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The association of broken symmetries with phase transitions is ubiquitous in condensed matter

physics: crystals break translational symmetry, magnets break rotational symmetry, and

superconductors break gauge symmetry. However, despite the frequency with which it is made,

this last statement is a paradox. A gauge symmetry, in this case the U(1) gauge symmetry of

electromagnetism, is a redundancy in our description of nature, so the notion of breaking such a

“symmetry” is unphysical. Here, we will discuss how gauge symmetry breaks, and doesn’t, inside a

superconductor, and explore the fundamental relationship between gauge invariance and the

striking phenomena observed in superconductors. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5093291

I. INTRODUCTION

If one spends enough time running in condensed matter
circles, one will surely hear the off-handed remark that super-
conductors break gauge symmetry. On the other hand, our
undergraduate electromagnetism class taught us that a gauge
symmetry is a mere redundancy, not a physical symmetry that
can reasonably be “broken” in a consistent theory. So, what
does it actually mean for a gauge symmetry to “break,” and
why is this tied to superconductivity? In this article, we will
address these questions, paying special attention to the role
the mean field approximation plays in the study of supercon-
ductivity, and demonstrate how a classical field theory with
spontaneously broken gauge symmetry can account for many
of the spectacular properties of superconductors.

The first four sections include preliminary information,
enabling a reader with only a basic familiarity with quantum
mechanics to follow the remainder of the discussion. We
review what precisely electromagnetic gauge symmetry is in
Sec. II, the notion of spontaneously broken symmetries in
Sec. III, and introduce second quantization and elements of
quantum field theory in the context of superconductivity in
Sec. IV. The reader familiar with this material is encouraged
to skip ahead to the main discussion of spontaneous gauge
symmetry breaking inside superconductors which comprises
the remainder of the article. Specifically, we will discuss the
constraints gauge invariance imposes on any effective
description of the superconducting state following Refs. 1
and 2, and finally carefully consider the Anderson-Higgs
mechanism which is the crux of the gauge-symmetry-breaking
story.

II. ELECTROMAGNETIC GAUGE SYMMETRY

Let us review how gauge symmetry arises in classical
electromagnetism,3 starting with the Maxwell equations

r � E ¼ q; (1)

r � B ¼ 0; (2)

r� Eþ @B

@t
¼ 0; (3)

r� B ¼ jþ @E

@t
: (4)

Here and throughout the remainder of the paper, we will use
natural units where �h ¼ c ¼ 1, and further choose
e0¼l0¼ 1. The second and third equations may be satisfied
by writing the physical E and B fields in terms of the electro-
magnetic potentials

E ¼ �ru� @A

@t
; (5)

B ¼ r� A: (6)

However, the choice of u and A is not unique for a given
configuration of E and B. Since r � (ra) ¼ 0 for any scalar
field a(x, t), the transformation A 7!Aþra leaves the mag-
netic field B ¼ r � A unchanged. To ensure the electric
field is also invariant, we must simultaneously transform the
scalar potential as u 7!u� @ta. This intrinsic ambiguity in
the electromagnetic potentials is called gauge symmetry, and
the transformation

A 7!Aþra;

u 7!u� @a
@t

;
(7)

under which the electromagnetic field is invariant is called a
gauge transformation. Since our choice of the gauge parame-
ter a is arbitrary, all physical observables must be indepen-
dent of a, that is, gauge invariant.

To incorporate quantum mechanics, recall that in the pres-
ence of an electromagnetic field the momentum of a particle
with charge q must be shifted4 p 7! p� qA which corre-
sponds to the replacing the operator �i�hr 7! � i�hr� qA in
quantum mechanics. The Schr€odinger equation for such a
charged particle in a potential V(x) in the presence of an elec-
tromagnetic field is5

i
@w
@t

¼ � 1

2m
r� iqAð Þ2wþ V þ quð Þw: (8)

If we gauge transform the fields while locally rotating the
phase of the wave function by the gauge parameter evaluated
at each point in space and time

wðx; tÞ 7! eiqaðx;tÞwðx; tÞ; (9)
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the Schr€odinger equation becomes6

i
@

@t
þ iq

@a
@t

� �
w ¼ � 1

2m
rþ iqra� iqA� iqrað Þ2w

þ V þ qu� q
@a
@t

� �
w:

(10)

The a dependent terms drop out, and we recover the same
Schr€odinger equation we started with. Thus, the Schr€odinger
the Schr€odinger equation is gauge invariant under the
quantum gauge transformation

w x; tð Þ 7! eiqa x;tð Þw x; tð Þ; A 7!Aþra; u 7!u� @a
@t

:

(11)

Due to the phase rotation, this gauge symmetry is also said
to be a local U(1) symmetry. It is local because we may
rotate the phase of the wave-function by a different amount
at every point in space, in contrast to the weaker global sym-
metry where we may only rotate the phase of the wave-
function by the same fixed amount at every point. Further,
U(1) is the group of one-dimensional unitary matrices, which
is equivalent to the set of all phases {eih} by which we may
multiply the wave function. As in the classical case, all phys-
ically meaningful, observable quantities must be gauge
invariant under the transformation in Eq. (11) due to the arbi-
trariness of the gauge parameter.

III. SPONTANEOUS SYMMETRY BREAKING

Roughly speaking, a symmetry of a particular theory is a
transformation which leaves the physics unchanged. More pre-
cisely, it is a transformation under which the Hamiltonian or
Lagrangian defining the theory is invariant. We can explicitly
break this symmetry by adding terms to the Hamiltonian or
Lagrangian which do not respect the symmetry, corresponding
to an external perturbation of the system. More interesting is
the case of spontaneous symmetry breaking, in which the sys-
tem finds itself in a state that does not respect the symmetry of
the underlying Hamiltonian or Lagrangian.7 For the purposes
of this paper, we will say a symmetry is spontaneously broken
when the ground state of a system is not invariant under a sym-
metry of the Hamiltonian or Lagrangian.

This notion of symmetry breaking is central to the para-
digmatic Landau theory of phase transitions. Since con-
densed matter systems are extraordinarily complex,
diagonalizing the microscopic Hamiltonian for any interact-
ing system is typically a hopeless endeavor. Instead, the
Landau picture involves using the symmetries of the system
to deduce its long distance behavior near a phase transition.
In particular, we identify a symmetry respected by the phase
on one side of the transition, and broken by the other (invari-
ably, the ordered phase is less symmetric). Here, the symme-
try we speak of is meant in the coarsest sense, since we have
not introduced any Hamiltonian to appeal to. Instead, we
quantify the symmetry by identifying an order parameter: an
observable whose expectation value vanishes in the symmet-
ric phase and is nonzero in the symmetry breaking phase.

To be concrete, consider a ferromagnet which, below the
system’s Curie temperature Tc, spontaneously magnetizes.
Above Tc, the system is a paramagnet, with no net

magnetization over any mesoscopic distance. In contrast, the
ferromagnetic phase has a finite magnetization. Thus, the
magnetization per unit volume m(x) may serve as an order
parameter. To identify the symmetry broken at the transition,
we note the system is isotropic in the paramagnetic phase,
but the ferromagnet is magnetized along a particular direc-
tion in space. Thus, the ferromagnet spontaneously breaks
rotational symmetry by “choosing” a magnetization axis.8

Note however, that the magnetization axis is arbitrary.
Thus, there is in fact a continuum of degenerate ground
states: one corresponding to each possible magnetization
direction. Furthermore, it costs no energy to uniformly
rotate the system from one degenerate ground state into
another. Then, by continuity, we expect that arbitrarily long
wavelength variations in the magnetization direction will
have an arbitrarily small energy cost. In the ferromagnet,
these variations, called spin waves, dominate the low
energy excitations of the system since they are gapless
(their energy can be made vanishingly small). In fact, a
general consequence of spontaneously broken continuous
symmetries is the emergence of gapless excitations around
the ground state called Goldstone modes,7 of which the spin
wave is an example.

IV. SUPERCONDUCTIVITY

A superconductor, as the reader is likely aware, is a phase
of matter exhibiting a number of extreme phenomena,
including the eponymous perfect conductivity and the expul-
sion of magnetic fields, or Meissner Effect. Microscopically,
electrons are bound via an attractive interaction into Cooper
pairs, which condense into a common macroscopic quantum
state.

Since superconductivity is an inherently quantum phe-
nomenon as well as a many-body effect, it is most naturally
described in the language of second quantization. We very
briefly review this formalism in Sec. IV A, but the familiar
reader is encouraged to skip this cursory treatment.

A. Second quantization

Recall the harmonic oscillator from elementary quantum
mechanics, the Hamiltonian of which may be “factored” by
introducing the operators

a ¼ 1ffiffiffiffiffiffiffiffiffiffi
2mx

p mxxþ ipð Þ; a† ¼ h:c:; (12)

which are interpreted as raising and lowering the system
between energy eigenstates jni, such that (neglecting nor-
malizations), a†jni � jnþ 1i and ajni � jn� 1i. Further,
these eigenstates are orthonormal

hnjmi ¼ dnm: (13)

Now, suppose we wish to consider a system that does not
conserve particle number, i.e., one in which particles may be
created or destroyed. We can introduce analogous creation
and annihilation operators

W†ðxÞ creates particle at point x; (14)

WðxÞ annihilates particle at point x: (15)
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In allowing for the particle number of our system to change,
our space of possible states has expanded from a Hilbert
space to a Fock space, which can be thought of as collection
of “sectors” corresponding to a particular particle number,
each of which is itself a Hilbert space.9 Denoting an N-particle
state as ja;Ni where the index a represents all other quantum
numbers, we may write

W†ja;Ni ¼ jb;N þ 1i; (16)

Wja;Ni ¼ jb;N � 1i; (17)

ha;Njb;Mi ¼ hajbi dNM: (18)

So we see the creation and annihilation operators take a state
from one sector of the Fock space into another, and that
states in different sectors of Fock space are orthogonal,10

which is fairly intuitive since the particle number can only
be changed by acting with the creation and annihilation
operators.

B. Metals vs. superconductors

A metal, like most systems, has a definite particle number,
so the expectation value of any operator which does not map
a sector of the Fock space back onto itself will vanish. For
example, choosing W†

r and Wr to create and annihilate elec-
trons of spin r, consider

hXNjW#W"jXNi ¼ hXNjXN � 2e�i ¼ 0; (19)

where jXNi is the ground state of the metal: perhaps a filled
Fermi sea. Expectation values such as Eq. (19) are called
ground state expectation values, correlation functions, or, in
particle physics, vacuum expectation values (VEV’s) and are
of central importance in field theories, as suggested by their
many names (which we will use interchangeably). A com-
mon shorthand is to abbreviate these correlation functions as
hW#W"i with the ground states implicit. Additionally, corre-
lation functions such as hW#W"i in Eq. (19) which map a
state to a different sector of Fock space are often called off-
diagonal, and as we saw vanish for any state of definite parti-
cle number.11

Now, let us consider a superconductor, where a new
ground state jXSi has developed. The pair condensate can be
thought of as the superconducting vacuum (since paired elec-
trons have minimal energy), which we denote as the field
D(x). The electrons in the superconductor may interact pair-
wise with the vacuum, either vanishing and creating a pair or
appearing and breaking a pair, and as a result electron num-
ber is no longer conserved12 and states of different electron
numbers may now have a nonzero overlap.

In particular,

hXSjW#W"jXSi ¼ hXSjXS � 2e� þ pairi 6¼ 0: (20)

The ground state may now begin with N electrons, interact
with the condensate and exchange any number of pairs and
electrons, and then be found in a state with M electrons.
Now, off-diagonal correlation functions such as Eq. (20) no
longer vanish and superconductors are said to possess off-
diagonal long range order (ODLRO). This electron number
non-conservation is nowhere better illustrated than in the cel-
ebrated BCS wave function for the ground state of a
superconductor13

jXBCSi ¼
Y
k

ðvk þ ukc
†
k"c

†
�k#Þj0i; (21)

where c†
kr is the momentum space electron creation operator.

Given the second term, we evidently have a state of indefi-
nite particle number.

Having seen the correlation function hW#W"i is zero in the
normal phase and nonzero in the superconducting phase, it
may serve as an order parameter for the superconducting
state.14 Following BCS, we define the superconducting order
parameter

D / hW#W"i; (22)

which we will later see coincides with the previously defined
condensate field also labeled D.

Under a gauge transformation, creation and annihilation
operators for charged particles must transform like the wave
functions of charged particles in ordinary quantum mechan-
ics.15 For electron creation and annihilation operators (taking
the charge of the electron to be e ¼ �jej), this means

Wr 7! eiea Wr; (23)

W†
r 7! e�iea W†

r: (24)

Consequently, operators which conserve electron number,
such as the number operator W†

rWr, are gauge invariant.
Conversely, operators such as W#W" which do not conserve
electron number are not gauge invariant, and transform as

W#W" 7! e2iea W#W": (25)

The expectation value, typically a real quantity, must then
also transform as

hW#W"i 7! he2iea W#W"i ¼ e2ieahW#W"i: (26)

So, for our definition of the order parameter in Eq. (22) to
make sense, the order parameter itself must also transform as

D 7! e2iea D: (27)

Thus, the order parameter is complex, and, more impor-
tantly, non-gauge invariant. Since all observable quantities
must be gauge invariant, this implies the order parameter is
not observable. (The magnitude of the order parameter jDj,
the energy gap in the superconductor’s spectrum, is observ-
able; however its phase is not).

Note that the expectation value hWWi is non-gauge invari-
ant in any system, not just a superconductor. However, such
an expectation value is identically zero in an ordinary sys-
tem, and zero transforms trivially under a gauge transforma-
tion. What makes a superconductor special is that this
expectation value is nonzero, allowing its transformation
properties to be physically relevant.

V. THE ROLE OF MEAN FIELD THEORY

In Sec. IV, we have seen that the superconducting order
parameter is a gauge covariant quantity, which is to say that
it transforms in a simple—but nontrivial—manner. In Secs.
VI–VIII, we will consider descriptions of superconductors
which take D as the primary dynamical quantity, and its
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gauge covariance will be of central importance. As such, it is
worth briefly discussing how it is possible for D to attain a
nonzero expectation value, which is the origin all of the
physics to follow.

The microscopic theory of superconductivity is written in
the language of quantum field theory, and the methods nec-
essary for a quantitative treatment of this issue lie well out-
side the scope of this article. Here, we will sketch how such
an analysis proceeds, and refer the reader seeking further
detail to the literature.15,21

A quantum field theory can be constructed from a quan-
tum action, which (roughly speaking) specifies the energy
associated with each allowed microscopic process.22 In a
superconductor, one such process is the pairing interaction,
which contributes a term

Spair ¼ gW†
"W

†
#W#W"; (28)

where W†
r and Wr are the electron creation and annihilation

operators introduced in Sec. IV and g is the electron-phonon
coupling constant.21 Unfortunately, such a quartic term in
the action typically makes the quantum theory not analyti-
cally solvable. So, to progress we must approximate. In par-
ticular, we will make a mean field approximation, which
capitalizes on the macroscopic, semi-classical nature of a
superconductor.23

To begin, we write a pair of electron annihilation opera-
tors as (in what follows we will omit spin indices for
brevity)

WW ¼ hWWi þWW� hWWi � hWWi þ g: (29)

In the second equality, we interpret the operator WW as
being the expectation value hWWi plus quantum fluctuations,
g � WW� hWWi around it. Note, crucially, that WW is an
operator which annihilates two electrons, whereas its expec-
tation value is simply a number.

Substituting Eq. (29) and a similar expression for W†W†

into Eq. (28) gives

Spair ¼ ghW†W†ihWWi � ghW†W†iWW� gW†W†hWWi
þ Oðg†gÞ: (30)

For a macroscopic system such as a superconductor, we may
assume quantum fluctuations are in some sense small, and
neglect terms of order g†g. Defining the order parameter
D � ghWWi, we are left with

Spair ¼
D?D
g

� D?WW�W†W†D: (31)

Since the order parameter field D is a number—not an opera-
tor—the second two terms in Eq. (31) do not conserve elec-
tron number. This electron non-conservation allows the
order parameter hWWi to acquire a nonzero vacuum expecta-
tion value, since the mean field action now connects sectors
of the Fock space with different particle number via the last
two terms.

Thus, it is ultimately the mean field approximation which
is responsible for electron number non-conservation, and
consequently D acquiring a nonzero vacuum expectation
value. However, notice that the action is still perfectly gauge

invariant, given the transformations from Eqs. (25) and (27).
Although the mean field approximation is implicit in both
the BCS and Ginzburg-Landau theories of superconductivity
that form the cornerstones of the discipline, it is worth noting
that non-mean field and manifestly gauge invariant
approaches to superconductivity exist such as the perturba-
tive formalism developed by Nambu,24 as well as electron
number conserving theories such as number projected
BCS.16,17

VI. GINZBURG-LANDAU ANALYSIS

Having seen how it is possible for the order parameter D
to acquire a nonzero expectation value in the superconduct-
ing state, let us consider the textbook treatment of symmetry
breaking in superconductors: the Ginzburg-Landau theory,18

in which the free energy of the system is expanded as a series
in D near the phase transition where D is small, such that we
need only to keep the first few terms19

F ¼
ð

d3x
1

2m?
rþ 2ieAð ÞD? � r � 2ieAð ÞD

�

þrD?Dþ u

2
D?Dð Þ2 þ 1

2
B2 þ � � �

�
: (32)

Here, r and u are unknown temperature dependent expansion
coefficients, and the coefficient of the first term is conven-
tionally chosen to be 1/2m?, where m? ¼ 2me is the mass of a
Cooper pair. To ensure the free energy is gauge invariant
(and thus observable), the expansion includes only powers of
the gauge invariant quantity D?D, and in the “kinetic” term
we have again replaced r 7!r� 2ieA (since the charge of
a Cooper pair is 2e). Finally, the B

2 term accounts for the
energy of an external magnetic field.

The ground state may then be identified via a variational
principle: it will be the state for which the free energy is min-
imized with respect to the order parameter. Since spatial var-
iations of the order parameter are energetically costly, we
may assume D is homogenous in the ground state of the sys-
tem, and thus the first term in Eq. (32) vanishes. Carrying
out the variation imposes the condition

0 ¼ dF
dD? ¼ r þ u D?Dð Þ½ �D; (33)

which has two solutions: D ¼ 0, which we associate with the
metallic phase above the phase transition, or D?D ¼ –r/u,
which we associate with the superconducting phase.20 Since
this fixes only the amplitude of D, we appear to have a con-
tinuum of ground states, parameterized by the phase angle /,

D ¼
ffiffiffiffiffi
jrj
u

r
ei/: (34)

At first glance, we appear to have a degenerate manifold of
non-gauge invariant ground states, and are tempted to con-
clude that gauge symmetry has been spontaneously broken.
However, as we will see, this apparent breaking of gauge
symmetry is merely an illusion, whereby gauge redundancy
and the covariance of the order parameter have conspired to
make a single physical ground state appear to be an infinite
set of distinct states. In fact, it is this very deception that is
the origin of the misleading term “broken gauge symmetry.”
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After getting better acquainted with the subtleties of gauge
invariance in the superconducting state in Sec. VII, we will
return to this state of affairs in Sec. VIII, and discover what
it really means to “break” a gauge symmetry.

VII. EFFECTIVE FIELD THEORIES

In general, an effective field theory such as the Ginzburg-
Landau theory discussed above involves trading the micro-
scopic Hamiltonian of a system for an effective description
that captures the low energy physics using emergent degrees
of freedom,8 in this case the order parameter field D(x, t),
which we have now generalized to be time dependent. To
construct an effective field theory, we write down a
Lagrangian, Hamiltonian, Free Energy, etc., based on sym-
metry arguments, and (classically) derive the resulting phys-
ics from the appropriate variational procedure. This central
quantity, which we will call F and refer to as the “effective
action” is generally a functional of the order parameter and
its derivatives, and must be gauge invariant (this is one of the
symmetries we must take into account). In this section, we
will show that the constraint that F be gauge invariant cou-
pled with the gauge-covariance of the order parameter is
enough to account for several of the striking phenomena of
the superconducting state, independent of the choice of for-
malism: it doesn’t matter whether F is a Lagrangian or a
Free Energy. For the most part, this portion of the paper is a
more elementary presentation of ideas originally developed
in Refs. 1 and 2. Afterward, we will consider the central role
of the Anderson-Higgs mechanism in the story of gauge
symmetry breaking.

Since the electromagnetic field, to which the superconduc-
tor is coupled, is intrinsically relativistic, it is convenient to
adopt relativistic language. Throughout, we will use the met-
ric with signature (þ, –, –, –), which is the standard in parti-
cle physics, and sums over repeated indices are always
implied. Spacetime coordinates are written as xl ¼ (t, x)
where l ¼ 0, 1, 2, 3, derivatives with respect to xl are writ-
ten as @l, and the scalar and vector potentials are combined
into the four-potential Al ¼ (u, –A). Throughout the remain-
der of this section, we will make use of this relativistic nota-
tion, but at no point will we actually assume the theory we
are discussing is Lorentz invariant: we are merely using this
notation as a convenient shorthand in discussing a presum-
ably non-relativistic system. The reader unfamiliar with elec-
tromagnetism from the perspective of classical field theory is
encouraged to consult the literature.3,25,26

In general, the effective action may depend on the order
parameter field D, its complex conjugate D?, and their deriv-
atives @lD, @lD

?, as well as the electromagnetic field via
dependences on the potential Al and its derivatives @lA�. So,
we expect to have some functional of these quantities,
F½D;D?; @lD; @lD

?;Al; @lA��. However, gauge invariance
strongly constrains the form of this functional. Clearly the
product D?D is gauge invariant and we may use it to con-
struct terms in the effective action, but the derivatives of the
order parameter transform as

@lD 7! @lðe2ieaDÞ ¼ e2ieað@l þ 2ie@laÞD; (35)

which is clearly not gauge invariant. To construct gauge
invariant derivative terms, we must introduce the gauge
covariant derivative, Dl � @l – 2ieAl. In our relativistic
notation, a gauge transformation of the potentials is written

Al 7! Al þ @la, so the covariant derivative of the order
parameter transforms as

DlD ¼ ð@l � 2ieAlÞD 7! e2ieað@l þ 2ie @la

� 2ieðAl þ @laÞÞD

¼ e2ieaDlD: (36)

One can easily show that the complex conjugate (DlD)?

transforms as ðDlDÞ� 7! e�2ieaðDlDÞ?, so we can form gauge
invariant terms from the product (DlD)?DlD. Thus, gauge
invariance constrains the effective action to be a functional
of the form F½D?D; ðDlDÞ?DlD�.

In fact, we can be slightly less restrictive by re-
parameterizing the two degrees of freedom of the complex
order parameter as an amplitude and a phase, D ¼ jDjei/.
Evidently, any functional of the amplitude will be gauge
invariant. Expressed in terms of the amplitude and phase
fields, the derivatives can be written

@lD ¼ @l jDjei/
� �

¼ i@l/þ @ljDj
jDj

� �
D: (37)

Recalling our discussion in Sec. VI, the amplitude of the
order parameter will be fixed at the non-zero value which
minimizes the system’s energy, and fluctuations around this
minimum will be gapped and energetically costly. Since we
are concerned with the low energy behavior, it is safe to
assume that @ljDj 	 jDj, and we may drop the second term
in Eq. (37) so @lD 
 i@l/D. Note that under a gauge trans-
formation D 7! e2ieaD, and thus the phase transforms as
/ 7!/þ 2ea.

In this representation, the gauge covariant derivative can
be written as DlD ¼ ið@l/� 2eAlÞD, and we may recognize
the term in parentheses to be gauge invariant: @l/� 2eAl

7! @lð/ þ 2eaÞ � 2eðAl þ @laÞ ¼ @l/ � 2eAl. So, the
effective action can be a functional of only the amplitude jDj
and the gauge invariant combination @l/ – 2eAl such that
we have F½jDj; @l/ � 2eAl�. In fact, there are no other
gauge-invariant combinations of the fields that we could
write down, and the previous functional form we considered
is a special case of this structure. Thus, we have determined
the most general constraints that gauge invariance imposes
on the effective action.

Now, given the effective action we may determine the
ground state by the appropriate variational principle. By
assumption, the ground state is attained for a non-zero value
of jDj, which as we saw in Sec. VI is the origin of “broken”
gauge symmetry. As far as the dependence on @l/ – 2eAl,
stability requires that the minimum of F occur for a finite
value of its arguments, and we further expect it to be a qua-
dratic function near the minimum27

F � Kð@l/� 2eAlÞ2; (38)

for some prefactor K. Then, F will be minimized when

@l/ ¼ 2eAl: (39)

This condition on the ground state follows directly from the
requirement that the effective action be gauge invariant, and
it is sufficient to derive several of the properties of the super-
conducting state.
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A. Perfect conductivity

The timelike component of Eq. (39) requires that inside a
superconductor @t/ ¼ 2eu, where u is the scalar potential.
Then, for any time independent field configuration for which
@t/ ¼ 0, we must have

u ¼ 0: (40)

So, the voltage between any two points inside the supercon-
ductor is V ¼ uðr2Þ � uðr1Þ ¼ 0. One time independent
field configuration is a steady current j ¼ const, which by the
above argument must occur with zero potential difference. A
finite current maintained at zero voltage implies the conduc-
tivity is infinite (since j ¼ rV with V ¼ 0 and j 6¼ 0). Thus,
superconductors may maintain persistent, dissipationless
currents.2

B. Flux quantization

Consider a thick superconducting ring, and a closed con-
tour c traversing it. The magnetic flux U through the surface
S bounded by the contour is

U ¼ �SB � dS

¼ �S r� Að Þ � dS

¼
þ
c
A � ds

¼ 1

2e

þ
c
r/ � ds

¼ 1

2e
D/; (41)

where we used Stoke’s theorem to get from the second
equality to the third, and Eq. (39) to get from the third to the
fourth. The final equality comes from the fact that the closed
line integral over the gradient of / is simply the difference
between / at the beginning and end of the path. Normally,
such an integral must be zero, but since / is an angle defined
only modulo 2p, we may have D/ ¼ 2pn for any integer n.
Thus, the flux through the loop is quantized as

U ¼ �hpn
e

: (42)

VIII. THE MEISSNER EFFECT AND THE

ANDERSON-HIGGS MECHANISM

One could use the spatial components of Eq. (39) to show
B ¼ r� A ¼ r�r/ ¼ 0, which is to say that a magnetic
field cannot exist in the ground state of a superconductor.
However, while valid, this overlooks the rich physics under-
lying the Meissner effect, namely, the Anderson-Higgs
mechanism. In fact, this mechanism is the core of the gauge
symmetry breaking story, as we will presently see.

Recall the simple Ginzburg-Landau theory from Sec. VI
where we found the ground state of the superconductor
is characterized by a nonzero order parameter amplitude,
jDj ¼ D0 and the absence of electromagnetic fields. The
ground state configuration is then given by

D ¼ D0ei/ ; E ¼ B ¼ 0: (43)

The existence of an infinite set of ground states, each with a
different phase / led us to believe that gauge symmetry was
spontaneously broken.

However, we must not forget that the order parameter
does not completely specify the state of the system, we also
have the electromagnetic field. Having seen that the poten-
tials Al are directly tied to the order parameter, and are in
some sense the fundamental entity, we will use Al to specify
the electromagnetic field configuration. We can recover E
and B from the components of the field strength tensor,26

Fl� ¼ @lA� � @�Al, as Ei ¼ F0i and Bi ¼ 1
2
eijkFjk, where the

roman indices run over the spatial components 1, 2, 3. In the
ground state, we have E ¼ B ¼ 0 when Fl� ¼ 0, which is
achieved when the potential is a “pure gauge,” Al ¼ @lb, for
any scalar field b. This is simply to say that the potential is
related to Al ¼ 0 by a gauge transformation, and thus repre-
sents the same physical state. The important point is that any
choice of b is valid, and thus there are an infinite number of
potentials which describe the same physical state of E ¼ B
¼ 0. The ground state of the superconducting system is then
given by

D ¼ D0ei/ ; Al ¼ @lb: (44)

Now, suppose we perform a gauge transformation on this
state, under which the potential transforms Al 7!Al þ @la,
and the phase of the order parameter transforms as / 7!/
þ 2e a. The ground state in Eq. (44) then becomes

D ¼ D0eið/þ2eaÞ; Al ¼ @lðaþ bÞ: (45)

Evidently, by performing a gauge transformation we may
rotate the phase of D. Further, since our choice of a is arbi-
trary, we may rotate the phase into any value we wish.
Specifically, we can perform a gauge transformation to move
from one ground state of fixed phase to another. We also
know that two field configurations related by a gauge trans-
formation represent the same physical state, and thus con-
clude that the all of the seemingly degenerate ground states
in Eq. (44) are merely different descriptions of the same
physical state. This is the essence of “broken” gauge symme-
try: there is only one physical ground state, wherein jDj
¼ D0 and E ¼ B ¼ 0, but an infinite number of gauge equiv-
alent ways to describe it. The existence of multiple order
parameter configurations to describe the same ground state
looks extremely similar to the ground state degeneracy aris-
ing from a spontaneously broken symmetry, which has led to
the misleading terminology of “spontaneously broken gauge
symmetry.” Crucially, one must note that at no point did
gauge symmetry ever actually “break:” one can verify that
every step of our analysis (and all of our discussion to fol-
low) is perfectly gauge invariant, as any consistent physical
theory must be. In fact, not only is the violation of gauge
symmetry nonsensical, but, at least in lattice gauge theories,
it is not possible for such a symmetry to be spontaneously
broken due to the famous Elitzur theorem.28

Inseparable from this illusion of gauge symmetry breaking
is the Anderson-Higgs mechanism, by which the spectrum of
the gauge field acquires a gap. In the particle physics vernacu-
lar, this corresponds to the gauge field acquiring a mass, and
as this language has bled into the condensed matter literature,
it is often said that the “photon acquires a mass.”

To illustrate the Anderson-Higgs mechanism in its most
natural context, let us consider the Lorentz invariant
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analogue of a superconductor: the Abelian-Higgs model,
defined by the Lagrangian density26

L ¼ DlDð Þ�DlD� 1

4
Fl�F

l� � V jDjð Þ: (46)

Although this model does not actually describe a supercon-
ductor, nor does it play any role in the Standard Model, it is
an incredibly useful pedagogical tool to understand the
Anderson-Higgs mechanism, especially as it applies to
superconductors. We assume the potential V is minimized by
a nonzero value of the order parameter amplitude, giving
rise to the gauge-equivalent ground states in Eq. (44) just as
in the non-relativistic case. By parameterizing the order
parameter by its amplitude and phase, the covariant deriva-
tive can be written DlD ¼ ð@l/� 2eAlÞD, and thus the
Lagrangian becomes

L ¼ jDj2 @l/� 2eAlð Þ2 � 1

4
Fl�F

l� � V; (47)

which we may again rewrite by defining a new vector field

~Al � Al �
1

2e
@l/: (48)

Note that this is not a gauge transformation: ~Al is a new
gauge invariant vector field, since under a gauge
transformation

~Al 7!Al þ @la�
1

2e
@l /þ 2e að Þ ¼ Al �

1

2e
@l/ ¼ ~Al:

(49)

Noting that Fl� is invariant under this redefinition, the
Lagrangian becomes

L ¼ 2eð Þ2jDj2 ~Al ~A
l � 1

4
Fl�F

l� � V: (50)

In the field theory literature, the term quadratic in ~Al implies
this vector field has a mass of m2 ¼ 2e2jDj2. To make this
explicit, we begin by finding the Euler-Lagrange equations
of motion for the system

@L
@ ~A

� � @l
@L

@ @l ~A
�

	 
 ¼ 0; (51)

m2 ~A� þ @lFl� ¼ 0; (52)

m2 ~A� þ @lð@l ~A� � @� ~AlÞ ¼ 0; (53)

m2 ~A� þ @l@l ~A� � @�@
l ~Al ¼ 0: (54)

To simplify this expression, we note the current is given by25

jl ¼ � @L
@ ~A

l ¼ �m2 ~Al: (55)

For this current to be conserved, we must have @ljl ¼ 0, and
thus @l ~Al ¼ 0, which requires the last term in Eq. (54) to
vanish. The equation of motion is then simply

ð@l@l þ m2Þ ~Al ¼ 0: (56)

This is the Klein-Gordon equation, which describes a classi-
cal field of mass m. This is made clear by Fourier transform-
ing the field

~AlðxÞ ¼
ð

d4x eiplp
l ~AlðpÞ; (57)

where pl ¼ (E, p). Then, the Klein-Gordon equation
becomes

ð�plp
l þ m2Þ ~AlðpÞ ¼ 0; (58)

�plp
l þ m2 ¼ 0; (59)

E2 ¼ p2 þ m2; (60)

which we recognize as the relativistic dispersion of a particle
with mass m. If we restrict ourselves to considering only the
spacelike components of Eq. (56) (due to the additional
structure of Lorentz invariance, the timelike component will
be substantially different from the nonrelativistic case, to
which we will momentarily compare our results), and further
specialize to time-independent scenarios, we have

ð�r2 þ m2Þ~A ¼ 0: (61)

Taking the curl of this equation and noting that r� ~A ¼ B
since r � (r/) ¼ 0, we find an equation for the magnetic
field

ð�r2 þ m2ÞB ¼ 0; (62)

which notably does not admit a constant solution, implying a
uniform magnetic field cannot exist inside the superconduc-
tor. In fact, at the interface between a superconductor and
the vacuum, we expect the field to decay exponentially like
�e�mr, which is strongly reminiscent of the Meissner effect.

To be more physically accurate, let us return to supercon-
ductivity from the perspective of our original, non-
relativistic Ginzburg-Landau free energy from Eq. (32),
which we may rewrite as

F ¼
ð

d3x
jDj2

2m?
r/� 2eAð Þ2 þ 1

2
B2 þ V jDjð Þ; (63)

or, in terms of the vector field ~A,

F ¼
ð

d3x
2eð Þ2jDj2

2m?
~A

2 þ 1

2
B2 þ V jDjð Þ: (64)

Similarly to the relativistic case, the current is given by14

j ¼ � dF

d~A
¼ � 2eð Þ2jDj2

m?
~A; (65)

and by Maxwell’s equation r � B ¼ j, we have

r� B ¼ � 2eð Þ2jDj2

m?
~A: (66)

Taking the curl of both sides, and using r� B ¼ 0, we find

�r2B ¼ � 2eð Þ2jDj2

m?
B; (67)
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from which we again see that a uniform magnetic field is not
admitted inside a superconductor. If we consider a supercon-
ductor occupying the half space x > 0 and vacuum in x < 0,
the magnetic field will be given by

B ¼ B0e�x=k; k�2 ¼ 2eð Þ2jDj2

m?
; (68)

where the parameter k is the London Penetration Depth,
which in SI units is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

me

2l0e
2jDj2

r
: (69)

Notice that this is completely analogous to the relativistic
theory, with the role of the dynamically generated
mass being played by the inverse penetration depth. The
Anderson-Higgs mechanism sketched here was initially put
forth in the context of superconductivity by Anderson,29

but has risen to fame in particle physics, wherein this same
mechanism generates the masses of the W and Z bosons.30

However, due to the non-Abelian nature of the “broken”
gauge group in the electroweak theory, some aspects of the
dynamics differ from the case we have discussed here.
Further, just as the Higgs boson was recently discovered at
the Large Hadron Collider, there have also been experimen-
tal observations of Higgs modes in superconductors.31

IX. CONCLUSION

Within the mean field approximation, the formation of
Cooper pairs enables gauge covariant operators such as the
order parameter D � hWWi to acquire a nonzero expectation
value in the ground state of the system. The order parameter
amplitude being nonzero in the ground state allows the phase
/ to be well-defined but arbitrary, which in turn leads to the
apparent existence of a degenerate ground state manifold.
However, due to the coupling with the electromagnetic field,
all of these ground state solutions are in fact gauge equiva-
lent descriptions of the same physical state. The excitations
of the gauge field away from this ground state are gapped
due to the Anderson-Higgs mechanism, which is responsible
for the Meissner effect. In fact, we have seen that the gauge
principal is sufficient to account for many of the striking phe-
nomena observed in superconductors. In all, the question of
whether or not gauge symmetry “breaks” in a superconduc-
tor is one of linguistics, but it is unambiguous that gauge
invariance is absolutely central to the physics of
superconductors.
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