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ABSTRACT

Motivated by safety challenges resulting from distracted pedestri-
ans, this paper presents a sensing technology for fine-grained loca-
tion classification in an urban environment. It seeks to detect the
transitions from sidewalk locations to in-street locations, to enable
applications such as alerting texting pedestrians when they step into
the street. In this work, we use shoe-mounted inertial sensors for
location classification based on surface gradient profile and step
patterns. This approach is different from existing shoe sensing so-
lutions that focus on dead reckoning and inertial navigation. The
shoe sensors relay inertial sensor measurements to a smartphone,
which extracts the step pattern and the inclination of the ground
a pedestrian is walking on. This allows detecting transitions such
as stepping over a curb or walking down sidewalk ramps that lead
into the street. We carried out walking trials in metropolitan en-
vironments in United States (Manhattan) and Europe (Turin). The
results from these experiments show that we can accurately deter-
mine transitions between sidewalk and street locations to identify
pedestrian risk.
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1. INTRODUCTION

Evidence is mounting that technology distractions have a neg-
ative impact on pedestrian traffic safety. In the last decade, from
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Figure 1: Signage at crosswalks in Delaware and New York
City [7, 8].

2003 to 2012, American streets have witnessed more than 676,000
pedestrians injured in traffic accidents, 47,025 of them fatally [1].
Pedestrians account for nearly 14% of all traffic fatalities in the
US [2] and about 22% worldwide [3]. While motorist fatalities
have declined, pedestrian fatalities have been rising at an annual
rate of 4.9% from 2009-2012 [3, 4] (the 2013 estimates look more
positive, fortunately). Econometric analysis has shown that at high
densities of cell phone use, the life-taking effect due to distractions
outweighs the life-saving effect of improved emergency medical re-
sponse times [5]. According to a study, 26% of pedestrians text or
email, 51% talk on the phone and 36% listen to music while cross-
ing the street [6]. While the evidence is not yet fully conclusive,
it is significant enough that municipalities have started stenciling
“LOOK?” signs at crosswalks in an attempt to alert pedestrians who
text while crossing the street (see Figure 1).

We believe that a technology solution would be more effective
for the problem at hand. Smartphones and future wearable devices,
which are part of the problem, can also be part of the solution by
suppressing distractions or alerting pedestrians to dangers. Smart-
phones could also be integrated with the emerging wireless road
traffic management and safety infrastructure (e.g., DSRC [9] [10])
to provide information about pedestrian behaviors and positions to
vehicles and vice versa. If they could sense potentially dangerous
situations, they could generate much more targeted and noticeable
alerts. Achieving targeted notifications and accurate suppression of
distractions, however, requires a sensing technique that can identify
when more attention is required from the pedestrian.

In prior work, the Walksafe project has presented preliminary
results on using cameras on pedestrians’ smartphones for detect-
ing oncoming vehicles [11]. Even if further significant improve-
ments in accuracy will make this approach feasible, the energy
consumption of continuous camera operation is likely to remain



a challenge. Smartphones can also sense when they are being used
while walking using existing activity recognition techniques [12],
but this information is not sufficient to precisely target an alert. If
pedestrians’ smartphones and in-car devices can communicate (e.g.
DSRC[9], [13]), they can determine when they are in close prox-
imity. This can be useful for generating alerts in select scenarios
but in busy urban areas pedestrians that are safe on a sidewalk are
frequently very close to passing cars.

Pedestrian safety improvements, however, do not necessarily re-
quire such near-collision detection. Since the majority of pedes-
trian fatalities occur during road crossing at intersections or mid-
block locations [14], safety improvements could also be achieved
by supporting good crossing habits or by alerting distracted pedes-
trians who enter the roadway.! Phones can easily monitor when
they are being used for texting and other potentially distracting pur-
poses. The challenge, however, is to determine when pedestrians
are crossing and to distinguish this from walking in relatively safe
areas on a sidewalk. Existing localization technologies such as cel-
lular, WiFi, and satellite positioning do not consistently achieve the
accuracy necessary to discriminate sidewalks and roadways. The
Global Positioning System may come close under ideal open-sky
conditions but cannot achieve the same accuracy in many urban
centers, where it would be most needed for pedestrian safety.

In this work, we address this challenge through a shoe-based step
and terrain gradient profiling technique that can detect transitions
between sidewalks and streets. This approach exploits the trends
toward wearable sensing in shoes for health and fitness [16, 17].
While prior research and products have used sensors in shoes for
tracking a person’s movements (exercise tracking, posture analysis,
and step counting), we show that similar inertial sensors can also
sense properties of the ground. This allows constructing ground
profiles which are useful in a pedestrian safety context and poten-
tial other applications such as localization. We note that sidewalks
in urban environments (at least in more developed regions) follow
relatively consistent design guidelines [18] with curbs separating
roadways from sidewalks and increasingly ramps leading into dedi-
cated crossings. These features are specifically designed to let even
visually impaired pedestrians distinguish relatively safe sidewalk
areas from street crossings.

We leverage these design features and develop a sensing sys-
tem that can automatically detect transitions from a sidewalk into
the road. This includes stepping over a curb, which often occurs
when crossing a street. More importantly, however, our solution
can track the inclination of the ground and detect the sloped tran-
sitions (ramps) that are installed at many dedicated crossing to im-
prove accessibility. We focus on ramps because they are common
in urban environments and we believe that the smoother transition
makes it more likely that a distracted pedestrian fails to recognize
the transition into the street. We have developed a prototype sens-
ing system based on an inertial device affixed to a shoe to evaluate
the effectiveness of this approach, both in laboratory experiments
and in approximately 80 hours of walking, spread over the down-
town area of a small city, the European city of Turin, and the mid-
town area of Manhattan.

In summary, the major contributions of this work are as follows:

e Proposing the use of shoe-mounted inertial sensors for step
and ground profiling, and not just for step counting.

'Indeed, after a sharp 2012 uptick in traffic fatalities in New York
City, the Transportation Commissioner blamed it in part on dis-
tracted walking and lamented: “I don’t think that the iPhone has
invented an app yet that will ping you when you hit a cross-
walk.” [15].
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(a) Sidewalk-street transitions. (b) LookUp
screenshot.

Figure 2: Virtual Look Up.

e Designing step and slope profiling algorithms that identify
when a pedestrian enters the street by sensing changes in the
step and ground profile due to typical sidewalk design fea-
tures such as ramps and curbs.

e Prototyping a LookUp safety feature to demonstrate the fea-
sibility of alerting distracted pedestrians when entering the
street.

e Experimentally analyzing the performance of the detection
algorithms across pedestrian environments including major
cities on two continents with different sidewalk designs (Man-
hattan, NY and Turin, Italy). The total distance walked dur-
ing these experiments was 112.5 miles and this experimental
dataset included 1670 street crossings.

2. APPLICATIONS

There are multiple applications that could benefit from a sensing
technique to detect the transitions from sidewalks to streets. These
applications impose different requirements based on the timeliness
of detections, the need for online processing of gradient data, the
target environment and the tolerance to false positives. We enu-
merate selected applications with their requirements in Table 1 and
detail them in the remainder of this section.

Virtual Look Up. Rather than relying on signs painted on the
roadway, which may lead to warning fatigue, smartphones could
issue a much more targeted electronic alert when an apparently
distracted pedestrian is about to step into the street (illustrated in
Figure 2).

The exact mode of alert or notification could range from vi-
sual (for texting users) to auditory, and might differ based on the
robustness of detection. More intrusive alerts might be desirable
when the system can attain high confidence that the user is at risk;
more peripheral warnings may be suitable when there is lower con-
fidence. We leave the exact design of such alert mechanisms to
user experience designers and focus our discussion and effort on
the robustness of the underlying sensing techniques. A sensing
technique to support this application would need to be accurate
in entrance detections and exhibit low false positives to be effec-
tive (and not cause warning fatigue). It will also need to determine
detections online and with high timeliness requirement, since a dis-
tracted pedestrian should be alerted when entering the street. Note,
however, that many accidents do not occur on the very first step
into the street. They often occur after several steps, when emerging
behind a parked car, for example. This means that short detec-
tion delays of 1-2 steps are often tolerable. This application is best
suited to urban environments where car traffic is relatively dense
and the likelihood of being struck when inattentive is higher.



Application Online Processing | Timeliness Target Environment Tolérg nee to False
Positives
Virtual Look Up Yes High Urban Low
Driver Pedestrian Awareness Yes High Urban/Suburban Low-High
Reducing In-street Notifications Yes Medium Urban Medium
Feedback on Crossing Habits No - Urban/Suburban/Rural | Low

Table 1: Applications of street entrance detection for safety services.

Driver Pedestrian Awareness. Government transportation de-
partments are working with car makers towards a vehicle commu-
nication network that can be used to provide vehicles with better
situational awareness [19]. To support safety applications and in-
creasingly automated driving, over time all vehicles are expected
to announce their current position and other vehicle dynamics in-
formation to vehicles in the vicinity. While this network was ini-
tially planned only for vehicles, prototype smartphones now exist
that can participate in such an 802.11p based network [10]. Includ-
ing smartphones would not just enable pedestrians’ devices to learn
about oncoming cars, but they could also potentially announce the
presence of the pedestrian to nearby vehicles. These announce-
ments would need to be generated on the go and processed online,
while restricting timeliness requirement to be high for rendering
usefulness. In suburban areas, where vehicles are rare, a pedestrian
need not be warned at every crossing, but only if a vehicle is ap-
proaching; which makes this scenario resilient to false positives.
However, owing to the high density of pedestrians and vehicles in
urban areas, such announcements would have to be more selec-
tive, so that the system can distinguish pedestrians that are safely
walking on the sidewalk from pedestrians that may be at risk. This
system could be more forgiving to false positives if an additional
layer of filtering is added to the vehicle, that can identify true alerts
based on added information. Consequently, this application finds
use over a wide range of target scenarios, which also alter its toler-
ance to false positives.

Reducing In-street Notifications. Smartphones could silence
distractions emanating from incoming calls, texts, or app notifi-
cations while the pedestrian is crossing a street. Since a crossing
usually lasts no more than a few tens of seconds, the phone can
simply delay the call/text (e.g. by disabling vibration or ringing)
till the pedestrian exits the street. Such delays should be acceptable
for most messages or notifications and if a call is missed, it can
simply be returned when the pedestrian reaches the sidewalk. This
application is more tolerant to false positives than the prior applica-
tions because even in case of a false detection the notification or call
is delayed by only a small duration. The timeliness requirement is
also slightly lower, since many distractions can still be suppressed
even if the pedestrian is already several steps in the street when the
system realizes this. This application could be an asset for urban
environments where fatalities due to distracted walking are a rising
concern.

Feedback on Crossing Habits. Not all applications require dis-
tinguishing pedestrian walking locations in near real-time. Offline
analysis of historical walking traces can also be useful to moni-
tor and provide feedback on good crossing-habits. For example,
our proposed technique can be a very useful component of a sens-
ing system that could allow parents to monitor whether children
that walk to school are stopping (to look) before an intersection or
whether they dash into the street. While this system would work in
all kinds of environment, it would still need to be precise in detec-
tions, with few false positives.

Other Applications of Gradient Sensing. Besides these safety
applications that benefit from a technique for detecting when pedes-

trians enter the street, we believe that a variety of other applica-
tions can also gain from this work. In particular, the shoe-based
ground gradient sensing techniques are more generally applica-
ble. By leveraging the slope traces and crowdsourcing them from
a large number of people that walk the same path almost every-
day, we can create a unique terrain profile for each sidewalk. Using
the rough position estimate from the GPS and the sidewalk profile,
we can improve localization in urban canyons by matching the ter-
rain profile of the currently observed walking trace to this database
of sidewalks. Additionally, we can also use these sidewalk pro-
files to monitor sidewalk status (surface health monitoring) as well
as to identify the level of accessibility in an urban area to people
with mobility impairments (e.g., surface smoothness, availability
of ramps).

3. GPS LIMITATIONS FOR PEDESTRIAN
SAFETY

Consider a straw-man approach that attempts to localize the pedes-
trian using existing methods and distinguish sidewalks and road-
ways by comparing the position coordinates with the location of
known roadways on a map. The requirements and challenges for
GPS-based crossing detection assume different meanings across
scenarios.

In out-of-town environments such as rural roads or highways,
walking along the roads, which typically do not have sidewalks, can
be particularly hazardous. Since pedestrians are sparse and tend to
walk along roads for extended periods, the accuracy requirements
on a positioning system are relatively low, in the order of tens of
meters. It thus suffices to know if a pedestrian is walking along a
street and a GPS-based approach can be expected to work.

In suburban or residential areas, there may or may not be side-
walks, and one may expect occasional pedestrians, walking in the
street (when no sidewalks are present) or on the sidewalk. For the
latter case, solely detecting that there is a pedestrian walking along
the street would result in generating alerts uselessly. It is thus ben-
eficial to identify the events when this person may be stepping into
the street, putting himself at a higher risk of being hit by car. This
requires the ability to distinguish the pedestrian’s location as street
or sidewalk.

Most urban downtowns and cities are well developed and have
sidewalks, with a large number of pedestrians walking along the
street. Just knowing that a pedestrian is walking along a street
would create far too many alerts and cause warning fatigue. In
such a scenario, more fine-grained differentiation of pedestrians at
risk is not only beneficial but necessary. Since a pedestrian is usu-
ally safe when walking on the sidewalk, our approach is to identify
pedestrians that are in the roadway. Accurate detection of street
entrance therefore becomes a key concern.

Typical GPS accuracies are in the order of a few meters under
good conditions and the accuracy can quickly degrade to tens of
meters in urban canyons. Through experiments conducted in envi-
ronments ranging from suburban to small and metropolitan cities,
it is evident that the performance of GPS-based detection of pedes-



o) s 2
40.76 S
Tos P
o
© 40.759
q>) 0.6 he
= =} (2%
7 £ 40758 (3
Q0.4 ! ©
o ’ -
o ,' 40.757
— Urban Downtown A
202 / |— Suburban Locaion iaﬁw 3
[ A 40.756 et $ 4
0 Times & L% &
0 0.02 0.04 0.06 0.08 0.1 -73.989 -73.987 _—73.985 -73.983
False Positive Rate Longitude

(a) In-street detection perfor- (b) Sample GPS traces from Man-
mance for urban and subur- hattan experiments and actual walk
ban testbeds. (dashed trace).

Figure 3: GPS based approach.

trian’s transitions from sidewalk to street is limited even in a rela-
tively benign suburban environment.

Using the location coordinates of the pedestrian and the heading,
both obtained from the GPS, we can extrapolate a person’s path
of motion to approximate his position in the next d meters. We
can then check this extended path for intersection with a nearby
street. Such an intersection of the pedestrian’s predicted path and
the street would indicate that the pedestrian might be purposed to
cross the street. The distance d is fixed to roughly half the width
of the street. The underlying street network data can be accessed
from OpenStreetMap [20], an open-source map database, which
provides information about street orientations and locations. Fig-
ure 3(a) shows the performance of the GPS-based crossing detec-
tion in a suburban environment compared to an urban environment
(e.g., downtown New Brunswick, NJ). The suburban environment
exhibits a better performance with a detection rate of 85% than that
of the urban environment (i.e., 78%). The maximum rate at which
we can sample GPS is approximately once per second. It is ev-
ident from the performance curves that GPS does not suffice for
applications with a stringent timing and fine grained localization
requirement, such as pedestrian safety applications. More details
on the limits of GPS-based pedestrian risk detection can be found
in our earlier works [21, 22].

Figure 3(b) presents our best GPS traces collected in the urban
environment of Manhattan, using a Nexus 5, held in hand. The
green and blue lines are two separate GPS traces collected on dif-
ferent days. The red dashed line is the actual walked path. It is
further evident from these results that GPS alone cannot serve the
purpose for fine-grained localization such as detecting transitions
from the sidewalk to street. Cellular and WiFi positioning could
provide little help in such scenarios. Since sidewalks are often only
a few meters wide, this level of accuracy makes it extremely chal-
lenging to distinguish a pedestrian on the sidewalk from one in the
street, let alone determine the event when a person transitions from
the sidewalk to the street.

Other Challenges. Even with accurate positioning, the GPS-
based system would have to compare the position coordinates with
a map to distinguish sidewalks from streets. Unfortunately, road
maps such as those available from OpenStreetMap [20] record only
road centerlines. Whether a sidewalk is present along the roadway
is not always stored. Even if it were, the boundary between street
and sidewalk would need to be estimated based on assumptions of
typical road width. This further limits accuracy or requires addi-
tional effort in constructing such a map.

To overcome these challenges, we explore a sensing-based ap-
proach that detects events in a local frame of reference for the
pedestrian, instead of relying on absolute positioning.
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Figure 4: System overview of crossing detection.

4. STEP AND SLOPE PROFILING

Our primary idea is to distinguish street and sidewalk locations
of the pedestrian through inertial sensing of ground features, par-
ticularly by sensing the sidewalk design features that demarcate
roadways and sidewalks. In more developed regions, engineers are
required to follow increasingly precise and consistent sidewalk de-
sign guidelines [18, 23] to improve accessibility. Typically, side-
walks and roadways are separated by curbs, which are lowered at
designated crossings through a ramp. These features make sidewalk-
roadway transitions and special crossings detectable by the visually
impaired yet do not pose significant barriers for wheelchair users.
We recognize that the same features can also be sensed for pedes-
trian safety services. The proposed approach therefore addresses
the aforementioned challenges because it does not rely on absolute
localization from GPS or maps and achieves robustness by taking
advantage of unique sidewalk design features.

Shoe-based Step and Slope Sensing. More specifically, we pro-
pose a pedestrian safety system that acquires inertial data from a
shoe-mounted sensor, to detect changes in step pattern and ground
patterns caused by ramps and curbs. In particular, a salient feature
of this work is that it senses small changes in the inclination of the
ground, which are expected due to ramps and the sideways slope of
roadways to facilitate water runoff. The shoe-mounted sensor has
the capability to measure the foot inclination at any given point in
time and reflects the slope of the ground when the foot is flat on
the ground. We chose inertial sensors because they allow us to in-
fer information about the ground with a very modest power budget,
compared to GPS or camera-based approaches.

We selected a shoe placement of the sensors because they are
closer to the ground than other wearable or smartphone sensors
and move along with the foot. They can therefore trace the exact



movement of the foot at each step and provide accurate information
about ground features. Note that the trend towards wearable shoe
sensors for fitness purposes [16, 17] has already made such sensors
available in some shoes. With continuing technology advances, we
envision that such shoe sensors will be increasingly available for
other emerging tracking [24], fitness [16] and healthcare monitor-
ing [25, 26] applications. They could first be embedded in shoes for
especially vulnerable traffic participants (e.g., children) and even-
tually most shoes.

System Overview. The system comprises inertial sensor mod-
ules on both shoes that share their measurements with a smartphone
over a wireless Bluetooth connection. While a sensor on one foot
can also achieve most of the ramp detections, sensors on both feet
substantially improve the detection of stepping over a curb. It al-
lows us to detect foot movements over the curb, irrespective of the
foot the pedestrian uses for the action. A smartphone can serve as
a hub for processing the shoe sensor data and implementing any of
the aforementioned applications. The key processing steps of our
sensing system are depicted in Figure 4. The core components of
our system are Feature Extraction, Step Profiling and Event Detec-
tion.

The Feature Extraction block processes raw accelerometer and

gyroscope readings (sampled at 50 Hz in our implementation) through

a complementary filter, and extracts traces of pitch, yaw, and accel-
eration magnitude features from these measurements (see Figure 5
for an illustration of key features). While it primarily relies on this
inertial data, it also collects magnetometer readings to assist with
the Guard Zone filtering step in the Event Detection component.

The Step Profiling component divides these traces into distinct
steps and for each step cycle extracts the period when the foot is
flat on the ground, which we refer to as Stance Phase Detection. It
then estimates the slope of the ground from the pitch readings and
the relative rotation of the foot from the yaw readings, during the
stance phase. It also extracts peak acceleration magnitude over an
entire step cycle as an indication of foot impact force.

Finally, Event Detection layer aims to detect stepping into the
roadway through ramp and curb detection. Ramps manifest them-
selves through characteristic changes in slope, while steps over a
curb usually show higher foot impact forces. These candidate de-
tections can then be filtered through a guard zone mechanism. It
helps to remove spurious events caused by uneven road surfaces.
Since many cities feature somewhat regular intervals between road
crossings (especially so for cities that are laid out in a grid shape),
it is rare for a pedestrian that walks straight to encounter a crossing
immediately after previous crossing. The guard zone mechanism
tracks whether a pedestrian walks straight and then suppresses de-
tections that come to soon.

S. CROSSING DETECTION

Below, we detail the feature extraction, step profiling, and event
detection layers depicted in Figure 4 and outlined in the previous
section.

5.1 Feature Extraction

This component extracts changes in pitch, yaw and acceleration
magnitude for each sample from the tri-axis accelerometer and tri-
axis gyroscope measurements. For simplicity, let us assume that
the inertial sensor unit is oriented such that the x axis points ap-
proximately forward in the direction of motion, the y axis points
sideways, and the z axis points opposite to the direction of grav-
ity, as shown in Figure 6. Note, that the sensor orientation does
not need to be precisely calibrated; small discrepancies can be tol-
erated since we only track changes in pitch, yaw, and magnitude
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from step to step. For arbitrary mounting positions, the system can
also be extended to include a complete coordinate system calibra-

tion step similar to [27].
D

first step, to account for mounting
X offset. Changes in pitch can be
Y determined from the accelerometer
readings, since the change leads to
a different projection of the grav-
ity force on the accelerometer axes.
These estimates can suffer from vi-
bration errors, however. An alter-
native way of obtaining changes in
pitch angle is by using the gyro-
scope data. Since the gyroscope directly measures angular velocity
around all axes, integrating the angular velocity around the y axis
will yield the change in pitch. While the gyroscope allows tracking
small changes more precisely, the integration process accumulates
error over time, leading to significant errors for longer integration
intervals. To overcome the drawbacks of the individual sensors,
we borrow a popular technique from robotics, for accurate pitch
measurement. This technique involves combining the accelerome-
ter and gyroscope data using a complementary filter [28, 29]. To
obtain the pitch from raw accelerometer and gyroscope readings,

we use a second order complementary filter.

The second order complementary filter takes the following in-
puts: the accelerometer readings along x and z direction, A, and
A, and the gyroscope rotations along the y axis, Gy. The filter
also needs two parameters, k - the bandwidth of the filter and T’
- the sampling rate. For our system, the sampling frequency is 50
Hz,i.e. T is 0.02 and we empirically set £=13.5. The filter is given
by the following set of equations, where ¢ is the generic sampling
step and a (i) = atan(A4(i)/A-(i)) represents the angle between
the accelerometer readings along the = and z axis.

Pitch. Pitch is the rotation of
the foot along the sideways y axis
(see Figure 6), which represents
the inclination of the ground dur-
ing the stance phase. We mea-
sure changes in pitch relative to the

Z

Pitch

Figure 6: Shoe
mounted sensor with
axis orientation.

v(i) = Tk*[a(i) — pitch(i — 1)] + v(i — 1) (1)
w(i) = v(i) + 2k[a(i) — pitch(i — 1)] + Gy (3) 2)
pitch(i) = Tw(i) + pitch(i — 1) 3)

In (1), a low-pass filter is applied to the difference between the
current angle and the previous pitch so as to only let long-term
changes through, filtering out short-term fluctuations. The output
of the filter is integrated over the sampling step 7'. Equation (2)
sums the output of (1) to the output of a low-pass filter and gy-
roscope rotation GG,. Finally, (3) performs an integration over the



sampling step and adds the result to the pitch. A typical pitch trace
is shown in Figure 5(a).

Yaw. Yaw is the change in rotation of the foot around the verti-
cal axis, the z axis. We measure yaw relative to the previous step.
We can obtain the yaw from the complementary filter in the same
way as the pitch, by only changing the axis. Note, however, that
the yaw information primarily stems from the gyroscope since the
accelerometer tends to convey less information about yaw. In fact,
if the accelerometer z axis is aligned with the gravity axis, then
a change in yaw will yield no measurable difference in the z — y
plane, since there is no gravity component on these axes. A typi-
cal yaw trace is shown in Figure 5(b). Yaw gives information on
whether the pedestrian is walking straight or turning, which we use
for turn detection and in the Guard Zone Filtering, as described
later.

Magnitude. The magnitude of the acceleration helps us detect
the event of stepping off a curb. We notice that during step off
events, the accelerometer records a peak in acceleration along the
axis on which the gravity is acting. Therefore we calculate the
magnitude of acceleration along the z axis and the y axis, for ev-
ery sample. We remove the x axis from consideration to filter out
significant acceleration in the walking direction.

5.2 Step Profiling

The foot mounted inertial sensors are used to obtain the slope of
the ground at each step the walker takes, hence the measurement
of the ramp inclination. This algorithm proceeds in three steps.
First, it tracks the pitch angle 50 times a second. Second, it uses
this pitch trace to extract the slope from the stance periods of a
walking cycle, the period when the foot is flat on the ground. A
sequence of these slope values corresponds to the slope profile of
the ground that the pedestrian is walking on. Third, in addition
to the slope, each step also has yaw and force attributes, that are
derived from the yaw and magnitude features. Therefore, at the end
of the profiling algorithm, we obtain a sequence of steps, where
each step has a slope, yaw and force attribute. While the slope
is acquired by sensing the terrain gradient, the yaw and the force
attributes are particular to the walking style. Below, we provide
further details on the stance phase detection algorithm.

Stance Phase Detection. We use the pitch trace to identify the
different phases of a person’s walk. Figure 7 shows one such trace
and the corresponding phases of walking. We require the stance
phase of the walk, which is when the foot is flat on the ground.
The inclination measurement obtained in this phase results from
the slope of the ground at that spot, in addition to the initial pitch
due to mounting.

As a person walks, the inclination of the foot changes contin-
uously, varying rapidly during the swing phase but maintaining a
small amplitude during the stance phase. Thus, the stance phase
detection algorithm identifies the large negative peaks in the trace
and isolates the samples between consecutive peaks. This is one
walking cycle. By tracking the variation of the pitch during each
cycle, the stance phase is identified as the interval in which the foot
is stationary implying very small or no changes at all to the pitch.
The samples making up each stance phase are determined as the
collection of at least count number of pitch values within a few de-
grees of each other. Here count depends on the sampling rate of
the sensor and the duration for which the foot is in contact with
the ground. For our analysis we assume that the foot remains in
contact with the ground for at least one-third of a second, during
normal walking. At a sampling rate of 50 Hz, this implies that the
stance phase should have approximately 15 samples. The mean of
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Figure 7: A pitch trace identifying different phases of a walking
cycle.

the inclination values (pitch) during the stance phase provides us
with the slope of the ground at that step.

By repeating this calculation for each stance phase, we acquire
a sequence of slope values, the slope trace, where each slope cor-
responds to a step. From this slope trace, we obtain an estimate
for the slope of the ground by subtracting the initial tilt of the ac-
celerometer, caused by the shoe mounting.

We assume that pedestrians walk in the forward direction and
not backwards. However, if a person halts and only stamps his feet
without moving, the pitch trace does not record a complete walking
cycle. The swing phase of the stamping activity is distinct from the
swing phase of the walking activity and thus these spurious steps
are easily filtered out.

5.3 Event Detection and Classification

The pitch computation and stance phase detection discussed above
are performed independently for each foot. After these procedures,
we obtain the slope measurement of the ground at each step from
both feet. Each time a walking cycle is completed, we compare the
slope of the current step to the slope acquired in the past 3 steps. We
determine the 3-step window by observation. Events are detected
by applying a threshold to the slope change in this window. This
threshold reflects the typical ramp inclination and is determined
empirically.

The force at each step is also evaluated against a step off thresh-
old to detect steps with a force significantly higher than past 3 steps,
likely implying stepping-off curbs. The events detection and clas-
sification details are provided in Algorithm 1. To ensure robust
detection, not only do we identify events that exceed the threshold,
but we further process them as explained below. First, we catego-
rize the detected events as follows.

Trough. A trough is typical of a street entrance via a ramp. As a
pedestrian walks from the sidewalk to the street, there is a negative
slope measured off the descending sidewalk ramp. As the person
steps into the street, the sensors measure a positive slope, due to
the street curvature. A combination of the negative slope of the
sidewalk ramp and the positive incline of the street edge forms a
trough, if the detected change in slope is significant (higher than
a given threshold). Figure 8(a) shows an example trough event.
While this is the ideal measurement case, we do not observe this
ideal pattern at all crossings, due to measurement errors and surface
invariations.

Rise. A rise is an event detected due to a sharp increase in the
measured slope of the ground, i.e. a positive incline. This occur-
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Figure 8: Event patterns.

rence is most common when the pedestrian just steps into the street.
This is due to the fact that streets have a convex curvature to facil-
itate water to drain off to the sides. When walking from sidewalk
to street, this curve is measured as the positive incline. Figure 8(b)
shows an example rise event.

Fall. A fall is an event detected due to a sharp decrease in the
measured slope of the ground. This event is most commonly de-
tected when a pedestrian is walking down the sidewalk ramp, which
shows up as a negative incline. Figure 8(c) shows an example fall
event.

Step Off. A step off event occurs as a sudden increase in the
accelerometer magnitude along the vertical direction. This signifies
the force associated with that step. If the force at a step is higher
than the person’s average force over the past 3 steps, we flag this
event as a step off event. This event is very important for detecting
street entrances where a person steps off the curb instead of walking
down a ramp. Figure 8(d) shows an example step off event.

We then classify a combination of these events as high confi-
dence and low confidence events. A pair of trough events, one from
each foot, constitutes a high confidence event. Similarly, a pair
of step off events is also classified as high confidence event oc-
currence. All other events are classified as low confidence events.
A low confidence event could also be triggered by various obsta-
cles on the sidewalk or unexpected discrepancies in the pedestrian’s
movement.

An example of low confidence event is a fall event, which can
occur at both, entrances (when walking down a sidewalk ramp) and
exits (at the edge of the road, when leaving). However, the algo-
rithm can identify an entrance based on the spatial and temporal oc-
currence of the events. If the events occur close to each other, they
denote an entrance and the following exit. Also, as detailed later,
when a high confidence event allows the detection of an entrance,
the guard zone is set and the exit event can be easily discarded.

We remark that, in addition to detecting actual events, the algo-
rithm is also equipped to handle error cases. While thresholding the
slope, only relative slope change is tracked over a small window of
steps. Therefore, if the sidewalk has a gradual uphill or downhill
incline, the algorithm does not detect it as a ramp, since the relative
slope of the ground does not change considerably in a small win-
dow. Unfortunately, obstacles in the sidewalk, such as bumps are

Data: pitch - Pitch trace
mag - Magnitude trace
Witep - Step Window for comparison
Th, - Threshold for ramp detection
Th. - Threshold for curb detection
Result: S - Event Type
begin
foreach pitch, mag do
if walkCycleComplete(pitch) == TRUE then
[Slope(i), Force(i)] =
getStancePhaseMean(pitch, mag);
if (Slope(i)— Slope(i-1) > Th,) and
(Slope(i-1)— Slope(i-1-Wtep)) < —Th,) and
(range(Slope(i-1-Wsiep:i-1)) > Th,) then
‘ S + Trough;
else
if range(Slope(i:i-Wstep)) > Th, then
diff=slope(i)-slope(i-Wstep);
if diff > Th, then
S < Rise;
elseif dif f < —Th, then
| S« Fall,

if Force(i)>Th. then
L S « Step Off;

if inGuardZone(S) == FALSE then
| return S

else
L Discard S;

Algorithm 1: Event Detection Algorithm.

single step events and hard to filter by themselves, unless they fall
in the guard zone.

5.4 Guard Zone Filtering

When a high confidence event is detected, such as a pair of
trough events or a pair of step off events, the algorithm reckons
this to be a definite entrance into the street and sets a guard zone
following that entrance, until the next entrance can occur. We de-
fine guard zone as a stretch of the sidewalk on which true events of
entering the street are unlikely to occur. Thus, any events detected
within the guard zone are discarded because they can be caused by
measurement noise or irregularities in the sidewalk (uneven road
surfaces, potholes, bumps), and can trigger false positives. The
guard zone is reset (i.e. set to zero) when a turn is detected. If a
turn is made before crossing the street, the turn detection algorithm
resets the guard zone. This implies that events after a turn will not
be discarded, and the guard zone will be set again when a high
confidence event is detected. This is done to account for pedestri-
ans who cross a street, turn, and then cross again, shortly after the
first crossing. Guard zone filtering has been primarily designed to
discard false warnings due to the irregularities of the sidewalk.

Obtaining the length of the guard zone is important to reduce
false positives and maintain a high rate of crossing detections. How-
ever, accurately determining this size poses several challenges. First,
crossings occur not only at the ends of a street block, but pedestri-
ans can also perform midblock crossings. Second, the complexity
and varying characteristics of the road environments make it diffi-
cult to provide a generic length setting of guard zone. To overcome
this issue, the guard zone algorithm takes the closeness of streets
(block length) into account and sets the length of the guard zone to
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Figure 9: Test paths from Manhattan (New York), Turin (Italy) and New Brunswick (NJ).

a fraction of the street block size. This setting also helps us recover
in case the guard zone is incorrectly applied after a false detec-
tion. We seek to derive a sensing-based mechanism to estimate the
length of the guard zone by using the pedestrian’s walking direc-
tion and turning information. In this mechanism, the size of the
guard zone continues to increase by accumulating the pedestrian’s
walking steps after the first street entrance (i.e., a high confidence
event) is detected, and it resets to zero when the pedestrian makes
a turn. We implement this mechanism by performing walking di-
rection determination and turn detection, as described below.

Walking Direction Determination. This task is accomplished
by leveraging magnetometer readings. Magnetometer measures the
earth’s magnetic field in z, y and z directions and its readings re-
main unique for certain direction. The magnetometer embedded
in the shoe sensor can thus become a useful discriminator for the
walking direction determination. Specifically, we assume R =
(Zr,yr, z-) and R’ = (2.,y., z.) be the average of the real time
magnetometer readings obtained from the current observation win-
dow and the previous non-overlapping observation window with a
length of n walking steps, respectively. The angle betweenﬁﬁ and
1_RR

IR
If 65 7 is smaller than a pre-defined threshold, the system declares
that the walking direction of the user remains the same and the
guard zone size increases by n walking steps.

Turn Detection. By analyzing the yaw values, we are able to de-
tect turns made by pedestrians. A turn corresponds to a continuous
change, along the same direction, of yaw readings over both feet.
We develop a turn detection technique that takes the yaw value as-
sociated with each step and computes the difference between yaw
at consecutive steps. Then, it sums these differences over a fixed
number of steps so as to obtain the overall rotation angle. A turn
is detected when such rotation exceeds an angle threshold for both
feet. As mentioned before, turn detection is used to avoid discard-
ing real entrances when guard zone filtering is applied. Indeed, we
observed that most turns happen right before or after street entrance
events, either at intersections or mid-block locations. Thus, if a de-
tected event is preceded by a turn, it is likely to be a real street
entrance, hence it is not discarded and the guard zone size is reset
to zero. In addition to turn detection, considering both feet allows
us to distinguish between actual turns and small heading variations
due to the need to dodge people on a crowded sidewalk.

R’ can be found using the dot product: 65 5, = cos™

6. PROTOTYPE IMPLEMENTATION

Our prototype includes a shoe-mounted sensor, two Android ap-
plications for data collection and a LookUp safety feature to demon-
strate the feasibility of our approach. The sensor mounted on the

(b) Sensor mounting on
shoes.

(a) MPU 9150 sensor.

Figure 10: Set up for shoe-mounted sensor.

shoe is an Invensense MPU-9150 [30] 9-axis motion sensor, shown
in Figure 10(a). It is a self-calibrating device, set to collect data at a
sampling rate of 50 Hz. During our in-lab experiments we analyzed
the system performance using different sampling frequencies. We
chose 50 Hz considering that some people walk much faster, and
this sampling frequency provided us with enough data points to ex-
tract the stance phase. The board we used comprises an accelerom-
eter, gyroscope, magnetometer, a Bluetooth module and a battery.
We chose this platform because it offers relatively high precision
inertial sensing module. In order to capture all foot movements,
we strapped a sensor on each of the walker’s shoes, as shown in
Figure 10(b). We chose a mounting position for the sensor after
testing out four different positions in a controlled laboratory envi-
ronment. As shown in the evaluation section (Figure 18(b)), the
mounting position that was found to be consistent across separate
experiments was on top of the foot. A sensor mounted on each foot
ensured that stepping off the curb is detected, irrespective of the
foot used

We implemented an Android application to collect sensor data
on the user’s smartphone via Bluetooth. The application logs the
accelerometer, gyroscope and magnetometer data from the two sen-
sors independently. Each reading is timestamped and contains raw
data from the three axis. A second Android application was im-
plemented to collect the ground truth for offline evaluation of the
proposed system. This application has buttons to mark the exact
time when the walker transitions between a sidewalk and a street,
and whether this transition occurs via a ramp or a curb. To ensure
that measurements are unbiased and the pedestrian is undistracted
while crossing the street, the ground truth was entered by a second
person walking with the pedestrian.

We also developed a prototype LookUp safety application on the
Android platform, which alerts distracted pedestrians when enter-
ing the street. This is a shoe sensor-based crossing detection appli-
cation that implements the algorithms described in Section 5. The
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Figure 11: Typical roadway features from Manhattan and Turin.

screenshot from the application is shown in Figure 2(b). When a
pedestrian approaches a street, a LookUp warning flashes on his
mobile screen, alerting him to pay attention to traffic. This applica-
tion runs in the background and does not alter the user’s interaction
with the smartphone.

7. EXPERIMENTAL SCENARIOS

To evaluate the performance of our system, 21 volunteers, 16
male and 5 female, walked along predefined routes in three loca-
tions with a sensor attached to each of their shoes. Most volun-
teers were students from our laboratories and about 20 - 40 years
old. The only instruction provided was to walk as usual along the
given route. An experimenter accompanied each walker to record,
through a smartphone app, ground truth information (i.e., the time
when transitions occurred and whether they occurred via a ramp
or a curb). Most volunteers were not aware of the objective of
the experiment other than it being related to pedestrian safety. We
highlight that volunteers were free to use either a ramp or a curb to
cross a street (the system collected both the ground slope data as
well as acceleration events for street crossing detection at the same
time). The experiments in Manhattan were conducted in the months
of February and early March. There were a fair number of obsta-
cles to deal with such as icy patches, accumulated snowpiles, and
street/sidewalk potholes. The data includes the movements to avoid
these and volunteers may have walked faster due to cold weather.
Additionally, these walking trials were performed during different
times, including rush hour and weekends. At times, the volunteers
had to weave around people. None of our test areas, however, in-
cluded stairs or unpaved surfaces.

Midtown area of Manhattan. This location gave us the oppor-
tunity to evaluate our system in a challenging environment, with
different kinds of ramps, crowded sidewalks and long paths. The
experiments were performed near Times Square, which is one of
the world’s busiest pedestrian intersections. Five volunteers walked
at different times, including rush hours and weekends. We selected
two test paths. A short one that volunteers were able to cover sev-
eral times (namely, 20) so as to analyze the variance of our results
over the same path. Another, longer path was completed twice and
allowed us to understand variations in the results depending on the
different street and crossing layout. The first test path starts from
Times Square (42nd Street, 7th Avenue) and goes through Central
Park (58th Street, Sth Avenue) before returning to Times Square, as
shown by the solid red lines in Figure 9(a). The entire path is about
2.1 miles. The average path travel time is about 60 mins, and it
includes 32 street crossings. The dashed path in Figure 9(a) shows
the second test path, which is about 4 mile-long. In this case, the
average path travel time is approximately 120 mins, and it includes
60 street crossings. Thus, a total of nearly 25 hours of sensor data

was collected. Figure 11(a) and (b) show a typical ramp and curb
in Manhattan.

Turin Metropolitan Area. In order to verify the performance
of our system in a different urban street layout, we selected the
European city of Turin, in Italy, which has a population of about
one million people. While in Manhattan most of the sidewalks are
made of concrete or tiles, in Turin almost all of them are made of
either asphalt or bricks. Six volunteers walked over two different
test paths in the city center, as shown in Figure 9(b). The shorter
path is 1.6 mile-long, includes 20 crossings and is travelled in about
30 mins. The longer one is 2.5 mile-long, includes around 40 cross-
ings and it takes about one hour to complete it. In total, volunteers
completed 10 long and 20 short paths, thus collecting a total of 20
hours of sensory data. A typical cobblestoned ramp from Turin is
displayed in Figure 11(c).

New Brunswick Downtown. We conducted walking trials in the
downtown area of the small city of New Brunswick. The selected
area comprises only sidewalk ramps. Eleven volunteers walked
over ten possible paths, each of which is 20 minute-long and cov-
ers about 800 meters. Figure 9(c) provides a map of this testing
scenario and shows one of the ten possible paths, which includes 8
crossings. The number of crossings over the possible paths ranges
between 8 and 12. The New Brunswick testing scenario has been
used to evaluate the impact of people’s walking style and speed on
the performance of our system.

8. EVALUATION

We evaluate the robustness of our crossing detection system for
the three testbeds discussed earlier.

8.1 Entrance Detection

First off, we evaluate the crossing detection algorithm for delay
and detection performance. This evaluation is carried out for our
two main testbeds, Manhattan and Turin. These results establish
that our crossing detection algorithm has very low false positives
for a high detection rate, even at locations that have completely dif-
ferent street designs. In the second part of the entrance detection
evaluation, we test the robustness of the algorithm and analyze how
it is affected by the pedestrian’s walking style and sensor mounting.
For this evaluation we use our smaller testbed, in New Brunswick,
New Jersey as well as controlled indoor experiments. We show that
the detection performance is not significantly influenced by walk-
ing style and that a shoestring mounting position as used in current
exercise tracking products also works well for ground sensing and
entrance detection.

We use steps as the evaluation metric, which provides a com-
prehension of both time and distance. Due to varying speeds of
walking and the time spent in waiting in differently crowded envi-
ronments, the metric of time alone is insufficient without a sense of
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pedestrian motion. For example, when a person enters the street,
a few seconds later we cannot tell how far the pedestrian is in the
street without also tracking motion and speed. Steps help us esti-
mate the risk to a pedestrian based on how far (how many steps) he
is, into the street.

8.1.1 Detection Latency

For safety applications, it is essential to understand the timeli-
ness of event detections. To this end, we graph the delay distribu-
tion of the detections in number of steps from an actual entrance.
Figure 13 shows a histogram that displays the number of detected
events in a 40 step window before and after a real entrance. The
negative and positive x-axis values correspond to steps before and
after the entrance, respectively. Zero on the x axis marks the step
when the pedestrian enters the street. We observe that the maxi-
mum number of detections occur at the step right before the en-
trance, followed by the first step into the street. The highest density
of detected events lies in the steps before the entrance, depicted in
fading shades of green to the left of zero. On either side of this
window, the detections fall rapidly. The bars from 2 - 20 steps af-
ter entrance denote the detections occurring while the pedestrian is
crossing the street. While these detections are late for warning the
pedestrian, they are very useful for a pedestrian-2-vehicle commu-
nication scenario, where we need to know when a pedestrian is in
the street to relay that information to an approaching vehicle.

8.1.2  Detection Performance

We next evaluate our system for the Lookup application, which
has the most stringent timing requirement. We classify all event
detections as true positives or false positives. We define a true pos-
itive as a detected event that falls in a window around the actual
entrance. We refer to this window as the ground truth window. It

is evident from Figure 13 that most detections occur in the steps
very close to the entrance, therefore we selected a long ground
truth window. We define the ground truth window as a sequence
of 12 steps around an entrance. Figure 12(a) shows the ground
truth window at an entrance in an urban scenario. Since sidewalk
ramps can be of varying lengths and early detections are helpful
for warning pedestrians, we use 10 steps before an actual entrance
as an appropriate window for in-time warnings. The most worri-
some pedestrian accident scenarios are when the pedestrian enters
the traffic lane in front of standing or stopped traffic at intersec-
tions, and when a vehicle is turning left at an intersection [14, 2].
The first is very common when a pedestrian enters the street from
in between parked cars, and an approaching vehicle has no line of
sight to the person. These accidents occur a few steps away from
the sidewalk bounds. A warning that is triggered up to a couple of
steps into the street would be beneficial, since pedestrians do not
immediately put themselves in the way of a moving vehicle when
they enter the street. Bearing this in mind, we consider 2 steps into
the street still in time to warn a pedestrian.

Figure 12(b) shows our entrance detection performance results
from the Manhattan and Turin testbeds. We use the Receiver Oper-
ating Characteristic (ROC) curve to illustrate our entrance detection
results by varying the slope detection threshold from 0.1 to 15 de-
grees in steps of 0.1. For a large testbed such as New York City,
with one of world’s busiest intersections, our system achieves 90%
detection rate with only 0.7% false positives in midtown Manhat-
tan. With a 1.1% false positive rate we can reach up to 95% of
crossings being detected. Occasionally, the transitions from side-
walk to street are not sharp, and the sidewalk could be at the same
level as the street with no subtle inclination. In such cases our al-
gorithm has difficulty in detecting the transitions from sidewalk to
street. For the Turin testbed, our algorithm provides a true detection
rate of above 90% for less than 1.5% false positives. The proximity
of the two curves in Figure 12(b) demonstrates that our algorithm
performance is not affected by location or by differences in side-
walk designs. Even with several walking paths of varied lengths in
both testbeds, the performance of the entrance detection stays un-
affected, indicating that it is not affected by the length or duration
of the pedestrian’s walking.

Within the ground truth window, it is interesting to study the
cumulative probability of detection as the person approaches the
entrance point. For all true detections, we plot this cumulative de-
tection rate in Figure 12(c). —1 denotes the last step on the side-
walk and O denotes the first step into the street. With each step in
the ground truth window, the y-axis marks the true detections that
occurred until that step. We see that 80% of the times, the entrance
was detected before entering the street, while almost all the times
it was detected right after entering the street.
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Figure 15: Performance at different walking rates for New
Brunswick testbed. Each symbol represents one loop. Each
person is represented by a unique symbol.

To obtain a finer perspective on where exactly these detections
happen, we estimate the location for each step by interpolating lo-
cation coordinates between consecutive crossings. We plot the lo-
cations of the detections from our system on maps for Manhattan
and Turin testbeds as depicted in Figure 14(a) and (b). The yel-
low trace marks the interpolated location coordinates of each step
of the path walked. The color scheme for detections on this map
corresponds to the histogram in Figure 13. Fading shades of green
mark the detections before an entrance, while shades of red mark
detections on the sidewalk. It is evident that most detections occur
close to intersections, indicating the utility for detecting pedestrian
risk. The Turin map also shows few false detections. Some of these
events are detected because of the guard zone being reset when a
pedestrian turns, as they are likely to make another crossing.

8.1.3  Effect of Walking Style

Next we analyze the effect of differences in walking styles on the
crossing detection algorithm. For this analysis, we use our smaller
testbed in New Brunswick and conduct walking trials at different
speeds and with different experimenters carrying the device. Walk-
ing speed and stride length are important metrics that distinguish
walking styles. We use step frequency as a combined metric for
evaluation because it accounts for the changes in speed as well as
stride length. Figure 15 shows the accuracy of the algorithm for
different step frequencies. We measure this accuracy in terms of
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Figure 17: Direction determination and turn detection.

the area under the ROC curve, called AUC, a metric used in ma-
chine learning to describe the performance of a classifier. The av-
erage walking speed varied between 65 and 95 steps per minute.
To obtain a fair comparison in the step frequency calculation, we
discarded the time during which a walker was waiting to cross an
intersection. This value depends on the traffic condition and not on
the walking style. The figure shows the AUC values for different
walkers. Each symbol in the figure represents a loop completed
by a walker. Each color and marker style correspond to a different
walker. All AUC values range between 0.9 and 0.98, indicating that
our system has a high accuracy irrespective of the walking speed.

8.2 Direction Determination and
Turn Detection

Finally, we evaluate the effectiveness of walking direction de-
termination using magnetometer for guard zone filtering. We use
the magnetometer traces collected from the Manhattan testbed and
treat the direction of the walking trajectory obtained from the map
as the ground truth. We divide the whole trace into non-overlapping
observation windows in terms of number of steps. An angle be-
tween each pair of consecutive observation windows is estimated
using our proposed scheme in Section 5.4, based on the magne-
tometer readings within two windows, and then compared with a
threshold to determine whether user’s walking direction has changed.
The accuracy is defined as the percentage of window pairs in which
the determined direction matches the ground truth. Figure 17 (a)
presents the accuracy of direction determination under varying lengths
of observation window. We observe that the accuracy starts from
80% even with one step and exhibits an increasing trend as the
number of steps increases. It is stabilized at about 95% when it
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Figure 16: Sensor accuracy analysis.

reaches 30 walking steps. This is encouraging as it indicates that
our magnetometer-based walking direction determination scheme
is effective.

For the evaluation of the turn detection technique, we collected
a new set of data in our laboratory. Different volunteers completed
about 400 turns of various angles. During these tests, walkers
marked the time instant at which they started turning, which is used
as reference to evaluate the performance of the turn detection tech-
nique. Figure 17 (b) shows the turn detection precision for varying
threshold angles. It is computed as the ratio between the number
of true positives and the sum of true and false positives. We de-
fine a true positive as a detection event that falls within three steps
after the actual turn (marked during data collection). All events de-
tected outside this window are considered as false positives. For a
threshold angle of 40 degrees we can achieve a 99% precision.

8.3 Sensor Position Comparison

One of the first challenges that we had to face was deciding the
sensor mounting position on a shoe. We wanted to ensure that the
performance of the gradient sensing technique is not affected by the
mounting position and remains consistent over independent trials.
Owing to its limited dimension, the sensor was easily mounted in
different sites and setting on the shoe. As shown in Figure 18 (a),
we selected four candidate positions: top, bottom, behind heel and
side. The bottom location required us to dig the sole in order to
avoid a direct contact between the sensor and the ground, which
may damage the device and affect the data from the inertial sensors.
No shoe modifications were needed for the other positions.

We conducted several walking trials in an indoor environment
with a flat ground surface to determine the position that manifests
consistent accuracy over time. At the start of each test, the sensors
were firmly attached to the shoes and removed at the end to charge
the battery. Figure 18(b) shows the cumulative distribution func-
tion of the step-to-step pitch (slope) variation for different sensor
positions. The ground truth values were measured by placing an in-
clinometer on the floor at consecutive step positions. As expected,
all sensor curves show a higher step-to-step variation compared to
the ground curve, due to measurement noise. We remark that the
sensor readings were collected while walking. Instead, the ground
truth was collected by placing an inclinometer on the floor for few
seconds. From Figure 18(b) we can infer that all sensor positions
have similar performance. However the top position was found to
be more consistent over independent mounting and walking trials.

8.4 Ground Slope Accuracy

To understand the accuracy of the underlying ground slope sens-
ing technique and isolate different sources of error, we conducted
the following controlled experiments. These experiments compare
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the sensed slope against ground truth established with a 0.2 degree
accurate inclinometer.

To remove errors from foot movement and walking, we first
placed the unmounted sensor on a tilted plank and measured its
slope. We then repeated this procedure with a shoe-mounted sen-
sor. The process was further repeated for different plank inclina-
tions. Figure 16(c) shows the mean error and standard deviation
for these experiments, marked as fixed on plank and fixed on shoe,
respectively. As can be seen, the errors are below the specified
accuracy of our ground-truth inclinometer. We then continue the
experiment with shoe that is actually worn, first by having an exper-
imenter stand on the larger wooden plank shown in Figure 16(a),
which had roughly the same length and inclination as a sidewalk
ramp. In a second experiment, the experimenter walked over the
plank. The results in the same figure are labeled standing on shoe
and walking indoor. They show that standing results have slightly
larger errors than the unworn shoe, likely due to some involuntary
movements and that walking adds more noticeable but still small
errors of about 0.4 degree. We further compare this with walking
on an actual sidewalk ramp, where we measured the ground truth
inclination at each footstep. The results show a slight increase in
errors, presumably because the ground is not uniform, even within
the area of a footstep. Overall, the errors are far below the expected
slope variations at sidewalk ramps.

9. RELATED WORK

Pedestrian tracking using inertial sensors has been of interest to
the research community for some time. Most inertial sensor- based
applications use some form of dead reckoning for localization [24,
31]. They estimate the distance traveled from a known initial lo-
cation, by using the stride length and implementing step count, as
done by Cho et al. [32].

Robertson et al. [33] explore indoor localization for pedestrians
using foot-mounted inertial sensors. Jimenez et al. [34] use ramp
detection in indoor environments to provide drift correction in in-



door locations. Woodman et al. [35] developed a tracking system
that uses a foot-mounted inertial sensor, a model of a building, and
a particle filter to track a pedestrian in an indoor environment. Skog
et al. [36] developed a Kalman Filter-based zero-velocity detector
for foot-mounted inertial navigation systems and evaluate their al-
gorithm by errors in positioning. Madgwick et al. [37] develop an
algorithm, which is compared to the Kalman Filter, for computing
the orientation of foot mounted inertial sensors. Most of these nav-
igation and orientation computation techniques are tested in con-
trolled indoor environments and do not quite meet the requirements
for any level of outdoor gradient sensing system.

In the pedestrian safety domain, Gandhi et al. [38] provide an
overview of video, radar and laser distance measurement based ap-
proaches for active pedestrian safety. An RFID-based approach is
discussed by Fackelmeier et al. [39]. Another approach that needs
no line of sight and is based on 3G and WLAN is presented by
Sugimoto et al. [40]. David et al. [41, 42, 43] present a radio based
approach that assumes that the GPS location is precise up to 10 to
80 cm. They also add movement recognition to the radio-based so-
lution [44]. Another pedestrian safety app by Wang et al. [11] uses
the smartphone’s camera to detect vehicles approaching the pedes-
trian when she is talking and walking. Camera-based approaches
pose a challenge when it is dark and can easily drain the smart-
phone’s battery. WiFi-honk by Dhondge et al. [13] could be a po-
tential application for our system. They have developed a com-
munication technique to transmit messages from pedestrian to ap-
proaching vehicles based on the pedestrian’s risk level. Since our
system can efficiently identify when pedestrians enter the street,
their presence can be announced to approaching vehicles using this
communication technique.

Pedestrian safety is now a high priority for car manufacturers. In
AKTIV [45], a German road safety project launched in 2006, cam-
eras and radar sensors installed on the vehicle are used to monitor
its surrounding. Many car producers [46, 47, 48] are now integrat-
ing night vision, active breaking and automatic steering solutions
in their new models to reduce pedestrian accidents. Honda is de-
veloping a Vehicle-to-Pedestrian technology that is able to detect a
pedestrian with a DSRC enabled smartphone [10].

10. DISCUSSION

We have presented the design and experimental analysis of a
shoe sensor-based technique, which, unlike previous work, aims at
ground profiling rather than step counting. Our experiments show
that foot mounted inertial sensors can be used to measure the slope
of the ground and generate a corresponding slope profile, to detect
when a pedestrian enters the street.

The approach does, of course, rely on instrumentation and power
in shoes but it could potentially be an additional feature of existing
shoe-mounted exercise tracking devices. It might also be suitable
for special applications for some of the most vulnerable pedestrians
(e.g., children, the elderly, people with disabilities). Furthermore,
we observed that performance can be sensitive to the sensor mount-
ing method and therefore believe that performance could be further
improved with more robust mounting designs.

A convenient shoe sensing solution should also offer long battery
lifetimes. Our current prototype is not optimized in this regard. To
reduce the communication energy overhead, it would be desirable
to move most of the sensor data processing from the smartphone
into dedicated motion processor in the shoe itself. Wake-up mech-
anism should only activate the system when a pedestrian is walking
in an urban area. Shoe sensing systems could also exploit energy
harvested from walking movement. We expect that future careful
circuit design with wake-up when walking and optimized low en-

ergy communications could achieve battery lifetimes of months to
years, depending on the amount of walking activity.

Our current system primarily aims to reduce pedestrian-vehicle
collisions that are due to the pedestrian being distracted by a smart-
phone. This is an increasing concern and we have focused our eval-
uation on a likely scenario: simply walking into the street without
noticing. There are many other scenarios unrelated to smartphone
distractions, such as running across a street, that put a pedestrian
at risk. The shoe sensor approach may also be useful for such tra-
ditional pedestrian safety concerns, although we have not designed
for or evaluated this case yet.

Similarly, we have not evaluated our framework for the elderly
or children. We remark that although our user base was uniform in
terms of age and walking style, our algorithm extracts the stance
phase and compares users’ steps to their past steps. Thus, this ex-
traction can be adapted to various walking speed and style.

The transition detection approach also relies on consistent side-
walk designs. In the United States and the European Union, we
are aware of conscious effort to follow consistent guidelines for
improved accessibility, although regional customization of the al-
gorithms may be necessary. In our experiments, we were able to
detect street entrance events with high accuracy, whenever the side-
walk descends into the street either through a ramp or a curb. We
encountered only one situation in which street entrances were hard
to detect, i.e., the case where the sidewalk and the street are at the
same level. However, the percentage of such crossing conditions
was negligible in our experimental scenarios and is, in general, very
low in urban environments [18, 23].

Besides safety applications such as Virtual Look Up or Driver
Pedestrian Awareness, multiple applications could benefit from our
approach. As an example, we have run some preliminary exper-
iments which show that slope profiles can be matched to specific
sidewalk locations, if a map of such profiles is available. While
perhaps not yet robust enough on its own, the information could be
combined with other positioning information to achieve more pre-
cise urban localization. Additionally, our approach could be used
to create sidewalk profiles to monitor the status of the sidewalk sur-
face and their accessibility.

11. CONCLUSION

Motivated by pedestrian safety applications, we explored how
effectively shoe-mounted inertial sensors can profile ground gra-
dients and step patterns to detect sidewalk-street transitions. We
developed a sensing system to address this multifaceted problem
ranging from sensory data acquisition on shoes to the development
of a LookUp application. What also sets our approach apart is that
we carried out walking trials in-the-wild and collected miles of data
in complex metropolitan environments. Our results show a lot of
promise achieving detection rates higher than 90% at 0.7% false
positives, even in the intricate midtown Manhattan pedestrian envi-
ronment. Not only did our approach work in the United States, we
obtained similar performance from the Italian city of Turin. Over-
all, we hope that this work demonstrates the broader applicability
of shoe-based sensing and inspires developments that go far beyond
current exercise tracking applications.
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