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We identify a natural way to embed CP symmetry and its violation in string theory. The CP
symmetry of the low energy effective theory is broken by the presence of heavy string modes. CP
violation is the result of an interplay of CP and flavor symmetry. CP violating decays of the heavy
modes could originate a cosmological matter-antimatter asymmetry.

I. INTRODUCTION

Aspects of CP symmetry and its violation play
a crucial role in several physics phenomena. This
includes the question of CP symmetry in strong
interactions (the so-called strong CP problem),
the violation of CP in the Yukawa sector of the
standard model (SM) (with at least 3 families of
quarks and leptons) and the desire for a source of
CP violation (CPV) in the process of a dynami-
cal creation of the cosmological matter-antimatter
asymmetry. We are thus confronted with the fol-
lowing questions: What is the origin of CP sym-
metry and its violation? Is there a relation to the
flavor symmetries in the SM of particle physics?
Is there a “theory of CP” in the ultraviolet com-
pletion of the SM that explains both the origin of
CP symmetry and its breakdown?

In the present letter we try to address these
questions about CP and flavor symmetries in the
framework of string theory. Our approach to a
“theory of CP” is based on orbifold compactifi-
cations of heterotic string theory (the so-called
MiniLandscape [1-4]) but should be valid qual-
itatively for a wide range of string theory con-
structions. From our exploration of these models
the following general picture emerges:

e we find CP candidates strongly connected
to flavor symmetries, specifically CP as an
outer automorphism of the flavor group;

e the light (“massless”) string spectrum re-
sults in a low-energy effective field the-
ory with a well-defined CP transformation,
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which can be conserved only in the absence
of couplings to the heavy modes;

o the presence of heavy modes (here the wind-
ing modes of string theory) initiates a break-
down of CP (similar to the picture of “ex-
plicit geometrical CP violation”);

e CP violating decays of the heavy (wind-
ing) modes could induce the cosmological
matter-antimatter asymmetry. Other pos-
sible CPV effects can be induced through
couplings of light fields to the heavy modes.

This provides us with a picture where the source
of CP breakdown is already included within the
construction of the symmetry itself. It also shows
that the breakdown of CP requires a certain
amount of complexity of the theory (reminiscent
of the need of three families in the CKM case).

The origin of CP violation in the context of
string theory and extra dimensions has been dis-
cussed in many regards, see [5] for a review and
references therein. Our approach is new in the fol-
lowing sense: While it has been known that extra
dimensions provide an origin of discrete (flavor)
symmetries [6-8], a more recent insight, based on
the original idea of “explicit geometrical CP vio-
lation” [9], is that a large class of discrete groups
is generally incompatible with CP [10]. This
comes about because these groups do not allow for
complex conjugation outer automorphisms which,
however, correspond to physical CP transforma-
tions in the most general sense [11, 12]. In these
cases, CP is explicitly violated by phases which
are discrete and calculable because they originate
from the complex Clebsch-Gordan coefficients of
the respective flavor group. The main progress in
this letter is to demonstrate that such a situation
arises naturally in string theory.

As a specific example we consider a Zs orbifold
with flavor group A(54) that appears naturally
in the MiniLandscape constructions [6]. In this
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case, CP should be a subgroup of Sy, the group of
outer automorphisms of A(54); thus flavor group
and CP are intimately related. The irreducible re-
presentations of A(54) include singlets, doublets,
triplets and anti-triplets. The massless spectrum
of the theory, however, contains only singlets and
triplets (as well as anti-triplets) of A(54). This al-
lows for a CP symmetric low-energy effective field
theory of the massless states. The presence of the
heavy winding modes that transform as doublets
of A(54) leads to an obstruction for the defini-
tion of CP symmetry thereby realizing the mech-
anism of “explicit geometrical CP violation”. All
CP violating effects originate through couplings of
the light states to at least three non-trivial dou-
blets. CP violating decays of the heavy doublets
are a generic property of the scheme. Combined
with baryon- and/or lepton-number violation this
could lead to a cosmological baryon- and/or lep-
ton asymmetry.

II. A(54) FLAVOR SYMMETRY FROM
STRING THEORY AND THE LIGHT
SPECTRUM

In order to understand the origin of A(54) from
strings it is sufficient to concentrate on the com-
pactification of two extra dimensions on a T?/Zs3
orbifold. For a full string model this T2/Zs can
easily be extended to a six-dimensional orbifold,
e.g. Tﬁ/ZzJ, X Zg.

Geometrically, a T? /Zs3 orbifold can be defined
in two steps: (i) one defines a torus T? by specify-
ing a lattice A = {nje; + nqes |n; € Z}, spanned
by the vectors e; and e;. We choose |e1| = |es]
and the angle between e; and es is set to 120°. (ii)
one identifies points on T? that differ by a 120°
rotation generated by 6. The resulting orbifold
has the shape of a triangular pillow, see FIG. 1
and 2.

Closed strings on the T?/Z3 orbifold come in
three classes: (i) trivially closed strings, which are
closed even in uncompactified space, (ii) winding
strings with winding numbers n; and nsy in the
torus directions e; and eg, respectively, and (iii)
twisted strings, which are closed only up to a @*
rotation for £ = 1,2. For k =1 or k = 2 they be-
long to the so-called first or second twisted sector,
respectively. On the other hand, trivially closed
strings and winding strings belong to the so-called
untwisted sector and live in the bulk of the orbi-
fold. In contrast, twisted strings are localized at
the three corners (fixed points) of the T?/Z3 or-
bifold. For k = 1,2, they are created by twisted
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FIG. 1: T?/Zs orbifold with fixed points X, Y, Z.
The fundamental domain is shaded in dark gray.

vertex operators which we label as

X o x
XB~ (Y], and @)~ (V] (1)

A Z
respectlvely (compared to Ref. [13] we set X =
of, Y =0f,Z =05 and X =0;,Y = o7,

Z =0y).

Interactions of strings on orbifolds are restricted
by selection rules. In the case of T?/Zs the point
group (PG) and space group (SG) selection rules
result in a ZES x Z§C symmetry [14]. Massless un-
twisted strings transform trivially, while twisted
strings transform as

ZPG

POLCED R R diag(w,w,w) x (31) (2a)
y B3V nﬁ diag(1,w,w?) x3) (2b)
1/)(51) ﬂ diag(w?, w? w )7/)(31 , (20)
w(:—"l) ﬂ diag(1,w?,w) ¢(§1)a (2d)

where w := e>™/3, In the absence of non-trivial
backgrounds on T?/Zj3 there is in addition an S3
symmetry corresponding to all permutations of
the three twisted strings. Combining this symme-
try with the PG and SG symmetries, one obtains
a A(54) flavor symmetry, see Appendix A. Mass-
less untwisted strings transform as trivial singlets
1y, while the twisted strings () and (31) trans-
form as 3; and 3; of A(54), respectively [6, 8].

IITI. A(54) AND EXPLICIT
GEOMETRICAL CP VIOLATION

Let us discuss some details of A(54) and how
this group can lead to the phenomenon of explicit



geometrical CP violation. The non-trivial irreps
of A(54) are the real 1y, a quadruplet of real
doublets 2,1 23,4 as well as the faithful complex
triplets 31, 32 and their respective complex con-
jugates 3; and 35. Tensor products relevant to
this work are

31'@31‘:10@21@22@23@247 (33“)
2,2, =100 11 D2 . (3b)

The outer automorphism group (Out) of A(54) is

Out [A(54)] = S, (4)

the permutation group of four elements. On the
four doublets, S; acts as all possible permuta-
tions. On the triplets, odd permutations in Sy
act as complex conjugation, while even permuta-
tions in S4 map the triplets to themselves [12]. In
addition, all these transformations are typically
endowed with matrices that act on the represen-
tations internally.

A physical CP transformation maps all fields of
a theory in some irreps r to their respective com-
plex conjugate fields, which transform in 7* [12].
Therefore, a physical CP transformation should
be an outer automorphism of A(54) which maps
all occurring irreps to their respective complex
conjugates [10, 11]. However, depending on the
specific group, such outer automorphisms do not
need to exist, and groups which do not have them
are called “type I” [10].

It turns out that A(54) is a group of type I. This
becomes manifest by the fact that in the presence
of triplets it is only possible to find a physical
CP transformation as subset of Out [A(54)], if a
given theory contains fields in no more than two
distinct doublet representations. By contrast, if
a given theory with triplets contains more than
two doublets, physical CP is violated by complex
Clebsch-Gordan coefficients of A(54) and this is
called explicit geometrical CP violation.

Coming back to our model, we recall that the
light (from a string perspective massless) spec-
trum consists only of A(54) triplets and singlets.
Consequently, there exist outer automorphisms of
A(54) which correspond to physical CP transfor-
mations for the light spectrum. One may thus be
led to the conclusion that CP can be conserved in
this model even though A(54) is a group of type L.
However, this conclusion is premature because it
disregards heavy string modes. We will take them
into account in the next section.

IV. A(54) DOUBLETS FROM HEAVY
WINDING STATES

An untwisted string on T?/Zs is generally
massless only if it does not wind around the torus
T2 and does not carry Kaluza-Klein (KK) mo-
mentum. For this reason, winding strings often
have been ignored in the literature. In this re-
spect, one of our main results is that general un-
twisted strings on T?/Z3 can transform as dou-
blets of A(54), as we show in the following.

A general untwisted string with vertex opera-
tor VP is characterized by its winding on the
lattice, w € A, and momentum on the dual lat-
tice, p € A*. It can be constructed by joining two
strings: one string from the first twisted sector X,
Y, Z combines with another string from the sec-
ond twisted sector X, Y, Z. Such processes are
described by the correspondmg operator product
expansions (OPEs), which are given explicitly for
T?/Zs in Ref. [13]. Solving these OPEs for the
untwisted strings we get

1 _ _ _
1o: =3 (XX+YY+22), (5a)
5. VO 1/(YZ+ZX+XY (5b)
v V<01> 3\ZY +XZ+YX

9. VOO 1/XX 4w YY +w?ZZ (50)
2 \yey) ) T3\ XX 4+w?YY 4w ZZ )’

o (VIN_1(YZ+w ZX +w?XY (5d)
3 V(21> 3\ZY +w?XZ+w YX

o, VO 1/ZV 4w XZ+w?YX (5¢)
P \ve ) T3\ YZ+w?ZX +w XY

Here we have introduced classes of untwisted
strings
VN = N0, VP for M,N =0,1,2, (6)

PEA}
wEAN

where Ay is a sublattice of A with winding num-
ber N := n; + ny mod 3 and A}, the sublattice
of A* with KK number M := —mj + mo mod 3
(Note the difference to [13] due to a basis change
of the torus lattice A). Furthermore, the coeffi-
cients C),,, are defined in Ref. [13] and they tend
to zero, Cp . — 0, for several limits: for higher
windings |w| — oo, for higher momenta |p| — oo
or, keeping p and w fixed, for larger torus radii
ler] = |ea| = oc.

Comparing Egs. (5) to the A(54) tensor prod-
uct 3; ® 31, we identify the multiplets of winding
strings as 1g, 21, 292, 23 and 24, respectively, see
Eq. (3a) and Eq. (A3). The A(54) doublets 2, of



FIG. 2: Tllustration of the geometrical winding strings. For example, (a), (b), and (c) depict the winding modes
from XY, YZ, and ZX which all have winding number N = 2.

winding strings are generally massive (where the
mass terms are A(54) invariant, see Eq. (3b)) and
their masses are in general different.

There is a simple geometric intuition for these
findings, revealing a remarkable difference be-
tween the winding modes in irreps 21 3 4, as com-
pared to the modes in 25 and 1. The classes
of untwisted strings VMN) form A(54) covari-
ant combinations of certain “geometric” winding
modes, e.g. XY. For 2; 3 4 these modes wind once
around one fixed point and in a different orienta-
tion around another, see FIG. 2a-2c. The two
different components of the doublets wind in op-
posing directions. By contrast, the doublet 25 is
formed by a geometrical winding mode that has
net zero winding number around all fixed points,
see FIG. 2d.

V. CP VIOLATION FROM HEAVY
WINDING MODES

The effective operators in the holomorphic su-
perpotential are given by A(54) invariants. For
example, the simplest direct couplings between
representations 3, and 3, from the first and sec-
ond twisted sector, respectively, to heavy winding
modes in representations 2 are given by contrac-
tions of the form

WY ()" RN (1)
k

Here we have introduced exemplary fields d2r) =
o, X3, and 3V in the according representat-
ions. The sum over the internal A(54) doublet
and triplet components, denoted by a,b = 1,2,3
and m = 1,2, is implicit. The coupling tensors to
different winding modes (c)™* (k = 1,2, 3,4) are
fixed by the requirement of A(54) invariance up to
a global normalization |cg|, corresponding to the

overall coupling strength which is determined by
the T modulus (e.g. by the size of the T?/Zs orbi-
fold). The explicit form of the coupling tensors ¢y
is obtained from the Clebsch-Gordan coeflicients
(cf. Eq. (A3) in Appendix A) in a straightforward
way. The presence of these couplings, i.e. ¢ # 0
Vk, is inconsistent with any physical C'P transfor-
mation

k= Updy, . x — U™, and ¢ — Uydp™, (8)

where we have allowed for the most general form
of this transformation with arbitrary unitary ma-
trices Uy .y While we have suppressed the trans-
formation of the space-time argument. Therefore,
CP is explicitly violated by the couplings Eq. (7).

As argued in Section III, this can readily be
understood directly from group theory. One may
also check here that there is no basis in which all
coupling tensors cx—1,2 3,4 are simultaneously real
(which, however, is not sufficient to claim CPV,
as complex couplings can co-exist with CP con-
servation if there are conserved higher order CP
transformations [10][27]).

Finally, it is always possible to state physical
CP violation in a basis independent way. CP-
odd basis invariants can readily be constructed by
contracting coupling tensors in such a way that
(unitary) basis transformations cancel amongst
the various index contractions. To produce a
complex-valued (thus, CP-odd) basis invariant it
follows from our previous discussion that at least
three different types of doublets (e.g. take 21 3 4)
must be involved in such a contraction. This is
confirmed by a scan over all possible basis invari-
ant contractions of coupling tensors. The low-
est order CP-odd invariants arise at the four-loop
level, with an example being displayed in FIG. 3.
Explicitly, this basis invariant is given by



FIG. 3: The lowest-order complex (CP-odd) basis in-
variant that can be formed out of the A(54) invari-
ant coupling tensors cx—1,34 of Eq. (7). Dashed lines
correspond to A(54) doublets ¢, thin solid lines cor-
respond to the A(54) triplets x and thick solid lines
correspond to the A(54) anti-triplets 1. Arrows here
denote the A(54) charge flow. The dotted gray line
denotes a cut that gives rise to the diagrams in FIG. 4.

Ty = (e1)™ ()" (e3) ()™ (ea)™ (e3P

1 4+ 3edi/3
e el e ©)

Here the summation over repeated indices is un-
derstood and we have used |cx|? to denote the
moduli of the coupling tensors. The fixed com-
plex phase of the invariant is a group theoret-
ically predicted parameter-independent CP vio-
lating (weak) phase. Another CP-odd invari-
ant of the same order can be obtained from Z;
by hermitean conjugation [or changing the order
of indices of the coupling tensors according to
(143) — (134)]. Analogous invariants exist for
all other sets of three distinct doublets. Further
CP-odd invariants exist for couplings of the type
2, ®3®3®3, where again, at least three different
doublets have to be involved in a given invariant
in order to generate CP-odd contributions.

Diagrams corresponding to CP violating phys-
ical processes such as oscillations and/or decays
can be obtained from invariants such as the one
in FIG. 3 by cutting edges appropriately. For ex-
ample, the cut indicated by the dotted gray line in
FIG. 3 gives rise to the pair of diagrams in FIG. 4
whose interference generates a CP asymmetry in
a decay 21 — 313124 [28].

The discussion becomes exceedingly model de-
pendent at this point. For example, the ques-
tions of whether a given decay is (kinematically)
allowed, whether or not significant CP asymme-
try is generated (individual amplitudes can van-

31

,,*,,,,¢(24)

(b)

FIG. 4: Example tree-level and one-loop diagrams
whose interference can give rise to CP violation in
a decay 21 — 313124.

ish or cancel against one another), or whether or
not other quantum numbers such as lepton and /or
baryon number are violated can only be answered
in a concrete model. In existing, semi-realistic
string theory models with A(54) flavor symmetry,
SM quarks and leptons as well as flavons trans-
form as A(54) triplets and anti-triplets [15, 16].
For instance, inspecting Tab. 1 of [15] one finds
right-handed neutrinos in 3, as well as SM neutral
flavons in 31. The CP and lepton number violat-
ing decay of a heavy doublet to final states which
include these modes, hence, could generate a lep-
ton asymmetry [29]. This illustrates how baryon
and/or lepton number asymmetries can be gener-
ated by our mechanism. We do not further detail
this discussion for the scope of the present letter
since we have achieved to establish our main point
which is the general existence of group theoretical
CP violation in string theory.

VI. DISCUSSION

We have seen that the mechanism of explicit ge-
ometrical CP violation has a natural embedding
in string theory. CP violation here is for a symme-
try reason, enforced by a discrete (flavor) symme-
try of “type I” which prohibits any physical CP



transformation and dictates discrete CP violating
phases.

In our example, the low-energy effective theory
allows for a CP transformation, but CP is bro-
ken in the presence of heavy string modes. A
generic property of this scheme is the CP violat-
ing decay of heavy modes that could originate a
cosmological baryon/lepton asymmetry. The dis-
cussion of other CP violating effects such as 8qcp
and the CKM phases is strongly model depen-
dent. As explicit model building is very compli-
cated in string theory, one would be encouraged
to tackle these more refined questions in bottom-
up constructions of the scheme in detail. This
could then help to identify those models that are
of phenomenological interest, small 8qcp and re-
alistic CKM phases. One would hope to repro-
duce these models in a top-down construction and
understand these specific properties from the ge-
ometry of extra dimensions and the geographi-
cal location of strings in compactified space. The
complexity of CP violation in the standard model
(with 3 families of quarks and leptons) could then
be related to the complexity to the spectrum and
couplings of heavy string states (here at least 3
doublets of string winding modes).

From the more theoretical (top-down) point of
view there remain a few question that have to be
analyzed in detail. The work of Ref. [13, 17] [that
lead to the selection rules in Eq. (5)] studied the
role of T-duality in the framework of compacti-
fied string theory. In a UV-complete picture one
now would have to understand the connection be-
tween the flavor group [A(54) in our example] and
T-duality. Especially, whether this does lead to a
symmetry enhancement of the flavor group and
how T-duality correlates with the outer automor-
phisms of A(54) (and thus CP).

Among other things this would then allow us to
decide whether CP violation in the UV-complete
theory is explicit or spontaneous, and whether CP
should be interpreted as a discrete gauge symme-
try [18, 19]. Our discussion up to now did not ad-
dress this question as we have only considered the
low-energy effective theory where the appearing
flavor symmetry is incompatible with CP, which
hence appears to be violated explicitly. Neverthe-
less, the fact that CP violation of this type can
originate spontaneously, even though in a subtle
manner, has been previously demonstrated [20].
We would have to consider a UV-complete theory
with additional symmetries (like T-duality) be-
fore we could hope for a definite answer here. A
UV-complete theory might as well give further in-
sight into the phenomenological properties of the
scheme, as e.g. the suppression of 0qgcp or how

the remaining flavor symmetry is ultimately bro-
ken to a realistic pattern. We hope to report on
progress towards the UV-complete picture in the
near future.

As a final remark, we stress that many phe-
nomenologically viable string compactifications
feature discrete groups of type I, see e.g. [16, 21].
If all possible irreducible representations of these
symmetry groups actually appear in the spec-
trum (fulfilling some kind of stringy “complete-
ness conjecture”) all these models have the pre-
sented mechanism of CP violation built in.
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Appendix A: Conventions for A(54)

We follow the conventions of Ref. [12] where
more details about A(54) can be found (cf. also
[22, 23] but mind the different notational conven-
tions). A minimal generating set of matrices for
the three-dimensional representation 3; of A(54)
is

010 100 100
A={001],B=[0w 0 |,c=[00 1
100 00 w? 010
(A1)

The Z3 PG and SG symmetries acting in Eq. (2)
are the subgroups generated by A?B?AB and B,
respectively. The two-dimensional representat-
ions 21, 25, 23 and 24 are generated by the ma-
trices

e (5 ) (00). o

according to the assignments in Table I. In this
basis the Clebsch-Gordan coefficients relevant to



TABLE I: Explicit matrices for the doublet repre-
sentations of A(54), see (A2) for a definition of the
matrices 22 and Sa.

21 29 23 24
Aa, 1o Qo Qq Q2
Ba, s 1o Qs 03
Czi Sa Sa Sa Sa

this work are given by

1
(2172,1®y27;)10:ﬁ (T1y2+2201), (A3a)
1
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