

Quasi-1D TiS₃ Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy

Alexey Lipatov,¹ Michael J. Loes,¹ Haidong Lu,² Jun Dai,¹ Piotr Patoka,³ Nataliia S. Vorobeva,¹ Dmitry S. Muratov,^{1,4} Georg Ulrich,^{3,5} Bernd Kästner,⁵ Arne Hoehl,⁵ Gerhard Ulm,⁵ Xiao Cheng Zeng,^{1,6} Eckart Rühl,³ Alexei Gruverman,^{2,6} Peter A. Dowben,^{2,6} Alexander Sinitskii^{1,6}*

¹Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA

²Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, USA

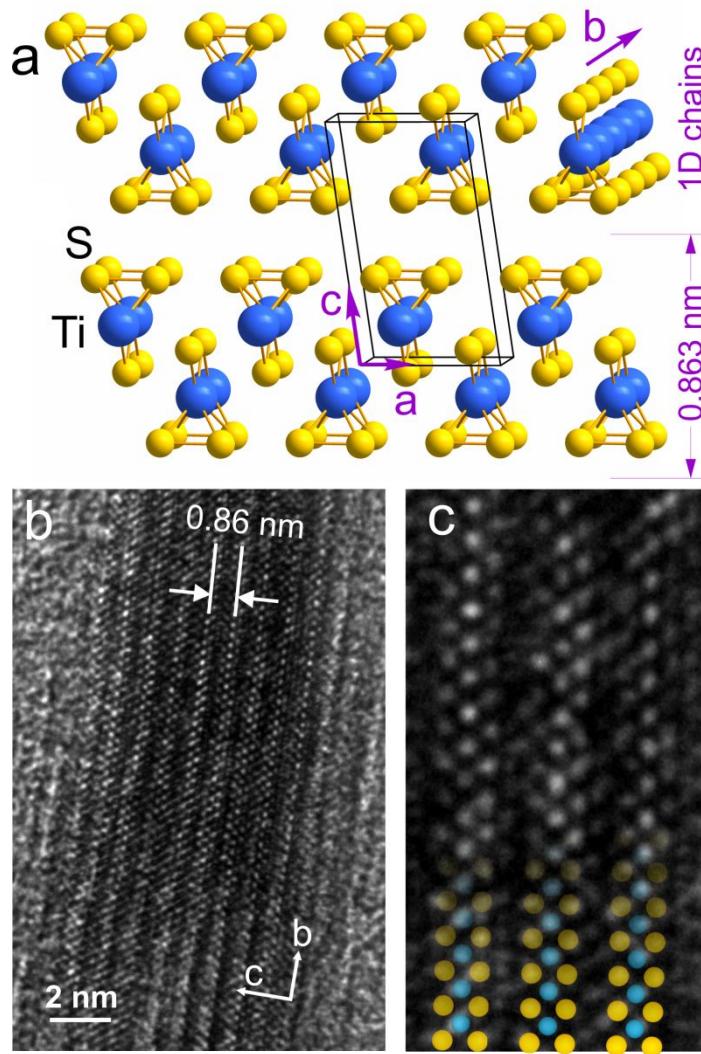
³Physical Chemistry, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany

⁴National University of Science and Technology “MISIS”, Moscow 119991, Russia

⁵Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany

⁶Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA

1
2
3 KEYWORDS Quasi-one-dimensional materials, transition metal trichalcogenides (TMTCs), Raman
4 spectroscopy, mechanical exfoliation, scanning near-field optical microscopy.
5
6
7
8


9 ABSTRACT

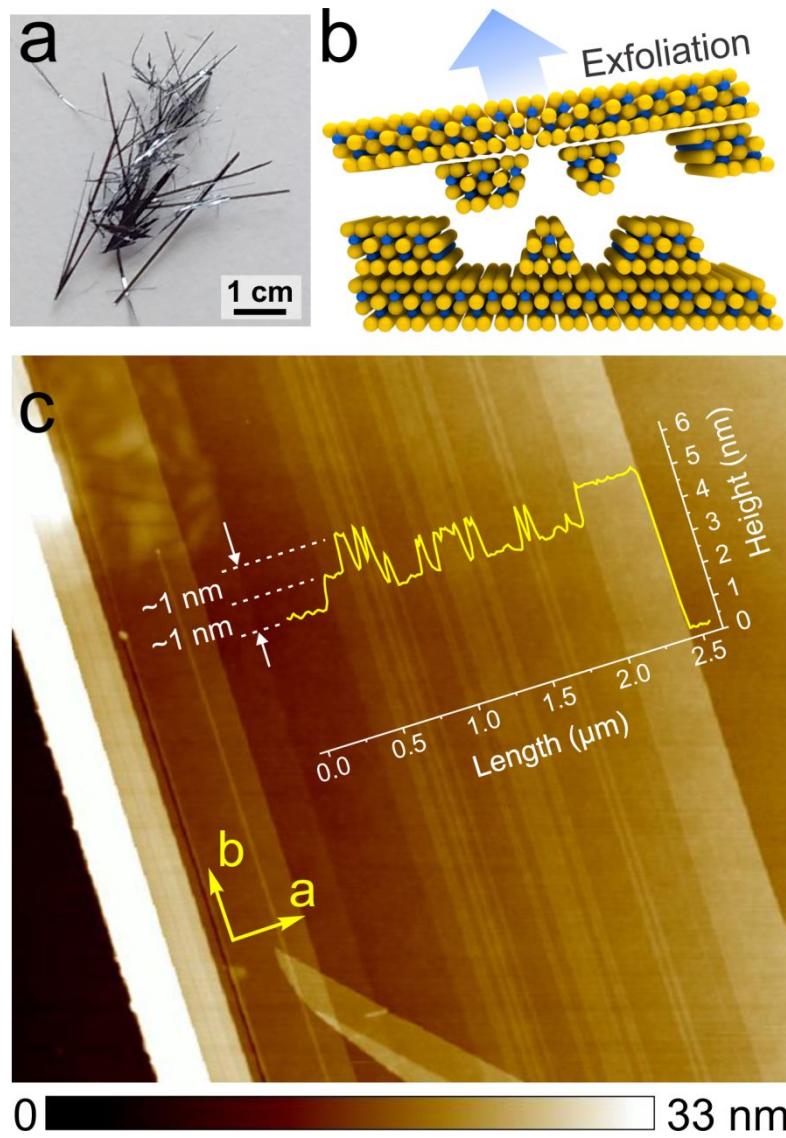
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Quasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS_3 whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS_3 chains. The theoretical calculations show that the energies required for breaking weak interactions between the two-dimensional (2D) layers and between 1D chains within the layers are comparable, and in turn are considerably lower than those required for breaking the covalent bonds within the chains. We also emulated macroscopic exfoliation experiments on the nanoscale by applying a local shear force to TiS_3 crystals in different crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM experiments, it was possible to slide the 2D TiS_3 layers relative to each other as well as to remove selected 1D chains from the layers. We systematically studied the exfoliated TiS_3 crystals by Raman spectroscopy and identified the Raman peaks whose spectral positions were most dependent on the crystals' thickness. These results could be used to distinguish between TiS_3 crystals with thickness ranging from one to about seven monolayers. The conclusions established in this study for the exfoliated TiS_3 crystals can be extended to a variety of transition metal trichalcogenide materials as well as other quasi-1D crystals. The possibility of exfoliation of TiS_3 into narrow (few-nm wide) crystals with smooth edges could be important for the future realization of miniature device channels with reduced edge scattering.

1
2
3 Mechanical exfoliation of layered materials using the simple adhesive tape approach is an
4 important technique for producing high-quality two-dimensional (2D) crystals for research at the interface
5 of materials science and condensed matter physics.¹ The layered materials, such as graphite, a large family
6 of transition metal dichalcogenides, hexagonal boron nitride (h-BN) and many others, are very diverse in
7 terms of their chemical composition and physical properties.²⁻⁴ But what they have in common is that they
8 consist of charge-neutral 2D sheets with strong covalent or ionic bonding between the atoms within the
9 sheets (in two dimensions) and weak interaction between the sheets (in the third dimension).
10
11

12 A different class of solids that shares many similarities with these layered crystals but received
13 considerably less attention are quasi-one-dimensional (quasi-1D) materials.⁵⁻⁸ Titanium trisulfide (TiS₃)
14 is a representative quasi-1D material. It is an n-type semiconductor with a band gap of about 1 eV.⁸⁻¹¹ It
15 was studied for several decades with regard to its prospects for energy storage applications,¹²⁻¹⁴ but
16 recently received a surge of attention due to the theoretical predictions of high electron mobilities^{15,16} and
17 promising thermoelectric properties.^{14,17,18} The crystal structure of TiS₃ is shown in Figure 1a.⁵ Similar to
18 the layered crystals, quasi-1D materials are built through interplay of strong covalent bonds and weak van
19 der Waals-like interactions. However, in TiS₃ and other transition metal trichalcogenide (TMTc) crystals
20 with MX₃ composition (M is a transition metal ion, such as Ti, Zr or Hf; X = S, Se or Te), a basic covalently
21 bound structural unit is not a layer but a 1D chain of MX₃ prisms (Figure 1a).⁶⁻⁸ The weak van der Waals-
22 like interactions assemble these chains into 2D layers, and then the layers stack into 3D crystals. The 1D
23 chains of TiS₃ crystals can be visualized by transmission electron microscopy (TEM) (Figure 1b,c). They
24 consist of trigonal prisms formed by sulfide (S²⁻) and disulfide (S₂²⁻) units with Ti⁴⁺ in the center. TEM
25 image showing the chains perpendicular to *ab* plane is presented in Figure S4 together with corresponding
26 selected area electron diffraction (SAED).
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Figure 1. One-dimensional chains in TiS_3 structure. **(a)** Scheme of the monoclinic TiS_3 crystal structure with a $\text{P } 2_1/\text{m}$ space group and interlayer distance of 0.863 nm . **(b,c)** High-resolution TEM images of a TiS_3 crystal. In (c), the TiS_3 chains are overlaid with blue and yellow circles representing Ti and S atoms, respectively.


TiS_3 crystals can be prepared through a direct reaction between metallic titanium and sulfur vapor at $550 \text{ }^\circ\text{C}$ (Figure S1),^{19,20} and characterized by spectroscopy techniques (Figure S2 and Figure S3). Because of their anisotropic structure, TiS_3 crystals usually grow in a form of whiskers (Figure 2a and

1
2
3 Figure S5) with their long axes corresponding to the crystallographic *b* direction of 1D chains (Figure 1a).
4
5

6 Like graphite or similar layered crystals,¹ these TiS₃ whiskers could be placed on an adhesive tape and
7 subjected to micromechanical exfoliation, which was done in a number studies aiming to investigate thin
8 TiS₃ flakes.²¹⁻²⁶ However, while the micromechanical exfoliation is well-established for the layered
9 crystals, it received much less attention for quasi-1D crystals. For TiS₃ and similar crystals, this process
10 is rather peculiar since weak interactions are present in two crystallographic directions, *a* and *c*, and when
11 a mechanical force is applied to a crystal it could split into thinner flakes along both directions.
12
13

14 In this work, we demonstrate that micromechanical exfoliation of quasi-1D crystals (Figure 2b)
15 can produce thin flakes with morphologies very different from those typically observed for the layered
16 crystals with weak interlayer bonding. It was previously reported that because of their quasi-1D structure
17 the TiS₃ crystals typically split into narrow nanoribbons with very smooth and straight edges rather than
18 randomly shaped flakes.²² We further demonstrate that the surfaces of the exfoliated nanoribbons are not
19 necessarily atomically flat but could bear signatures of the 1D TiS₃ chains. These observations are
20 supported by the theoretical analysis of the cleavage energies for various crystallographic planes in TiS₃
21 structure. The calculations show that breaking weak bonding interactions between the 2D layers and
22 between 1D chains within the layers require comparable energies, which in turn are considerably lower
23 than those required for breaking the covalent bonds within the chains. We also emulated macroscopic
24 exfoliation experiments on the nanoscale by applying a local shear force to TiS₃ crystals in different
25 crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM
26 experiments, it was possible to slide the weakly-interacting TiS₃ layers relative to each other as well as to
27 detach the selected 1D chains from the layers. Raman scattering spectroscopy revealed a considerable
28 shift of the frequencies of the two modes in opposite directions with the number of layers, which provides
29 a facile way to determine thicknesses of exfoliated TiS₃ flakes. Finally, we used infrared scattering-type
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

near-field optical microscopy (s-SNOM) and found suppressions of the substrate phonon responses near the edges of terraces in exfoliated crystals, which is consistent with the uniform sulfur termination of the quasi-1D TiS_3 chains. The conclusions established in this study for the exfoliated TiS_3 crystals can likely be extended to other TMTC materials as well as other quasi-1D crystals.

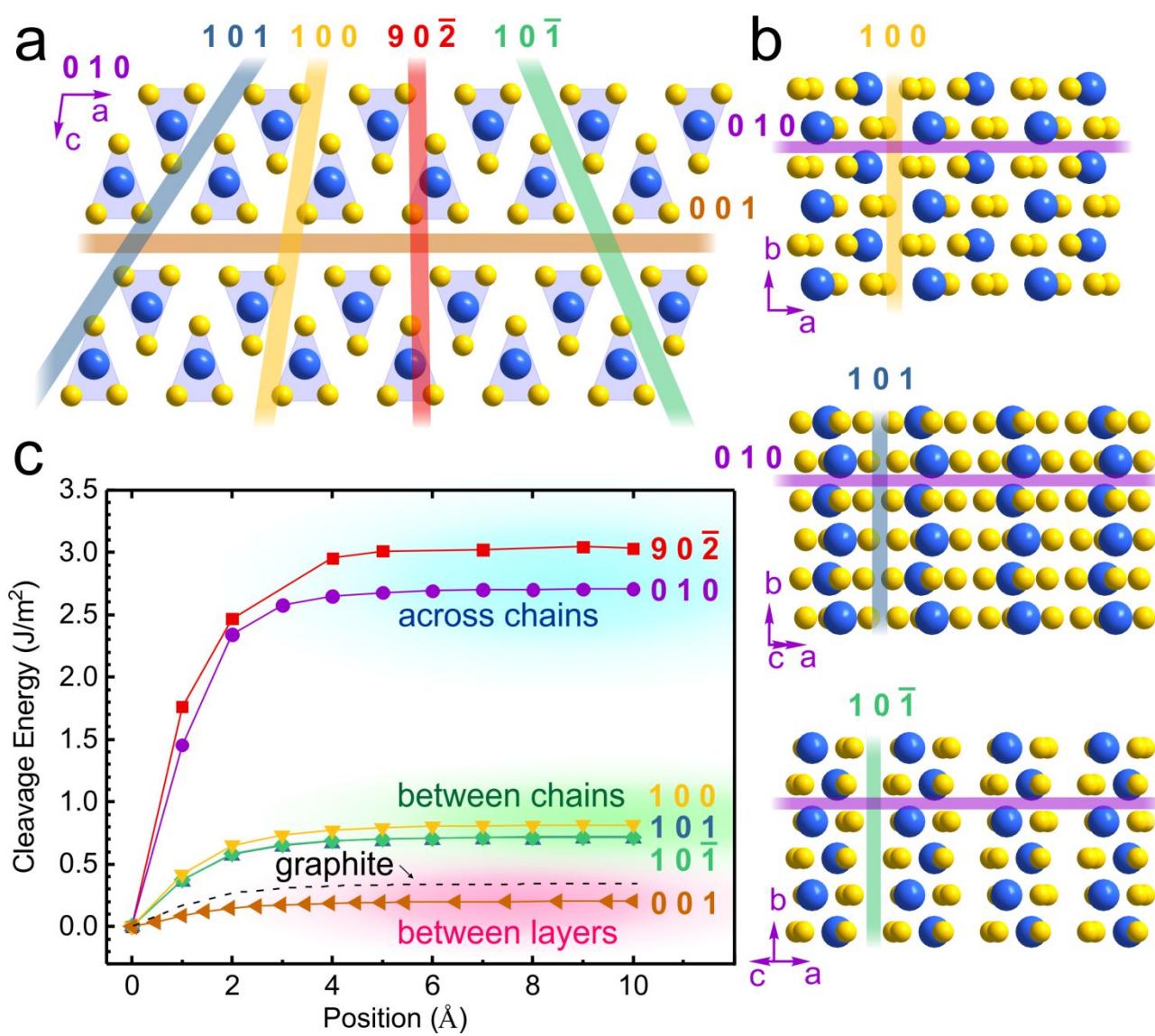


Figure 2. Visualization of one-dimensional chains in TiS_3 whiskers. **(a)** Optical photograph of TiS_3 whiskers. **(b)** Scheme of micromechanical exfoliation of TiS_3 . **(c)** AFM image of an exfoliated TiS_3 nanoribbon. Overlaid over the image is the height profile across the nanoribbon.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The peculiarity of the micromechanical exfoliation of TiS_3 crystals can be illustrated by the AFM image in Figure 2c. Unlike exfoliated flakes of graphene, h-BN and other 2D materials, which are normally very flat, the TiS_3 crystals show a structure of parallel stripes that run along the entire length of a crystal. These stripes have very uniform height and widths. The height profile measured across these stripes shows that they exhibit only two height steps of about 1 nm, which correspond precisely to the thickness of a 2D layer in the TiS_3 structure (Figure 1a). Thus, these stripes represent the residual 1D chains of two topmost layers of the exfoliated TiS_3 crystal. The observed uniformity of these stripes suggests that the splitting of these layers likely happened in between the weakly bound chains, as shown in Figure 2b.

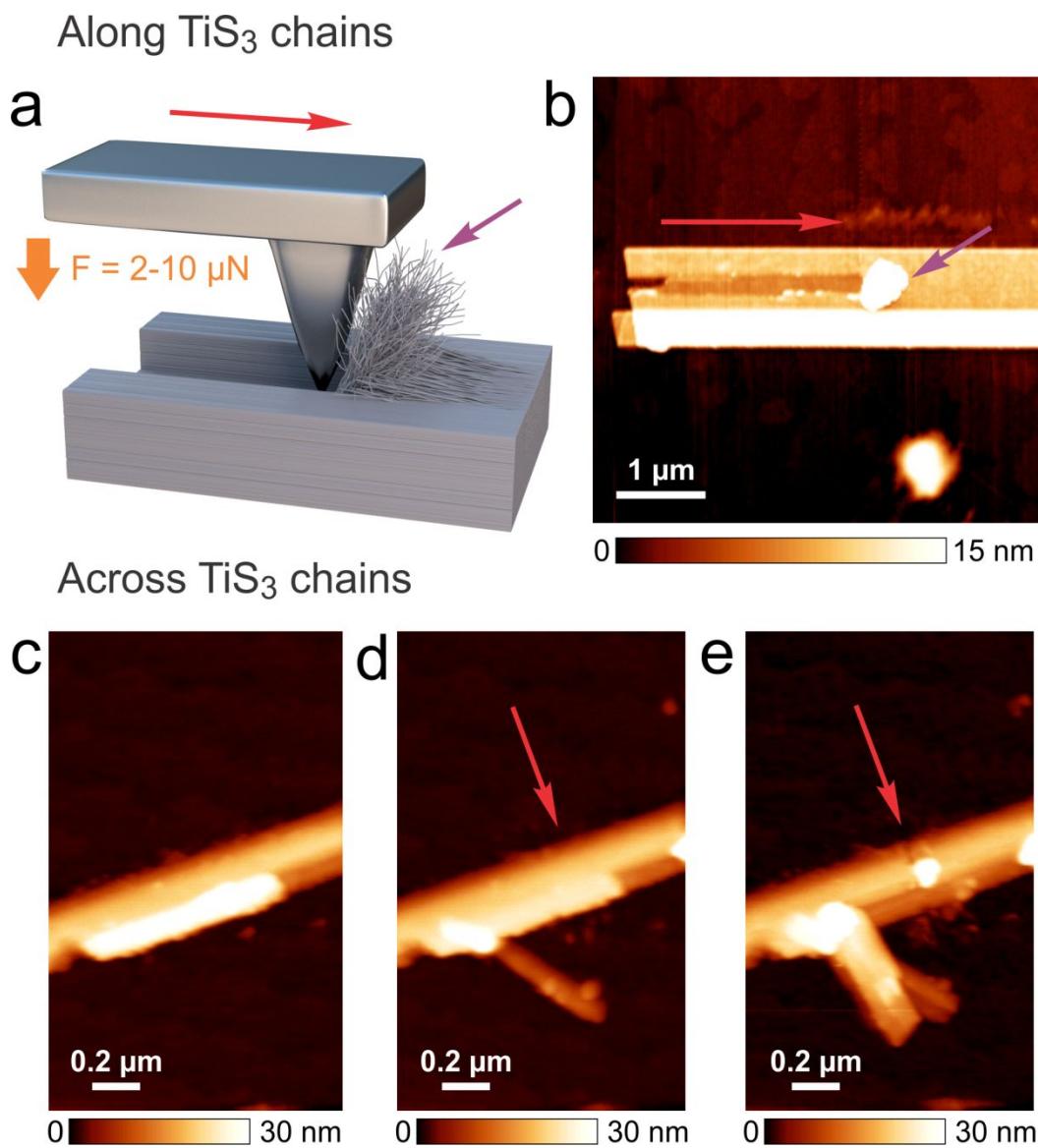

In order to support this conclusion, we investigated cleavage energies for different crystallographic planes in the TiS_3 structure. Since the stripes were observed along the crystallographic *b* direction (Figure 2c), we considered several cleavage planes that were parallel to it, as illustrated by Figure 3a. Some of these planes, such as (100), (101) and (10 $\bar{1}$), propagate between the TiS_3 chains, while (90 $\bar{2}$), which is nearly perpendicular to the (001) plane, dissect the TiS_3 chains. This is further illustrated by Figure 3b, which demonstrates additional views of the TiS_3 crystal structure orthogonal to (100), (101) and (10 $\bar{1}$) planes; the figure shows that these planes separate TiS_3 chains and do not dissect any of the covalent Ti-S bonds. For the sake of comparison, we also considered the (010) plane, which is perpendicular to the crystallographic *b* direction and cuts the TiS_3 chains.

Figure 3. Cleavage energy calculations for different crystallographic planes in TiS₃. **(a)** Scheme of the planes in the TiS₃ structure that were considered for cleavage energy calculations. **(b)** Additional views of the TiS₃ along selected crystallographic directions showing that the (100), (101) and (10̄1) planes separate TiS₃ chains and do not dissect any of the covalent Ti-S bonds, unlike the (010) plane. **(c)** Cleavage energies for various scenarios from (a,b) plotted as a function of the separation between the planes.

The results of the cleavage energy calculations for these crystallographic planes are shown in Figure 3c. The lowest cleavage energy was found for the (001) planes, which separate the 2D TiS₃ layers.

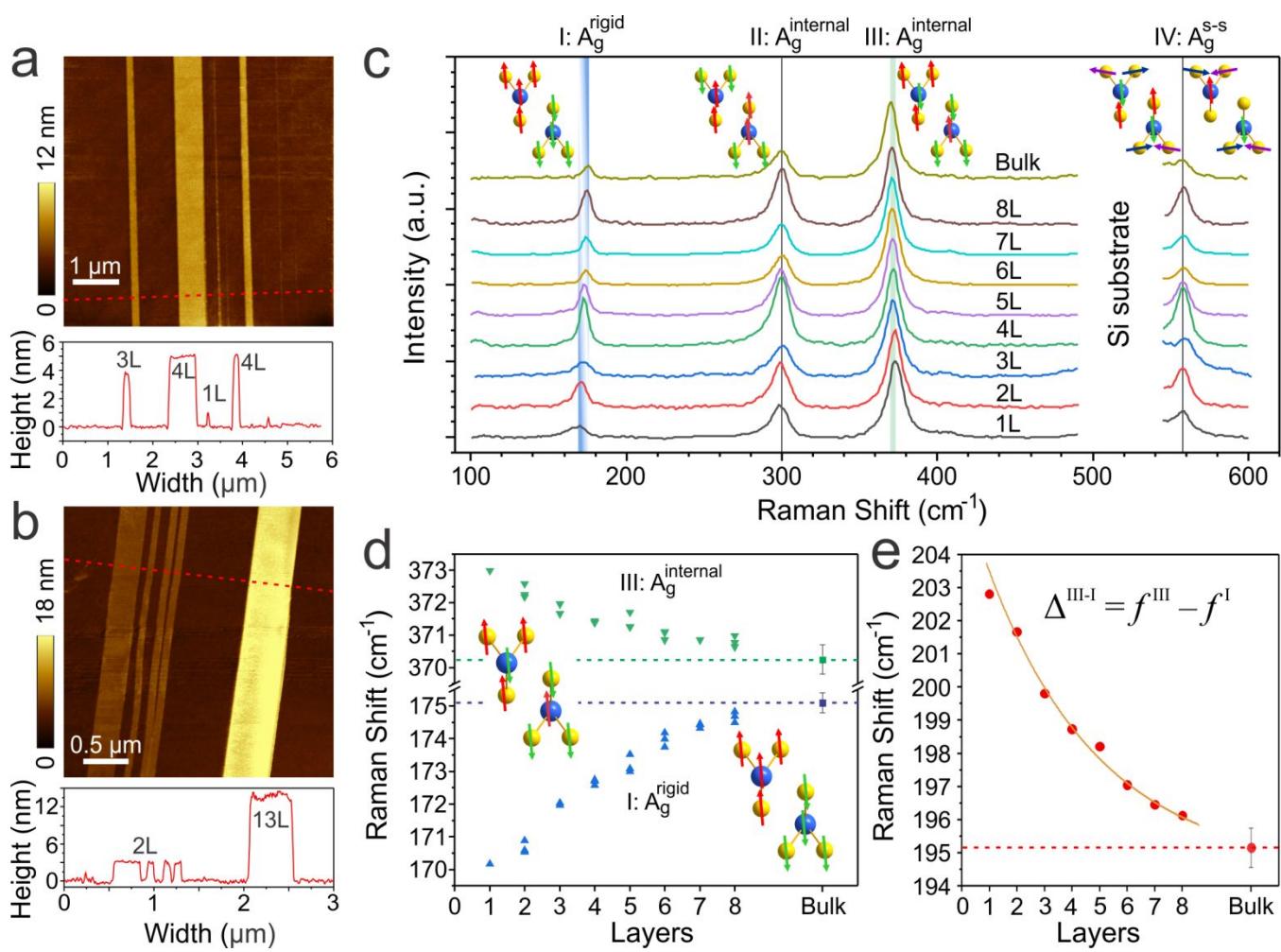
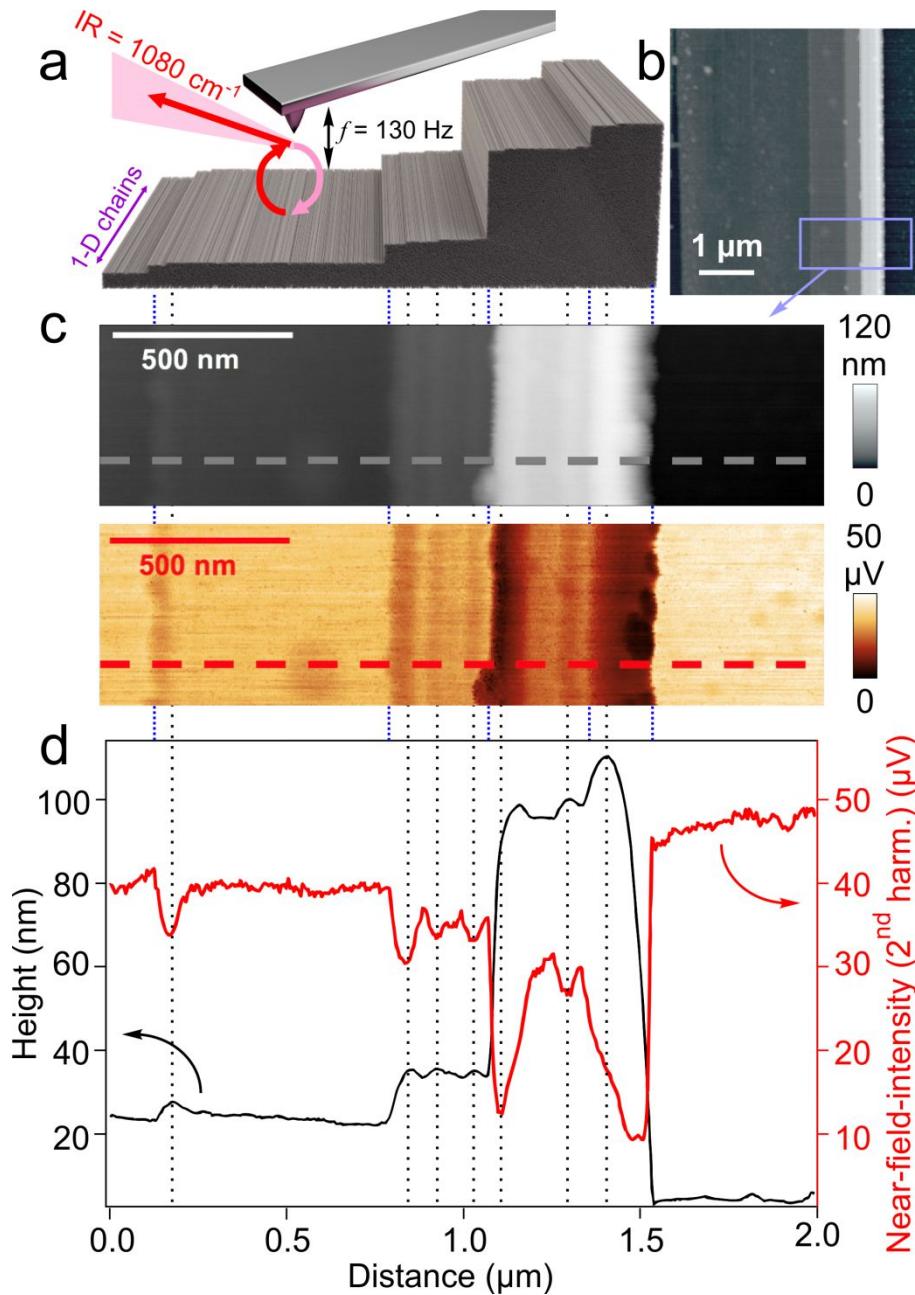

1
2
3 As shown in Figure 3c, the energy increases with the separation between the layers and converges to 0.204
4 J m⁻². As noted in the previous report,¹⁵ this energy is lower than the cleavage energy for graphene layers
5 in graphite crystal, which is shown by the dashed line in Figure 3c and converges at about 0.320 J m⁻².
6
7 This computational result suggests that the exfoliation of 2D layers of TiS₃ crystals should be even easier
8 than the exfoliation of graphene from graphite. Figure 3c also shows that other planes that separate the
9 TiS₃ chains without dissecting the covalent Ti-S bonds have comparable cleavage energies converging at
10 0.714, 0.716 and 0.815 J/m² for the (101), (10 $\bar{1}$) and (100) planes, respectively. These values are only
11 about twice as large as the cleavage energies of graphite, suggesting that the mechanical exfoliation
12 separating TiS₃ chains without breaking them is highly feasible. On the contrary, the planes that dissect
13 the covalent bonds within the TiS₃ chains were found to have much higher cleavage energies, such as
14 2.706 J/m² for the (010) plane and 3.03 J/m² for the (90 $\bar{2}$) plane (Figure 3c). Overall, the calculations
15 show that breaking the weak bonding interactions between the 2D layers and between 1D chains within
16 the layers require comparable energies, which in turn are considerably lower than those required for
17 breaking the covalent bonds within the chains. These computational results agree well with the
18 experimentally observed exfoliation of TiS₃, as the ease of cleavage between the 1D chains is consistent
19 with the stripy pattern in the AFM image (Figure 2c). Also, the stripes have uniform widths, because as
20 the cleavage starts in the crystallographic *b* direction between the chains it is unlikely to deviate in the *a*
21 direction since breaking covalent bonds within the chains requires higher energy. The ease of cleavage
22 between the 1D chains is also consistent with the very smooth and straight edges of the exfoliated TiS₃
23 nanoribbons.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Nanomechanical exfoliation of TiS_3 crystals using AFM tip. **(a)** Scheme of TiS_3 cleavage using an AFM tip. **(b)** AFM image of a TiS_3 crystal on a barium titanite (BaTiO_3) substrate which was cleaved by an AFM tip along the 1D chains. Tip force: $\approx 10 \mu\text{N}$. **(c-e)** AFM images of a TiS_3 crystal on a BTO substrate that was cleaved across the 1D chains: (c) as-prepared crystal, (d) the same crystal after the first cleavage (tip force: $\approx 2 \mu\text{N}$) and (e) the same crystal after the second cleavage (tip force: $\approx 3 \mu\text{N}$). The red arrows show the AFM tip cleavage directions.

1
2
3 While the mechanical exfoliation of the layered materials is usually performed on the macroscale
4 by the manual peeling of crystals using an adhesive tape, it can also be realized on a nanoscale using an
5 AFM tip. Figure 4a shows scheme of the experiment, in which a diamond tip is pressed against a TiS_3
6 crystal with a force of 2-10 μN and then dragged either along or across the direction of 1D chains. Figure
7 4b shows AFM image of a TiS_3 crystal, which was scratched in the direction marked by the red arrow.
8 The moving tip with a force of $\approx 10 \mu\text{N}$ cleaved the 1D chains from the underlying 2D layer and the
9 surrounding chains within the layer, forming a well visible scratch. The chains are pushed forward and
10 accumulated together in a structure indicated by the blue arrow in Figure 4b. This cleavage scenario is
11 illustrated by Figure 4a, in which the tip does not move across the covalently bonded 1D chains that
12 require relatively high energies for cleavage (Figure 3).
13
14

15 The situation changes, when the AFM tip scratches an exfoliated TiS_3 crystal along the a direction.
16 Since diamond is much harder than TiS_3 , it can also cut the 1D chains across if a sufficient force is applied
17 to the tip, which we observed experimentally in some cases. However, Figure 4c-e shows another possible
18 scenario, in which a tip moving across a TiS_3 nanoribbon causes top 2D layers slide relative to the bottom
19 layer, again providing evidence for their weak bonding interaction. Figure 4c shows AFM image of a
20 fragment of as-prepared TiS_3 crystal. Figure 4d shows that the first drag of an AFM tip across this crystal
21 with a force of $\approx 2 \mu\text{N}$ causes the top 2D layers slide to the side, while the second tip drag along the same
22 trajectory with a force of $\approx 3 \mu\text{N}$ cleaves more 2D layers in a similar manner (Figure 4e). Overall, the
23 nanoscale cleavage experiments further demonstrate the ease with which TiS_3 crystals can be exfoliated
24 along the weakly bound 2D layers as well as 1D chains.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 5. Thickness dependent Raman spectroscopy of TiS_3 flakes. **(a,b)** AFM images of TiS_3 nanoribbons of different thicknesses and the corresponding height profiles. **(c)** Raman spectra of exfoliated TiS_3 flakes with different number of monolayers. Raman-active optical modes are named according ref. 27 and are shown above the corresponding Raman peaks. **(d)** Frequencies f^I (\blacktriangle) and f^{III} (\blacktriangledown) of I: $\text{A}_g^{\text{rigid}}$ and III: $\text{A}_g^{\text{internal}}$ Raman-active modes, respectively, as a function of the number of layers in exfoliated TiS_3 crystals. Data points show frequencies from individual experiments. The peak positions for bulk crystals were averaged over 10 samples and are shown with error bars. **(e)** Averaged difference $\Delta^{\text{III}-\text{I}} = f^{\text{III}} - f^{\text{I}}$ of the frequencies of III: $\text{A}_g^{\text{internal}}$ and I: $\text{A}_g^{\text{rigid}}$ Raman-active modes in TiS_3 as a function of the number of layers.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

In the framework of this study, we exfoliated a large number of TiS_3 crystals with different thicknesses, which could be assessed by Raman spectroscopy. Several recent studies focused on understanding the origin and behavior of the Raman-active modes in TiS_3 and related TMTCS.²⁷⁻³⁰ However, there is still a lack of information regarding the most common practical application of Raman spectroscopy to 2D materials, which is the determination of the number of monolayers in thin crystals. For example, Raman spectroscopy was shown to be a powerful tool for determining the number of monolayers in the most studied 2D materials, such as graphene,³¹ hexagonal boron nitride,³² MoS_2 ^{33,34} and WS_2 ,³⁵ but information on how to distinguish between monolayer and few-layer TiS_3 crystals is still missing in literature.

There are several experimental complications for the Raman spectroscopy investigation of TiS_3 crystals with different thicknesses. First of all, since many exfoliated TiS_3 crystals have terraced surfaces, as shown in Figure 2c and Figure S6, they cannot be characterized by a specific number of layers. Second, since the splitting between the TiS_3 chains is nearly as easy as the splitting between the TiS_3 layers, during the exfoliation process the crystals typically not only get thinner but also narrower and often become too narrow for Raman spectroscopy. Monolayer (1L) TiS_3 nanoribbon that is only a few nm wide can be seen in Figure 5a. The observation of such narrow ribbons is interesting in the view of their potential application in nanoscale electronic devices, but characterization of such narrow TiS_3 crystals by conventional Raman microscopy with a focused laser beam spot of about 1 μm is problematic. In this study, we were able to identify a sufficient number of TiS_3 nanoribbons that had smooth surfaces and were wide enough for Raman spectroscopy. Examples of TiS_3 crystals with thicknesses up to 13 layers (13L) are shown in Figure 5a,b. The numbers of layers in these and similar images were assigned based on the entire set of AFM data. In the AFM images, monolayers of layered 2D materials often exhibit larger thickness in comparison with the expected theoretical thicknesses, which is attributed to the presence of water adsorbates and other

1
2
3 contaminants underneath.^{1,36} In our AFM experiments, monolayer TiS₃ crystals were about 2 nm thick,
4 and the thickness of TiS₃ crystals was increasing by ~0.9 nm per every additional layer.
5
6

7 Typical Raman spectra of TiS₃ flakes are shown in Figure 5c. The range from 490 to 530 cm⁻¹ is
8 not included, since the peaks from silica substrate are relatively strong due to thin and narrow sizes of
9 TiS₃ flakes. We observed four A_g Raman-active modes near $f^I = 175$ cm⁻¹, $f^{II} = 300$ cm⁻¹, $f^{III} = 370$ cm⁻¹
10 and $f^{IV} = 560$ cm⁻¹, which correspond to I:A_g^{rigid}, II:A_g^{internal}, III:A_g^{internal} and IV:A_g^{S-S}, respectively; the
11 peaks were assigned based on the calculations by Wu *et al.*²⁷ The positions of two of the four observed
12 peaks, f^{II} and f^{IV} , did not exhibit significant dependences on the number of layers. In II:A_g^{internal} mode the
13 vibrations occur out-of-plane, but both trigonal prismatic chain are moving collectively in the same
14 direction, making intrachannel interactions dominant. The IV:A_g^{S-S} corresponds to in-plane vibrations
15 between S₂²⁻ atoms in the same trigonal prismatic chain, so interlayer interactions do not significantly
16 affect the frequency of this mode. However, we found a considerable downshift of the frequency f^I of
17 the I:A_g^{rigid} mode from 175 to 170 cm⁻¹ with decreasing the number of layers. There was also a noticeable
18 increase of the frequency f^{III} of the III: A_g^{internal} mode from 370 to 373 cm⁻¹ with the number of layers
19 (Figure 5d). These two modes have two trigonal prismatic chains moving in the opposite directions
20 showing dominance of the interchain interaction, which reflects the quasi-one-dimensional structure of
21 TiS₃, similar to ZrS₃ and ZrSe₃.²⁸ Since the frequencies f^I and f^{III} shift in the opposite directions with
22 increasing the thickness of TiS₃, it is convenient to use their difference $\Delta^{III-I} = f^{III} - f^I$ to distinguish the
23 number of layers in thin TiS₃ crystals (Figure 5e). A similar approach was successfully used for monolayer
24 and few-layer MoS₂ flakes.^{33,34} The Δ^{III-I} peak difference varies in a wider range (from 195 to 203 cm⁻¹)
25 than any of the individual peaks, and while the positions of the individual peaks should be carefully
26 measured versus a calibrated standard, the use of their difference eliminates systematic measurement
27 errors.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 6. Scanning near-field optical microscopy of exfoliated TiS_3 flakes. **(a)** Scheme of the operation principle of the s-SNOM with incident laser-light scattered at the tip's apex, locally exciting the sample. The tip is oscillating at 130 kHz and collecting the chemical contrast simultaneously with the topography, while scanning the sample's surface. **(b)** Topography map from an AFM scan over an exfoliated TiS_3 crystal on Si/SiO_2 . **(c)** High-resolution scan from the blue-marked area in (b), showing the topography of the step-like structure (top) of the TiS_3 surface and the near-field-intensity map (bottom) collected laser

1
2
3 radiation operating at $9.261\text{ }\mu\text{m}$ (1080 cm^{-1}) at the second harmonic of the tip's oscillation frequency. (d)
4
5 Cross section lines representing the topography (black) and the near-field intensity (red) across the TiS_3
6 steps shown in (c). Step edges (dashed blue lines) and other topographic features, corresponding the IR
7 absorption (dashed black lines) are indicated.
8
9
10
11
12
13
14

15 Finally, we investigated exfoliated TiS_3 crystals on Si/SiO_2 by infrared (IR) scattering-type
16 scanning near-field optical microscopy using an s-SNOM system that is schematically shown in Figure
17 6a. The system includes an atomic force microscope operated in the tapping mode and an asymmetric
18 Michelson interferometer. Incident IR radiation of CO_2 gas laser is scattered on Au-coated silicon AFM
19 cantilever which have resonance frequencies of around 130 kHz. In this experiment, simultaneously to the
20 topography, we measured the IR response from the broad SiO_2 substrate phonon (ranging from 900 cm^{-1}
21 to 1250 cm^{-1}) through the exfoliated TiS_3 crystal shown in the AFM image in Figure 6b. The near-field
22 intensity maps were collected at 1080 cm^{-1} , the shortest wavenumber that is still accessible by the CO_2
23 laser. By tuning to off-resonance we avoided artefacts from the peak shifts due to sample-substrate
24 interactions, as reported in previous near-field spectroscopic studies in the mid-infrared regime.^{37,38} The
25 spectroscopic response did not include a signal from the TiS_3 crystal, which shows infrared features at
26 wavenumbers well below 450 cm^{-1} , the spectral range that is not accessible to the used light source and is
27 below the detector's sensitivity range.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 In Figure 6c, a high-resolution scan of size $2\text{ }\mu\text{m} \times 0.25\text{ }\mu\text{m}$ which represents the marked blue area
45 shown in Figure 6b. The upper part of Figure 6c is a topographic representation of the TiS_3 whisker while
46 the bottom part is a near-field intensity map collected at second harmonic of the tip oscillation frequency.
47 For a clearer view the cross-section lines at the position marked by dashed black and red lines (Figure 6c)
48 are shown. In Figure 6d the black line represents the topography of the sample and the red line corresponds
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 to the simultaneously taken near-field signal. Clearly, the near field intensity drops at the positions of the
4 edges of the TiS_3 whisker terraces. The intensity attenuation is not constant along the entire TiS_3 step
5 structure and slightly recovers towards the next terrace and drops again in the presence of another edge.
6
7 Additionally, the near-field signal intensity drop is deeper depending on the height difference between the
8 involved terraces. As mentioned above, the near field signal at 1080 cm^{-1} is characteristic for the
9 underlying SiO_2 substrate and is due to the strong optical response from the SiO_2 phonon resonance
10 peaking at 1130 cm^{-1} . The intensity of the near-field response originating from the SiO_2 phonon is strongly
11 dependent on the tip-sample interactions. The presence of TiS_3 on top of SiO_2 is directly affecting the
12 coupling of the infrared radiation focused by the tip to the SiO_2 phonon, which results in near-field
13 intensity drops, leading to strong discontinuities at the terrace edges. However, in the optical intensity
14 signal, these strong discontinuities are not restricted just to edges, but propagate well into terraces,
15 suggesting that this effect is strongest at the terrace edge, but also affects the terraces. Considering the
16 TiS_3 crystal structure and the appearance of the exfoliated nanoribbons in Figure 2c, the suppressions of
17 the substrate phonon responses near the edges of crystal terraces in s-SNOM measurements are consistent
18 with the uniform sulfur termination of the quasi-1D TiS_3 chains.
19
20

21 In summary, the TiS_3 nanoribbons with straight and smooth edges showing clear signatures of 1D
22 chains were produced by micromechanical exfoliation. The observed structures form due to the drastically
23 different cleavage energies for various crystallographic planes. The theoretical calculations show that
24 breaking weak interactions between the 2D layers and between 1D chains within the layers require
25 comparable energies, which in turn are considerably higher than those required for breaking the covalent
26 bonds within the chains. The macroscopic exfoliation experiments were emulated on the nanoscale by
27 applying a local shear force along the different crystallographic directions using an AFM tip. In the AFM
28 experiments it was both possible to slide the 2D TiS_3 layers relative to each other or remove selected 1D
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 chains from the layers. We systematically studied the exfoliated TiS_3 crystals by Raman spectroscopy and
4 demonstrate which Raman peaks are most dependent on the crystals' thickness. These results could be
5 used to distinguish between TiS_3 crystals with thicknesses ranging from one to about seven monolayers.
6
7 Finally, we used nano-infrared near-field microscopy showing a decrease of the nearfield intensity signal
8 near the terrace edges slowly recovering towards the center of the terrace, which we relate to the edge
9 charge accumulation combined with Coulomb repulsion, which consistent with the expected uniform
10 sulfur termination at the edges and terraces in the TiS_3 crystals. The conclusions established in this study
11 for the exfoliated TiS_3 crystals can likely be extended to other TMTC materials as well as other quasi-1D
12 crystals. The possibility of exfoliation of TiS_3 into crystals with smooth edges could be important for the
13 future realization of miniature 2D device channels with reduced edge scattering.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Experimental Methods

Cleavage energies calculations

31
32 The cleavage energies calculations are carried out using density functional theory (DFT) methods within
33 the generalized gradient approximation (GGA) and with the Perdew–Burke–Ernzerhof (PBE) exchange
34 correlation functional, as implemented in the Vienna *ab initio* simulation package (VASP).³⁹ The
35 Grimme's D3 dispersion correction is adopted to account for the long-range interactions. The ion–electron
36 interaction is treated using the projector-augment-wave (PAW) technique and a kinetic energy cut of 500
37 eV is chosen. The cleavage is simulated by introducing a fracture in the TiS_3 ribbon where the edges are
38 passivated with hydrogen. The total energies under variation of the separation between the fractured parts
39 are computed to simulate the cleavage process.
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Transmission Electron Microscopy (TEM)

1
2
3 The microstructure of TiS_3 flakes was studied using a FEI Tecnai Osiris scanning transmission electron
4 microscope equipped with a HAADF detector and a X-FEG high brightness Schottky field emission gun.
5
6 The accelerating voltage was 200 kV.
7
8

9
10 **Exfoliation by AFM tip**
11

12 The cleavage experiment was done on a commercial AFM system (MFP3D, Asylum Research). Diamond
13 coated AFM tips (CDT-NCHR, Nanosensors) with a spring constant about 40 N/m was used to perform
14 cleavage on the TiS_3 crystals.
15
16

17
18 **Infrared scattering-type near-field optical microscopy (s-SNOM)**
19

20 The experimental setup has been described before in detail.^{38,40,41} It consists of a commercial scattering-
21 type SNOM (s-SNOM) system (NeaSNOM, Neaspec GmbH, Germany), which includes an atomic force
22 microscope operated in the tapping mode and an asymmetric Michelson interferometer. Au-coated silicon
23 AFM cantilevers with a gold metal layer of about 30 nm thickness and resonance frequencies of around
24 130 kHz were used as a scattering element of the microscope. The average tip diameter of near-field
25 probes was below 50 nm. As for the IR radiation sources, we used a grating tuned CO_2 gas laser (PL5,
26 Edinburgh Instruments, UK) operating in sealed-off mode. This source is characterized by high intensity
27 and frequency stability within a limited spectral range, which can be regarded as a suitable tool for nano-
28 imaging experiments at discrete wavelengths.
29
30

31
32 **Raman spectroscopy**
33

34 Raman spectra were measured at room temperature with a Thermo Scientific DXR Raman microscope
35 operated in normal incidence and back-scattered configuration. A solid laser of $\lambda = 532$ nm was used as
36 excitation light, and typical laser power was kept at 0.1 mW to prevent thermal damage to the flakes. Si
37 band at 520 cm^{-1} was used as a frequency reference. The spectral resolution was 0.96 cm^{-1} . The laser was
38 focused through a 100x objective with laser spot size of about $2 \mu\text{m}$ on the sample.
39
40

1
2
3 ASSOCIATED CONTENT
4
5
6
7
8
9**Supporting Information.**10 The Supporting Information is available free of charge on the ACS Publications website at DOI:
11
12 10.1021/
13
1415 Scheme of TiS₃ synthesis; X-ray photoelectron spectroscopy (XPS) analysis; Energy-dispersive x-ray
16
17 (EDX) spectrum, additional TEM and selected area electron diffraction (SAED) images; SEM images;
18
19 additional AFM images (PDF)20
21
22
23
24 AUTHOR INFORMATION
25
2627 **Corresponding Author**
28
2930 *E-mail: sinitskii@unl.edu
31
3233
34 **Author Contributions**
35
3637 The manuscript was written through contributions of all authors. All authors have given approval to the
38
39 final version of the manuscript.40
41 **Acknowledgements:**
42
4344 This research was supported by the National Science Foundation, through grants NSF ECCS-1740136
45 and ECCS-1508541, the nCORE, a wholly owned subsidiary of the Semiconductor Research Corporation
46
47 (SRC), and the Nebraska Materials Research Science and Engineering Center (MRSEC) (NSF DMR-
48
49 1420645). The materials characterization was performed in part in MISIS, in which the work was
50
51 supported by the Ministry of Education and Science of the Russian Federation (K2-2018-014), and in the
52
53 Nebraska Nanoscale Facility, which is supported by the NSF (ECCS-1542182) and the Nebraska Research
54
55
56 Nebraska Research
57
58

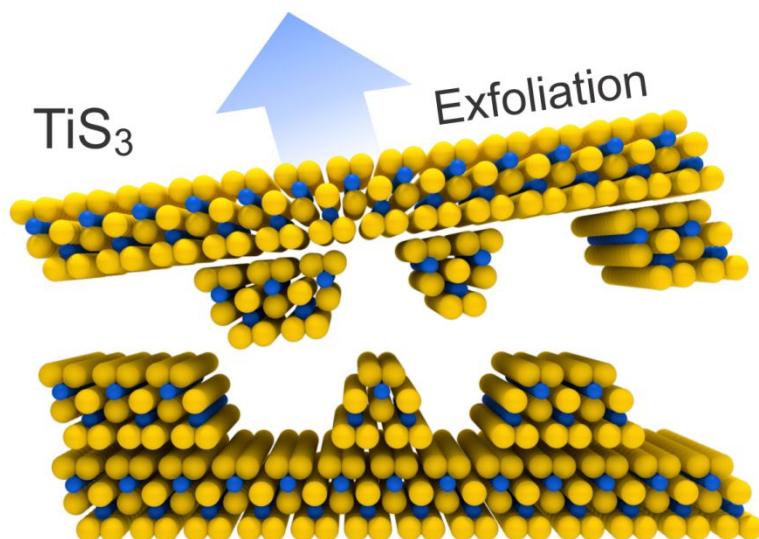
1
2
3 Initiative. Financial support by the German Research Foundation (DFG) within SFB 1112 (TP B02) is
4
5 also gratefully acknowledged.
6
7
8
9

10 REFERENCES
11

12 1. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A.
13 K. Two-Dimensional Atomic Crystals. *Proc. Natl. Acad. Sci. U. S. A.* **2005**, *102*, 10451-10453.
14
15 2. Geim, A. K.; Grigorieva, I. V. Van der Waals Heterostructures. *Nature* **2013**, *499*, 419-425.
16
17 3. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.;
18 Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff,
19 R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E.
20 Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. *ACS Nano*
21
22 **2013**, *7*, 2898-2926.
23
24 4. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.;
25 Cooper, V. R.; Liang, L.; Louie, S. G.; Ringe, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.;
26 Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.; Schuller, J. A.; Schaak, R. E.;
27 Terrones, M.; Robinson, J. A. Recent Advances in Two-Dimensional Materials beyond Graphene.
28 *ACS Nano* **2015**, *9*, 11509-11539.
29
30 5. Furuseth, S.; Brattas, L.; Kjekshus, A. On the Crystal Structures of TiS_3 , ZrS_3 , $ZrSe_3$, $ZrTe_3$, HfS_3 , and
31 $HfSe_3$. *Acta Chemica Scandinavica A* **1975**, *29*, 623-631.
32
33 6. Srivastava, S. K.; Avasthi, B. N. Preparation, structure and properties of transition metal
34 trichalcogenides. *J. Mater. Sci.* **1992**, *27*, 3693-3705.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 7. Dai, J.; Li, M.; Zeng, X. C. Group IVB transition metal trichalcogenides: a new class of 2D layered
4 materials beyond graphene. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2016**,
5 6, 211-222.
6
7
8 8. Island, J. O.; Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Clamagirand, J. M.; Ares, J.
9 R.; Sánchez, C.; van der Zant, H. S.; D'Agosta, R.; Ferrer, I. J.; Castellanos-Gomez, A. Electronics
10 and optoelectronics of quasi-1D layered transition metal trichalcogenides. *2D Materials* **2017**, 4,
11 022003.
12
13 9. Yi, H.; Komesu, T.; Gilbert, S.; Hao, G.; Yost, A. J.; Lipatov, A.; Sinitskii, A.; Avila, J.; Chen, C.;
14 Asensio, M. C.; Dowben, P. A. The band structure of the quasi-one-dimensional layered
15 semiconductor $\text{TiS}_3(001)$. *Appl. Phys. Lett.* **2018**, 112, 052102.
16
17 10. Finkman, E.; Fisher, B. Electrical transport measurements in TiS_3 . *Solid State Commun.* **1984**, 50, 25-
18 28.
19
20 11. Ferrer, I. J.; Ares, J. R.; Clamagirand, J. M.; Barawi, M.; Sánchez, C. Optical properties of titanium
21 trisulphide (TiS_3) thin films. *Thin Solid Films* **2013**, 535, 398-401.
22
23 12. Murphy, D. W.; Trumbore, F. A. Chemistry of TiS_3 and NbSe_3 Cathodes. *J. Electrochem. Soc.* **1976**,
24 123, 960-964.
25
26 13. Zanini, M.; Shaw, J. L.; Tennenhouse, G. J. The Behavior of Na- TiS_2 and Na- TiS_3 as Solid-Solution
27 Electrodes. *J. Electrochem. Soc.* **1981**, 128, 1647-1650.
28
29 14. Hayashi, A.; Matsuyama, T.; Sakuda, A.; Tatsumisago, M. Amorphous Titanium Sulfide Electrode
30 for All-solid-state Rechargeable Lithium Batteries with High Capacity. *Chem. Lett.* **2012**, 41, 886-
31 888.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 15. Dai, J.; Zeng, X. C. Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap
4 Semiconductor with High and Anisotropic Carrier Mobility. *Angewandte Chemie International
5 Edition* **2015**, *54*, 7572-7576.
6
7
8 16. Kang, J.; Sahin, H.; Ozaydin, H. D.; Senger, R. T.; Peeters, F. M. TiS₃ nanoribbons: Width-
9 independent band gap and strain-tunable electronic properties. *Phys. Rev. B* **2015**, *92*, 075413.
10
11 17. Zhang, J.; Liu, X.; Wen, Y.; Shi, L.; Chen, R.; Liu, H.; Shan, B. Titanium Trisulfide Monolayer as a
12 Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study. *ACS Appl.
13 Mater. Interfaces* **2017**, *9*, 2509-2515.
14
15 18. Morozova, N. V.; Korobeinikov, I. V.; Kurochka, K. V.; Titov, A. N.; Ovsyannikov, S. V.
16 Thermoelectric Properties of Compressed Titanium and Zirconium Trichalcogenides. *The Journal of
17 Physical Chemistry C* **2018**, *122*, 14362-14372.
18
19 19. Haraldsen, H.; Rost, E.; Kjekshus, A.; Steffens. A On Properties of TiS₃, ZrS₃, and HfS₃. *Acta Chem.
20 Scand.* **1963**, *17*, 1283-&.
21
22 20. Brattas, L.; Kjekshus, A. On the Properties of Compounds with the ZrSe₃ Type Structure. *Acta Chem.
23 Scand.* **1972**, *26*, 3441-3449.
24
25 21. Island, J. O.; Buscema, M.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Ferrer, I. J.;
26 Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Ultrahigh Photoresponse of Few-Layer
27 TiS₃ Nanoribbon Transistors. *Advanced Optical Materials* **2014**, *2*, 641-645.
28
29 22. Lipatov, A.; Wilson, P. M.; Shekhirev, M.; Teeter, J. D.; Netusil, R.; Sinitskii, A. Few-Layered
30 Titanium Trisulfide (TiS₃) Field-Effect Transistors. *Nanoscale* **2015**, *7*, 12291-12296.
31
32 23. Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; van
33 der Zant, H. S. J.; Álvarez, J. V.; D'Agosta, R.; Ferrer, I. J.; Castellanos-Gomez, A. TiS₃ Transistors
34 with Tailored Morphology and Electrical Properties. *Adv. Mater.* **2015**, *27*, 2595-2601.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1
2
3 24. Wang, M.; Li, C. M. Excitonic properties of graphene-based materials. *Nanoscale* **2012**, *4*, 1044-1050.
4
5 25. Cui, Q.; Lipatov, A.; Wilt, J. S.; Bellus, M. Z.; Zeng, X. C.; Wu, J.; Sinitskii, A.; Zhao, H. Time-
6
7 Resolved Measurements of Photocarrier Dynamics in TiS_3 Nanoribbons. *ACS Appl. Mater. Interfaces*
8
9 **2016**, *8*, 18334-18338.
10
11
12 26. Molina-Mendoza, A. J.; Island, J. O.; Paz, W. S.; Clamagirand, J. M.; Ares, J. R.; Flores, E.; Leardini,
13
14 F.; Sánchez, C.; Agraït, N.; Rubio-Bollinger, G.; van der Zant, H. S. J.; Ferrer, I. J.; Palacios, J. J.;
15
16 Castellanos-Gomez, A. High Current Density Electrical Breakdown of TiS_3 Nanoribbon-Based Field-
17
18 Effect Transistors. *Adv. Funct. Mater.* **2017**, *27*, 1605647.
19
20
21 27. Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Parsons Wright, D.; Aoki, T.; Peeters, F.
22
23 M.; Soignard, E.; Tongay, S. Unusual lattice vibration characteristics in whiskers of the pseudo-one-
24
25 dimensional titanium trisulfide TiS_3 . *Nat. Commun.* **2016**, *7*, 12952.
26
27
28 28. Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon Properties of Few-Layer
29
30 Crystals of Quasi-One-Dimensional ZrS_3 and ZrSe_3 . *The Journal of Physical Chemistry C* **2016**, *120*,
31
32 4653-4659.
33
34
35 29. Kong, W.; Bacaksiz, C.; Chen, B.; Wu, K.; Blei, M.; Fan, X.; Shen, Y.; Sahin, H.; Wright, D.; Narang,
36
37 D. S.; Tongay, S. Angle resolved vibrational properties of anisotropic transition metal trichalcogenide
38
39 nanosheets. *Nanoscale* **2017**, *9*, 4175-4182.
40
41
42 30. Pawbake, A. S.; Island, J. O.; Flores, E.; Ares, J. R.; Sanchez, C.; Ferrer, I. J.; Jadkar, S. R.; van der
43
44 Zant, H. S. J.; Castellanos-Gomez, A.; Late, D. J. Temperature-Dependent Raman Spectroscopy of
45
46 Titanium Trisulfide (TiS_3) Nanoribbons and Nanosheets. *ACS Appl. Mater. Interfaces* **2015**, *7*, 24185-
47
48 24190.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 31. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang,
4 D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers.
5 *Phys. Rev. Lett.* **2006**, *97*, 187401.
6
7
8
9
10 32. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K.
11 S.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Blake, P. Hunting for Monolayer Boron Nitride: Optical
12 and Raman Signatures. *Small* **2011**, *7*, 465-468.
13
14
15
16 33. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk
17 to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**, *22*, 1385-1390.
18
19
20 34. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single-
21 and Few-Layer MoS₂. *ACS Nano* **2010**, *4*, 2695-2700.
22
23
24
25 35. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.;
26 Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. Identification of
27 individual and few layers of WS₂ using Raman Spectroscopy. *Scientific Reports* **2013**, *3*, 1755.
28
29
30
31
32 36. Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic
33 properties of 2D Ti₃C₂T_x MXene monolayers and bilayers. *Science Advances* **2018**, *4*, eaat0491.
34
35
36
37 37. Amarie, S.; Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-
38 field microscopy. *Phys. Rev. B* **2011**, *83*, 045404.
39
40
41
42 38. Patoka, P.; Ulrich, G.; Nguyen, A. E.; Bartels, L.; Dowben, P. A.; Turkowski, V.; Rahman, T. S.;
43 Hermann, P.; Kästner, B.; Hoehl, A.; Ulm, G.; Rühl, E. Nanoscale plasmonic phenomena in CVD-
44 grown MoS₂ monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR
45 spectroscopy and near-field microscopy. *Optics Express* **2016**, *24*, 1154-1164.
46
47
48
49
50 39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a
51 plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169-11186.
52
53
54
55
56
57
58
59
60

1
2
3 40. Hermann, P.; Hoehl, A.; Patoka, P.; Huth, F.; Rühl, E.; Ulm, G. Near-field imaging and nano-Fourier-
4 transform infrared spectroscopy using broadband synchrotron radiation. *Optics Express* **2013**, *21*,
5 2913-2919.
6
7 41. Hermann, P.; Hoehl, A.; Ulrich, G.; Fleischmann, C.; Hermelink, A.; Kästner, B.; Patoka, P.;
8 Hornemann, A.; Beckhoff, B.; Rühl, E.; Ulm, G. Characterization of semiconductor materials using
9 synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy. *Optics
10 Express* **2014**, *22*, 17948-17958.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TOC graphic

