf {t e[0,T]: P*](Bﬁs(t)) is as in Figure 7(b) or 7(c)]

Then, 0 < #, < T, P~1(8Q,(zy)) is as in Figure 7(b), and P~ (32 (1)) is as
in Figure 7(a) for 0 < ¢ < t,. Consequently, Qs(t), Ug(-, 1), pe(-, 1) gives rise to a
solution of (2), the viscous water wave equation, for ¢ € [0, t,), ending in a splash at
time t,.

The paper is organized as follows: in Section 2 we derive the equations in the tilde
domain, in Section 3 we setup the different spaces and we prove the auxiliary technical
lemmas that we will use throughout the estimates. Section A is devoted to the study
of the linear part of the Navier-Stokes equation, whereas Section 5 incorporates the
effects of the nonlinear part. Section 6 closes the argument by showing the structural
stability of the equation. Finally, in Section 7 we show that we can pick an initial
velocity in such a way that the splash is formed.

We discuss briefly the types of singular interfaces that our methods produce.

Given any splash curve I', our main result produces initially smooth solutions of
the viscous water wave equations that end in splash curves I" arbitrarily close to I’
in, say, C2. Other scenarios are possible. For instance, we believe it will be easy to
produce initially smooth solutions that end with an interface as in Figure 8. Thus, at
the moment of breakdown, the interface self-intersects at two points A and B.

To do so, we introduce a suitable two-parameter family of initial conditions. Let
these initial conditions be parametrized by (A, 1) in a small neighborhood of the origin
in R?. The initial condition corresponding to any (A, 1) will be smooth and will depend
smoothly on A, u when viewed in the tilde domain. We write I' (%, ) to denote the
time-zero interface for the initial conditions arising from (X, ©). We can arrange that
I'(0, 0) is as in Figure 8, and that for small positive A, u, the curve I'(A, w) is as in
Figure 9, where the distance from A to A is comparable to A, and the distance from
B to B; is comparable to u.
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Fig.9 Sketch of the situation
before a splash singularity

We arrange the initial velocities so that at time zero, points A; and A, are moving
towards each other with velocity ~ 1, and similarly for points B and B.

The time evolution of a viscous water wave with initial conditions arising from
(X, p) can be controlled by passing to the tilde domain and applying the analysis in
the forthcoming sections below. We find that the interface begins to self-intersect near
point A at time 4 (A, u) ~ A. Similarly, the interface begins to self-intersect near
point B at time tp(A, u) ~ . If 0 < A <K u <K 1, then tp(A, u) < ta(x, u); but if
0<u <KXt thenta(r, u) < tg(r, ). Hence, for some small nonzero (A, w),
we have that 74 (X, n) = tp(A, n), at which time the interface looks like Figure 8.
Thus, we can produce initially smooth viscous water waves that end with an interface
that self-intersects at two distinct points.

We close the introduction by citing some of the relevant literature on viscous water
waves.

Some of the earliest papers in this topic were written by Solonnikov. He studied
the problem of a viscous fluid bounded by a free boundary in the vacuum (the fluid
domain is bounded). He showed local existence of solutions with [32] using Holder
spaces in the frame of parabolic systems for bounded domains and without surface
tension [33,34]. Local existence and uniqueness of solutions was shown by Beale in
[5] in Sobolev spaces with non-slip boundary condition at a regular bottom for the
fluid and extended to L? spaces by Abels [1]. A second theorem in the former paper
showed that for any 7" > 0 there exist solutions of sufficiently small initial data on
[0, T']. For the case with surface tension, see also Tani [36] and Coutand-Shkoller
[12]. Masmoudi and Rousset [28] studied the case where the viscosity tends to zero
for the free boundary problem (see [18] for the case with surface tension). The case of
aviscous fluid lying above a bottom has been extensively studied. For the case without
surface tension Sylvester, in [35], showed global well-posedness for small initial data.
Hataya, in [23], showed the existence of solutions which decay algebraically in time
for a periodic in the horizontal variable surface. Guo and Tice, in [20-22], have proved
algebraic decay rate in time for asymptotically flat surfaces and almost exponential
decay rate in time for periodic in the horizontal variable surfaces.

Global in time regularity was first given for small initial data in [6] by adding to the
system surface tension effects (see also [4] for an alternative proof). In [35,37] global
existence is obtained without the help of surface tension. Decay rates have been also
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considered to understand the long time behavior of the solution. For the case with
surface tension see [7,30].

In the case of a two fluid problem there are some recent results where local well-
posedness and global existence for small data is shown. The situations consider low
regular initial velocities in critical spaces, in some cases within the chain of Besov
spaces (see [16,17,24,26,31] and the references therein for more details).

Existence of splash singularities for inviscid water waves was proven in our paper
[9], see also Coutand-Shkoller [13] for an alternate proof with applications to a 3D
setting.

The inviscid splash is not prevented by taking into account gravity or surface tension
(see [8]), but it is prevented by replacing the vacuum in R?\ €2 (¢) by an incompressible
opposing fluid; see [19] as well as an alternate proof by Coutand-Shkoller [15]. It has
been shown in [11] that there exist “almost splash” stationary solutions in the two fluid
case. We caution that the nonexistence of a splash does not rule out a breakdown in
which the chord-arc constant degenerates and the solution loses smoothness; again,
see [19].

Our strategy for the viscous splash, as outlined above, was announced at the 40émes
Jjournées EDP (2013) in Biarritz, at the 2013 Clay Research Conference (Oxford) and
more recently at the Minerva Distinguished Visitor Lectures in Princeton in 2014.
Finally, in this paper we provide details.

We remark that the estimates we make in the tilde domain are given in detail in
the Appendices for the reader’s convenience, but they are simply adapted from well
known estimates for the nontilde domain.

We refer the reader to Coutand-Shkoller [14] for a different proof of the formation
of splash singularities for viscous water waves.

2 Equations: Transformation to a Nonsplash Domain

We have to solve the 2D-Navier-Stokes equations in the fluid domain €2 (¢),

du—+ w-Vyu—Au=—Vp, inQ(r), A3)
V.ou=0, inQQ), (4)

(pI— (Vu+ (Vu)*))n =0, ondQ), 5)
u(t)|;=o0 = uo, in 2(0) = Qo, (6)

where
Q) = X(£2(0), 1)
with X (¢, t) solving

dX@.n _
T = M( (O{, l),f)

X(,0) = o, ae Q(0),
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and n(t) is unit normal vector to €2 (¢) (pointing out). Here, 29 and u( are given and
satisfy the compatibility conditions

V. uyg = 0, in Q()
ng (Vuo + (Vug)*) no =0 on 32,

with ng = n(0). The condition
(pI—(Vu+ (Vu)*))|mm n=0

states the continuity of the normal stress through the interface. We will use the symbol
* to denote the transpose of a matrix.
We notice that the pressure, p, will be given by the following elliptic problem

—Ap =V -((u-Vu) in Q(1)
p =n (Vu + (Vu)*) n on d2(1).

Let P(z) be defined as in the introduction and let Q(r) = P(2(r)). Next we
will write the system (3-6) in the domain €2(¢) and after that, by using Lagrangian
coordinates, we will fix the domain in order to work in the domain €2(0) rather than
in (¢).

Remark 2.1 At this point one should notice that we are assuming that Q(¢) is the pro-
jection by P of Q2(¢) and that Q(r)isa simply connected bounded domain. Therefore
P~ is a well defined analytic function. Once we have written the N-S system in Q(¢)
this assumption will not be needed anymore.

We defineii =uo P 'and p = po P! and

0% = ‘;—f 01| @)
Then
dju' = (i’ o P)d; P
and therefore
djut o P71 = Ay’
where
Ay =0;Pko P71 ®)

In addition, let’s assume that we traverse (clockwise) the boundary of €2(#) using the
parametrization z(y, ), i.e.,
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Q) = (z(y,1) eR? : y € [-7, ) x [0, T1}.
and
n=(=z,(y.0.2,(y.0).

Since the boundary of Q(t) can be parameterized by Z(y,t) = P(z(y, t)) we have
that

2, =P o PTG ) ()
thus

ii = —J AlygIn.

0-1
=0
Using the previous expression and the fact that P is a conformal map we can write
the system (3—6) in the domain €2(z) as follows:

where

dii + (Aii - V)it — Q*Aii = —A*Vp, in Q1), )

Tr (ViA) = 0, in Q(r), (10)

(PI— (ViiA + (ViiA)*)) A7'ii =0, ondQ@), (11)
i(t)|,—o = fg, in Q(0) = . (12)

where Tr(A) is the trace of the matrix A and
Q@) = X(Q(0),1)
with X (a, 1) solving
% = (A0 X(@n) (@0 X.n)
X, 0)=«a, «oc Q).
Here we have used that
0*A ' =—JAJ.
Now we will fix the domain by working with the variables
Do, ) = o X(a, 1) o€,

G, 1) = poX(a, 1) «ac€.
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The system (9-12) in terms of (v, ¢) reads
¥ i — 0% o X&ijdk (Ezﬂz%) = —Aki 0 XZjd;G in Qo. (13)
Tr (Vﬁg:Aof() —0 in (14)

(a1- ((vatao %)+ (VitaoX)')) A~ o XV, Xig =0 ondS, (15)

Blio = o = dlo, (16)
where
-1
T . l C e
= (VX) , (; )ij —0;Xi, V,;X=-JVXJ
and
dX(a,t -
% = Ao X(a, (e, 1) (17)
X(@,0)=a, «ac. (18)

We will solve the system (13—16) by iteration towards a fixed point. We study first
the linear system that will be used for that purpose.

9,5 +D — Q2AFHD — _A*ygtD 4 F0 iy & (19)
Tr (Vﬁ("+l)A> =5" inQq (20)

k ~ ~
(7= ((von+Pa) + (vantDa) )) 4o =™ onaG. D)
50+ o = 55D = i, (22)

where

F" =020 XM o (805" ) — Q2 AT — Ak o RVE 0,3 + Atk
(23)
g = —Tr (Vi"EW A0 X)) + 71 (Vi) (24)

o — ((ng(n)A o ,}(m) n (Vﬁ(mg(n)A o )}m))*) A o XV, XM,

* ~ ~
- ((Vﬁ(”)A) + (Vﬁ(”)A) ) A Vg + ™A g — GW A 0 RV, XM,
(25)

We define X™*D ag

t
X(’H'I)(Ol, =« +/ Ao X(n)(a’ ‘[)5(”)((1’ t)drt, (26)
0
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and
;™ = (V}?W)_l VXM = —Jvx™ .

Formally, assuming convergence as n — 00, it is easy to check that in the limit
we find a solution of the nonlinear system. In what follows, we will either remove the
tilde from the notation or it will become clear from the context.

3 Definitions of the Spaces and Auxiliary Lemmas

This section is devoted to present the main tools used for both the linear and the
nonlinear case. We will also define all the spaces used for the construction of the
solutions, and their norms.

3.1 The Spaces H*

For a positive integer m, we will denote the standard Sobolev space by H™ ([0, T'])
with norm ||v]|3;,, = Yol 3/ v ”i2' We will indistinctly refer to L>([0, T']) as either
L*([0, T1) or H°([O, TY).

Here we will give a precise definition of the Sobolev spaces with fractional deriva-
tives in time that we are going to use.

As in the classical paper [5] we define H(sb)([O, T]), for 0 < s < 1, as the interpo-
lation between L2([0, T)]) and H (10)([0, T1]), where to interpolate we use the operator
S = 1— 82, with domain D(S) = {u € H*[0, T] : v(0) = 8,v(T) = 0}. The reader
can consult [27, p. 9], for further information about this interpolation (notice that in
this book the operator S is called A). After that, one can define the normin H (SO) (0, T

1
as the graph norm of the operator A®, with A = S2. An explicit computation shows
o

that {sin (%t) \/g } is an orthogonal basis of L2([0, T']) of eigenfunctions

n=1

o0

of S, with eigenvalues {1 + %} 0 and that H(B) ([0, T']) consists of functions
n=

v € L?([0, T']) such that

o0 2s

N2 (@2n+ D

||v||§1(y0)= E (vp) (T) < 0o where
n=0

T
vy = f v(?) sin (Mt> 3ah‘.
0 2T VT

For s > % we have that v € Hfo)([O, T1) implies v(0) = 0. An important fact,

remarked in [5] is, that if A is an operator bounded from L2([0, T']) to Y and from
H(} ([0, T]) to Z with constant independent of 7', where Y and Z are Hilbert spaces
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with Z C Y, then A maps H{O) onto the interpolated space [Z, Y];_; with norm
bounded independent of T'.

For larger exponents, the space H(’S)ﬂ([o, T, m =1,2,3,...and0 < s < 1, is
regarded as the subspace of {v € H" ([0, T']) : (Btkv)(O) =0, k=0,..,m—1}with
"v € H(‘YO)([O, T1). We equip this space with the norm

2 _ 2 2 m. 2
||U||H(’8)+s([(),T]) - ||v||L2([0,T]) + ||atv||L2([0,T]) + ...+ ||az U||H(S0)([()’T])~ (27)

This is the norm for fractional derivatives in time that we will use in this paper.

Again as in [5], we also introduce the space H*([0, T']). This space is defined,
for 0 < s < 1, as the interpolation of H'([0, T1) and L2([0, T]) with § = 1 — 8,2
and domain D(S) = {v € H*([0,T]) : (3v)(0) = (3;v)(T) = 0}. In this case

o0
{%, {cos (%I) %} } is a basis of L2([0,T]) of eigenfunctions of S with
1

n=

o0
eigenvalues {1 + "ZT’EZ } o Thus we can define
n=|
2
01 oy = (1 +— ) (ve)”, (28)
n=0

where

T (@) r nr N\ [2
¢ = —dt, ¢ == _dt = 1
Vg ./o JT v, /0 v(t) cos (—T t) T n >

A similar interpolation statement holds in this space. For larger derivatives we regard
H"™ ([0, T]),m =1,2,3...,0 < s < 1 as the subspace of H" ([0, T]) with 3/"v €
H*([0, T]). It happens that H(’S;“S([O, T]) = (v € H"™((0,T]) : (3v)(0) =
0, k=0,1,..,m},fors > § and H ([0, T1) = {v e H" ([0, T]) : (3{v)(0) =
0, k=0,1,....m— 1}, fors < % . Here we remark that this space will always be
equipped with the norm (27).

The space H®(T) will be the classical Sobolev space of 27 -periodic functions such
that

1 2

W semy = D _(L+ 0P IA71P s finite with =5 A f(@e a0
nez

The space H*(R"),n > 1, will be the classical Sobolev space equipped with the norm
S~
11 e ey = / (1+18P) 17 ©1as,
Rn

where fis the Fourier transform of f in R”. For a domain Q9 C R? with regular
boundary (see discussion in Theorem 5.2 below for the regularity of 9€2¢) the space
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H* () is defined classically as the space of functions with s derivatives in L2(0)
if 5 is an integer, or the usual generalization otherwise. It can be related with H*(R?)
through the classical extension map. The space H" (0€2p) is given by functions f
defined on 029 = {z9(0) : 8 € [0, 2]} such that f(z0(6)) € H"(T). In this paper
r > 1/2 so that the classical restriction (or trace) map properties on Sobolev spaces
can be applied. Finally, H () is defined as the dual space of H'(£).

3.2 Space-Time Definitions

Once we have defined the spaces H® we introduce the spaces we will use to solve
the free boundary Navier-Stokes equations in the tilde domain, where V denotes the
space gradient:

s+1

(f(z)t)s-l—l ([0 T] QO) — L2 ([O T] HS+](Q())) ﬂ H(O) ([0, T], LZ(QO)) I § > O
Hy (10,71 20) = {g € L¥(10, T1; H'(0)) : Vg € Hy* ™ (0,71 ),

_1 5
g€ H(’g;‘ 2.([0, T; aszo)}, 2<s<3

H; (0. T1: Q0) = L2([0, T]; H*(Q0)) N Hﬁ({o, Tl H'(Q0), s>0

We now fix s with 2 < s < % and pick a small enough ¢ > 0 depending only on s.
We also set

FJ1 (0, T] Q) = L§5,(0. T1: H™(Q0) N H, (10, T1: HY () ,
s—l—e<y<s—1

with

1flless, = sup 1= 4 F @)
t€[0,7]

For the spaces H"t1 ([0, T1; Q0), Hpt* ([0, T1; Qo) and H™ ([0, T1: Qo) we
give analogous definitions than above but removing the subscript (0) in the time
Sobolev spaces, i.e., removing the vanishing conditions at ¢ = 0.

Also we will use the following notation:

”'HH(}g))([OT]Qo) ||||H(hor)a || || h”([OT 1.90) || ||ﬁ%)3
[l - ”H(}B’)V(O 1,090) =|- |H(}61).x ] - ||F;“([0,T],Qo) =] ||FSJrl
- g q0.71: B3 90)) = 11 - gy 15 I g q0.71: B3 920)) = |+ 117y 15
|| . ||LOO([O,T]§HS(QO)) = || . ||L00HS || ||L?74([0,T];H‘Y(Qo)) = || ||Ll/4H
|||| [};’;(i))([OT] Qo) ||||H]}::’(A0)
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3.3 Auxiliary Lemmas

Lemma 3.1 Let B be a Hilbert space.

1. Fors > 0, thereis abounded extension operator H*((0, T); B) — H*((—00, 00);
B).
2. ForO0<s <2, s — % not an integer, there is an extension operator from

1
{v € H*((0,T); B); dfvli=0=0,0<k <5 — 5} — H'((—00, 00); B)

with norm bounded uniformly if T is bounded above. Furthermore, if v* is the
extension of v,

107|115 ((—00.00): B) < Cllvllmy, «0.1):)-
3. Similar statements apply to the extension of H">* and H(}g)’zs.

Proof The proof can be found in [5, p.365, Lemma 2.2]. In this paper the statements
asserts that the operator extends to H* ((0, 0o); B) rather than H*((—o0, 00); B). But
one can easily adapt the proof to the case H*((—o0, 00); B). O

Lemma 3.2 (Parabolic Trace).

1. Suppose % < r < 5. The mapping v — 8,‘{ v extends to a bounded operator
H'7 ([0, TT; Qo) — H""=I=3((0, T1; 9Q0), where j is an integer with 0 <
j<r- % The mapping v — alkv(x, 0) also extends to a bounded operator
HMr Hr_Zk_l(Qo) if k is an integer with 0 < k < %(r —1).

2. Suppose % <r<5r#3andr — % is not an integer. Let

wi= [ E"™7q0.1RaQ0 x [] HMHN0. 71 Q).

0§j<r7% 0§k<%

and let W( be the subspace consisting of {a;, w;} so that
O a;(x,0) = djw(x) x €L,

for j +2k <r— % Then the restrictions at 02y together with the restrictions

at time t = 0 in point 1. above form a bounded operator H""" — Wy, and this
operator has a bounded right inverse.

Proof See [5, Lemma 2.1]. O
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Lemma 3.3 Suppose 0 <r < 4.

1. The identity extends to a bounded operator

Hht,r_)HpHr—2p,

P =53
2. If r is not an odd integer, the restriction of this operator to the subspace with

Btkv|,=0, 0<k< % is bounded uniformly if T is bounded above. Indeed

1l pe-20 < ClIvl g

where C does not depend on T if T is bounded above.
Proof The proof can be found in [5, p.365, Lemma 2.3]. O

Lemma3.4 Let Ty > O be arbitrary and B a Hilbert space, and choose T < Ty. For
v e HY(0, T); B), we define V. € H'((0, T); B) by

t
V(1) =/ v(r)dr.
0

Suppose 0 < s < 1,5 # %,fors > %weimpose V=0 = 0, and 0 < ¢ < 5. Then

v — V is a bounded operator from H&))((O, T): B) to H(S(gl “¢((0, T); B), and

||V||H(s$lfs((0,T);B) CoT*® ol ag, (0.7):B)-
where Cy is independent of T for0 < T < Tp.
Proof By definition
YV 1o iy = WV IE2 080V Wiy = VI + 00 )
On one hand, since V() = fot v(t)dt we have that ||V 2q0. .5y < CT

[lvllL2((0.77: B)- On the other hand
s B 00 2n + 1)27_[2 s—& )
”v”H(SO;S([o,T];B) = ; ar? llvnllg

00 1 2 s—¢
_ n
=T 2s+282 (( ) ) 772> ||Un||zB
n=0
00 2 s
B 2n+1
=T (( > ) ”2> lleally = T*10ll 0,715

n=0

O
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Lemma3.5 [. Supposer > landr > s > 0.Ifv e H (Q) and w € H*(R2), then
vw € HY(RQ), and

llvw|lgs < Cllvllar llwl|as.
2. Ifv,w € HY(Q), then vw € H*(Q), and
[lvw]lgo < Clvl|grl|w]| g1

3. Ifve H(Q), r > 1, and w € H ' (Q), the dual space of H'(Q), then vw is
defined in H=' () and

Hvwl[g—1 < lvllar lwllg-1.
4. Ifve HY(Q) and w € H*(Q), then vw is defined in H~'(Q); and

lHow[lg-1 = Cllvllgrllw]|go-
Proof The proof can be found in [5, p. 366, Lemma 2.5]. Here we notice that we work
in dimension 2 rather than in dimension 3 as in [5] and the second statement of Lemma
3.5 can be improved in dimension 2. O
Lemma3.6 Ifv e H% and w € H% with%+$ =1land1 < p < oo then

lwllgo = Cllvll 1wl 1.
Proof Applying Holder’s inequality yields
[lvwllgo < [lvllz2pllwllf2q,
Now the Gagliardo-Nirenberg inequality provides
llvllg2r < Cllvllas

for # = % — 3, that implies s = ql. Proceeding similarly for w we have that

vw <Cllv w .
llvwl| o < Cl IIH%II IIH%

O

Lemma 3.7 Suppose B, Y, Z are Hilbert spaces, and M : B x Y — Z is a bounded,
bilinear operator. Suppose v € H*((0, T); B) and w € H*((0, T); Y), where s > %
If vw is defined by M (v, w), then vw € H*((0, T); Z) and

1.
lvwllgs0.7):z) < CllIvllaso,1): 1wl #5(0,7):7)-
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2. Also, if s < 2 and v, w satisfy the additional condition Blkv|,:o = 8,"w|,:0 =0,
0<k<s— %, and s — % is not an integer, then the constant C in I can be chosen
independent of T. Indeed

[P

. < s . s .
,(0.7):2) = ClIvllag «o.ry: ) 1WllE, 0.7):v)

where C does not depend on T .
Proof The proof of 1 and 2 can be found in [5, p. 366, Lemma 2.6]. O

Lemma3.8 For2 < s < 2.5, 8, ¢ > 0 small enough and v € F’*! the following
estimates hold:

1. ||U|| s+l ECHUHFSH.
H,> H'-¢
L < Cllvllps+1.
H1+
. ||U|| s—1 SCHU“F.H—I.
2 T g2+
g*IH‘HM

2
3
41l s gy, < Cllllpe
5 Mol st < Clillpeen.
6.

Sl ye = Cllvll e
H(O) H

Proof We will show the most singular cases, which are 2. and 4. The rest is proved in
an analogous way.

We will use the extension given by the Lemma 3.1 and thus we can consider ¢ € R.
Since €2 is a regular domain, we also consider the extension to the whole plane R2.
This way, we can think of v : R x R?> — R.

Case 2: We first consider ¢ = § = 0. Using the Fourier transform in R x R2, we
have

12 o N/ ([T DA+ EP)0( §)Pdrds
H 2 H'  JRxR?
:A R2(1+|E|2+|T|s+l+|T|‘Y+l|§|2)|{)(f,S)lzdl’dé_ (29)

We only need to bound the previous integral by

s g + W0y ~ [ @+ IEPOTD el + 6P
RxR
+ e MEPD(e. §)Pdrde.
We are only left to bound the integral with |7|**!|£|%. Using Young’s inequality:

[T g2 E P < C(g PP+ |7 6D g P00,
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1 4 _ (+DB=s)
o, A= U

) , we are only left

where p~! 4+ ¢~ = 1. Taking g = %, p=

to check that
1-Ag<y<s—1,

but elementary formulas show it as long as s > 1. Itis easy to see that in the previous
calculation there is room for the case €, § > 0 as long as ¢ and § are sufficiently small.

Case 4:

Proceeding similarly to Case 2, it is enough to show that

[P 2E < O+ |2f* + [E2CFD 4 4.
Using Young

TP T2 jE M E[HAD) < C(IE 1P 4 7|6 D9 P,

_ (s+D(O9-2s)
16

Taking g = S_‘i 7P =7 /;—s JA= , we are only left to check that

20 =M)g <y <s—1,
which is true for s > % Similarly, there is room for the case ¢, 5 > 0 and suffi-
ciently small. Finally, the boundedness with respect to 7" is shown if one considers the
extension given by Lemma 3.1, part 2. O

Lemma3.9 Let f € H([0, T]) with0 < s < 2 and aff|,:0 =00<k<s— %,
with s — % not an integer, then:

s < X
l16f 1z, < CTIf Il
2 2
122 Fllag, < CT11 £ 11,

Proof We take [ € H2([O, T]) such that, f|;—0 = 9;fl;=0 = 0. We have that
N2f1lz20.7) < TIIf 2 and that ||tf||H(20)[0,T] < CT”f”H(ZO)[O,T]' This is because

f@ = fé dc f(ydt = I fllzqo,ry < Tl Sfell2qo, 7 and because of an analo-
gous inequality for o, f (). We get the inequality for the rest of the exponents by
interpolation. A similar proof holds for 1122 £1| - O

In the following lemmas we deal with the estimation of composition of functions.
The functions A and Q given by the expressions (8) and (7) respectively will appear
together with the initial velocity vy : € — R? which we assume regular enough (see
discussion in Theorem 5.2 below). To indicate the dependence of a constant, C, with
respect to a quantity, K, we will use the notation C[K].
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Lemma3.10 Let X —a — Avgt € FStlwith2 < s < 2.5. Then, for T > 0 less than
a small enough constant determined by v, inf ,_g || and || X — o — Avot|| pst1,
I|A o X[l eoys+1 = CIM, ||X —a — Avot|| ps+1, vo, [lot]| 2]
[|[Ao X — Allpcogs+1 < CIM, ||X — o — Avot||ps+1, Vo, ||(X||L2(Q)]

(11X — o — Avot|| oo s+t + |[Avot|| oo grs+1) -

with
1

. 1 .
inf, g laf — ClvolT — T4[|X —a — Avpt|| ps+1

M =

Proof By definition the matrix Ay; = 9; P¥ o P~! contains terms of the form # and

therefore, three derivatives of A o X contains terms of the form

X! X9, X R X" ;X X9, X" XPX99; X% X'9,X" X XI9} X'

X2 | X4 ' | X4 ' | X6 ' x|+
X: XX 02 X'92 X" X' XIXKX!0,X"0,, XP0, X1
R R TRV R oS N ford, jok Lomon, o, pog = 1,2
|X16 |X[3
. 2
Now we notice that || f|| gs+1 = || f|g3+s = || flI12 +Zi’j’k=1 ||8i3jkf||Ha for some

0<é< % And then, using that, || fg||gs < ||f||g211g!l g+ and that H? is an algebra
we can check that

o xign zc (L 4L (11Xl + 11X1132 1)
o 5 — —_— s g
Hs+l = |X| Lo |X| Lo Hs+!1 Hs+1
In addition,
[X| > || = |X —a] > inf |o| — || X — of|Lo@),
aeQ

and

|1 X —a”LOO(Q) < ||X —O[||LooHs+l = ”X - _AU0t||LocHs+l + T||AUO||Hs+1

1
S TZ ||X — 0 — AU()I||LCI>74HS+1 + T||AU()||Hs+1. (30)

Thus

1

H :
= i
[ XTIz ™ inf, g la| — T1|Avol| ot — T ||1X —at — Avot || 55, s+
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In addition we have that
||X||LOOHS+1 =< ||X — 0 — AUOt”LooHerl + ||C¥ +AU()I||LocHx+l . (31)

The proof of the second inequality follows similar steps. O

Lemma3.11 Let X —a — Avgt € FStlwith2 < s < 2.5. Then, for T > 0 less than
a small enough constant determined by vy, infaef2 la|, and || X — o — Avpt|| ps+1,

140X = All gy 4y < CIM.1IX —a = Avotllpsin s w0l [1X =l g

with
1
M= - 1 :
inf, & o] — ClvolT — T#||X — o — Avpt|| ps+1
Proof By  definition ||[Ao X — A||H(1O)HV = Ao X — Allp2yr +

[10; (Ao X — A)ll;2yv. To control [|[A o X — Al|;2y» we first notice that we can
write y = 1 4+ with 0 < § < 1/2, thus we need to control |[|[A o X — Al|;2h0 +
[100 (Ao X — A)||;2ys. We focus on the term ||9, (A o X — A)||;2ys. Since A o X
contains terms of the form -, one spatial derivative of A o X — A contains terms of

i
i _ 1X]%°
;X! 0;a'

a9 Xixly: xk iy . .
the form -+ — - and 2 2%%% The bound for these different kinds of
X loe|? | X4 loe|*

terms follows similar steps. For example,

ani —ajai

X7 w218;(X" = oDl ys < CLIX][21C

<l

HS

_|X|2“

1
X -« .
|:inf|a|—||X—oz||Hs+|j||| Il

This type of estimate allows to prove that

1
inf |Ol| — ||X —Ol“LooHs-H

l|AoX — AllL2py <C[||X||L°°H2]C|: j|||X_a||H0HV-

The time derivative of A o X — A contains terms of the form X — %

X2 Jor|?
ixig x! o0l . . :
and X XXI‘?{ X _« Ta %% In addition the most singular term we need to control in

[10; (Ao X — A)llz2yy 15 |00y (A 0 X — A)||2ys. Therefore we can check that

1
ianOll — ||X—C(||LOQHA'+1

110 (Ao X)|lp2py < C[IIXIILoonlc[ ] 19/ (X =)l gopy-

Finally we use (30) and (31) and that || X — a||H(1O)Hy <X —-a-— AUO[HH(IO)HV +
||Av0t||H(IO)HV' O
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Lemma3.12 Let X — o — Avgt, ¥ —a — Avgt € FSTl with 2 < 5 < 2.5
Then, for T > 0 less than a small enough constant determined by v, inf loe,
1X — o — Avot|| ps+1 and ||Y — o — Avot|| ps+1,

aef

[[AoX — Ao Y||pccps+i
S C[M, ||X_C( _AU()t”F.H—] 5 ||Y — —Avot||ps+l] ”X_ Y||LocH.v+I 5
||AoX—AoY||H(10)Hy

< C[M,||1X —a — Avot|| s+, ||Y — a — Avot || pss1 ] [1X — Yl ny
where

1
inf || — Clvo]T — CT7 ||X — o — Avot| 3, o+

M = max

’

1
inf |a| — Clvo]T — CT3||Y — a — Avot |55, o

Proof The proof follows similar steps to those in the proofs of Lemmas 3.10 and 3.11.
O

Lemma3.13 Let X —a— Avor € F5H with2 < s <2.5andt = (VX)~\. Then, for
T > 0 less than a small enough constant determined by vy and || X — o — Avot|| ps+1,

2
0l ooprs—1 4+ Y 118j¢ I oogrs-1 < CIM. [|X — o — Avot|| 1]

j=1
=1 s < C[M,||X —a — Avpt]| ps X — s=1 .
e =Tty = CUMLIX —a = Aot X =l s,
where
1
M = 7 T 5 .
1 = ClwolT — CT# ||X — o — Avot||ps+1 — CT2 [|X —a — Avot ||

Proof For the first estimate we proceed as follows. We estimate det (V X) from below.
We have that det (VX) = 81 X9, X2— 9, X2, X! = 1+ V- (X —a)+det V (X — a).
Therefore

|det (VX) | = 1= [[V(X — &) |[1o@) — IV (X = @) |70
>1—ClIX —allpogies = ClIX = all2 sy - 32)

The rest of the proof follows similar steps to those in the proof of Lemma 3.10. Indeed,
sinces =8 +2with0 < § < % we need to look at two derivatives of ¢. In addition
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3 1

¢ contains terms of the form <+ t(V X Thus, for example we need to control i+ t(V 9 in
B 07 X' 1 3yl
. X
H?. To do it we can proceed as follows, TVD s < ‘ T ‘ i Bl-ij ) - <

CIMICIIX || 0 gs+1] thanks to (32). Finally we proceed as in (30) and (31).
For the second estimate we first write

¢ =(VX)~' =

1 1 . 1
vx) = —1)(vx =D —1)I
det vx( ) (detVX >( ) +<detVX )

+ (VX =D +1,

;
where for a matrix ab we define ab = d —b .
cd cd —Cc a

Since det VX =1+ detV (X —a) + V - (X — ) we have that

{—H=—l detV(X —a)+ V- (X —a) (V(X—a))T
+V- (X—a)+detV(X —a)
detV(X —a)+ V- (X —a)

14V -X—a)+detV (X —a)

I+ (VX —a)
Then, we can estimate using Lemma 3.7

e =1 w1,

2
0

- H V(X —a)+detV (X —a)

HI1+d

V(X =)l sz
Hgy

+e

1+V- (X —a)+detV (X —a)

H1+6

H(f))%_HHH‘S
V(X —a)+detV(X —a)
14V - (X —a)+detV (X —a)

|

IV =l
0)

S22 4 +& s
H(O)2 H1+8 H+s

det V(X—a)+V-(X—)

TFV-(X—a) detV (X—a) - In

where we see that it is enough to estimate H

s—1

) T Y its
Hgol o H'*
order to do it we notice that since X — a — Avgt € F*T! and [|[VX — a|[zxpo <

| X —a — Avot|| e gs+1 + CT < Clup, ||X — o — AvotllFxH]T%. Therefore, for T
small enough, we have that

V.(X —a)+detV (X —a)
1+V-(X —a)+detV (X —a)

= D"V (X —a) + det V(X —a))".
n=1

Thus using the inequality [[fgll w1, < Cllfllpmssllgll o1,  +
H(O)2 HI1+3 (0)2 Hl+8
CIFIl sz1y, 11|00 gg1+s yields
2 H1+8

©0)
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V(X —a)+detV (X —a)
1+V-(X —a)+detV (X —a)

s—1
- te
2 1+68
H(O) H

2
VX =)l soi, 8+|IV(X—a)|| L,

S C 0] H!+ H(O) : H1+ N
(1=CIVX = llpeepiss = ClIV X =)l yi45)
This concludes the proof of the lemma. O

Lemma3.14 Let X" —a — Avot € F$* and ¢y =143, =0 = T — 1V (Avp).
Then, for T > 0 less than a small enough constant determined by vy and
1% = o = Ao

+

< Clvo, M](HX(”)—a—AvotH 1 +Ti>.
5

(n) _
H§ %H St 2 T pots
H(O) H H(O) H

1
Hé‘(n)—Q,H s, =< Clvg, M] HX(n)—(x—AvotH syt +T2
Hep  HO Hop — H

where

1
M= T T 2
1 — ClvlT — CT# || X — & — Avot|| 11 —CT2 || X® — o0 — Avot|| 1

Proof We write

1 t
n) _ ()
¢ T detVX™ (VX )

1 +
- (W —141V- (Avo)) (V(X(”) —a— Avot)>

— 1 4tV-(A v Avg))T
+<detVX(”) +1t ( v0)>( (o +tAvg))

(1 =1V - (Awg)) (V (x<") . Avoz))T
+ (1 =1V - (Avy)) (V (& + Avor)) .

Since —V - (Avg) I + (V (Avg))" = —V (Avp) we find that

1 i
W _ . L e
¢ = Getvxm (VX )

1 T
= (m — 141V (AU())) (V(X(n) — o — Al)ot))
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R N | 1_
i (detVX(") by (A”t))) (V (@ + tAvp))

+ (1 =1V - (Awp)) (V (X(") —a— Auor))T + Mlwol,

where M[vg] is a matrix whose coefficients just depend on vg, «. Since ||£?|] H2[0,T] =

CT? we only need to care about the terms different from M[vo]t? in the previous
expression. Using lemmas 3.6, 3.7 and 3.9 we also see that actually it is enough to
care about the term, WIXW — 14tV - (Avg). For this term, since det VX ) —

1+ V- (X® — ) +det V(X™ — &), we have that

C141V-(A
dervx LTIV (Av)

—V - (XW — o — Avgt) — det(V (X® — &) + 1V - (Avg)V - (X — &) +1V - (Avg) det(V(X™ — &)
N 1+ V- (XM —a) +det V(X® — )

In the previous expression we can use that V - (Avg)V - (X —g) =V -(Avy)V -
(X — o — Avgt) +1(V - (Avg))2. In addition, since det V(X ™ —a) = O(t%) when
t goes to zero, we can check that, det V(X® — ) = det V(X" — o — Avgt) +
F[vo](V(X(”) —a— Avpt) + Glvolt2, where F[vol(e) is a function linear in o whose
coefficients just depend on vg and G[vp] is a coefficient that just depends on vg. The
previous splitting allows us to prove the lemma by using a similar strategy to the one
in the proof of Lemma 3.13. O

Lemma3.15 Let X — vy — Avgt, X"V — vy — Avgt € FSt! with 2 <
s < 2.5. Then, for T > 0 less than a small enough constant determined by v,
HX(") —a— AUOIHFW and HX("_l) —a— Avot|

foo-e)

s+l

< Cloo, M1|[x® = x=D|| )

1+ Hy, 2 +€Hera

H;‘(“) ;'(” I)H <( Vo, ]‘1 HX(”) X(” ])H
0)
Whe)e

M = max ! : 5 .
m=nn=1 | | — Clug]T — CT# ||X0 — o = Avt|| s — CT 3 || X0 — ot — Avot|| s

Proof The strategy to prove this lemma is similar to the one of Lemma 3.14. Here we
need to make the splitting

1 t 1 i
) _ =1 _ (VXm) _ (vx("*U)
¢t ~ detVX®™ det VX (=D

1 1 ( i
(st - ) (54°)
detvVX®™  detvxX®—D

v(xm _ X(n—l)))%

+ det VX (=D (
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1 1 "
= - n_
B (detvx<n> det vx(n—l)) (V(X a Avot))

1 1
— V(a — Avgr))?
+ (detVX(”) detVX(”])> (Vie vo))

: t
Tat U v (1—1) - . (n) _ ym-1)
* (detVX(n—1> +1=1v (AUO)) (V(X X ))

— (1 =1V - (Aup)) (v (X<"> - X("_l)))T.
O

Lemma3.16 Let X —vg — Avot € FSTlwith2 < s < 2.5. Then, for T > 0 less than
a small enough constant determined by vy, inf ,_g || and || X — o — Avot|| pst1,

||A0X—A||LocHs—l

< C[M,||X —a — Avot|| ps+1, vol (11X — & — Avot|| oo o1 + T1|Avo]| gs+1)
[[Ao X — Al| 1

2 gl+4s
H(O) H

< —a— s —a— o
< CIM.|IX —a Avor||F+1,vo]<||X « A”(’t”H(y'”Hwa”)

10% 0 X — Q|| poopgs
< CIM,|IX —a — Avot||ps+1 . vol (11X — & — Avot|| oo s+t + T Avol|go1)

0% x =07 e

H 2 H1+6

< CIM, [|X — a — Avot|| ps+1, vol | [|1X —a — Avot|| w1, +T
H(0)2 HI1+6

with
1

M = - .
inf g la| = Clvo]lT — CT#[|X — o — Avpt|| gs+1

Proof The proof is similar to the ones of lemmas 3.10, 3.11 and 3.13. Notice that
0*(@) = . 0

Lemma3.17 Let X" — vy — Avor € F**!, with2 < s < 2.5, and (Ay),; =
Ajj +1t (% (Aij o X(")))‘tzo = Ajj + 10k A;jAxvor. Then, for T > 0 less than a
small enough constant determined by vy, inf , _¢, || and HX(") —o— Av0t| | Fstls

HAOX(n) A¢,H §C[v0,M](HX(”)—a—AvotH - +T5)

T+‘H1+5 Hy? HI+
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[aox®—ayl| wu,, =cCrom(|[x?—a—avr| o +ThH
H(0)2 H1+8

HI1+d H(0)2
with
1
M = - .
inf, & || — ClvolT — CT#||X — o — Avot|| gs+1
Proof The proof is similar to that one for lemma 3.14. O

4 Solving the Linear Equation

In this section we want to solve the system given by:

v —vO?Av+ A*Vg = f in Qo x [0, T]

Tr(VvA) =g in Qo x [0, T']

(q + (VvA) + (VoAYHA 'n = h on 9Qq x [0, T]
v(x,0) =0 in Qg (33)

Defining the following spaces:
ht,s+1 ht,:
Xo:=1{(v,q) :veHgy " q € Hy))

1
ht,s—5

_ —ht,
Yo:={(f.g.h): feHy' " geHg heHy' *@Qx[0,T]).)

(here we remark thatin X and Yy: v(0) = 9;v(0) = ¢(0) = f(0) = g(0) = 9,2(0) =
h(0) = 0), then, we can write (33) as:

5
L(v,q)=(f,g h,0); L:Xo— Yo, 2<s<§_

Theorem 4.1 L : Xg — Yy is invertible for2 < s < % Moreover, |L™Y| is bounded
uniformly if T is bounded above.

Proof of Theorem 4.1 The proof can be found in “Appendix A”. O

5 Fixed Point Argument
In section A the system (19), (20) and (21) was solved uniformly in 7" (for small 7')
but with the initial conditions v|;—¢9 = 0 and 9;v|,—¢9 = 0. Then we still need to carry

out a small modification of (19-22) to be able to apply the result of that section.
Let’s define the approximated solution ¢ in ¢y x R as follows

¢ =i0+1 (QzAf)o _ A*vq¢) =50 + 1V, (34)
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We shall show we can choose g in such a way that 9;¢ ;=0 = 9,0 |¢=o for all n.
We specify who g is. Given the system (19-22), for

™ =™ o p
g™ =G™ o p
we have that
D — Ap(HD = _ gt ) g o
V@D =™ in
(q<"+1>11 — (VoD 4 (Vv("+1))*)) no =h™ on 39
v g =v0.
where vg = g0 P, f = f® o P, g = 5" o P and h™ = h™ o P. Taking the
divergence on the first equation yields

3V vt AV . p0tD = _AGtD Ly p )
Thus, taking into account the third equation, we find ¢! by solving
_Aq(n+1) =8tg(") _ Ag(n) -Vv. f(n) in Qo
q(nJrl)|aS20 =ny (Vv(") + (Vv("))*> lag - 10 + h(")laszo - np.

Next notice that f g and ™ in (23), (24) and (25) are equal to zero at t = 0.
Thus, calling qé") = ¢™|,—o, we have that

1
—Agd™ =(3,8") =0

a5 lage =no (Vv + (Yo)*) n.

Now we focus our attention in the structure of g in (24). It easy to check that g o P
can be written as

§WoP=—Tr (w“’” (vx<”))_l) +Tr (w"”)) .

where
VW =W o x"lopoXx
with
dxm
o =v""(a, 1)

XM (@,0) =a « € Q
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Therefore
(@8 ")li=0 = Tr (VuoVuo) = V - ((uo - VIuo) -
Because of the previous discussion we will choose g solving

—Aqp =V - ((uo - V)ug) in Qg
dolae =no (Vuo + (Vuo)*) laggno.

which is independent on the superscript n.
Finally one finds g4 changing from Qg to Qo,

—0%AGy =Tr (VitgAViigA) in Qo (35)

doly, (A—lﬁo : A—lﬁo) =AYy (VitoA + (ViigA)*) A iig on Q0. (36)

Once we have defined ¢ we define the velocity i and the pressure g, o by the
expression

o™ = @ — ¢ q(n) — q(n) 40

Now it is easy to check that
5o =0, (8,5") |1z =0.

Then it is better for our purpose to write the system (19-22) in terms of %" rather
than in terms of 7). We obtain that

Jw "D — Q2ADTY = —A*VGITD 4 f _ 5,94+ 0%A¢ — A*VGy in Qo,

37)
Tr (vw<"+1>A) 2™ —Tr (VoA) in (38)
(n+1) (n+1) ~ (1) 4\ F 1=
( I— ((Vw A) (Vw A) ))A o N 9
= 1™ — GeA" i + ((VoA) + (VA)*) A”iig on 9%,
"o =0 (40)

where f(”), g™ and h™ are given by (23), (24) and (25) with ™ = ®™ 4 ¢.

Remark 5.1 With this choice of the function ¢ we lose regularity of the solution with
respect to the initial data. One could look for more sophisticated choices of ¢, like
Beale in [5], in order to avoid this loss. However, this exceeds the scope of this paper.

We now prove the following theorem:
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Theorem 5.2 Ler ({w(”)}oo 0 {q(")}n o {f((")};’lozo> be the sequence given by the
system (37), (38), (39) and (40) and (26) with

W@ =0, g0 =o, XO = o + A,

where qg is given by (35) and (36), ¢ is given by (34) and v" = W™ + ¢. Then

(@120, @8 (X)) — o — Avor)
is a Cauchy sequence in
Hig 110, T1, Q0) x Hpy'ty) (10, T1, Q0) x F*H ([0, T1, Qo)

forl <y <s—12<s <25and
Ilitoll 10065,y < € 1820100 < C,

for T sufficiently small .

In order to prove this result we use propositions 5.3 and 5.4 presented below con-
cerning the system (37-40), together with (26). We start by writing this system in the
more concise form

L, gy = (1, g h™) + (1. g ). (1)

where

ff=—00+ Q*Ap — A*Vqy,
gy = —Tr(VoA),
hj = —qsA""'no + (VoA + (VoA )A ng. (42)

For technical reasons we rewrite the right hand side in a different way. First we
notice that

Bc™ =3, [(VX(”))_1:| =— (vx('”)_l Vo, X™ (vx<”))_1

and therefore

3¢™]—o = —V (Avp).

2 We assume a large number of derivatives mostly to simplify the exposition. However one can likely
reduce this space to, say, H 10 by a slightly more careful analysis.
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We define ¢y, independent of n by the following expression

(o =1+1 (atf(n)h:o) )

and also we define Ay as the matrix with entries

(Ag);; = Aij +1 (% (AU o X))

By using ¢y, Ag, we will write the system (41) in the following way

= A;j + 10k Aij Arvor.
t=0

with
7MW =g 4+ Tr (VoLyAy) — Tr (VA) (43)
=77 (Vu™ A0 X))+ Tr (Vu )
—Tr (v¢;<">A ° X<">) +Tr (VoiyAg) (44)
and
gy =85 — Tr(VeiyAy) + Tr (VoA) = —Tr (VpisAg) . (45)

In this way we have that 8,§é|,:o = §£|,=0 =0.
In this situation we have the following result.

Proposition 5.3 1. Let X — o — Avpt € FS+1, g% € HM™ S and w™ ¢ Hht s+l

pr(0)
and such that
t
X(”)—a—Avote{X—a—AvoteFSH:HX—a—/A¢dr sN}
0 Fs+l
= Bay
@™, q%) e (. q) € HEy ™ x Hpe s whizo =0, 8wli= =0,
H(w C]) L~ (f¢ gq)’ h¢)‘ s+l pht.s = N}
(0) pr(0)

= Br-1(f,.25h9)

13
/ TAY dt
0

where

NEmax”

st gy, »||U0||H100}
' Hﬂr(AO)

‘L (fo» g¢,h¢)‘

F,H—l
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Then, for small enough T > 0, depending only on vy.
X0+ o — Avgt €Bay

2. Let XM — o, X"V — o € Bpy and (w™,qg™), (w"V, g"7D) €

BL*l(fd;,gthq)) Then

Hht.erl

||X(n+1) _ X(n)||F5+1 < C[vo]T? <Hw(n) _ w(n—l)‘
0)

HIX® = XD e )

for a small enough ¢.

Proof We refer the reader to “Appendix B.1” for details about the proof. O

Propojtionhs.z 1 Let X™ —q — Avgt € F$+1, g0 e Hyt oy and w™ e HiG
ana sucn that

t
X<”>—a—Auote{X—a—AvozeF”‘:HX—a—fAdadz §N}
0 Fs+1
= Bay
,s+1 ht,
W™, g € {(w,q) € Hy " s oy s wlizo = 0, d,wli=o = 0, guli=o = 0,
@)= L7 B 1) | s =N
¢ Hegy ™ < Hyrto,
= Br-1(fy.3,h9)
where
! 1
szaxH/ Ay tdt , ’L‘ (f¢,§¢,h¢)’ hrsil e ,||vo||Hmo}
0 P+l Hey ™ xHy,' )
Then
+1 +1
", g5 D) €BL1(g, 7, )

2. Let X — o, XD _ o ¢ Bag and (w("),q(”)),(w("_l),q(”_l)) €

BL_I(f¢,§¢,h¢) Then

(4D _ )

1
Hw ‘Hht.wl +11g "D — q(n)”H’“*s

o pr(0)

< Clv]T? (Hw(") - w(”_l)H
H

> b
pr(0)

n me) —X("_l)‘

ht,s+1

41
o Fst

+lg® = g
for & small enough.
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Proof We refer the reader to “Appendix B.2” for details about the proof. O

Corollary 5.5 By the contraction ma{)pmgfrmctple there is a unique fixed point (X —
o — Avot, w, qy) € FST1 x H}g)€+ p£ oy With2 <'s < 2.5, for T small enough
which is the solution of (13—-16).

6 Structural Stability

Let us assume that (v, g, X) is a solution with initial data vg and 2, where €2 is the
projection by P of a splash domain. We choose vg so that the normal component of
vo in a neighbourhood of the splash points is directed towards P(I"), as shown in the
next section. We also assume that (v, g;, X}) is a solution with initial data v, and
Q2. where €2, is a translation of ¢ of size ¢, i.e.,

Q. =Qy+¢b

where b is a constant vector, |b| = 1 and such that P~1(£,) is a good domain. We
define (v, ¢, X¢) in the following way

vea, 1) = vi(e + &b, 1),  qelo, 1) = qL(a+eb, 1), Xe(a,t) =X.(+eb,1),

for a € Q.

For ¢ > 0, P~1(,) is a good domain without self-intersections (as opposed to
e < 0). By Corollary 5.5, we have local existence of solutions, and we can find a time
of existence which is uniform in €. The existence of a splash singularity follows from
the perturbative argument explained in the introduction.

We choose Uéo to have v, («, 0) = vo(w). Since the change of variables from the
variables with prime to the variables without prime is just a constant translation, the
functions (v, g¢, X¢) satisfy (13)—(16) and (17). However instead of (18) we have
that X, (a0, 0) = a + ¢b.

We denote by Qg(a) and A, («) the following functions:

0% (@) = Q% (@ +¢b), Ac(a) = A(a + ¢b).
Therefore, we have

dve — Q2 AV, + AlVg. = f. inQ
Tr(VveAy) = ge in Qo
(qel — (Ve Ag) + (Ve A ) A g = he in 99,

where

fei=0%0 Xe(Ce)kjok ((Ce)ijorvi) — 0% Ave; + (Akidkge — Axi o Xe(8e) jk0jqe
8e =Tr(VueAe) — Tr(Vuvete Ao Xe)
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he = qeA; 'no — qe A7 0 XV Xeng + (Vuele A o X,
+ (VveleAo Xa)*)A_l o X:VyXeno
— (VveAe + (VoA M A g

We construct ¢, in an analogous way: ensuring that v, = w, + ¢, with w, =
d;we = 0. This yields:

¢e = vo + I(QgAUO - A:VCM),E) =g + 1.,

where
—0%Agy.c = Tr(VugA:VupAe) in Q
qp.c (A7 "o - A7 no) = A7 no (Vo Ae + (Vo A)*) A7 g in 99,

and we also take gy.c = e — qg¢-
Thus, we have the following system:

diwe — QpAwe + AiVqy e = fi + [, in Qo,
Tr(VweAe) = ge + g, in Qo,
(Gu.el — (VweAg) + (Vwe A AL 'ng = he + h , on 99,

where
ffe=—0pe + QI A — A7 Vg,
8o =—Tr(Ve:A,)
hh .= —qp.c A7 0+ (Ve Ae + (Vo A AL no. (46)

The next step will be to compare both solutions (w, gy, X) and (we, Gu.e, X¢).
Subtracting one equation from the other:

¥ (w — we) — Q?A(w — we) + A*V(qy — qu.e) = Fe
Tr(V(w —wy)A) = G,
((qw — qu.e)l — (V(w — we)A) + (V(w — we) A)*) A" ng = He,

where Fg, G, H, are given by

Fo=f—fet+ ff—ffe— (0" — QDAw, + (A= A)*Vau.,e 47
Ge=g— g +85 — 85— Tr(Vwe(A — Ap)) (48)
He=h—he+hl —hl . — que(A™" = A7Hno — (Vwe(A — A,))

+ (Vwe(A — A A, 'no

— (Vwe A + (Vwe A)*) (A7 — A7 Dn. (49)
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This means
(W — We, Guw — que) = L™ (Fe, Ge, He, 0).

Taking norms as in the previous section, we obtain the following estimates:

w—w s - s <C|I|F s— Gell=n.s H, .
= well st + I = Gl s < (n el st + 1Gellms + B 2;”)

Our goal is to prove the next lemmas:
Lemma 6.1 We have the following estimate, for § > 0 small enough:
1 X — Xe + be + (A — A)vot|| ps+1

< Clwole + CluolT? (nw = we | i + 11X = Xe 4 be 4 (e — A)vornFm)

Lemma 6.2 We have the following estimate, for § > 0 small enough:
s
||Fg||H(hO:),s—1 + ||Gg||ﬁlg(;),.i +[He| 4, 1 S Ce+CT°(Jlw— w5||H(/6r>,s+l

2
(0)

+ 19w — qu.ell s
w w,e HI

+ 11X — Xe +be + (Ag — A)UOtHFS“)'

We remark that the constants in the previous lemmas are uniformly bounded if 7

is bounded above. Combining both inequalities, for 0 < 7' < W:

lw—well yres+1 + 1gw — qu.ell yres + 11X — Xe 4+ be + (Ag — A)vot|| ps+1 < 2Ce
Ho) Hyr'o)

Thus, for0 < T < W:

IX = Xe +be + (Ae — A)vot | ooyt <2Ce = | X — Xyl jooss1 < Ce

and therefore both functions are as close as we want for a time that only depends on
the local existence time of the solution, but it does not depend on €. We therefore have

X(S20,1) = X (S20,6, 1)
and for ¢ small enough there exists a t; such that
P~ (Xe(Q, 1)) = P71 (Xe(Q0 + £b, 1))
is a splash domain. Next, we will show the proofs of the lemmas:
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Proof of Lemma 6.1 We recall that

dX,
dt

= Ao X,v,, Xe(a,0) = a + ¢b.

and that, for T < Ty, Tp small enough, we control the following norms,

X —a — Avot||ps+1 < Clvol,  |1Xe —a — be — Agvot|| ps+1 < Clvol,
IIwIIH(ig),m =< Clwo] IIweIIH(hOr).m = Clwol,
llgll = Clwol llgs1l < Clvol.

We first deal with the L° H*+!-norm. We can write
7

t
IX — X + be — (A — Ag)vot|| o1 (1) < / Ao Xv—AoX.v,
0

— (A — AS)U()”HerldT

In order to bound this norm we will split in the following way, Ao Xv—Ao X v, —(A—
Avg = AoXw—AoX,we+ (Ao X —Ao X, —A+A)vg+t(Ao Xy —AoX ) =
di+dr+ds.Fordy wewrited] = (AocX—A—AoX.+A)w+(A—A)w+AoX, (w—
w) and estimate [} [1d)|| 1 < ||Ao X — A— Ao Xo + Ac|| e gosr £ 2 |w]] 2 st +
A = Agll st £2 11 wl] 12 gt + | A0 Xel| oo gros122 || w — we| 2 o+1. The second term
on the right hand side of the this last inequality is bounded by C[vo]et% and the third

one, by using Lemma 3.10, by C[vo]t%Hw — Wg|| 2 s+1. For the first one we have
that

||AOX—A —AOX5+A5||L00HA'+1 S ||AO(X+b€) —A OXgHLooH_H»l
+ ”AOX—A—AO(X+b€)+Ag||LooHs+l

and therefore

JAoX — A — Ao X, + Aot < Clvol(|1X — Xe + bel|poo o1 + €)
< Clvol(|1X — Xe + be — (A — Ag)vot|| pst1 + &),

where this last inequality is proven in the same way that Lemma 3.12. This is enough
to bound || fé di]]. The term d can be bounded in a similar way after estimating

[ fé || gs+1 < ||AoX —A—AoX,+ A¢l| oo ygs+11C[vp]. To bound d3 we proceed
in a similar way, the main difference is that we have to get the estimate ||y — ¢ || gs+1 <
Clvole. Let us prove this estimate. We have that

1A = Acllar < Ce, 1Q* = Qfllar < Ce, forallr, (50)
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since Q and A are C* functions in . Thus

1 1
—A(gy — qp.e) = @TV(VUQAVIJ()A) - aTr(VvoAngoAg) in Qg

&

A7 no(VugA + (VugA)*) A~ ng

¢ — dp.c = |A=ng|?
_ A mlTodo) + A AIm e
|As nol?
This implies:

lag — qg.ellpr+1 = CUIAGY — qp.)llr—1 +1dp — dgel 1) = Ce, forallr = 0.
(S

Using the definition of ¥, ,:
Y — e = ((Q — Q) Avg — (A"Vqy — ALV gy e))
yields
[ = ellgs+r = Ce,

for sufficiently smooth vy.
To get the H 2HY estimate, we find that for all 7 < 1:

IX = Xe +be = (A = A)wot 2 g

=

'
/ (Ao Xv— Ao X.v) — (A— Ap)vodr
0

H(zo)HV
We will need to make the same splitting as before Ao Xv— Ao X, v, — (A— As)vg =
AoXw—AoX;we+ (Ao X —Ao X, —(A—A)vo+t (Ao XYy — Ao X 9,) =
dy + dr + ds.

In addition we splitd] = (Ao X —Ao X, —(A—A)w+ (A—A)w+ (Ao
Xe —A)(w —we) + As(w — we) = di1 +dip + di3z + dia. We have that

t
‘/du
0

Analogous to the proof of Lemma 3.12 we can prove that
140X = AoXe = (A=Al gy Iwllgy gy < Cll(IX = Xe +bell g+

g) < C[vo](T‘s||X—Xg—|—bs||H(1oJ)raHy + ¢). In addition, we have that

< Nl g <NA© X = Ao Xe=(A = Al v 0l gy g -

2
H(O)HV

1
[1X = Xe o bell i gy < 11X = Xe o+ be + (Ae = Aol gras gy + Clugle T,
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For Hfé dlz‘ we have the

we find the bound C[vg]e. For Hfé d13’

2 2
Hio HY Hio) HY

bound Clug]7° and || f; dis|

< Clu]T°. Tobound || fy |

) ) we use that
Hy HY Hi HY

[[AoX —Ao X, — (A — A£)||H(1O)Hy < Clvol(]|X — X¢ + b8||H(10)Hy +¢), thus we
can bound finally by C[vo] (T° [|X — X, + be + (A — Ao)vot|| ps+1 + €). Inorder to
be done for d3 we have thatd; = (Ao X — At +1t(AY — Agyr) — (Ao X — At .

By using this splitting and Lemma 3.9 we find that Hfot d3) < ClvgleT. This

Ho, HY
concludes the estimation of | X — X, 4+ be — (A — Ag)v0t||Hzo HY - O
©

Proof of Lemma 6.2: Part I: Estimates for F,:
We consider first in (47) the terms

—(Q = 0D Awe + (A — A)*Vau .
Using (50) it is easy to check that

IQ* - Q?)AwsIIH(»g).s—l + (A = A" Vau ¢l gt = Cluole.

Concerning f, we split as in (75) (ignoring the superindices), with [ = f,, + f +
fq- In an analogous way, in (47) we consider fe = fy ¢ + fp.e + fg.e-
We then split as:

fuw — fuwe = 0% 0 X£D(Lw) — Q*Aw — (0% 0 X:£:3(Ldwe) — Q2 Awg)
=d¢ +dS + dS +dS + dE + dE + df

1,e°

with

df = (0% 0 X — Q* 0 Xo)£d(Cdw), d§ = 0% 0 X (¢ — ) dw)

d§ = 0% 0 X.:0((¢ — £)ow), df = (0 0 X, — 0220 (L0 (w — w,))
d¢ = QF(¢e — DLW — wy)), df = Q70((L: — DI (w — wy))

df , = (0 — 0P Aw

As before, (50) yields

Idf ol st < Cluole.

To estimate d]e., 1 < j < 6, we will compare the procedure with the one for d;
(83). It is easy to see that they are similar, by identifying X", ¢", w" with X, ¢, w
and X", {”_1, w1 with Xe, e, we. As an illustration, we will discuss df with
detail. We first split df = (Q% o X — Q2 0 X, — (Q% — 0))¢d(¢ow) + (Q* —
0)¢3(¢dw). Then ||(Q* — 0H¢d(dw)||,2,-1 < Cluole and, in addition, the
[I-|lz2 gs-1-norm of the first one is bounded by Clvo]||X — X + be||poopgs—1 <
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Clvo] (8 + T1 |1 X — Xe +be — (A — Ag)v0t||Fx+1). Concerning the H%L2 the
same splitting yields

||d1e s5ho <Ce+ CTS(”U) - we”H(}g),sH + | X — Xe 4+ be — (A — Ap)vot || ps+1,
L

Il
Hy

Analogous estimates can be deduced for dje. ,2 < j <6, achieving

6
D N5l ot < Co+CT (1w = wel yossr + 11X = Xe + be = (A = Ac)vot [ pes1)
j=1

We next consider

fo— fpe = 0% 0 XCO(CD) — Q*Ap — 0% 0 Xp£:0(Le0e) + Q2 AP

We need to make the following splitting

fo — foe =(Q% 0 X — 0% 0 X:)£(5dp) — Q*A¢ + Q7 Ap)
+ 0% 0 X (¢ — £:)d (£09)
+ 0% 0 Xo£:d (¢ — £:)0)
+ 0% 0 Xeled (e — ¢e) = df +d +df +df.

In addition

d? =(0%o X — Q%0 X, — Q% + 02)3(£3¢) + (0% — 02 (¢ — 3L )
+ (0% = 093¢ —Ddg) + (Q* — 0H AP — Q*Ap + Q2 A..

where we notice that (Q? — Q2)A¢ — Q?A¢ + Q?A¢. = tQ2A(Y. — ). This
splitting allows us to prove a suitable bound for dip. The rest of the term d? needs of
similar splitting in order to be bounded.

We now estimate f, — fy.e. We split fy — fy.e = fo, — faue + fas — fqpe Where

Jaw = Jaue = (A0 Xele)* Vaue — (A0 X0)*Vaqy — AfVque + A*Vqy
f% — fq¢g = (Ao X.)* Vgpe — (Ao X{)*Vq,;) — A:VCM)S + A*Vq¢

For f4, — f4.. We can write

qu - .qug =((AoXs —AoX — A + A)g)" Vg, + ((Ae — A) (e — I)* Vqu,
+ (Ao X — A& — &))" Vau,
(A(C = &))" Vau + (Ao X — A)(¢ —1)* V(ques — qu)
+ (Ao X — A)* V(qu, — qu) + A*V(qu, — qu).
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After this splitting the way to control || fg, — fg, |l ;i s-1 is similar to the way we

©
control fq(z) - q(z_l) in proposition 5.4.

To control [[ fg, — fqye |l . s—1 we make a similar splitting
)

fas = Jape = (Ao Xe — Ao X — Ag + A)2e)" Vg, + (Ae — A)(&e — )" Vg,
+ (Ao X — A& — &))" Vg,
(A€ = &) Vag + (Ao X — A& —T1)* V(gge — q¢)
+ (Ao X — A)" V(gy, —49) + A"V (gp, — 4p)-

And we just need to use the definitions of g4 and gy, to obtain a suitable estimate.

With this estimate we finish the control of f — f.. We are left to estimate qu - f¢L, .
given in (42) and (46). Here we notice that f¢L = 1Q%AY, f(pLs = thAllfg, thus,
proceeding as before, the control for ¥ — ¥, O — Q., A — A, makes us conclude
that

L L
”fqb - f¢,s||H(}g),S*1 =< CS,

and we are done with F;.
Part II: Estimates for G,:
We consider first the following splitting

Ge = —Tr(Vwe(A — A) + (8 — 80) + (85 — 85.0)-
The first term can be estimated using (50) in a way such that

ITr(Vwe(A = Ag))llm.s < Cluole,
©

due to w, = o;w, = 0 and A — A, does not depend on time.
Next we consider the L?H* norm for the two terms left. We consider g — g, =
Zj-: 1 dj where

df =-Tr(Vw —v)(¢ —DAoX), d5=-Tr(Vve(¢ —&)AoX),
d{=—Tr(Vvele(AoX —AoX,), di=-Tr(V(v—u.)(AoX —A),
dé = —Tr(Vu(As — A)).

To estimate df we compare it with (85). In an analogous way we get

ldill2pgs < IV(w —we) (& — DA o Xllp2gs + V(P — @) (& — A o Xl 2ps
< Clvol(IX — a — Avpt || poogs+1 + Clvo]T)[lw — well 2 gs+1 + Clvole

< Clvole + CluolT# |w — well 2541
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For d3, we have:

ld3 12 s = Clvollle = Gelleons < CluolllX — Xe + b
— (A — Ap)vot || poc gs+1 + Clugle

< Clvole + CIwolT# || X — X, + &b — (A — A)vot | oo

as before. The same procedure applied to d5 yields:

1
51l 2hs < Clvoll X — Xellzonms < Clvgle + ClvolT# | X — X, + €b
— (A — AS)U0t||F5+1.

In an analogous way to df we get for dy:
1
1d§ 1l 257 < Clvole + Cluol T w — well 201
Finally, it is easy to check using (50) that
Idsll L2 < Cluole.

We are then done with g — g.. It remains to control g(lj; — gé ¢» butin a similar manner
to d we find

lgg — g4.ellz2ms < Cluole,

s+1
due to the formulas for ¢ and ¢,. We now move on to the H = H~! norm. In order
to handle it, we consider a different splitting taking

8— 8+ 85 —85e=uw—8ue) T @y —2pe)+ @5 — 25
where

gw,s =—Tr(VwglsAo Xe) +Tr(VwgAg), §¢>,5 =—-Tr(V¢:l:Ao X;)
+Tr(v¢8c¢,8A¢,8)a

and
gé,s =—Tr(VeelpeApe)s
are defined analogously as g and Eé in (43) and (45) respectively. Above

Cpe =T+ 108 =1~ 1V(Acvp),  and
Ape=Ag +1(0A0X.)|_y = As + 1V A Agp.
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The terms g, g4 and Eq% are defined similarly removing the epsilons everywhere as it
was done before.
. . T _ 14 o
We consider first the following splitting g, — €, . = > j=1 D; where

Di = =Tr(V(w — we)(§ = §p)(A o X — Ag)),
Dj = =Tr(V(w — w:) (¢ — §p)Ag),
D= —Tr(V(w — we)ls(A o X — Ap)),
Df = —=Tr(V(w —we)(Gp —DAg),
D = —Tr(Vwe($ — Sy — (Lo — $pe)) (A0 X — Ap)),
D¢ = —Tr(Vwe($ — Sy — (Lo — £p.6))Ag),
Df = ~Tr(Vwe(ls = Gpe) (Ao X = Ag)).  Df=~Tr(Vuwe({p — L) Ap),
D§ = —Tr(Vws(§s—Lp.e)(Ao X—Ap— (Ao X —Ag))),
Dfy = —Tr(Vwe(Le = §p.e)(Ag — Ag.e)),
= —Tr(Vwelp (Ao X—Ap— (Ao Xs—Apr))),
= —=Tr(Vwels(Ap — Ag.e)),
Diy =Tr(V(w —we)(A— Ag)),  Diy=Tr(Vw:(A — A,)), (52)

Next we decompose further D} = Df | + Df , + D 5 so that
t
1= —/(; Tr(V((w —we))(§ — g)(Ao X — Ag))dr,
t
¢ = /0 Tr(V(w — we)dh (¢ — £)(A o X — Ag))dr.

t
Df’3 = —/0 Tr(Vw —we) (& —8p)0 (Ao X — Ag))dr.
One obtains

”Dil" s+1
Hgy o
S IVO(w = we))(§ =) (Ao X — Ag)ll s
H;
< — s— — s— — s—
< CIV (@0 (w — we)l (8711171 IIs Q’”H(T'HMHA oX A¢”H«T)71Hl+6

0)
8
< T w — X—a—A _
= CllT = well s IX —a = Al sy

—1

< CloolT° [|w — well st
()

We share derivatives in a different way to estimate D{ ,:

IDS oIl g1 .
Heo' H
=CIVw —wo)ll so1 106 =8l szt Ao X — Agll 521
H(O)2 H! H(O)2 L2 H(Of HI+s
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< Cluol T’ |w — wel| s
H oy
< CloolT°[|w — well st
)

stlog

IX — o — Avgtl] o
2 1
o H

H

The term DY 5 is estimated as DY , yielding:

D7 5l syl
Hy
< ClwollIV(w — we)llHA

H-1

s—1
2
©0)

< Clwol T lw — well s
0)

X —a — Avot]| s
H! H,?2

10/(AoX—Ap)ll 521
) H

2L2

248
H ©

We are done with D{. In order to deal with Dj we split it further into
D3 =—Tr(V(w —we)(§ —¢p)A), Dy =—TrtV(w —we) (& — ¢p) VAA).

The term D7 , is estimated as D{ and Dy , is controlled using Lemma 3.9. The same
approach works to bound Df and Dj.

In order to deal with DS one could consider the following splitting DS = D5 | +
Dg , + D5 | where

t

Dg,l = _/0 Tr(Vo,we (¢ — Cp — (Ce — §¢,a))(A oX — A¢))d‘l,',
t

D5, = —/0 Tr(Vwe (& — &y — (§e — Cp,e))(A 0 X — Ay))dr,
t

D§ 3 = —/0 Tr(Vwe(§ — &y — (Lo — $p.e))0 (Ao X — Ag))dr.

We share derivatives as for D | to get

IDSA s
Ho? H
S CIVowe|l s N1 =8¢ — (Ge — L)l 51 [AoX — Apll s
1 H(0)2 —1 ¢ € ¢. H(0)2 HI1+8 ¢ H(O)z H1+8
< Clool TP llwell ss1 [1X — Xo + &b — (A — Avot || so1
Hy L? Hg) —H*
< CloolT?|IX — Xe 4 &b — (A — Ag)vot || pss1.
Next we consider D5 , as Dy , to find:
||D§2|| s+1
Hgy H!
S ClIVwell s 11006 =8 — (e — o eIl sz1 [Ao X — Apll o
’ Hg H! t ’ coe Hg L2 ’ Hg H'®

< ClwlT’|X — X, + &b — (A — Ao)vot || s
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As for Df 5 itis possible to get

DS Al s < CLoolT2 X — Xo + b — (A — Ad)vot|| st
T Hg HT

We are done with Ds. To bound Dg it is possible to split further using identity A, =
A+ tVAAv) and Lemma 3.9 getting

IDgIl s
H

0 < CLolT°IX = Xe +eb — (A = Aot [ s
e
©0)

Sharing the time derivative as before, the terms DS and Dg are bounded by

ID3N s <Clwle,  IIDgll w1~ < Cluole,

o H;

using (50). An analogous approach to the composition lemma 3.17 provides

ID§ || < ClvolT?|X — X + &b — (A — Ag)vot || ps+1

Hy? H~
by a similar splitting as for DS. We control the terms Df, and D{, as D7 to obtain

||Df0||Hm < Clwle, DRl sy < Cluole.

2 -1 _
o 7 Hey H

As for Dg, the use of Lemmas 3.4, 3.8 and 3.9 provides

IDfull w1 = CLolT IX = Xe +6b = (4 = Ac)vot | oot
©)

At this point, it is easy to find as before

ID31 s < Clwol T lw — well s, IDfll s < Clugle.
o H' © H

3l
H o H7!

We are therefore done with g,, — g, .. The same approach can be used to handle
84 — 8¢, butreplacing w by ¢ and w, by ¢.. This provides

1) =Bp.ell s = Cluole+ Cluol T | X — X, 4 &b — (A — Ao)vot || ps+1.

S
o A

It remains to deal with §§; — g{t;’ - Using that §dL) =0@1% = §§;’ > (50) together with
Lemma 3.9 we finally obtain

—L  —L
I8 —8g.ell sp1 — =Cluole.
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Part III: Estimates for H,:
We first consider in formula (49) the splitting

Hy=h—he+hy—hj, +H,
where the term H, is given by

He =~ que(A" = A7 no — (Vwe(A = A0) + (Vwe (A = A) )AL 'ng
— (VweA) + (Vo A)(A™ = A7 ng

The first estimate in (50) yields

1
2 T2

- 1 41
|H | nrs—t = C(lquw,el ht.s—% A7 —A; |H'
© H,

—1 —1
+|ng|H(h0,),s_% (IA—AEIH,;_% + AT —A] |H~“%)
=< Clvole

Next, the use of (50), (51) and the smallness of ¢ — ¢, allows us to obtain

Ihg = hg el ooy = Cllhg —hg li2ps < Cluole.

1
2

The compatibility condition and the formulas for gy ., g4 provide

L L _ 2 —1
|h — hl .| 5= It exp(—) (VYA + (VY A))A

— (Ve Ae + (VP AN A, Dol -

2
H(O) L

Together with (50), (51) yield

L_ 4L L_ 4L
lhg h¢’€|H(§)_%L2 < Clwole, and finally lhg h¢’s|H$)’S_% < Clwo]le.

It remains to deal with h — h.. As we did in (80), we split & = h, + hy+ + hy, and
similarly by = hy ¢ + hyxe + hy .. We estimate first 2, — hy ¢ using the splitting

hy —hy e =di +d5 +d5 +dj,
where

di =Vv( =)V Xng, d5 =V (VyX — Vi Xe)no,
d; = V(v — 1) (& — DV Xenog, dﬁ =V — ) (Vs Xe — Dno,
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in a similar way to (89). As before, using the splitting v = w + vo + ¢, we are able
to bound as follows:

ldil -1 + |d§|Hht,s_,lz < Cluole + Clvo] (IIX — X¢ + &b — (A — Ae)vot || oo gy
©) ©

HIX — Xe +eb— (A — A vot]l s 1
H(%) 4H2+Vl

< Clvole + ClwolT?|X — X¢ 4+ 6b — (A — Ae)vot || ot

where 1 > 0 small enough and we have used Lemma 6.1. Thus, we have obtained the
appropriate estimate. Repeating the procedure in the splitting (89) to d5 and dy, we
find

)
3| oy + 14l o1 = Clvole + Cluol T [lw — welng)t),m.
0) (0)

We split further for hy« — hyx e = Z?:l d;‘f’e, where

di¢ = [(Voe(Ao X—AN* (A o X—A"hHV, X
—(Vvege(A o Xo— A (A~ o X — AV X, Ino,

dy¢ = [(Vue(Ao X — AN ATV X — (Vuele(A o Xe — A *A; 'V, X, ) no,
dy =[(Voe A (A" o X — ATV X — (Vuete A (A o X — A7 DV, X Do,
dy = [(Vo(¢ — DAY ATV X — (Vue(&e — DA)*A; 'V, X, o,

and

3 = (VoA A~V Xe = 1) = (Ve A A (Vs Xe = Dlno.

Further decomposing provides d;** = Z;’:l dy ]e with

di'f = (Vu(¢ = &) (Ao X—AN* (A o X— A1)V, Xn,

i = (Voi) (Ao X—A — Ao Xo+A)) (A o X— A1)V, Xny,

iy = (Vole(Ao X, —A)) (A o X—A™" — A7 o X+ A7)V, Xny,
iy = (Voie(Ao X, —A)* (A7 o X, — A7)V, X — V, Xo)no,

and

A = (V0 = ve) e (Ao Xe—A) (A~ 0 X — A7)V Xeno.
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As for df and d5 we can find
Z \d} ]| ey = Clvole + Cluo] (11X — Xe + b — (A — Avot || oo o
(0)
HIX — Xe +eb— (A —Avor|| 5 1 )
2 4H2+r/

H
©0)
< Clvole + Clvol T°||X — X¢ + &b — (A — Ae)vot | pss,

for n > 0 small enough. As we did for d5 and dj it is possible to get

|qu’5€| . < Clwole + ClvolT? |w — wslleH
©

In an analogous manner, we estimate dj’e for j =2, ..., 5 so that

5
D 1d5 oy = Clvole + Clugl T (lw — Well o
j=2 Q)

+ 11X = Xe + &b — (A — A)vot | ps+1).

The estimates for /1, — 1+ » are done. To finish, we consider b, —hg = di*“ +d5 °,
where

dl =[ge(A o Xe — A7HV X — q(A™ 0 X — A7HYV, Xng,
d3 = 1q:A7 (Vi Xe =) — gAN (Vs X — Dlng

The last detailed splitting d{*“ = d{"{ + d{’; + d['5 provides

dit =qe(A™ o X, — A" = AT o X + ATV, Xeno,
diy =qe(A™ o X = AT (VyXe — Vy X)no.
d{ = (g: —q)(A™ o X — A7)V, Xny,

which allows us to estimate as before

3
D 1T i1 = Clvole + Cuol T (lgw — qu.cll s
j=1 H pr(0)

2
©0)

11X = Xe + &b — (A — A)vot || pss1).
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We end the bounds getting
4371 sy = Clvole + CTo0IT° (g = el v
(O)

+ 11X = Xe + &b — (A — A)vot || pss1).

by a similar splitting. We are done with h; — hy . and therefore with H,. O

7 Setting the Right Initial Normal Velocity
We consider the following parametrization of the boundary of :
2(8), lzs(®) =1,

we also consider a small enough neighborhood of the boundary, U. In U one can use
the coordinates (s, A) given by

x(s, ) = z(s) 4+ Az (s).

The stream function v, in U,will be given by

— 1 2

Vs, &) = dols) + Yi(s)r + 51//2(S)k

V(s 1) = P(s. A).
Then we can extend in a smooth way v to the rest of the domain € and take vg = V.
vg is clearly divergence free.
The initial velocity vg(x) must satisfy

t (Vvo + Vv(’)k)|mn =0,

where ¢ and n are the tangential and normal vectors to the boundary of €2 respectively.
If T and N are an extension of  and n to U respectively, we can write

(T (Vv() + va) N) lag = 0.
We will take

T(s, 1) =x5(5, 1) = 25(5) + Az5 (5) = (1 — Ak (5)) 25 (5)
N(s, 2) =x(s, 1) = z5 ()™,

where
K(s) = 255 (s) - 25,
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and we notice that

Vi ox(s, 1) = Vs + V525

1=k
By defining
Vo(s, A) =vpox(s,2)

we have that

vo(s, A) =

I
]_K)\'Il/szs _w)»zs-

Now we can compute that

Tiaivé ox(s,A) = axv_oj(s, A)
N73jvl 0 x(s, 1) = 8,70" (s, A).

And then

T'9;v] o x(s, N/ = 0, (W5 - N) — w0 - Ny
N79;vh ox(s, VT =8, (- T) — g - Ty.

But

T = z.5(s)

Ny = z5(5) = —k(5)z5(5).

In addition

1 —
v N =Y
Then
35 (g + N)|r—o = 8] (s, 0).
Also
v T =—(1— )Y,
Therefore

0,(Wg - T)|r=0 = k()03 % (s, 0) — 59/ (s, 0).
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Finally

(@ - T)la=0 = U5 - Nslio = k(5. 0).
Thus, we have that

82/ (s, 0) — k0, (5, 0) — D29 (s, 0) = 0.
Taking ¢ = 0 yields

290 = Ya(s).

Just to conclude we notice that v - n|se = 9s¥o(s). We first pick up g in order to
choose the normal component of the velocity to be strictly positive and outward at the
interface to guarantee a splash. Then 1, is taken to satisfy the continuity of the stress
tensor.
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A Results on the Linear System

This appendix is devoted to prove Theorem 4.1. The proof is an adaptation of [5,
Theorem 4.3] to the tilde domain.

A1Caseg=h=vp =0
We would like to solve the following system:

v — Q*Av+ A*Vg = f

Tr(VvA) =0
(gl — (VvA) + (VvA)*)Bin =0
V=0 =0, (53)

where

—1 1 *
Bi=-JA'U=—A
Q
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and

Aij=3;P o P71,

Our first purpose will be to obtain a weak formulation of the time independent part

of this system. In order to do it we will use the following identities
AA* = Q%1
. o 1
Av =div| AA EVU
and also
1 . .
0% (@Aumkjakv’ - Ak,-akvf)) = 0*Av

Using this relation it is easy to arrive to the following identity:

| ' N\
f 9 (—2Azj(Akj8kv’ + Akﬂkl}’)) ¢'dx
o \0Q
! _ .
- _f —5 Alj (A kv + Agidv”) 919" dx
Q0
. 1
+/ n' Alj (A kv’ + Agidv))¢' —do
FIo) 0
| ' , .
= _/ —5 (Agj oV + Agidkv!) Ajj01¢" dx
Q0
. o1
—i—/ nl A (A’ + Akioxv!)9' —do
a0 0
1 1 i j i /
=-3 /Q @(Akjf?kv’ + A Okv?) (Ajdi¢" + A d1¢?)dx
. |
+/ n' Alj(Agdv' + Aridw’)¢!' —sdo
a0 0
for ¢' € C®(Q).
We also have that

| o1 do
Apidrqet —dx = —/ Ok <Ak'¢l—> dx +/ Ak~nk¢'—
/;z l 0? Qq 2 aQq l Q?

The following identities hold:

i 1 i 1 Ai
% (Akiqb @> = Ak’ 5z O (Q—’;> =0
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The energy identity for the time independent version of (53) reads:

1 1 . . . . 1 .
> /Q @(Akjakvl + Ari kv’ ) (A1 9" + A9’ )dx — /Qqak (Aki@ﬁbl) dx
—f n’Ar(Ak-akv"+Akiakvf)¢iido+/ o' qAn* 22 =/ f b d
90 I Q? a0 Q? Q Q?
and therefore

! ‘ ‘ . . -
—/ a(Akjakvl + Ak 0kv?) (A1 019" + Aji9y¢p? )dx —f q 0k (Aki@W)dx
/ (@87 — (Ayj o0’ +Akzakvl))Al]”¢ /f ¢—

where

1N A, o, 1
Ok (Akiafﬁ ) 07 —5 k¢ = @TV(VW‘),

so that we finally write as follows
—| Tr ((VUA + A"V ) (V¢A + A™V¢ )) —dx — | qTr(VpA)—dx
2 Ja 0 Q 0

dx * * * 1
=/Qf-¢@—/m(q]l—(VvA+A Vi) A'n - g do. (54)

Therefore (54) is the time independent weak formulation of our system.

Next we will define a kind of Leray projector. Let Hg the subspace of H? formed
by vectors A*V¢ such that ¢ € Hol. Let Hg the orthogonal complement of Ha? with
the following vector valued H? scalar product:

(f.8)po = /f g—dx

Then it is easy to check thatif v € H' N HS , then v must satisfy
Tr(VvA) =0.

For v € L? we define Rv to be the orthogonal projection of v onto Hg .Forv e H!
we have that

Rv =v— A*Vy, (55)
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where

Q’Ay = Tr(VvA) in
¥ =0 ondQ, (56)

The next lemma will deal with some properties about this projector R. Note that
we have defined R for functions of x. For functions of (x, ) we apply R for every ¢.

LemmaA.1 Let 0 < s < 4. We have:

i) R is a bounded operator on H®.
ii) R is a bounded operator on H(/g)’s, with norm bounded uniformly if T is bounded
above.
iii) If g € H'T, then R(A*V¢) = A*Vy, with Q> A¢y = 0in Qo, ¢1 = ¢ on 9Q.

Proof i) Forv e H®,0 <s <4,itis easy to see that Tr(VvA) € H*~!. Therefore
the solution of the system (56) satisfies:

Tr(VvA)
o7 < llvllas,

IVl s+ < C‘
Hs—1

by elliptic theory, since both A and Q2 are regular. The identity (55) provides
IRvllgs < llvllgs + VY Ias < Cllvllas.
ii) Itis easy to check that 9; commutes with R, since
I Rv = 8%v — A*Voky = Rokv.

This proves the result for an integer number of derivatives. By interpolation we
get the result for fractional derivatives.
iii) For ¢ € H*t!,if v = A*V¢, then

R(A*V¢) = A*V¢ — A*Vyr = A*V (¢ — ).
Thus, we have that
0=Tr(V(R(A*V)A) = O*A(¢ — V), Ylag, =0,

which implies that ¢ — ¥[;q, = ¢ and we can take ¢ = ¢ — V.
O

Once we have obtained the energy identity (54) and Lemma A.1 we pass to announce
the main theorem of this section:
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TheoremA.2 Let f € H(}(’)[)’S_l, let v, g solve (53) and2 < s < 3. Then

19l 1V oot 4141 sy = Ul

The constant is independent of T.

The rest of this subsection is devoted to prove this theorem.
First of all we will modify the equation by considering the new variables

u=e'v; p=elq; f=e'f

We should remark that f € H (}6’)” o fe H(}g)’s*]. Then, the equation reads

du=—e"v+e v, =—-u+e(Q*Av— A*Vq + f)
=—u+ Q*’Au—A*Vp + 1.

We will solve therefore
du—+u—Q*Au+A*Vp =7.
Let’s start projecting onto Hg to obtain
Ou +u — Q2Au + A*Vq, = RS,
since Tr(V(Q*A)A) = 0 and therefore R(Q%Au) = Q?Au, where A*Vq; =
RA*Vp.
We now introduce the operator
Sa: VH(Q) > RES!
defined via:
Sau=—0Q*Au+u+ A*Vq,, A*Vq = RA*Vp,
where V' (Q) = {u € RH", A*ty (VuA + A*Vu™) A*ng = 0on a2} and

RH*' ={(Rf, f e H*"}.
The following lemma deals with the invertibility of S4.

Lemma A.3 Sy has a bounded inverse for 1 <s < 3, and
1S5 Fllgsr < ClF s
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Proof Let f € RH*~!'. We will show that there exists u € V51! such that Syu = f,
i.e.u—Q?Au+A*Vq, = Rf (we will keep in the notation R f instead of f, although
Rf = f, to keep in mind this fact). Using the energy identity (54), we observe that

(u, ) + (u ¢>——/ h-¢d—a+/RT~¢d—x+/ Tr(wsA)d—)z
' R a0 Q? Q Q? qu 0?

is the weak formulation of

u— Q*Au+ A*Vq; = Rf
(q1 — (VuA + A*Vu*)) A*ng = h,

where
(. p) = / up 5 QZ (57)
(u, p) = / Tr((VuA + A*Vu*)(VpA + A*V* )) Q2 (58)
If we look for 2 = O we then have to solve
(, §) + (u, ) = /Rf ¢Q—+/ q1Tr<V¢>A)Q—§ (59)

We will find a solution to this equation in RH'. By this we mean that there exists
u € RH' such that (59) holds for all ¢ € RH ! We notice that the last term vanishes
since » € RH', and henceforth, in RH', the equation (59) is equivalent to

(u, ) + (u, ¢) 2/ Rf¢ Q2' (60)

forallp € RH'.
Via [29, Corollary 4.7],

(u, 1) + (. u) > Cllull3,,

and therefore it is a coercive bilinear form. That implies Lax-Milgram’s Theorem can
be applied in RH ' to obtain a solution u € RH' of (60).
The next step is to show that there exists p € L? such that

(u, ) + (u, ¢) =/ Rf¢+/ pTr(VoA) Vo e H'.
Q Q

To do this, we decompose ¢ = R¢p + A*Vn,;), and then

(u, @) + (u, ¢) = (u, R$) + (u, R$) + (u, A*Vry) + (u, A*Vry)
— ———
0
= (Rf, R$) + (u, A*Vry) = (Rf, ¢) + (u, A"Vry).
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Therefore we have to show that there exists p € L? such that
(p, Tr(VoA)) = (u, A*Vry) Vo € H'.

Let us assume that u is smooth and suppose we take p satisfying:

Q*Ap=0
Plag = (A*n, (VuA) + (VuA)*)A*n) (61)
= Q%(n(AVu + Vu*A*)n). (62)

Then, on the one hand

dx . [ AA*
/pTr(VqSA)@ =/pA7t¢dx=/pd1v <?V7t¢) dx

——f Vp - AA*Vr, d—x+/ ponAA VT,
Q 02" Jig ’0?

- /Q VPQZV%% +/39 p(A™n) - A*Vnd,g. (63)
0
On the other hand
(u, A™Vrg) = % / Tr((VuA + A*Vu*)(V(A*Vry)A + A*V(A*Vnd,))*)%,

where
(V(A*V7g)A)ij = 0(A*Vrg) Ajj = d1(Akidkrrg) Al
= A[jalAkiakﬂ’¢ + AkiA[jalzijqb
) . dx
(u, A*Vry) = /(EWIAU + 8lujAli)Amj8m(ak7T¢Aki)E

. N
- —/ O ((Amjagu’Alj + Am,-alqu,,») @) Oy Aridx

. : dx
[0 (A Ay + Ayl A1) ey v G5
Q2

. . 1
— _/ O ((3m’a,u’ + Amja,qu,,-) @) ey Aridx

+ A%ng - (VuA + A"™Vu)A™Viy—.
a0 0

The first term is zero because of the orthogonality and because of the condition
Tr(VuA) = 0. We do the calculations for the second term:
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faQ(A*no) (VuA + A*Vu*)A*V%g — /no(AVu + Vu* A%V,
- /no(AVu + Vu* A*)ngd,my,
since tg - Vry = 0. Comparing with (62) we have that
(p, Tr(V$A)) = (u, A*Vry), Vo e H'.
for smooth u. Let u € H! and {m}y_, such that u,, € H*, and tr(Vu,, A) = 0 for

every m, and u,, — u strongly in H! (for example we extend u by zero to R?, we
make the convolution with a mollifier p1 and finally we project onto H, ). Let p,, be

given by
Apn =0
Pmlag = A o (Vi A + A*V (1)) A" g

Then, we have that
(Pm> Tr(VA)) = (um, A*Vry) Vo e H'.

In particular, we take ¢, such that Tr(V¢,, A) = p,,. This implies that QZAﬂ¢m =
Pms g, |9 = 0. Showing the existence of such ¢, is trivial since one can choose
¢m = A*Vir, with Q> Ay = p,,. Then, we can bound the L? norm of p,, in the
following way:

1pml72 < Clm, A*Vg,) < Cllumll g ll7rg, L2 < Cllull gl pml 2,

which shows that p,, is bounded in L?. Therefore there exists a subsequence Dm;
which converges weakly to a function p in L? and

(p, Tr(VoA)) = (u,Vry) Vo e H'.

We have shown that there exist (u, p) € H 1« L2 such that
dx 1
(u, @) + (u, d) = (Rf, ¢) + pTV(VdJA)@ Vo e H'.

Indeed, u € H?, p € H'. We now show that improvement on the regularity.

For every Q” € Q, it is easy to obtain the interior regularity estimate ||u || H oy <
C, IIpll g1 (qry < C. We focus here on the boundary estimates. We perform the follow-
ing change of coordinates in €', where €’ is a tubular neighborhood of 9€2:

x(s,2) = 2(s) + Az (5)
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We would like to check that it is indeed a diffeomorphism. We have following:
|Zs|2 =

X5 (8) = z5(5) + Azp (5)

2o = (255, 25(9)) 25 (5) = —K (5)25(5)
xs(s) = (1 — Ak (s5))zs(s)
X, =25 (5)

Computing more,

xg X} 1,2 .22
det 7978 ) = xlxf — x2x7 = xtxy = 1 — ai(s)
T i

This fixes the width of the tubular neighborhood to be Ao < sup, KLS) Under these

assumptions x (s, A) is a diffeomorphism. Fix xo € 92, and consider the following
cutoff function v, defined by

Y(x) = 0 (B (xo’ ﬂ> mg/)C , 0<vy@ <1, ) eC™.

We extend ¥ to 2 by zero. We define the set C as C = x 1 (B(xg, A) N ), and
the set C/2 = x~!(B(xo, &) N Q).

The energy identity can be written down as:
/ Q' Agj + ! Ayy) (0’ Agj + 8k¢jAkz) / 625

o dx
— vl T a Al
/Qf¢>Q2+/pz¢ WG

We choose as test function ¢ = ¢. Then:

o d
/(31u Alj + orud Ap) Ok (@' ) Arj + Ok (¢! W)Akz) Q2 /;Zulqﬁl—x

Q2
i dx
=f9f¢>@ /pamsAth

M| + My = M3+ My

We start developing each of the terms one by one

My = / @ Arj + ! A () A + 0k () Ay s >

. . . . dx
+ / o Ay + il ) B Ay + 000 )
Q/

@ Springer



Splash Singularities for the Free Boundary Navier-Stokes... Page 61 0f 117 12

dx

= /Q (O A+ ! A Y @) Ak + o) A

i j i j dx
+ | (Qu' A+ o’ Ap) ok (@' Agj + @ Aki)@
Q/
We now do the change of variables

d
dx = 4 dsd) = (1 +«k(s)L)dsdx,
dsd)» —

J(s,A)
and define

A(s, ) =Aox(s,A), O(s,A) = Qoux(s,r), u(s,r)=uox(s, 1),
P(s,A) = pox(s,A),
D, M) =@ox(s,A), V(s,A)=vox(s,A), f(s,r)=fox(s,A).

We can compute the derivatives in the bar-coordinates
u(x) =uosx), Blui = Bkﬁi o s(x)alsk

au' o x(s,\) = ot (s, )»)Blsk ox(s, )

Setting x = x(s, A), x/ =x/(s, 1), we obtain:

) . Js!
ox’ = 0;x’ (s, A)—s.
oxt

g . Js!

817 = ayxd (5, ) o

ox!

y ) os!
5 = dpx) 0 5(x) > (x)

ox!

8" = (Vx)j1(Vs)ii 0 x(s, 1) = (VxVs)
I =VxVsox(s,A), Vsox(s,\)=(Vx)"'=%

Plugging this result into the equation for the derivatives of u, we get

ul ox(s,\) = S’
2 1
e
I —w()r \—x5 X5

Plugging this expression into M1, and letting ¥ A = B, we obtain
2My = / (Bu' o x(s, WA + dul o x(s, M)Ay)
c

(w(a,@’ o x(s. M)Ay + @ o x(s, A)Aki) dsd
0
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+ /C 30V it Byj + dmit! Byui) (@' By, +¢jBa,-)édsdA

= fc (O Zt Al + Ol St A1)V (049" Sak Axj + 9,7’ Eakai)édsdA
+ /C 04T (Tl By + it Bui) (@' By +¢fBai>édsdA

= fc E(amﬁ"ij+amﬁme,~)(aa¢"Baj+aa—fBa,-)édsdx

o - » . J
+/ 8aw(3mulej + Opu’ Bmi)((pl Btlj + ¢j Bai)__Qde)L
¢ 0

Moreover,
. .d
M2:/ u' ¢ %:/_’_’w—dsd)»
@ Q c 0
M3 = /f Iﬁ—dsd)»
My = / 04@ T B~ dsd.
Q

with

M+ My = M3+ My = My = —M> + M3 + My.

We start computing M. We have that

—i — —i —j —J

2My = | (0)u' Byj + 0yuj By;) (0k @' Bij + 0k @ Bki)wg

c
—i — — —j —J
+ | (Qu'Byj + 0jujBy) (@' Bij + ¢ Bki)akl//g
c
=m+I.

We will use the convention that the m terms will denote bad terms from now on.
We further split m into four terms:

T L

m =/ 31M'Bljak<ﬂ13kj1ﬁ_—2+/ ! By k@' Bij ¥ —5
¢ 0 ¢ o

Zip oazip = J i B 0T BT

+ | o' Bijokg’ Biy — + | Oiu’ Biidk®! Briy —

¢ 0 ¢ 0

=mj + my + m3 + my.
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If we are able to estimate any one of them we can estimate all of them.
We will use the following formulas related to finite differences:

fs+hgls+h) — f()g(s) _ (fs+h) = fs)gls +h)
h h

n f(s)g(s + h; —8)

=g(s+ D! f + f(s)D!g.
D;"D!(fg) = D;"(D} fg(s)) + D" (f(5)D]'g)
= (D;"D! f)g(s) + D! fD;"(g(s + h)) + D;" f D! g(s — h)
+ f()D;"Dlg.

Dl'(fg) =

D (g = ELTEED i,
Dl (g(s —h)) = w = D",

= D;"D}(fg) = (D;"D! f)g(s) + D! fDlg + D" fD "¢ + f(s)D; " Dlg.
We take ¢ = D" Du. Since divergence free condition, we have that

D" DIBjau’) =0 = (D" D" Byj)au’ (s) + DI B Doy’ + D" By D" ju?
+ B D" Dl

Therefore

By D" DIl = — (D" D" Byj)oyu’ (s) — D! By DI ojw/ — D7 By D" oy’
B;ja,D;" D@’y =D " D! (B8’ V) — D" D! By dy (u! ()Y (s))
— DBy D!y @) — D7 By DI (3@ ),

and
By (Yu') = Byjopyu’.
Expanding the calculations, we obtain

B;ja, D" D@/ y) =D;" D! (B);d;yul) — D" DBy (@l () (5))
— DI"B; DM@ y) — Dy B DT (9 )
VB D;" D} /) =y D" DByl ) — ¥ Dy DY By (/)
— Y D!B; D3 (@) — Yy D;" By DM (3 @ Y)).
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Finally, we get to

¥D;" DI B ywly = D7 DB 8w ¥)
— D" (B ) DY — DByl ) DY — By oyl DD

Therefore

U B, D" DI @) = D7D (B ) — v D" By Doy @l )
— Y D"B;; D8 @) + LOW
= B;d,¥ D" D@/ y) — ¥ D! B; Doy @l )
— ¥ D;" B Doy @/ + LOW,

where we say that a term 7 is LOW is ||T'||;2 < C|u|| 1. We also say that a term
T is SAFE if, for any § > 0,

IT N2 < Cs + 8UIVD;" @) 172 + IV DL @) 17.),

where Cs may depend on |[u]| 41, [Pl 2, ||7||L2 and ¥, B, Q or J. We now look
at what the terms M, ..., M4 look like. We have that

M2=/wiD;hD§’ /Dh(w Dl —+LOW
c Q?

—i J —i B -
M =/ 7ol = < CsIF 12, + 81D, D G 12, + LOW.

C

_ —— . J _ _ -

My =f PB1j0; ¥ D; hDi’ul@ < Cs|pl3. + 811D DL @) 2.
J

I =/ T Bl,¢fakw3k,Q— < Gsllul3,0 + 811Dy D} @)l

M = /3114 ByjBy;jox D" D! (w w)w_—z
o 0

J
:/ <1,081u By Byj — )D (O (@' )
c 0’

. _J
=/CBljBijﬁ(x/falﬁl)Dfak(ﬁ’I/f)g+SAFE

g —J
:/CBljBijﬁ'(au//ﬁl)Dﬁ'ak(ﬁ’w)g+SAFE.
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We can then bound
/ IVD!Wu)* < My < Cs + 8| VD" @) |17, + 81V DL @)l ».
c
/ VD @) < My < Cs + 81V D" @) 17, + SIV D) @)l
c
Similar computations show that we can control ||Vdsul| ;2. This implies that
l9sull rcjoy < C.
We proceed to control the pressure terms. From the energy identity:
1 —i —j —i —j J
5 | @ Byj + dju’ Bii)(0k@" Bij + k¢’ Bri) —
2 Jc 0
—i —j —i —j - J i
+ (31u Byj + 0u’ Bii)(@' Bij + @' Bi) oy — + | W0 ¥ —
c

0’
i _J _J
f w— + pTr(VsoB)w_— +PBVY9—
0’ 0
Pi+ P, =P3+ Ps+ Ps
We choose ¢ = B*VTI, with

I - o=
D" DBV = div(J VD).
0

Then:

— _—J - _—J
Py = / pTr(VoB)Yy — = / YD DY) =5
¢ Q ¢ 0
— 2 J J —_ J —
= —/(D?(lﬁp))z_—z +/ (D? <_—2¢P> - :ZD?(lﬁP))
¢ 0 ¢ Q 0
=ms +11,
where
Il < cliplize-
So, if we control ms we can control [|9sp|l;2(¢/2)- It is not hard to see that

|1 + | P2 + | P3| + | Ps| < Cs(llll7 > + IVsially» + [IVall3, + 1717,)
+ 8D BY)I2,

@ Springer



12 Page 66 0f 117 A.Castro et al.

which implies that ||D§’ 201 12 < C independent of /. Because of the interior
regularity estimate we have that the solution is strong in the interior of 2 and we can
write

—=2

Q . (L/10\ i\, i fo—i _ F o
7d1v<7 (O JZ)VM +u +BVp) =f, Tr(VuB) =0

where we recall that J = (1 + Ak (s)) and that we have used

Auox(s,A) = J(Sl 3 div (J (s, V) ZZ*Va) (s, A)

SR — ! x}% _x)IL x)% _xs2

A +r)n2 \ —x2 x! —x! x]
_ ! bal? —x- X
T+ x)m2 U= xg [oxg]?
This implies that
1 1 2 . .
div x| X zxs Vi
J(s, A) (I +()A)? \ =X x5 ]

_ 1 1 0 —
RIS, ”<(1+K(m)2 <0(1+K(s)x)2> ”)

Let us define
(170
#=("7)

div(BVa') = 3 (B dt') = d By 9’ + Praddyt’
———

I

| . .
=TIV + 733%’ + Joku'.

And then:

—2
QTafﬁi + 002 + Vi + Bygp=71

—2
= 00} + Budip = —Q733ﬁi —Tvi' + f =4,
and we know that g/ € L? (C/2). We also have that
(@' Bii) =0

8,1  By| + ,1' Boy + 0,u° B2 + 8,71° By = 0
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Thus
8%51321 + 8)%52322 = g3, where g3 e L?
Plus
—2.5 _ _
0 8%u' + B119;p + Budp =g’
—2._ _ _
Q" 97u* + B123,p + Bnd,p = &
—2 _ _ _
0 leaful + B12B110sp + Blzzaxp = Bpg'
—2 _ _ _
0" B»d7u* 4 B B12dsp + B30, p = Bng”
This implies

(B3, + B3,)8,p = g*, where g* € L? (C/2),

and since (3221 + 3222) > 0 for a small enough A¢, and we get that 9, p € L2(C)2).
Finally, we use this to get that

092" = g, where g® € L2(C/2).
0922 = g8, where g € L2(C/2).
This completes the regularity proof, since we can cover a A—z" neighborhood by a
finite number of sets of type C /2.

We are only left to show that we can apply [2, Theorem 10.5, p.78] to our system
in order to obtain higher regularity. Indeed we can apply this theorem to show:

lull gs+r + 1Pl < 1f st (64)
What follows is a confirmation that our problem fulfills the elliptical conditions of

[2]. To adapt our notation to the one in [2] we will write !, u?, ud) = !, u?, D).
In [2, pp.38, 42] the system is written like

lij(x, d)u! = F;
with the boundary condition
B j(x,Du; = ¢p.
In our case we have the correspondence

Ih=1-0%A, 11p=0, Ii3=A4ud, Fi=Af
b1 =0, ln=1-0Q%A, ly=And, F=/f
I31 = A1k, 30 = Apo0k, Il33=0, F3=0
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And the indices ¢; and s; can be taken as

hH=2 n=2 nB=1
s1=0, 55=0, s3=-1

It can be checked that with this choice /] ; is given by

L=—0°A, I, =0, lj3=Aud,
=0, ly=—-0A, lyy= A,
Iy = Ar1dk, Uy = Akadk, I35 =0,

where [ j is defined in pages 38-39 of [2]. Also
By = (t'Aynj + 1t/ Ayni)d;, 1=1,2
B3 =0

and the indices r{ = —1 and r» = —1. With this choice Bi’j = Bj; (see [2, p.42]).

We can write

—Q% &+ &) 0 A&k
(I'(x,8))ij = 0 — 0% (&7 + &) Awdék
Ak1ér A2ér 0
and
o —2n'Aj1(n - §) —2n'Ajp(n - ) 1
B@x. 8)ij = <ﬂ'AI-1(s n) i A (- E) 1 An(E - n) 4 nf An(t - ) 0)

Let L = det(l{j (x, &), Le.

L(x,&) = det(l'(x, §)) = Q*(E} + ED (A &)* + Q% (6} + ) (Apar)?
(A11E1 + An62)? = A} &7 + A% 165 +2A11 A0 616
(A1pE1 + Ané))? = ALEE + ASE5 + 2A10A0E6
= L(P,§) = QG +EHQ*EE + 8D = 0*EF + D)7 = 0Yg)?
To know whether the system is uniformly elliptic, we are left to check that it satisfies

the Supplementary condition (see [2, p.39]). The degree is 4 and therefore m = 2.
We need to compute the solutions of L(P, & + &) = 0, which are the solutions to

|6 +7&')> = 0.

&+ &P = 52+ 2E 1P + 216 & =0
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Solving in 7 yields

B I s VAE €N —4E2IE?
- 20€"|2 '

If & and &’ are linearly independent, then the discriminant is strictly negative, which
implies that there is a complex root with positive imaginary part. Since the roots have
multiplicity 2, the Supplementary condition is satisfied. In addition uniform ellipticity
is easy to obtain. Next we check that the Complementing Boundary Condition is
satisfied ([2, p. 42]).

Let 79 be tangential vector and n¢ the normal one.

Since i is a double root of L(x, to + tn) and M T (x, &, T) ([2, p. 42]) is given by

Mt(x, 6, 7)=(t — i)

In addition

—0%(1+1% 0 Apr (2§ + )
('(x, to +Tn))ij = 0 —Q%(1 +72) Apa(tf + )
Al (t(]){ + Tnk) Akg(l(l){ + Ti’lk) 0

We define L;; as in [2, p.42], and we have that. L(x, to + tn) = I'(x,t + tn). Also,
it can be computed that

n+1t)'Aiy (n+7t)'An 0

-Q%(1+7) 0 A (t 4+ Ty
Lij(x. 10 +tn) = 0 —Q*(1+7%) A +Tn)t

—2n' A —2n' A 1
B(x,tJrnz):( AT At )

At (t +T)E Ago (t +Tn)k 0
(B(x,t+Tn)L(x,14Tn));j

[ 2mp AT QR (1 +T2) + A (¢ +Tn)* 2m Aot Q2 (1 +T2) + A (t + T)f 1l Aj T At (t +T)F 4+ Tt Ap A (t + Tn)
B —(n+ ) A Q1 +T2) —(n+ 1) ApQ*(1 +7%) n+ 1) A A (8 +T)* + (n + 1) App A (t +Tn)*

If the rows of (BL);; are linearly independent modulo (7 — i )2, that means that the
condition

ChBnjLjx=0 mod M*
implies that all C, = 0 ([2, p.43]). If this condition is satisfied in particular
ChBpjLjile=i = 0.
Then c¢3 must be zero and the following system of equations must be satisfied:

ClAkltk + CzAkztk =0

c1Ak1nk + C2Ak2nk =0
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In matrix form:

Akltk Akztk cry\ 0
Ak1nk Akznk (&) - 0
But the determinant of this matrix satisfies

AkltkAkznk — Akzl‘kAklnk
(A*n)l(A*n)? — (A*n)*(A*n)!
(A*t, JA*n) = (t, AJA*n) # 0,

and therefore ¢c; = ¢ = 0. Thus we have checked that the complementing Boundary
Condition is satisfied.

Finally we notice that our system can be written as in [2, p. 71], where the coeffi-
cients a;;, p are smooth. In our case the index /1 in [2, p. 77]is [y = 0. The index / in [2]
coincides with s — 1. That means / = 0, 1, 2. The regularity we ask for the coefficient
bpj o is cl=rn (cf. [2, p. 77]). The most we need is therefore by » € C3. Since these
coefficients are one derivative less regular that the boundary, a C* boundary is enough
for our purpose. This fact finishes the proof of the inequality (64) if s is an integer.
For the rest of the values we proceed by interpolation.

This concludes the proof of Lemma A.3. O

Once we have studied the operator S4 we will solve the time evolution. First we
will show the following lemma.

LemmaA4 Let1 <s <3, 1 € C, R(A) > 0. Then the operator > + Sy : ys+l
RH*~ is invertible. The inverse satisfies:

1.+ SO Rf s+t < CARF llgs1 + AT IRFIl2) (65)

Proof Asbefore, welook foraweak solutionof (A+S4)v = Rf, f € L?. Therefore,

1+ 1), w) + (v, w):/ wa% Vw e RH'.
Q

The solution is given by Lax-Milgram’s Theorem. For w = v, by virtue of Korn’s
inequality and 91(X) > 0, one obtains

I(1+ ) (v, v) + (v, v)| = C((L+ [AD I, + 1VV]3,),

with C independent of A. Easily, the following bound is obtained:

1
< —|IR . 66
lvll2 < 1+|)L|” fli2 (66)
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If f € H*~!, then Lemma A.3 gives v = S;l(Rf —av) € H5t!, and we can get the
following bounds:

[vll gs+1 < ClISavligs—1 = CUI(Sa + Mol gs—1 + [All[v] gs-1)

s=1 2
< ClIRF s + Al 0l 5T

The case s = 1 is already solved using (66). Young’s inequality provides

lvllgs+1 < ClIRf Nl gs—1 + %”U“HS“ + |)‘|%HUHL2'
and we can get (65) using (66). O
In order to find the solution of
v + Sa(v) = Rf in VSHL,

we take Fourier transforms in time. Since f € H(}g)’s_l, Rf(0) = 0, we can extend
Rf to a function Rf defined in H"$~1(€ x R), with Rf (t) = 0 for all 1 < 0. Since

1< % < 1, using Lemma 3.1 (ii) we get

||Rf||H(h0t)’57l(RXQ()) = C”Rf”H(hOt)vJ*l([O,T]XQO) S C||f||H(hOt)’571([O,T]><Qo)’
with C independent of 7. We look for a solution of

v+ Sa(v) = Rf, VteR, v(0)=0.

By Fourier, it0(t) + SA(0)(7) = R;f, and therefore the solution is given by v(z) =
(it + S4)"'Rf. Using (65) and (66) we can bound

2 ~n2 1yan2
19121 ) = A‘% D121 (0) + [T 18112, ())d e

<c /R URF I, (0) + [~ IRT N2, )d

BFI2 2
< ClIRS Wggnes—1 = CUF I hrsr-
©

Since Rf(t) = 0 for every t < 0, Rf(t) has an analytic extension in T to
3J(r) < 0. Using Lemma A.4, 0(t) also has that extension. Moreover, (66) gives

10(t)|,2 < CIRf(t)|l;2. Thus, Paley-Wiener provides v(t) = 0 V¢ < 0. Since
v e HT (R: L?) and 3 < *t1 we have continuity in time and hence v(0) = 0.
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Since © € L2(R; VSt1(Q)) we have that v € L2([0, T]; V°T1(2)) and therefore
Tr(VvA) = 0and (g + VvA + (VvA)*)A~'n = 0. We have already solved

v — Q*Av + A*Vq; = Rf,
where ¢ satisfies

0%Agy =0, in Q2 x [0, T]
g1 = A" 'n(VoA + (VoA A i, on 9Q x [0, T].

We have that 9,v(0) = 0 and then [|v|| js+1 < C|| f]] yae.s-1. Definition
© ©)

A*Vg = (I —R)f + A*Vq,
gives us the solution that we were looking for
v — Q*Av+ A*Vgq = f.
The properties of R allow us to obtain
Vg IIH(fg).s—l < C”A*Vq”H(Ig),s—l = - R)fIIH(fg).x—l + 14"V, IIH(fg).s—l
< C(IIfIIH(/g),.v—l +1A*Vaq IIH:&J—I)-
We have the following bounds:

1AVl 21 < IVl 2 < 1AT n((V0A) + (Vo)) AT 0],

< I(VvA) + (VoA li2gs < IVUllizgs < Illz2qo, 73 m5+1).

IA*Vaill 1 < |A™'n((VvA) + (VvAY)A 0| or .
Hyl L2 H(KHZ

Decomposing Vv; into the tangential and normal components: Vv; = (Vv; - ng)ng +
(Vv; - t9)tg, we can bound each of them by

Vi -0l s | < Cluil s 5 < Clluill 51 = Cllvill g s+1,
H? H2 Hy? H2 Hy )

Vv; -ng| = <|Vv;-n < Cllv; sl

[V, 0|H(;)TIH% < |Vvy; ol (/g),s—% < (]| l”H(/g)v-*-l

Above we have used Lemma 3.2 (i). This yields

[A*Vaqill s < Cllvll yaessr.
Hoy L? @
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and therefore
IA*Vqll st < CIfll 1.
Higy® Hyy®

Since (I — R) flasq, = 0, we have that ¢ = g1 on 0. This implies

191 et =11l 41 =1A7"'n(VVA) + (VoAA™ |,
w2 H.. 2 HY 2
0) 0) ()
—1 * —1
< AT n((VoA) + (VoA)AT ],y
+ 1A 'n((VvA) + (VoAYHA n| s 1 .
Hi *L?

Decomposing into the tangential and normal components as before, we find finally

gl et S IVUllL2gs + 1V o209l s 1 +1[Vvi-ngl s_1
2 2 472 2 452
© Hpy "L Hgy "L
<lvllpzgser + il s_1 +1Vvi-nol 1
Hey, *H! Hg, *

s
2
©

= IIUIIH(hOr),sH + IIUIIH Yol + IIUIIH(lg),m = IIUIIH(Iz)r),m-

A.2 Reduction for Arbitrary g and h

In this section we want to extend the result with g = 0 and & = 0 to the case:

v —vQ*AV+ ATV = f in Qg x [0, T]

Tr(VvA) =g in Q9 x [0, T]

(g + (VvA) + (VvAHA In =h on 9 x [0, T']
v(x,0)=0 in ¢ 67)

To get the space where g belongs we proceed as follows. For ¢ € HOl itis easy to find

/aj(Tr(VvA))qb(x) dx =/Tr(V8ij)¢(x)d_x =/8ij*V¢> dx
! 02(x) ! 02(x) ! 0%(x)
Then
‘ / 0 (Tr(VoAYS () =2 | < 197 0]l 2 () 1V 1,
0%(x)| —

and duality provides
18] (Tr (VoA | -1 < 18] 0]l 2(), with H™ = (H})*.

@ Springer



12 Page740f 117 A.Castro et al.

For j = %, integration in time yields

ITr (P ss1 < [0l

Here we remark that we use (28) for the norm of fractional derivatives on time. Also,
Tr(VvA) € L2([0, T1; H®), which implies:

s+1
2

Tr(VvA) € L*([0,T]; H)YNH = (0, T]; H™ Y,

To prove this fact, one can proceed for an integer number of derivatives, then interpolate
for fractional ones (see [27]).
We check next the compatibility conditions of the initial data:
Tr(VuvA) = g(0) in o (68)
(A" ') (VvgA + (VugA))A™'n = h(0)(A™'n)* on 982. (69)

Defining the following spaces:

. . ht,s+1 ht,s
Xo:={(.q):veHgy" " .q€H, "}
ht,s—%

_ —ht,s
Yo:={(f.g.h): feHY ' geHp' heHy' > x[0,T)), }

(here we remark thatin X and Yy: v(0) = 9;v(0) = ¢(0) = f(0) = g(0) = 9,2(0) =
h(0) = 0), then, for (f, g, h) € Yy, (33) is equivalent to solve:

5
Lv,q)=(f,gh0); L:Xo—Yy, 2<s5< >
Theorem A.5 L : Xg — Yy is invertible for2 < s < % Moreover, |L™Y| is bounded

uniformly if T is bounded above.

Proof of Theorem 4.1 We structure the proof in 3 steps, in order to get to the previous
case (g =h =v9=0). Let (f, g, h) € Y.

Step 1: A-divergence adjustment. We wantto find (v!, ¢') € X suchthat L(v', ¢') =
(f'.g" n', 0) with

fl0)y=0; g'(t)=g@); ¥r [0, T] h'(0) =0. (70)

We define ¢ by solving the following elliptic problem for every ¢ € (—o0, 00),
after extending g to the whole real line:

0’Ap=g(t) inQyxR
=0 on 920 x R
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This system satisfies ||@|| gs+2 () < C||g|l gs (¢). In particular

VOl gs+1(2) < Cligllas(0). (71)
Taking the Fourier Transform in time, one has, for every 7:

0’Ad(t) = §(xr)  inQ xR,
d(r)=0 ondQ x R.

For A € HO1 it is possible to find

" dx N ~ dx A dx
fg(r)k— =/A¢(t)kdx =/V(V¢A)A)\@ = —/V(;&Aw@

2
Q A*VA
=— / V$Vadx
Therefore:
o . dx |
VoVidx = — g(r))»@ Y\ € Hy.
This implies:

IVl 2(t) < CllEl-1(2)

sHl A st
= [ 11519612 < € [ 105 1l .
We can conclude that V¢ € H('g)’sﬂ. We now define

vl =Aa*vg e HYH gl =4q.

It is easy to check that

£10) = A"V, (0) = 0.
By construction, it is obvious that gl (1) = g(1) for every ¢t € [0, T']. Since
¢(0) = 0, h' (0) = 0. This shows that (70) is satisfied.

Step 2: Adjusting the boundary conditions in the tangential direction without
modifying the A-divergence.
We want to find (v2, ¢2) € X such that L(v?, ¢%) = (f2, g2, h?, 0) with

f20)=0; g*r) =g(); Vt €[0,T]
W@ - (A" ') = h@t) - (A™'n)*; Ve €0, T1, h%(0) = 0. (72)

We will use the following Lemma:
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_1
LemmaA.6 Letn € Hhm 2(0Q0 x [0, T, 2 <5 < % n(0) = 0. Then there exists

)
w e H(f(l)t),s+1 such that |[w| msti < Clyl L w(0) = w;(0) = Tr(VwA) =0
[0) '

©)
and

(A" (VwA + (VwA))A 'n = non 89 x [0, T).

Proof Let Y € H* ", with y(0) = v (0) = 0, ¥(x) = 9,1 (x) = 0, ¥x € 9Q,

and moreover Br%l/f(x) =n(x) Vx € 929 x [0, T']. This choice is possible because of
the parabolic trace. All that is left is to check that the compatibility conditions from
Lemma 3.2. Defining

w=Viy = (=HPoP a1y —mProP oy, 0P o P la1y +81Pro Py,

it is immediate that w(0) = w;(0) = 0. A straightforward, but long calculation
gives:

Tr(V(Vjt/f)A) =0=Tr(VwA).

We will now show that (A~ 'n)=(VwA + (VwA)*) (A~ n) = 1. Let xo € 9.
We perform an euclidean change of coordinates in a way that xo = 0,n9 = (0, 1).
Thus, ¥ (0, 0) = 0, as well as 911 (0, 0) and 8%1&(0, 0). The condition 9, (0, 0) = 0
implies d,¥ (0, 0) = 0, 91029 (0, 0) = 0. That gives:

L [0 =38P0 P7132¢(0,0)
V(VA‘/’)_(O 31 Pyo P71329(0,0) )

Computing further:

L — 02 P201 Py —(3, Py)? -1
V(VAW)A—32¢(0s0)< 01P)> 3PPy °F

Thus

(V(VEU)A) + (V(VEY)A)Y)

Y =25 P3Py (31 P2)? — (32P2)? 1
‘3”(0’0)((8@2)2—(82132)2 2P, )T

We also have that

1 (—3,P I (=P
S 2 Py Tt N 1Py -1,
A I’lo—QZ( 9, Py )oP ;o (A7 'ng) 0 <—82P1>OP :

Combining everything, we get

(V(VEP)A) + (V(VEy) AN A g
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0 (0,0)
=2
= (AN (V(VEY)A) + (V(VEY) AN AT ng = 29/(0, 0)

(—=01Pi o P710% 81Pyo PT10?)

Since 0;/(0,0) = Y=; ;(10)i9;0;¥ (no); = 93% (0, 0), we are done. o

We now apply Lemma A.6 to n = h(t)(A~'n)t — h'(1)(A~'n)"L. Equation (70)
shows that 7(0) = 0. Then, we can take:

v2=vl—|—w, q2=ql.

Since w(0) = w;(0) = 0, we have that f2(0) = 0. Also, since Tr(VwA) = 0,
by (70), g2(t) = g(r) ¥t € [0, T]. By construction, one has that h2(r)(A~'n)t =
h(t)(A~'n)* and since 1(0) = 0 we have that #12(0) = 0.

Step 3: h(t) = h3(1) Yt without modifying the rest. We want to have (v3, q3) € Xo. We
have that L(v3, ¢3) = (f3, g3, h3, 0) with

£30)=0; g* ) =g@); Vre[0,T]
h3(t) = h(t); vt €0, T). (73)

We first take v> = v? and define g by

A~ ln
g=h@- ﬁ — (1 + (Vo2 A) + (Vv2A)) A" ng
0
h2(1)
A_ln()
: —lA_lno|2 on 92y x [0, T,

q(x,0) =0, in Q.

Using once again the parabolic trace, the compatibility condition is satisfied since
g(x,0) =0in dQ x [0, T] by means of (72). Therefore, we take ¢> = g> + 7.
Since Vg (x, 0) = 0 we have as before f3(0) = 0, and Tr(Vv>A) = 0 because
the velocity was not modified. At the boundary we find:

(@1 + (Vo3 A) + (VP A)H A n
=gA 'n + (¢%1 + (Vv?A) + (Vv*A)HA n

Aln A 1p Aln A~ 1p
=gA PO =ht) —— " 2. —— T LR
qA" n+h7(t) = h(r) A=Tn] [A=T] ® ATl AT T ®)
A—l A—l A—l 1 A—l 1
hy A AR gy A (A )
|[A=In| |[A=!n| |A=In| |A~In|
72) A™ln A7l At At
= h(t) - A~Tnl ATn| +h(t) - AT AT = h(r).
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We find v3(0) = 0 trivially. By construction, we conclude that
1%, 4D)lxe = ClICS L 8. M-

If we consider the variables v F=v— v, g F=4q- ¢>, we obtain the following

problem:
vy — Q°Avi+A*Vg; = f in Q x [0, 7]
Tr(Vu;A) =0 in  x [0, T]
(g7 + (VoA) + (Vv A))A'n =0 in 92 x [0, 7]
v(x,0)=0 inQ, (74

with f (0) = 0. Using Theorem A.2, the Theorem is proved.

B Proofs of Structural Stability Theorems
B.1 Proof of Proposition 5.3

Part 1:
First we notice that ||fé Yl ps+1 = % ||t21p| pstl thus we need to control

||r2w||L?74Hs+1 < Clvo]T"7 and ||r2w||H(zo)Hy < Clwollle?ll 2 < Cluol.

In addition, we have that

fo = —00+ 0Ap — A"Va, = 10°A (Q2Avy — A"Vgy) = 10°AY.

Therefore fyl,—0 = 0. By definition (36) of g4 we have that A" lng - hgli=o = 0
and the tangential component of h4|;—o = 0 by the choice of the initial data. Then
heli=o = 0 and in fact iy = O(¢) whent — 0. Also g4| = O(tz), when ¢t — 0 by
the choice of the initial data (incompressibility condition). Then we can apply theorem

4.1 to obtain that | |L’1 (fs, §¢, h¢)| |Hht,x+l L is bounded independently of 7" for
0) or (0)
T small if the norms || f[ 51, |1g] |ﬁht,x and[ lhl 1 are bounded independently
) ) '

©)

of T for T small. Since ||t"]| = < C[n],forn = 1,2, ..., we see that f is under
H
)
control. Since [|t"|| s21 < Cln], for n = 2, ..., g4 is under control. Finally Ay is
H
©)

under control because ||"]| 51 < Cn],forn=1,2,....

(©)
Therefore N is a number that does not depend on 7 for 7' small. Indeed N < C[vp].
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The definition of F5*! and v imply

=<

t t
Hx<"+1>—a—/ Ad /AoX(”)w(”)
0

0

Fs+l

/Ot (A o X" A) odt

Fs+l

"

Fs+l

t t
< / Ao XMy +‘ / (AoX(")—A> vodT
0 Fstl 0 Fs+l1
t
+ ‘ / (A o XM _ A) rdt
0 Fs+l
t t
< / Ao xMy® n / A o XM ™
0 L??4Hs+l 0 H(ZO)HV
t t
+‘f <AoX(")—A)v0dr +‘/ (AoX(”)—A>v0dr
0 LY3, Hs ! 0 Hy HY
t t
+‘/ (AoX(”)—A)rwdr +‘/ (AOX(n)—A)'L’I//d‘L'
0 0 H(ZU)HV

L?74Hx+l

=sh+h+L+14+ 15+ I

To estimate I; we proceed as follows. Applying Holder and Minkowski inequalities
yields

<T7||AoxMy™m

t
/ Ao XDwMdr
0

L?%H“'H L2Hs+1

w®

<TillAox®

‘HO Hs+1’

‘ +1
L>°H* 0)

In order to bound |[A o X™||, .+ we will use Lemma 3.10. Therefore

Iy < T%Clwo] Hw“”

1 1
£y (I’l) S
By < T4Clvo]||lw ||H(lg),x+] < T4%Clvo].

For I, we have that

t
L < /AoX(”)w(") SCHAoX(”)w(”)‘ 1
0 H2 HY H(O)HV
)
R
H(U)HV H(O)HV
< (laox <Al [+ a1, )
H)HY HgyHY H HY
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By lemma 3.11, we have that /> < C[vg] ||w||H<1O)HJ,. In addition

t t
Hw(m ‘ < / 3,0 < C‘ / 8w
N
<crffw®|| . <cTClul.
H(O) HY
Heres > 0,e < 6,8 < “1277/ and we have used Lemmas 3.3 and 3.4.

For I5 we have that

1
= Ssup -
LS, HIS 1el0T] 13

t
/ (Ao X — A)vpdrt
0

t
/ (A o X™ _ A) vodt
0

Hs+1
< ClwlT? [|Ao X — Alljeogyies < Cluo]T7

by lemma 3.10.
For 14 by applying the second part of Lemma 3.4 with ¢ = 0 we have that

I4§H(A0X(”)—A)voH §C[UQ]H(AOX(”)—A)H
HY HY HL HY

() (O)
Now we apply Lemma 3.11 and we obtain that, for small enough 7, Iy <

Clvoll| X™ — | |13, 1~ In addition

P
Hx aH = ||X —a— vt +llAvorllgy

1
H) HY ©
. 1
with ||AU0l||H(10)Hy < C[volllllly(lo) < ClwlT 2. Also

HX(") —O{—Avol‘H

t
/ 3 (X — o — Avgt)
0

HY HY ‘ |
o) H) HY

=

t
/ 3, (X" — o — Avgt)
0

14+6—¢
H(O) HY

<CT?®

X0 _ g — AvotH
H

1468
o H

<CT?
Y

X0 _ o — AvotH | = CT*Cluo].

1+
Hy"H

where we have applied Lemma 3.4, fore > Oand ¢ < § < % This concludes the
estimate for /4. The estimates for /5 and /¢ follow in a similar way. Therefore

< ClvlT*

Fs+l

t
e[ o
0

This concludes the proof of part 1 of proposition 5.3.
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Part 2:
From (26) we have that

t
HX(nJrl) —_x®™ — ‘ / (A o XMy _ 44 X(nfl)v(n71)> dt
Fs+l 0 Fs+l
t
< / (A o XMy — Ao X("_l)v("_l)) dr
0 L<1>74Hs+l

1
+ ‘ / (A0 XM — 40 x0Dy0D) 4r
0 H(ZO)HV

=h+Db

In order to bound /1 we notice that

1
/ (40 XOu — 40 X0=Dy0D) o
0 Hs+!1

< t% Ao XMy _ A4 X(nfl)v(nfl)dl,‘

L2Hs+!
Therefore
n=Th|(40 XD — a0 x0DyD))|
- L2Hs+1
<Ti (A o XM _ Ao X(”’l)) ™
- L2Hs+!
1| (1 = o) a0 x|
L2Hs+!
=1+ 12
In addition
Iy <TH AoX(")—AoX("_l)H ‘v(") .
- Lo Hs+! L2Hs+!

Here we notice that Hv(”)HLzHW. < Hw(")HLzHM + llvoll2gs+1 + 1t p2gser <

Clvo]. Then by applying Lemma 3.12 we have that /1 < C[vo]T% | |X(") — x(=D |
Also we have, by applying Lemma 3.10, that

Fs+l

Is < Clwo]T* Hw(”) - w("_l)‘

L2Hs+!

Thus

I < C[vo]T% Hx(n) _ X(nfl)) + Hw(n) _ w(nfl)H '
B LT74H>T+1 H(Iz)r).erl
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It remains to bound /5.

t
L= ‘ / (Ao XMy™ — Ao x=Dye=Dygg
0 H2 HY
©
and applying Lemma 3.4 with ¢ = 0 we have that
L < HA o XMy™ — Ao x"=Dy=D H
- HY HY

(0)

We will decompose that term in the following way

Ao XMWy — Ao x=Dy=D —(4 6 X — Ao XDy ™
+(AoX™ —Aox" Dy
+ Ao X(nfl)(w(n) _ w(nfl))'

Thus
DL <D+ In+ s
with

by = H(A 0 XM — A o XDy

‘ L HY
HiyH

Iy =|(AoX® - 40 X"yl
Ho HY

oy =| |0 XD — )|
H(IO)HV

For I»1, by applying Lemma 3.7 (1 < y < s — 1), we have that

H(A o X — A o XDy

H(IO)HV
SCHAoXW—AoX(”*”H w®
H(IO)HV H(IO)HV
< C[vo]HAoX(") — Ao x®D ‘ < Clvol HX(”) —X<"—1>H ,
Hg, HY H(IO)HV
because of Lemma 3.12. Then
t
oy =Clot|[x® = x| <l o (x - x0 D) an
HYy HY 0 HEe 1y
(n) (n—1)
= CloolT* ||x® = x=V||

©0)
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where we have applied Lemma 3.4 withe > 0,8 > ¢ and § < %
The term I, is quite similar to /1. The only difference is that we can not take
[o| |H(]0)HV. Instead of that,

H(on(")—AoX("‘”)qu <Clvolllvol| v

AoX®™ _ Ao X<”—”H

Ho)HY H{y HY
(n) _ (n—1)
+ Cluol 119l v ||A 0 X — Ao X HHgo)m'
Finally
Lz <C HAOX(’F])_AH 41 Hw(n)_w(nfl)H
o H) HY Hjy HY
Cluol|[w® —wo0||
Hy HY
by applying Lemma 3.10. Also we can compute
I3 =Clvol Hw( ™ I)H ese . < CluolT® w™ — w(n_l)H 145
H + —€Hy H(O';' oy
<ClwolT* ||w™ — w<"—1>HH,”,S+1 ,

©)
fore > 0,8 > eand$ < S_lz_y.
This concludes the proof of part 2 of proposition 5.3. Therefore proposition 5.3 is
shown.

B.2 Proof of Proposition 5.4
Proof of Part 1:
We split the proof in three parts, corresponding with the functions £, g™ and h™:

P1.1. Estimate for f:
In this section we have to deal with ) to estimate

Hfoz)

o

’ s—1

2ys—1 2 2.
L°H Ho L

s =117
Higy™!
We will gather terms by writing ) = flf)n) + fdf’” + fq (") as follows,

£ — 926 xmemy (;(">aw<”>) — 0% Aw™
w

f§" = 020 XM (:Wag) — 0749, (75)
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and
fq(n) ——Ao X(")g(")aq(n) + A8q(").

Above we removed subscripts to alleviate notation. Next we also ignore the super-
scripts for the same reason. We firstly bound |[-||;2gs-1:

fullizmr < [|(@% 0 X = 0)caow)|
+ || Q% - Daw)|

+[| 02 —maaw)|

L2Hs— L2Hs—1

 =h+hL+1

L2HS—

We can deal with these three terms as follows. For 11 one can get

I =[@* o x - 0cacou|
cJotox-o),.,.

+|Qox - Q| eI [|0%w]

|0 x = @ccoul

L2Hs— L2Hs—1

| ||§||L00Hsfl ||a§||L°°H~‘*] ||3w||L2Hsfl

L2Hs—1 ’

By applying Lemma 3.16 we have that ||Q?0X — Q?%||, s =< Cluo]
[|X — a||; e ys—1 and by applying Lemma 3.13, |[£ || oo gs—1 and || || poo gs—1 < Clvol.

2 2 2
n=cl|@ex—0| UKy 0l

Lo Hs—!1

1
< Clvol l|1X — af| oo gs—1 ||U)||H(lg),.c+l < C[volT4.
Also, by Lemma 3.13,

I = || 0% — Docou|

+||0%¢ - DoPu|

L2Hs—1 L2Hs—1

)

= Clle = g A0 o oot 10wl g2gpes + 11l oo ||0%0]|

< Clvoll1Z = || poo gys—1 ||w||H(hOr),s+1 .

The identity ¢ — I =¢ (I — VX) = ¢V (e — X), together with Lemma 3.13, allows
us to get

¢ — Dl peops < NSl pooms X — alflpoo st

< Clvol (11X — & — Avot|| o pys1 + T1|Avolls41) < ClvolT 4,
(76)

Thus
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It remains /3 for which we compute

< Joaes

I =||Q% —Daw)|| , | ][ - pel

< Clvol(10¢ [ poo gs—1 1wl 2 s + 11& — Tl poo gs—1 [lwllp2 gs+1)

L2Hs—!1

1
< Cluol 1 = Tlgops lwl] s < CluolT+.

We are done with || f,,||;2ys—1. At this point it is easy to check that an analogous
procedure yields

| 2ot < CTuoITH 1Igl] 2061 < CluplT .

We notice that in the bound of || f;,||; 2 ys—1 the only bound we really need on w is for
[|lw|| 2 gs+1. In addition ||@]| ;2 ys+1 < Clvp].

Next we deal with | |fq | |L2 s—1- We separate into two terms, || f,, + fq, | |L2 pee1 =
| faw || 2 5=t + || fa0| \Lsz,llndeed, by lemmas 3.10, 3.13 and expression (76) he
have that

[ faull 2 gsm1 <A 0 X (€ = DAgullr2ps—1 + |I(A — Ao X)dqull 251

<(||A o X||pooggs—1 11 = T[] oo ggs—1
+ 1A o0 X — All o ggs—1) 110quw| 2 gs—1

I I
=<CluvolT# ”quHh"fo) < ClwolT*.
pr

Here we notice that in the previous inequality the only bound we really need on g, is
for the norm [|dqy |2 gs—1. Therefore we have that

| || 2ot < CL0OIT {1305 || st < CluoIT .

Thus we are done with || f|];2s-1.
Using the same splitting we now deal with || f|| =]
H
©)

fwll st
H. 2

|
2
o L

2
0)

‘(QZ °X - Qz)ga(gaw)HHﬁLz * HQz@ a H)a(gaw)HH%LZ
« 0)

+][Qo ~Daw)|| i =hr st
Hop L

We need to split

(Q* 0 X — 0H¢d (Cow)
=(Q%0 X — 0% (¢ — D (Ldw)
+(Q%0 X — 023 ((Z —Dow) + (0% 0 X — 0Hd*w
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=(Q%0 X — 0)(¢ — DI ((¢ —Ddw) + (Q* o X — 0H (¢ — Dd*w
+(Q%*o X — 0H3 (¢ — Dow)
+ (0% 0 X — 0Hd%w.

We bound 14 by using lemma 3.7 as follows,

L=||Qox-0%| L+ =TI o
H(0)2 H1+8 H.2 H1+8

10 (¢ —=Dow)|| s +Hasz o).
H(Z HO H)Z HO

0)

Using lemma 3.6, with é = ¢, yields

18(¢ —Dawl| 1 , = 18 = DIl 1wl s

Hey L Hey HE Hy

< Clvll|X —all 1 [lw]] 521
H 2

2. 2 2—.
o H¥ Hy H=F

Hl-¢

< Clvo] [ 1|1X —a — Avot|| 521 + [ltvoll| szt < Clwol,
H(O)z H2+e H(0)2 H2+e

for ¢ > 0 and small enough. Also

J— 2 —_—
| -mo “’HH%LF”C H"H(jgf'w’

‘asz 551 < Clwvo].
2
0 Hyy L

Finally,

|Q2ox=0| o =cluol(IiX—a—Avwrll o +lldvll o
H((J% HH H 2 HHS H +38

© o H'
77
and we have that ||7]| s-1 < C/T. Also,
H 2
©)
t
‘ 8,/(X—ot —Avo)|| o
0 Hg H'W
t
< C[wvo] / (X—a = Avot)|| o < ClvolT* [|X —a — Avot|| s-1,
0 T+s+l—s I’ 7 C g+

© 0
< ClvolT? [|1X — a — Avot||ps+1 < CluolT?,

where we have used lemma 3.4, with % < % + & < 1 and Lemma 3.8 . With this
last inequality we conclude the estimate for 4.
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For I5 we have to make the following splitting 0%*(c-Da(cow) = Q*(c—Da (¢ —
Dow) + 0%(¢ — 1)d%w and then

2 _ _ 2
Qs e =Tt (na((; DI, e+ o wHH(?.HO).

The terms inside of the parenthesis in the previous expression have already been
estimated in /4. Using lemmas 3.8 and 3.4 we find that

— _ € — s— € -
e =Ty S ClolTE e =T, < CONTEIIX —al

s—1 5
i=lie
(0) H

248
) Hey H

by Lemma 3.13. Proceeding as for Iy we have that Is < C[vg]T*. We are done with
I5. For I we have that

lo<||Q*¢ —Dow|| o +|lQ2@-Dotu||
Hg' L2 H, L?

2
0)

Both terms can be handled as before. In fact

[0*¢ —Dow|| o <IQUgs Il — T
Hoy L He)

32“’H 551
1468 2
HI+ Hy? L

<Cluo]T* [[wl] et < CloolT*,
)
and

10%0¢ —Dow|| w1 <[1QUlmws [19¢ =DIl w1 lowll s
Hey L Hegy H* Ho)
<Cle =T s wll e < Clul T [Jwl] st
Hop H' " Hof H o
< ClwIT*,

Hl-¢

for ¢ > 0 and small enough. We are done with /g and therefore with || £, || st A
H,2 L2
©)
similar procedure allows us to get

5= < Clvo]T¢.
1l iz, = €T

Here we remark the main differences to get it. We need split ¢ = v + 1. For the
terms coming from vy we do not find any problem because vy does not depend on
time, and for the terms coming from ¢ we can use that ¥ does not depend on ¢ and
el w1 < CVT.

H.2

©0)
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The estimate of || £, | |H% L is obtained as follows. First we split f; = fq, + fq,

(0)
we can write

Jgo = (A0 X+ A) (¢ —D)dgy +(—Ao X + A)dgy — AL —)0qy.
Then we can estimate

1l

s—1
o v
<l(Ao X =& =Dagull w1 +II(AoX = Migull w1

Hey H H;

+IIAG = Dagull wv

Hy

2 2
Hoy H Hoy H H; Hg)

SC[UO](H(AOXA)H st ME=DIN o1 (Ao X = A s+ ¢ =DIl s )
0 T go I Ho 0

< Clvo]T?.
For f,, we have that
Jap = (Ao X +A)( —1)dgy + (—Ao X + A)dgy — A —T1)dgy.

Here we can not take HV%H st because Vggl;=0 # 0. Fortunately we do not
H,> H
©
need it since g4 does not depend on ¢. Similarly to H qu’

1 fas

we are done with ||f||Hht,s—l.
(©)

s—1 we have that
o

©)
< C[vo]T?. This finishes the bounds for || f|| s and therefore
L

s—1
H(;)f HO )
P1.2. Estimate for g:

We recall that

o

[

‘fht,s

2 Hg()H o
5
H ) L2H Hy? H!

We will first estimate the HOH*-norm and after that the H 5 H~!-norm. We will
split g in the following terms,

g = =17 (VoW a0 X®) 4+ Tr (Vo 4)
+ Tr (VoiyAg) — Tr (VPA)
= —Tr (Vo a0 X®) = Tr (V™A o X — 554,))

+Tr (Vo™ A) + Tr (VotyAs)

@ Springer



Splash Singularities for the Free Boundary Navier-Stokes... Page 89 of 117 12

= ~Tr (Vo (¢ =1) Ao X) = Tr (Vg (¢~ 5) A0 X))

+Tr (Vw<”) (A — Ao X(”))) +Tr (v¢§¢ <A¢ — Ao X(">)) ,
From the partition of g we have that

2

= ||[vu® (¢ —1) A0 x®

796 -) 2230

e (a0 o)

L2HS L2HS

+ HVw(”) (A Ao X<”>)

‘ ‘Lsz L2HS

=L+ hL+5L+ 1.

Since H*® is an algebra for s > 1 as stated in Lemma 3.5 we have that

I < H;(’” - }IH (A o X ’ V™ .
- L>XHS LXHS L2HS
Therefore, applying lemma 3.10 yields
(n) ()
11 < Clwol H§ Y- H‘ ’LOOHS w” s+

©

and using (76) we get I1 < C[vp] ||w(") | ’Hht,erl T1. Similarly we obtain that I, <
©)

C[U()]T%. In addition, by using lemma 3.10 it can be checked that I3 < C[vo]T%,
since ||V@||;2ys < Clvp]. And by lemma 3.10 I4 < C[vo]T%.
Then we have proved that | |§(”) | |L2HS < C[U()]T%.

To estimate the H*> H~'-norm of 2™, we split in a different way

g0 =17 (Vo™ a0 X ™) + 77 (Vua)
—Tr (v¢(§<”> —¢p)Ao X<">) +Tr <V¢§¢(A¢ — Ao X<”>))

_Ez(;l) _ gfﬁ”)’ (78)

where
W =Tr (Vw‘">;(">A o X(”>) —Tr (Vw<">A)
=Tr (Vu® €™ = g)(A0 X® = Ag)) + Tr (Vu® (™ = £4)4,)
+Tr (Vw(”)§¢(A o XM _ A¢)) S+ Tr <Vw(n)(§¢ - H)A¢>

+Tr (Vw(”)(A¢ - A))

@ Springer



12 Page900f 117

A. Castro et al.

and

20 = Tr (v¢(;<”> —¢pAo X<">) —Tr (V¢{¢(A¢ —Ao X(”)))

=Tr <v¢(§<"> — ) (Ao X™ — A¢,)> —Tr (V¢§¢(A¢ — Ao X<">)>

+Tr (V¢§'¢A¢) .

First we will bound g(") and then we will do the same with g (") . Taking HT H-

norms yields,

—(n) () p(n) _ ) _
H H(;?Z;IH 1 va ({ §¢) (A °X A¢>“H(?JH1
+ || Vuw ™™ —§¢>)A¢H sl
H(O) H-1
+ ||V a0 X - ap)||
H. 2 H-!
(0)
+ ||V g = 4) + Vo DAy ||
Hq) H'
=L+ hL+L+1.
For I} we have that
I = [|[Vw™ (™ —g5)(A o X™ — A¢,)H sl
H,? H-!
(0)
t
= f o (Vo =)Ao X —Ap)|| L
0 H.2 H-!
)
t
< / AV (™ — ) (Ao X" — Ag)||
0 H(J)TH*I
t
+‘ / V™ @™ — ) (A0 XW — Ag)||
0 H(O)2 H-!
t
+U V™ (@™ — 43 (Ao X" — Ap)||
0 H<0)2 H-!
= I + I+ 63
And we bound 111, 112 and /13 as follows
= |[ave®@® =g x® = a)|| oy
H H-!
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since 0 < % < 1 and we can apply Lemma 3.4 with ¢ = 0. Moreover, applying
Lemma 3.7 we obtain that

Iy < Clvo] Hva,w("> ‘ - HAOX<"> A¢H ¢ —g¢H .
H(O) H 2 HI1+S H 2 H1+8
In addition
H ) e
(=gl s a,/c"—ap -
H(O)z HI+S 0 H(())2 HI+S
e )
<C o o <CT?|lc"™ — H =1
= H/O ¢ Co H%+s+1—sH1+5 ¢ 5 H()T+£Hl+8

S

by Lemma 3.4, for 0 < %1 + ¢ < 1. In addition, by Lemma 3.14,

< Cluol || X — o = Avor|| w1,

e .
H; H;

H1+ H2S

Then Lemmas 3.17 and 3.8 close the estimate for /1.
For 11, we have that, applying lemma 3.5 and lemma 3.7,

Ix < Clwo] va(”)H =1 ‘
H,l H!

-4, =y e =col] =,

By Lemmas 3.3 and 3.17 we obtain

Iy < C[UO]‘

8™ — ap)H
(0)

Again we can apply Lemma 3.4 to get

112 < Clvo]T?

0™~ )| i, = Clwlr?
H(O) H

- +1
é‘(b ‘ ‘H(TZ-HHO

for0 < % + ¢ < 1. Therefore lemmas 3.14 and 3.8 yield a suitable estimate for /5.

The term /3 is bounded in a similar way by using lemmas 3.17, 3.8 and 3.3.

Next we bound the second term in (79). In order to do it we split {y = [—1V (Avyp).
The terms coming from the identity can be bounded as /3. For the terms containing
the factor tV(Avg) we just notice that we can proceed as for /13 but putting the factor
t together with w™ (here we remark that we can not take ||¢|| s41 since ﬂ > 1.5).

H;
Indeed
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L= Hti(”)V(Avo)(A o XM _ A¢)H

Hop H!
< Clul ||[rvu®|| o |laox® - A¢H N
Hyg' H! Ho? HI®
where
laex® —agl| s = || [ acaox® - ap)| L.
Hyl HI )T Y+

<CT?

(Ao X™ _ A¢)HH%+E

i+

for 0 < % + ¢ < 1. Finally we can apply lemma 3.17, 3.8 and 3.9.
For I3 we can proceed in a similar way that for /. Finally for 14 we just need to
use Lemma 3.9.
The estimate of Hg¢ || H 1 follows similar steps. We just notice the need to
Hy
split ¢ = v + #1 and use Lemma 3.9 and the fact that 77 (Vg ¢yAg) = O(t?).
P1.3. Estimate for /4 :
We will show the appropriate estimate for 4 decomposing 1™ = hg") +hg§2 +h((]")
given by

hg}n) — (Vv(n){(n)VjX(n) _ Vv("))no,
R = (VoM™ A0 XMy A=l o XMWV, XM — (Vo™ A)* Ay,

h = (—g™WAT o XMV, X 4 g™ AT ny. (80)
As before, we ignore the superscripts for simplicity. We deal first with the | - IL 2ps-b
norm. Then
ol 5oy < IVVE =DVSX] L+ VOV X =D,y =1+ D,

For I; we find

< v — vX
h=c] U|L2HS*% I8 HILOOHS*% | |L°°HS*%

= Clll2gs+r 16 = Tl poo s XN poo st

1 1
< Cluol [IX = all oot = CLw0IT# [1X = allyge st < CloolT 7.
For I, the computation is analogous:

L=CIVol L VX =T 1 < Cluol 1X = allps s

L2HS -3

1
= CV[UO]TZ [1X _a||L<l>74Hs+l < Clvo]T5*.
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We are done with |/, | _1. Next we deal with |/1,| 1. Indeed
L2H'"2 L2H'"2
* 4 —1
oel oy = (V0@ =DA X AT o XVIX|
—l—‘(Vv(AoX—A))*A*loXV]X .
L2H*2
—I—‘(VUA)*(A_]OX—A_I)VJX g
L2H*Z

1 =L+ 14+ Is + Ig.

+ \NvA)*A—l(va -l

It is possible to obtain

IVX| |

L=CIVol, 1 1e 1| -

2
o1 1X] 1
L>®H 2 LOHS™2
3
< Cllllgzgs+1 18 =Tl oo s X} o st < Clvol 1X — el poo st

< CluIT*.
Similarly, using Lemma 3.10

Lt Is+1s < Cluol Vol 1 11X =l st (IXI sy + 11X oo gros +1)

2y
1 1
< ClvolT? ||X _a||Lf‘/’4HS+] < ClvolT%.

It remains to control \hq | _1. We proceed as follows:
L2H'"2

| < ‘q(A_l oX — ATH)V, X

2

—1 _
Ikl et HleaT@x =D

SC[UO] |q|L2H‘Y7% ||X — O[”LooHerl (||VX||LooHs+l + 1)
<ClwolT'*,

using again Lemma 3.10 to end with the bounds for IhILsz 1
The next step is to deal with [2| s _1
HZ 4L2
©)
lhyl s_1 <V —-DVyX| s_1 +IVu(V;X-D| ;.1 =K;+K>.
HJ 12 Hg) 42 Hj 12

This splitting provides

Ki <|Vw@ -DV;X| s.1 4+ V& -DVyX| s 1
H(g) L2 Hg, 4r2
+ [tV (¢ =DV, X| $-4,, = K1+ K12 + Ki3.

H,
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©0)

12 Page940f 117
and therefore
K= |Vw(@ =DV, X =DI v 1 +[Vw@—=D| 4 1
HZ 412 HZ 412
©) 0)
(|VJX — H|H%7%H%M + 1) .

< C|Vuw| 5-1 & =1 s 1 s
) 1
Hg “L Hg *H?
We remark that the constant above is independent of time due to Lemma 3.7. Then we

use that Vw; = (Vw; - no)no + (Vw; - o)ty fori = 1, 2 and
[(Vw; -to)tol s_1 =< C|Vw;-to] s.1 =Clwi| s 1
2742 H(g) L2 H(g) ENeL
< C [|w; || ;yhe.s+1
" H

H,
< Cllwill 5
HY tH

=

3
2

=

1 <C ||wi||H(lg),s+1 .

together with
[((Vw; -no)nol s_1 < C|Vw;-nol s_1  =<|Vw;-no|l
27Ty T 37 d50 — S
Hg * L2 Hg *L? H
These two yield
|Vw| s_1 SCHU)” ht,s+1 , (8])
H
Hgy *12 ©

and therefore
1

1 X —all s 1 +1
+3 H((2)) 4 g2+

Ku < Cllwll st 18 =101 5

©) H2 *H

©)
1

_1 + T2

4 g2+

< Clwol (llX —a— Avot||
H2
0)
+ T2
%*%“st

< Clwo] (Te [|X — o — Avt||
He)
< Clwol (Tf X — & — Avot|| pse1 + T%> < ClwolT®

< Clv]T¢,
7‘%H%+a = Clvo]

For K3 it is easy to find
Kip = Cllvoll 3 1(¢ =DVyX|
1> Hg,

proceeding as before. For the last term K3 we obtain

Kiz=ClVyl o1 ¢ =DVsX] o1
Ao "L Heoy “H=2
_ . €
I H)VJX|H%7%H%+‘S < ClwolT*,

0)

1
<CT2 Yl 3
as before. We are then done with K.
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Using that v = w+ v+, itis possible to estimate K, similarly as K. Therefore

the appropriate estimate for |h,| s_1  follows.
Hg *L2

Next we deal with |hy4| s 1 . Indeed
Hi *L2

lhosl 5.1 <|[(Vo(@ —T)Ao X)*A~ oxv,X‘
Hg ‘12 H(g) sz

+l(Vo(dox — ApFa~lo Xv,x)

+|(voayatox — A—l)v,x‘

+|(voaya- l(v,x—]l)‘
H,
= K3+ K4 + K5 + Kp.
Taking v = w + vo + ¢, we find

K3 < ‘(Vw({ —DAoX) A~ oXVJX(
L
(0)

s_1

H2 472

+ ’(wo(; “DAoX)'A o XV, X
(0)

n ‘t(vw(; —DAoX)*A o XVJX‘ o1 =K+ Kn+ K,
H(O) L

Then using (81) we find

Ksi <CIVul o1 ’((;—]I)AoX)A oxvjx(

0)

HZ 4H2+3

}((g—H)AoX)A oXV,XH -

<C||w|| h1v+l s
.

where the constant is independent of time due to Lemma 3.7. The splitting

(€ -DAoX)* A o XVyX = (¢ —D(Ao X — AN (A o X —AH(VyX =)
(@& -DAcX —AN Ao X —ATH + (¢ —D(Ao X — AN AV, X - 1)
F((@=DAoX —AN* AT + (¢ DA A o X — ATV, X =)
F(@=DA A o X = AT+ (€ —DA AT (VX =D+ (€ — H)A)*A’l(gz

)

allows us to bound K3; with bounds independent of time due to Lemma 3.11 to find

1
K31 < Clvol 16 =T s_1 < Clvol(l|1X —a — Avot|| s_1 +T7) < ClwlT¢.
H((Z)) 4 gi+s H(é) 4 g2+s
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We proceed for K3; as for K1, getting

K3 < Clluollgsn (G —DA0 X)*A™ o XV X| o 1 |,
HE, Tgatt

so that splitting (82) allows us to bound as before K3» < C[vg]T€. We continue by
using previous estimates to obtain

K <ClVyl s 1 [(¢-DAoX)*A™ o XV,X| , 4 , <ClulT?.
H(% z[LZ HZ

1,048
o H?

We are done with K3. Taking v = w + vg + # it is possible to control K4, K5 and
K¢ analogously

K4+ K5+ K¢ < C[vo]T°¢.

The term |hy+| s 1 is then controlled and it remains to handle |hq| s 1 . We
H((Z)) 42 Hg, ‘12
proceed as follows:
-1 e _ -1 e
A é)’%m <|lg(A o X — ATV, X H)’H(é)’hz +|g(A o X — A )’H(é)’hz

+|qgAT N (VyX =D s 1 =Li+Lr+Ls.
(5)4L2

In Ly we split g = gy + g to find

L1 =Cgul sy +lasl) |47 o X — ANV, X —D| o
Hg *12 H,

I
274 gy yts
0) H2

+4

<Cllqull yis +Cluo) |[[(AT o X =AYV, X =D s 1 < ClwlTS,
H,”(O) H((Z)) 4Hl

where the time 7€ is found as before using Lemmas 3.7, 3.4, 3.16 and 3.13. The terms
L, and L3 are estimated analogously to get Lo + L3 < C[vg]T€ and finally

lhg| s 1 = ClvolT,

to end with the bounds for || _ . We are done with A.
L2

Proof of Part 2:

It will be enough to show that
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< Clwol (HX(”) —X“’“"

Hht..\'—] —

n me) _ w(n—l)‘
)

Hfm) _ f<n—1>’

Hht..v+|

s+1
F ©

Hlg™ = g s ).
llg q ”Hpi«»

(n) _ y(n=1)
Fs+1 + Hw w ‘ H(Iz)t)..wl) ’

n Hw(m _ w(n—l)’

n) _ g<n—1>|

Hg s < Clvo] (HX(") _ X(n—])‘

H

ht,s—
©)

D=

’h(m _ =D

< Clvo] <Hx(") _ X(rp])‘

ht,s+1
H(0t>+
+Hig™ — gV s ).

llg q ”H,,i(m

Again we split the proof in three parts:
P2.1. Estimate for f® — =1

We split as in (75): f) = fu(,j) + f(;j) + fq(j). In fu(,") — lf,"_l) we split further
=D = 4y 4 ... + dg with the following differences

dy = (%0 X™ — Q2 o X(=D)r My <§<n>3w<n>) ’

d = Q% 0 XD (M _ =Dy, (g(")awm)) ’

ds = Q2o X~V (i=Dy <(§<n> _ éh<nfl>)3w<n)) ,

dy = (020 X~V _ g2)=Dy <§(n—1)8(w(n) _ w(n—l))) ’

ds = Q%" =Da (¢" Vo™ —w ),

do = 0% ((¢"~" = Da@™ — w 1)), (83)
Above we do not distinguish from coordinates and partial derivatives, as all the cases

can be handled in the same manner. Next we estimate d;. In order to do that we split
further d; = dj + di» with

di| = (Q2 o X™ _ Q2 ° X("‘l))g(")ac(”)aw(”),
din = (0% 0 XM — 0% o XDy M (M52, ()

We take
ldiill 2 ps-1
<C ‘Qz o XM _ 02 oX(n—l)H ’§<n> ’ ’84‘(”)811)(")
- Lo Hs—!1 Lo Hs—!1 L2Hs—!
O O
- Lo Hs—1 Lo Hs—1 L2Hs—!
() _ x(n-1) 1/4 (n) _ yn—1)
< x5 ]| = i xe b
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and, since

di = (020 X" = 020 X" V) (¢ —1) 5 (¢ ~ 1) ™
+ (Q2 0 X — 020 X" V) (™ — Dauw'™,

il e =C[j@2ex® - @To x|

2 1
Hy Hyy HI*e

(Hﬂ’“ I 1) o ~mowt»
H 2 Hl+e

s—1

‘ 2 2
H(O) L

< Clug] ||x® —xWUH s pe®-p|| o @) o
Hoy H'' Hg H Hq) H'™¢
We deal with above terms as before to get
ldill w1 < ClwolT€||xX™ _x<n—1>) ,
H, 2 L2 Fs+l
©
For d, we find
2
diall 251 < C HQ2 o XM _ 926 X(nfl)H ‘ (n) ’ Hazw(n)
LXHs—1 Lo Hs—1 L2Hs—1
< C[UO] HX(”) _ X(”—I)H < C[UO]T]/4 HX(n) _ X(”—l)‘
- LXHs—1 — Fs+l
and
ldiall 1 =C|[@*ox® - @20 x0 1>H _
H(())z 02 H+e
2
S PO
H Hl+e H(Of L2
<C[UQ]HX(") X(" “H < Cluo|T* X(n)_X(n—nH .
0)2 Hl+e Fs+l

In order to continue we decompose the next term, d» = d>1 + dr» where

dy) = Q2 ° X("*U(;(n) _ ;(”*U)a;(@aw(n)
dyy = Q2 ° X(ﬂ—l)({(n) _ ;(n—l))é-(ﬂ)zﬂw(ﬂ)

We take
2 (n=1) (n) _ p(n=1) (1) g4,y
lld2tlloz st < CHQ o X HLOOHA‘—' H{ ¢ HLOCHS—l HZ){ ow L2Hs—]
< C[wo] Hx(n) _ xm=D 8{'(”) ‘ w®
- L®HS Lo Hs—1 L2Hs—1
< Lot Jxo — xo-0||
- Fs+l
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ldarll s = (@ ox"V - 0| Y
H(O) H Hl+5
% H§<n> - 1>H 9™ ™ o
o i e Hyy L2
< Clul [ — X ”H s e -n|| o ol
2 pg2te H.2 He H.2 Hl-¢
) 0) 0)
< ClwolT€ || x® —X(”_”H .
Fs+l
For d»>; we find
(n) _ »(m=1) 2. (n)
ldzall2zs-1 < Cluol ¢ = @D |||
< Clug] ||x® = x=D|| < ClugT!/*|[x® — x|
- LXHS — Fs+l ’
and
ldall i = Cluol|[¢® = c@ V]| o e o
Hg? L? ¢ ¢ H 2 Hte H,l L?
< C[U()] HX(H) X(l’l I)H < C[U()]TE X(n) _ X(I’I—I)H V .
0)2 H2+e Fs+l
In d3 we split as follows d3 = d31 + d3» with
d3 = Q2 ° X("‘”g(”_l)a(g(”) _ é-(n—l))aw(n)
and
dyy = Q2 ° X(n—l);(n—l)(g(n) _ ;(ﬂ—l))32w(n)
For d3 it is possible to get
[ld31ll L2 51
<C‘ 2 X(n—l)H H <n—1)H )a M) _ (=15,
- Q °© Lo Hs—!1 { LooHs—l (g { ) w L2Hs—|
<Clv Ha () _ pn—1) H H w®
< Clvol||0(¢ 5| o o g
< ClugIT/4{[x ™ — x =1
- Fs+l ’
and
ldsill s =C([Q2ox V=@ 41
(0)2 H 2 Hl+e
(n—l)_HH o~ 1 H @) _ s=Dyg ]|
(e =] 1) o =]
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< Cluol|[ac ™ - ;<'H>)H 2

s—1

‘ 2 1-5
H(O) H

< Clwol HX(”) X 1>H < Clwo]T¢

e 246
O)H+

xm _ X(n—l)H .
Fs+l
Here, in order to bound | | Q%o x=h _ Q2|| =1 we can do the same than in
Hl+e

7).
Next, for d3» we obtain

[ld32|lp2 51
<C ‘ 2 X(n—l)H H (n—l)H ‘ () _ p(n=1)y52,, ()
- Q ° Lo Hs—1 { Lo Hs—!1 ({ ; ) w L2Hs—l
(n) _ ~(n—1) 2 .(n)
= Cluol HC ¢ HLOCHS—I HB w L2Hs-!
< Clwo] HX(”) . XWDH < Cluo]T4 ‘ X _ XWU‘ .
- LXHS — FH—I
The usual approach also gives
ldnll o =c([[Q*ex V-0 H o +1)
H(O) )2 Hl+e
(n—1) _ (n) _ »(n—=1)yq2, (1)
x(fleot =l e+ ) 6 =]
© ©)
() (n—1) 2. (n)
= C[UO] H{ ; HHTHHé O w H(;;TILz
() (n—1) € (n) _ ym=1)
< Clwo] Hx X HHTHM < CluolT¢ |[x™ — x ‘ o
In d4 we proceed by considering ds = da1 + dap with
day = (Q% 0 X"V — 0" Do "V —wth),
and
d42 — (Q2 o X(Vl*l) _ QZ)Q-(Vl*l)é-(n*l)aZ(w(n) _ w(nfl))
For d4; it is possible to get
||d41||L2HS—1
<C‘ 25 xn=1 _ 2H
- Q °© Q LocHx—l
(n—l)H ‘3 (=D g (™ _ =D ‘
X
HC LoHs—! ¢ (w v ) L2Hs—1
e O [ES R
- LooHsfl LooHs—l L2Hs—1
< Clvol T Hw(n) _ w(n—l)‘ ot

(O]
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and

Q"o x" V-0
)2 Hl+e

6] g )|
H(0)2 Hl+e

< Clwo] HX("—“ ~af

a(;("—“—H)H -
HTHlJre H(E)THS
3(w™ — =D H
H (w ) H 2 H!-$
)
For dy; it is possible to get
||d42||L2Hs—l
<CH 24 xO=1) _ 2” H (n— 1)H 52 w(n)_w(n—l))
- Q °© Q LXHS— 1 é- LXHS— 1 ( ) LZHS—I
<1, )
- LooHs—l LZHs—I
1/4 -1
< Clogl T ||w® —wo=Dl|
©)
and
ldell w1 =C||@2ox V- 0| o
(0)2 H 2 Hl+e
(n—1) . 20, (1) _ o (n—1)
< ([l HHHTIHNI)H& W —we | .
©
<C[UO]HX<”>—aH - 32 (w™ — = 1>)H
N H> Hlte Hyg, 2 L2
©
< ClvolT€ ||w™ — w‘”‘“HHm,m :

0)

Analogously, one could take ds = ds1 + dsp with
1= 0%V =Dac" Vo™ —w"h),

and
dsy = Q*(¢ "™V =" V@™ —w ),

@ Springer



12 Page 1020f 117

A. Castro et al.

The splitting yields
lldsill s < C||¢" Y =T gy a(w™ —w™Y)
L*H Lo Hs—1 Lo Hs—1 L2Hs—1
< Clvo]TV* Hw<n) _ w(nfl)‘ s
©
and
lldsill st ,
Hy? L
e I e e
Hb H'*e H} H H, 2 H=
< CloolT* ||w® =]
(0)
For ds, we proceed as follows
||d52||L2HF] f C Hé'(n_l) _HHLOOHS*I ‘ é-(n_l)HLOOHx*l ’aZ(w(n) w(n_l))’ L2Hs—1
< Clool T {[w® V||, .,
©
ldsall w1 =C eV -1
H; L2 H; Hl+e
S e
0 Hl+e H.2
< Clunl? [0 —w V|, ...
Finally, writing dg = de¢1 + dg2 Where
dgi = Q*9¢ " Vo™ —w"™ D), anddgy = Q*¢ "V DA™ — w"Y),
it is possible to find
d 1< cHa <”*‘>H ‘a w® _ =D ‘
Il 61||L2H = ¢ oo -1 ( ) 12ps—1
S C[UO]T1/4 Hw(n) - w(nil)‘ Hhr.erl )
)
and
ldorll = Cllac || i o™ —w )|
H,Z L2 H,2 H® HTHI 8
©) ©)
< Clvo]T¢ ||w™ — w("_l)HHhLm .
©)
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For dg> we proceed as for ds; to get

ldsall 2251 < Cluol TV [[w® — w@=D||

h[ s+1 7?7

!l 1 < Clugl7[[w® —w V|
Hey L 0

We are done with fy (n) — fw =D To continue with f (n) f =D e decompose as

before but this time using f; () — f =1 _ 47 4 dg + do where

dr = (020 X" — 020 X" D)™y (:Wag),
dy = Q%o X"V — "Dy (:Wag)
dy = 0% 0 X"V (¢ — t"D)ig)

Here we need to split ¢ = vo + . After that we proceed as for di, d» and d3 to find

[ld7 + dg + d9||H(hO:),k1 < Clw]T*

X _ X(n—l)}

Fs+l :

We move to the f term involving g. We split fj " — q(l'f) + fq”). The splitting

q(z) B (n 1) dq +d2 —|—d3 +d4 with

df = —(Ao X" (™ — " )*vg,

df = —((Ao XM — Ao X~y (r=Dyrygm,

df = —(Ao XDV~ V(g — ;')

di = —(Ao X"V — Ay v (g — glr= 1)) (84)

allows us to do the work. In fact

q (n) _ (=1 (n) (n)
HdluLzH‘Y“ SCHZ ¢ HLOOHH ‘AOX Lo Hs~1 ‘qu L2Hs]
< ClogIT!/4 ||x® — x -1
- Fs+1’
df]| w1 =clfe®—co ”H _
H<o> Hy HIT
(x4l o, )]
0 Hlt+e H(O) L2
< Clugl7< ||x® — x| .
Fs+l
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Sharing norms in the same manner gives

[ |] o e < CluolT"* HX(”) — X("—l)’

)

Fs+l

and

xm _ X(n—l))

Fst+1°

q €
1], iz, = ClniT

In a similar way

1511 25
=€ ‘g(n_l) _HHLOOHS ! AOX(n_I)HLwafl V(q(”) (n 1))‘ L2Hs-!
< Cloolt* || Vg’ g V)| .., = ClooIT gl — gVl
and
ezl = € fle 1] e
H,y L? Hyl H'te

<(flaexet—af e 1) - a0

H 2 Hl+e )Tl
= ClulT* || V@ - a5 ”)H
(0>
< CluolTlg” — g~ ll s
pr(0)
Finally
q (n=1) _ () _ 4 =1
||d4||L2HH =C HAOX A’ Lo Hs=1 HV(q )‘ L2Hs!
< Clool T gl — q{ =Pl s
pr(0)
and
[a]| o =cllaoxtV—all L[Vl —qu D)
H(O) HTHlJre TLZ

< ClwlTllgy” — 4l “n,,m(so).

The estimation for fj, (n) fq" Y follows similar steps. We only need to take into
account that g does not depend on time.
P2.2. Estimate for g — g~ 1:
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We are concerned with the estimates of the norms

)

g — - 1)”

Hg n _ (n—l)‘

e = [ N G (W

H(O) L2HS -1

We will split g = —g" — g4 (see (78)). First we will estimate the ||-||;2 .-

norm. For g — g"=1 we have that

W g =y ((Vw(m _ Vw(n—l)) t™Ao X(n))
+Tr (Vw0 - c0D)a0 x™)
Tr (Vw0 (40 X0 — 40 x@7V)) = Tr ((Vu® — Vu©V) 4)
=77 ((Vu® = Vu=D) ¢ ~ Ao X))
+Tr (Vw0 - c0D)a 0 x™)
r (W;(”—”g("—“ (A o XM — Ao X("—1>)>
+Tr ((Vw(") - Vw<"—1>) (AoXx™ — A)

=d| +dy+d3 +ds.

With d; we proceed as follows

|27 =|| (V™ = w0y — A o X

L2Hs
< H;"“ —]IH HA o X ‘ HVw<"> - Vw("_l)‘ . (85)
L Hs L Hs L2HS
Then lemma 3.13 and (76) implies
el < Clool |6 =] [l w0
1 _
< Clvo]T* w® — I)HHhI,H—l :
©
For d>» we have that
d < va(n_l)‘ Ao x®™ ‘ m _ (n—l)H _
[ 2||L2H = 1255 o L0 s ¢ ¢ LoHs

Thus, using Lemma 3.15 yields,

1
lld2|l 2 s < ClvolT

xm _ x(n=1) H

L
L§S,H+
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The estimate for d3 follows the next steps

dsll2gs < ||V

o x|
L2HS L>*HS L>®HS

< Clvo] HX(") _ X(n—l)H < C[U()]T4 x® _ x0— I)H

L>®HS

L]/4HJ .

And for d4 we have that, using 3.10 and proceeding as in (77)

dallpogs < [|w® = w® ||, [[aox®—al|
(0> L>®H
A
— [ 0] hr s+1 LXHS
1 _
< ClwolT+ w® — 1)’ st

0

It remains to estimate the || - || s -norm.

-1
H(O) H

We will split g/ — g~ in the following terms

-

2% (=1

- g
= Tr ((Vu® = Vu" D)™ — ) (A 0 X — 4y))
+Tr ((Vw<”> — V=D ™ — §¢)A¢)
+Tr ((Vw<”> — VD), (A 0 XM — A¢))
+Tr (vw("—”(g(") — @ Dy(A 0 x™M — A¢)>
Tr (Vw(n—n({(n) _ ;("—1>)A¢)
+Tr (Vo D — (A0 X — 40 X))
+Tr (Vw("—”g, (A oX™ — Ao X(”_l)»

+Tr ((Vw(”) — V™ D) (gy — DAy + (Vo™ — VD) (A, — A))
= D1+ D2+ D3+ D4y + D5 + De + D7 + Dg.

For Dy we have that

t
D, = —/ Tr@ (Vw® — V" D)™ = g4)(A o0 X — Ag))dr
0

= D11+ D12+ Di3
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where
t
Dy =~ / Tr@(Vw™ — VD)™ — £)(A o X — Ay))dr,
0
t
Diy=— / Tr((Vw® — V), ™ = g5)(A 0 X — Ag)dr,
0
t
Diz = — /0 Tr(Vw™ — Vw " Dy ™ —£,)8,(A 0 X — Ag))dt.  (86)

By applying Lemma 3.4 with ¢ = 0 we obtain

1Dl wr = ||a (V™ = Vu D) — gy a0 XP — ag)|| oy
H(O) H~ H(()) H-1
Now we use Lemma 3.5 to yield
1Dl s = || (V™ = VuO D]
Hgol H! H(O)2 H-!
S N I
Hé- % TH|+5 AoX A¢ TH|+5
O O
In addition Lemmas 3.17, 3.8 and 3.3 and proceeding as in (77) imply
. - ) _ = 1>H n) _ H
||Dll||H(0)+TlH_I < C[UO]HW it ¢ o 1 2 s
And we can apply Lemma 3.4 to get
(n) ' (n) ' (n)
n) _ ) n . n o
H; ;(]5HH02 H1+8 _‘ If (é‘ O)TIHH"S /0 (C TI+S+I—EH1+5
& (n) _
=CT ¢ %H T+FHI+§

for0 < % + & < 1. Thus, by lemmas 3.14 and 3.8,

1Dull g = Claot [ = w |
H(O) H
Next we bound Dj;. Indeed
1Dl w01
y H!
= ||V - vu D)o " — Ao X — ag)|| i
H(O) H
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< C[|vu® = v i —g)| st

-4,
¢ H2H1+8

< Cluol ||[Vu™ = vu|| ‘3z(§(n)—§¢)H
Hg) H'

71
2
©0)

Since, ||8,§()—8§¢|| sl < Clv]T?, and HVw(")—Vw(”_l)H <
H

s—1
(0) H(O)2 H!
Clvo]T? Hw(”) — @D | |H;g.s+1 we obtain a suitable estimate for Dj,.

The term D13 does not ca(u)se any difficulty and it can be handled as before.

For Dy we just split (Ag)ij = Ajj + 10 A;j Ak vf). For the terms coming from A
we just notice that A does not depend on ¢. For the term coming from 79y A; Aklvlo we
use Lemma 3.9 and the fact that 9; A; jAklvé does not depend on ¢. For D3 a similar
argument holds after splitting £y =t — V(Avy).

The estimate for D4 follows the following steps,

1Dall sy =|[Vw @™ = ey a0 X — Ap)||
H(O) H-! H«J) H

t
AV - D) (A0 X — Ay))

s+1 ’

Hoy H~!
(87)
and therefore
1Dall s < [[avu® @ =)Ao x® — Ay
H 2 H- 2 g1
©) ©)
+HVw<n Do, (c™ — ¢=Dy(A o XM —
H(O)2 H-
+ ||Pw D™ — e ya 0 X — A¢)H .
2 H—]
Hy
Each addend is estimated in a different manner as follows
[|D4]| o
Hey H™
< ctu[vaur |- X ]
Ho' H H, 2 HI+ H, 2 HI+
cetml[ow ], [ - x4 o
H(()) Hl 0) Hl+5
el 6 ihe s
Ho H Hy HO Hy' HIF

and we have already bounded every term in here.
For D5 we proceed as for D, and D3.
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We will give full detail for Dg.

t
De = ‘f Tra (Vw =D ("D ) (A0 X® — Ao XU V))dr = dy) +d3 + ds3
0

where

t
D¢ = — /0 Tr@Vw" V"D —¢)(Ao0 X™W — Ao X" Vy)dr

t
De» = — / Tr(Vw ™ Vg, "D —g5)(AoX™ — Ao X" V))dr
0
t
D3 = — /0 Tr(Vw " DD —)3,(A0 X™ — Ao X" V))dr.  (88)

The estimates of these three terms follow similar steps as those one for D and Dj.
First we apply lemma 3.4 with ¢ = 0 since 0 < % < 1tofind

[|Dg1]] o
H(O) H

< Hati@—‘)(;("—‘) — &) (Ao X™ — Ao X("—”)H

= clool|[[van | e[l -]
UO] a v HTH 1 ; §¢ HT]_]H»B

HAOX(") Ao X"~ UH
0)2 HI+S

< Clvg] HA o XMW _ Ao x0— I)H Clvol HX(VL) x (= I)H

0)2 H1+5 0)2 H1+a'
Above lemma 3.5, lemma 3.7, lemma 3.14 and lemma 3.17. In addition
t
IDa1ll w51 =Clvo] atf x® _ xo-n|[
Hy H~! 0 H(0)2 HI+3
t
S‘ / X(") _ X(nfl) .
0 H(O)z +e+1— €H1+5
<CTE¢ X(n) _ X(nfl)H o < CT¢ X(n) - X(n_l)’
= ‘THHHB — Fstl s
s—1

for 0 < *5= + & < 1. The estimate for Dg; is quite similar. Indeed, lemma 3.4 with
& = 0 to obtain

[1Deall ss1 <CHVu)(” Do, ("D — g5) (Ao X — Ao x0™ 1))H
for H(o)2 H~!

< Clwl HW;(”)

o s s,
(O

71
2
©)
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HAOX(”) Ao X"~ I)H
H 2 Hl+5

Above we apply lemma 3.5 and the rest of the estimate follows the same steps. Next

we can make use of 3.4 with ¢ = 0 since 0 < % < 1 to obtain

-,
C §¢ HTHIHS

D3]l s < Clwol HVw()H
H(KH HTHI

and therefore, it is enough to estimate | |8, (xXm —x (”_1))| | . As we did before

(Ao XM — Ao xn™ 1>)H

T o
H(()) H

o H°
we obtain
Hat(x('” X0 ”)H w <cre o, x™ = xo- “)H s
)2 HO HO
<CT? X(")—X(”_l)‘ )
- Fs+l

To estimate D7 we just split £y = I — tV(Avp) and use lemma 3.9. Finally we
estimate Dg by using lemma 3.9.

P2.3. Estimate for 4 — p=D:

We split using (80) and decompose further hf,n) — hg)"_l) = dy +d> +dz +d4 where
the differences are given by

dy = Vo™ — VX Wy, dy = VoD (v, X0 — v, X Dy,
dy = V" =)D — DV, XD,
dy = V(" — =Dy v, x=D _T)n,. (89)

We estimate as follows. For d; we find:

il <clve® () _ (,H)‘ (n) 1
-3 = L2HY LoH1 L®H™2
<C Hv(n) )§<n> _ §<n—1>H x ™
- LZHs+1 LOHS LooHs+l
< Clug] ||x® - x@=0|| < ClugITH ||x® = x@=D||
— Lo Hs+1 — Fs+1

The time norm needs the splitting v® = w™ + v + 1/ which gives

il g =c([ve®| oy ol Vel )
Hg *L2 Hg *L? Hg *L?

1
Iyt

5
H,

)@(n) _ =y, x®

)
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o g et [ -5
<
—C<Hw H(hol).x+1 + Clvo ¢ ¢ Hz 4H1+5
(x| sy, +1)
H2 4H1+5
< Clug] || x® — x0=0]| | < ClugIT* ||x® — x| .
H2 4H2+5 Fs+l
Above we have used (81) together with Lemmas 3.4, 3.7 and 3.15. Similarl
y
|da| | <C‘Vv(”) - 1)‘ xm _yxr- 1))
L2H"2 — L2 L®H™ LoH S
< ClugITH ||x® = x0=D||
- Fs+l
and
dal sy = C([Vu®] oy ol vl sy )
H(%) 4L2 H%) 4 L2 H H(%) 4L2
D@ X0 =y
2 4H
e 1., e -]
H(%) 4 it HZ 4H1+8
< ClvolT* X(”)—X(”_l)‘ :
- Fs+l
For d; we find:
d <C‘V ) _ (=1 (n=1) _ ‘ (n)
| 3|L2H“*% - © v )L2H°'*7 ¢ HLOOH*‘*? VX LoH 3
< CH,,(n) _U(nfn‘ =D _HH x™ ‘
- L2Hs+!1 LXHS LR HSs+!
1 _
< Clool* [[o® — v 0|
)
and
d| ) =C |V - ‘>>\ \ 1 4,
H((z}) 42 4 H((z)) dgatd
(‘VJX(”)—H‘ 1 +1)
274 a8
H ipat
< () _ = 1>H ‘ (n—l)_HH .
- C HU ht s+l é‘ H(g;%HIJrB
(lx” =all 1o 1)
H(g) 4 g2+
< Clwlr* Sl

(O]
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Above we have used (81) together with Lemmas 3.4, 3.8 and 3.13. Similarly

1
|d4|L2HS,% < Clw]T* and

o _ U(n—l)’

ht,s+1
(0)

oM _ = 1>H

ht s+1°

ldal s 1 < ClwlT®
Hg * 12

We are done with hf]") — hﬁ”‘”. In order to deal with h,(fi) — hfffk_l) =di+..+dg
we use the splitting where

df = (Vo (™ — ¢ DyA o XMy A=l o Xy, X W py,

di = (VoD (A0 XW — Ao X)) A7l o Xy, x Wy,

df = (VoD g o x=Dyx(A=1 o x M _ pg=1 o x=Dy)y, x Wy,
df = (VoD Ao XDy A=t o XD (v, X — v, X D)pg,

df = (V™ — o™ D)m=D _ Ao XDy A=l o x( =Dy, x 1=y
df = (V™ — 0™ D)4 o x"D — A)*A7 o x=Dy, x =Dy,

di = (V™ — oAy (a7l o XD — A7V, x " Dpg,

di = (V™ — ") AF A (VX Do (90)
Then
| i“| 1< C ‘Vv(n) é-(n) é-(n 1)‘ N x® 2 o vx®™ B
L2H’ "2 L2H™ 2 Lo H* 2 LOCHS 3 Lo p
<C Hv(n) C(") _ C(H—I)H }X(n)
L2Hs+! L®HS Loo Hs+1
(n) _ ym-1) (n) _ ym-1)
= C[UO] HX X HLOOH +1 = C[UO]T4 X ’ Fs+l '

For the norm in time we split as follows

dF 5C((Vw<”>( o1 4 lvollgae + VY] )
| 1|H(g> e Hi * L2 Hi *1?

% ’((g_(m — Dy A o xMyEA—l o XDy, x ()

1

H2 4H2+6

Cluol || (€™ = ¢® D)4 0 Xy A~! o XV, X

e
H(%) 4 pgi+s
With a decomposition similar to (82), it is possible to find

4] 4oy = Cluol [ X® = x@D|| )< Cluolre
H(O) L

H2 4 H2+8

x® _ X("’l)‘

Fs+l ’
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with the use of Lemmas 3.4 and 3.8. In an analogous manner

k
3], 54
2
SC[UO]‘WW N {(n—l)‘ L xe — xe-n N X(”)‘
L2H'"2 LXH"2 LXH™2 Lo Hs+]
< ClogIT¥ |[x™ = xO=D|| .
Fs+1
and
ldz] 5 sC[vo]\«;‘"*“)(AoX(’”—AoX“*“)*A*loX“”vJX('” s
HE Y12 HZ 4H2"
(©0) (0)
< Clug] ||x® = x@D|| )< CluglTe ||x®@ = x0D||
H((Z)) 4 gi+s Fs+l
We proceed for d3 and dj as for d5 to find
* * 1 (n) _ ym-=1)
a3, oy 1],y < CloolTH ||x@ —x=D|
a3 oyl oy = ClolTe |[x@ - x|
H, * 12 @ 1L !
A similar approach is used to find
x < ‘V () _ (=1 (n—l)_H‘
|ds| Lt = Clwl [V v b I8 N
(Pl 1)
L®Hs+!1
o N
- [ O] L2Hs+! é‘ LOHS
1 _
< ClogI 74 [[w® —we V||
()
and
%
1451 54,

(é.(n—l)_H)A ° X(n—l))*A—l ° X(n—l)VJX(n—l) N

§C’V(v(”)—v(”_l))‘ o
Hy

s_1 s_1q
2742 5=1 14
o L HE “H2

= Clwl Hv(”) a v(”—l)‘ ht\s+1 ‘g(”_l) a HH LR
H(O) H(O) HI*

< ClwlT* w® — w(n_l)) s+

©0)

It is possible to distribute the norms in a similar manner as in d5 to conclude that

451,y + 7] ogd S CluolT+

I ot F 1|

—1
=P

2
L°H )
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] oy Hlagl oy ],y < Cloole | —we |
6| s_1 7] s_1 81,5 0 ht,s+1
H(%) 472 H((Z)) 472 L2H® 2 H(O)

Next, we deal with 1" — hy'™" = a? + df + d? + d where

di] — q(n—l)(A—l Ox(n—l) _ A—l OX(n))VJX(’I_l)nO,
df =g VA o xW(v, XD — v, XD)ng,

df = (g7 =) (AT o X — ATHV, X Wny,
di = @V — giMAT (v, X™ — Dng. 1)

We start as follows

a? SC)q(” ) B X(n)_X(n—l)’ (n— 1)‘
L2H*"2 L2H*"2 Lo®H*™ Lo®H*™
< ClugIT# ||x® = x=b||
Fs+l
and
@] o
Hg, *L?

< C(‘q(” bl 4 |q¢|L2) ’(A’l o XD _ p=1 o xmyy, x (=D
H L2
O

s_1L
2) q H(%) 1yt
< ClugIT< ||x®@ - x=b||
- Fs+l
following before estimates. Likewise, it is possible to find next
ad| . =<cC ’q("_l) | x VXM — yx0-D \
2lpegsr = L2H'"2 LoH'"2 L®H ™2
< ClugIT? ||x® - xo=v|}
Fstl
and
| o
2 s_=
Hg *L2
(n 1) -1 (n) (n=1) _ (m)
© ©
< ClwolT€ || x™ — X(”’l)‘ .
- Fs+l
The next term provides
a?| SC‘q(") g v X(”)—a’ vx - 1)’ B
L2H°72 L2H'™2 LoHS Lo

< CluolT¥1g” — gV yins .

pr(0)
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and

-1
df] y1 =Cla —al ™" 5

(Ao x™ — A=lyy, x™

2 27452
L H(O) L

< CluolTNg” — gl s

pr(0)

As for dg we find

1
1 —1
{1,551 = CluolT7lgy” — q;5~"

dq s_1 < Clv TE (n) — (n—1) ht,s .
} 4| (3)71L2 — [ 0] ||qw Qw ||Hp£(0)

ht.s
“Hp;(bo)a
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