

Catalyst Choice for Highly Enantioselective [3 + 3]-Cycloaddition of **Enoldiazocarbonyl Compounds**

Kostiantyn O. Marichev, † Frady G. Adly, †, † Alejandra M. Carranco, † Estevan C. Garcia, † Hadi Arman, † and Michael P. Doyle*, 10

Supporting Information

ABSTRACT: Chiral copper(I) catalysts are preferred over chiral dirhodium(II) catalysts for [3 + 3]-cycloaddition reactions of enoldiazocarbonyl compounds with nitrones and acyliminopyridinium ylides, forming chiral oxazines and pyrazines in very high yield and enantioselectivity. Yields and stereoselectivities from reactions of enoldiazoketones are virtually the same as those from the corresponding esters and amides, but products from enoldiazoketones are precursors to chiral 1,3-dicarbonyl derivatives that provide additional opportunities in heterocyclic synthesis through the formation of pyrazoles and isoxazoles.

KEYWORDS: cycloaddition, metal carbene, copper, bisoxazoline ligands, heterocycles

INTRODUCTION

Cycloaddition reactions have a long held and privileged position in synthetic organic chemistry. 1,2 Their applications enable the synthesis of carbocyclic and heterocyclic compounds by processes that are concerted or stepwise, and they involve the combination of m atoms with n atoms to provide a cyclic array of (m + n) atoms, where m and n are integers. For the synthesis of six-membered ring compounds, the [4 + 2]cyclization has been the most used methodology,^{3,4} but recently, [3 + 3]-cycloaddition has offered a highly selective alternative.⁵ The transition metal catalyzed [3 + 3]-cycloaddition of enoldiazoacetates introduced for the first time in 2011⁶ has provided high yields and good to excellent enantiocontrol in reactions with a wide variety of dipolar reagents that occur under mild conditions using dirhodium carboxylate catalysts (Scheme 1).5,7

An unexpected complication arose with the use of enoldiazoacetates in that their catalytic dedinitrogen conversion to the corresponding cyclopropenes⁸ occurred at a faster rate than cycloaddition, but these donor-acceptor cyclopropenes also served as progenerators of the metal carbene responsible for cycloaddition. The reversible formation of these cyclopropenes allows them to serve as the resting state for the metal carbene intermediate.

More recently, we have found that yields and selectivities for [3 + 3]-cycloaddition to nitrones could be increased if enoldiazoacetamides were used in place of enoldiazoacetates. 10b Yields greater than 90% with enantioselectivities above 93% characterized reactions catalyzed by copper(I) with a

Scheme 1. [3 + 3]-Cycloaddition of Metallo-Enolcarbenes with Dipolar Reagents

ROOC
$$SiO \longrightarrow N_2 \longrightarrow ML_n$$

$$SiO \longrightarrow ML_n$$

$$ML_n \longrightarrow SiO \longrightarrow R$$

$$SiO \longrightarrow COOR$$

$$R'$$

chiral bisoxazoline (box) ligand. Was this an isolated improvement or was it an indication that chiral copper(I) catalysts could replace those of dirhodium(II) for cycloaddition, and could enoldiazoketones and enoldiazoacetamides be as effective as enoldiazoacetates for highly selective cycloaddition reactions? We report now that chiral copper(I) catalysis is the most effective (yield and selectivity) for cycloaddition reactions of enoldiazocarbonyl compounds that are ketones, acetate esters, and carboxamides with nitrones and acyliminopyridinium ylides, and the most suitable chiral box ligand for high yield and enantiocontrol has been identified. Furthermore, cycloaddition products from reactions with

Received: August 24, 2018 Revised: September 24, 2018 Published: September 27, 2018

Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States

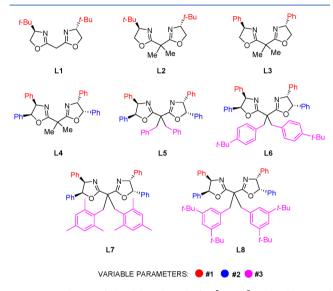
Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia

enoldiazoketones are easily converted to pyrazoles and isoxazoles with retention of stereochemistry.

■ RESULTS AND DISCUSSION

Selectivity. We began our investigation by asking the question: is there a general catalyst that can provide high yields and enantioselectivities of [3 + 3]-cycloaddition products for any type of enoldiazocarbonyl compounds: ester, amide, and ketone? Whereas enoldiazoacetamides are more stable than enoldiazoacetates for dinitrogen extrusion and for metal carbene or donor—acceptor cyclopropane stability, enoldiazoketones were expected to be less stable. The initial assessment of catalyst effectiveness and efficiency was performed on reactions of enoldiazoketone 1a (previously unreported substrates for [3 + 3]-cycloaddition) with nitrone 2a using Rh, Cu, and other metal catalysts (Table 1).

Table 1. Catalyst Screening in [3 + 3]-Cycloaddition of Enoldiazoketone 1a with Nitrone 2a


entry ^a	catalyst	yield 3a (%) ^b	yield 4 (%) ^b	yield 5 (%) ^b
1	2 mol% Rh ₂ (OAc) ₄	55	24	<5
2	2 mol% Rh ₂ (oct) ₄	67	28	<5
3	2 mol% Rh ₂ (cap) ₄	<5	12	<5
4	5 mol% Pd(PhCN) ₂ Cl ₂	24	18	<5
5	5 mol% Cu(MeCN) ₄ BF ₄	78	<5	<5
6	5 mol% Cu(MeCN) ₄ PF ₆	72	<5	<5
7	5 mol% CuOTf·1/2Tol	<5	<5	77
8	5 mol% Au(JohnPhos) (MeCN)SbF ₆	<5	<5	86

"Reactions were carried out at room temperature on a 0.10 mmol scale of 2a with 0.11 mmol of 1a in dichloromethane for 12 h. "Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

In addition to the target [3+3]-cycloaddition product 3a formed from metal carbene B (Table 1), two other products were identified: 5-phenyl-2-siloxyfuran 4, formed via a recently reported catalytic intramolecular rearrangement of the intermediate donor—acceptor cyclopropene A, and the Mannich addition product S that is readily formed via a Lewis-catalyzed pathway. Dirhodium tetrakis (carboxylates) $[Rh_2(OAc)_4$ and $Rh_2(oct)_4]$ formed the [3+3]-cycloaddition product S in only moderate yields due to competing furant formation. Dirhodium tetracaprolactamate $Rh_2(cap)_4$ and $Pd(PhCN)_2Cl_2$ were not sufficiently active to cause dinitrogen extrusion from S at room temperature. Lewis acidic S CuOTf-S 1/2Tol and cationic S Au(JohnPhos)(MeCN)SbF $_6$ favored the Mannich reaction by activation of the nitrone for electrophilic

addition.¹⁰ The highest yields (up to 78%) of cycloaddition product 3a were achieved with the use of Cu(I) catalysts [Cu(MeCN)₄BF₄ and Cu(MeCN)₄PF₆]. Solvent screening (see the Supporting Information) did not provide an improvement in the yield of 3a from that in dichloromethane.

With the optimum catalyst [Cu(MeCN)₄BF₄] and conditions in hand, we examined enantioselectivities for cycloaddition using a library of chiral box ligands (Figure 1), that

Figure 1. Library of chiral box ligands for [3 + 3]-cycloaddition of enoldiazocarbonyl compounds with nitrones.

included those that had already proven their effectiveness in the analogous reactions of nitrones with enoldiazoamides. Three variable parameters in chiral box ligands were tested to achieve maximum *ee* values in formation of **3a**: (1) disubstitution in positions 4 and 4' of the box ligand; (2) tetrasubstitution in positions 4,4' and 5,5'; (3) the steric bulk of side-armed substituents (sabox ligands).

All copper(I) catalysts with box ligands L1–L8 showed high selectivity for [3 + 3]-cycloaddition (88–95% yield) and only trace amounts of furan 4. The composite outcomes for yield and stereocontrol are summarized in Figure 2. The rates of [3 + 3]-cycloaddition using box ligands were faster than that without ligand, and reaction times were reduced to 4 h from 12 h with $Cu(MeCN)_4BF_4$. 4,4′-Disubstituted chiral box ligands

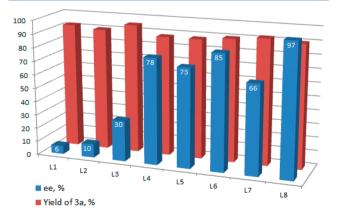
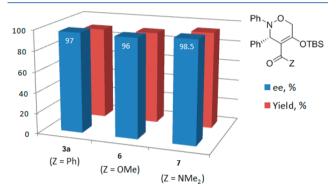



Figure 2. Catalytic effectiveness of $Cu(MeCN)_4BF_4$ with chiral box ligands L1-L8 for the formation of 3a in dichloromethane.

with *tert*-butyl groups L1 and L2 did not provide noticeable asymmetric induction ($ee \le 10\%$). However, the introduction of phenyl instead of *tert*-butyl to positions 4 and 4′ (L3) increased enantioselectivity to 30% ee, and with the 4,4′,5,5′-tetraphenylsubstituted chiral box ligand (L4), even higher enantioselection (78% ee) was obtained. On the basis of prior results from Tang and co-workers, ¹² we anticipated that expanding the dihedral angle of the box ligands would lead to further increases in stereoselectivity. Indeed, use of sabox ligands L5–L8¹³ resulted in further increases in stereoselectivity with L8 being the most selective (97% ee) without diminished yield (90%).

Noteworthy, the use of dimethyl carbonate as a "green" solvent alternative instead of dichloromethane produced 3a in comparable yield (92%) and enantioselectivity (94% ee) with sabox L8.

The optimal catalyst $Cu(MeCN)_4BF_4$ with L8 was also used with the previously reported ester 6^6 and amide 7^{10b} systems (Figure 3). This ligated Cu(I) catalyst was used for the first

Figure 3. Influence of the Z-group on yield and selectivity of $Cu(MeCN)_4BF_4$ with **L8** in [3+3]-cycloaddition with nitrone **2a**.

time on enoldiazoacetate 6, and it showed an advantage over the optimum result reported with the $Rh_2(S-PTA)_4$ catalyst (see Figure 4 for the structure): 96% ee at rt vs 93% ee at -30

Figure 4. Structures of the most selective chiral dirhodium tetrakis(carboxylates) in enantioselective [3 + 3]-cycloaddition of enoldiazocarbonyl compounds.

°C.⁶ In addition, **L8** was slightly more selective for the reaction with enoldiazoacetamide 7 (98.5% ee) than the reported **L4**^{10b} (96% ee). The absence of a significant change in % ee with the carbonyl substituent Z indicates that Z is not in close proximity to the ligand. The absolute configuration of **3a** obtained using ligand **L8** was assigned to be (S) by comparison of specific rotations of **3a** with a reported amide analogue (see the Supporting Information for details).

The success achieved with nitrones prompted us to extend these studies to another stable dipolar species that had previously been investigated with chiral dirhodium(II) catalysts. Catalyst assessment from reactions of enoldiazoke-

tone 1a with the more basic acyliminopyridinium ylide 8a, whose [3 + 3]-cycloaddition reactions with enoldiazoacetate esters were previously reported, 7a is shown in Table 2.

Table 2. Catalyst Screening in [3 + 3]-Cycloaddition of Enoldiazoketone 1a with Acyliminopyridinium Ylide 8a

entrya	catalyst	yield 9a (%) ^b	yield 4 (%) ^b
1	2 mol% Rh ₂ (OAc) ₄	72	20
2	2 mol% Rh ₂ (oct) ₄	75	22
3	2 mol% Rh ₂ (cap) ₄	44	14
4	5 mol% Pd(PhCN) ₂ Cl ₂	55	26
5	5 mol% Cu(MeCN) ₄ BF ₄	88	<5
6	5 mol% Cu(MeCN) ₄ PF ₆	84	<5
7	5 mol% CuOTf·1/2Tol	73	<5
8	5 mol% Au(JohnPhos)(MeCN)SbF ₆	33	<5

"Reactions were carried out at room temperature on a 0.10 mmol scale of 8a with 0.11 mmol of 1a in dichloromethane for 12 h. "Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

Both [3 + 3]-cycloaddition product 9a and furan 4 were obtained as products, and the relative amounts of the furan obtained with these catalysts was nearly the same as those in reactions with nitrone 2a. A product from electrophilic addition to the enoldiazoketone, like the Mannich addition product formed with nitrone 2a, was not observed.

What is striking about these results is that copper(I) catalysts do not isomerize the intermediate donor—acceptor cyclopropene **A** to furan **4**, although this compound is certainly formed in the pathway to the [3 + 3]-cycloaddition product (equilibrium between A/ML_n and **B**). The optimal solvent for this reaction was also dichloromethane (see the Supporting Information for solvent screening).

The same library of chiral box ligands L1–L8 in combination with $Cu(MeCN)_4BF_4$ was tested for asymmetric induction in the reaction of 1a with acyliminopyridinium ylide 8a. Figure 5 shows that the most important parameter affecting enantioselectivity of the process is #2 (tetrasubstitution in box ligand), and there is almost no effect of parameter #3 (side arm influence). In contrast, the reaction with nitrone required both #2 and #3 parameters to achieve the highest enantiocontrol (Figure 2). Use of both L5 and L6 provided 96% ee and comparable yields (90% and 91%, respectively). L5 was chosen for further investigations as a less expensive and lower molecular weight compound.

We have also tested a series of other chiral box ligands for the reaction of enoldiazoketone 1a with acyliminopyridinium ylide 8a; however, they did not provide any significant

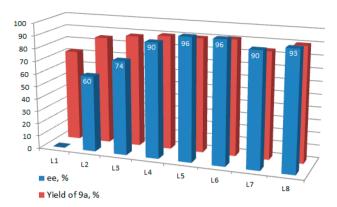
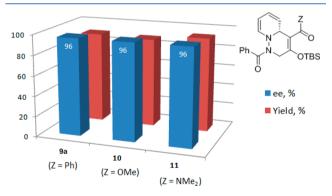



Figure 5. Catalytic effectiveness of Cu(MeCN)₄BF₄ with chiral box ligands L1–L8 for the formation of 9 in dichloromethane.

improvement in yield and/or enantioselectivity (see the Supporting Information). In addition, extensive screening of chiral rhodium carboxylates identified the McKervey's $Rh_2(S-BSP)_4$ catalyst¹⁴ (see Figure 4 for the structure), which afforded [3+3]-cycloaddition product 7 in 86% yield and 98% ee, as superior to the phthalimide-amino acid based or DOSP dirhodium(II) catalysts. $Rh_2(S-BSP)_4$ or $Rh_2(S-PTTL)_4$ catalysts afforded (S)-8a that was determined by comparison of specific rotations of 8a with a reported ester analogue^{7a} (see the Supporting Information for details), whereas "Cu-(MeCN)₄BF₄ + L5" catalyst provides access to the opposite enantiomer (R)-8a.

A comparison of enoldiazo-ketone, -ester, and -amide in the reactions with 8a (Figure 6) showed negligible differences in

Figure 6. Influence of Z-group on the effectiveness of Cu- $(MeCN)_4BF_4$ with **L5** in [3+3]-cycloaddition with acyliminopyridinium ylide **8a**.

enantioselectivity (96%) using Cu(MeCN)₄BF₄ with L6. However, amide 11 was formed in slightly higher yield (93%) than ester 10 (88%) or ketone 9a (90%). Notably, this ligated copper(I) catalyst showed advantages in yield and stereoselectivity over the previously reported Rh₂(S-PTTL)₄ (see Figure 4 for the structure) for cycloaddition to form ester 10 (85% yield, 90% *ee* at 0 °C).^{7a} The advantages of copper(I) catalysis for [3 + 3]-cycloaddition with enoldiazocarbonyl compounds are evident in the reactions with nitrone 2a and acyliminopyridinium ylide 8a (enantiocontrol, yield, absence of side reactions, especially with enoldiazoketone 1a). To determine if the optimum ligands for cycloadditions of enoldiazoketones with dipoles 2a and 8a are viable with variously substituted analogues, we examined substituent effects.

Substrate Scope. The substrate scope of the reaction of enoldiazoketones with nitrones demonstrated very high efficiency of the "Cu(MeCN)₄BF₄ + L8" catalytic system. A variety of enoldiazoketones 1 and nitrones 2 were combined together to produce [3 + 3]-cycloaddition products 3 in very high yields and with excellent enantioselectivities (>90% ee) (Scheme 2). Both aryl and alkyl substituents in enoldiazoketones 1 were viable (Z = Ar, Alk); similar structural variations were used for nitrone 2 (R^1 , $R^2 = Ar$, Alk). Replacement of Z =Ph with alkyl groups (methyl and iso-butyl) did not lower the yield of the [3 + 3]-cycloaddition products from that obtained with Z = Ph, but ee values were somewhat lower (3b,c). The presence of electron-donating or electron-withdrawing substituents in the aryl group of enoldiazoketone 1 (Z = Ar) did not noticeably change the stereocontrol of the copper catalyst (up to 97% ee, 3f-h). However, the yield of compound 3f was slightly lower (86%) due to furan formation being favored by the strongly electron-donating methoxy group. Compound 3k with Z = 2-thiophenyl was formed with excellent yield (96%) and enantioselectivity (98% ee), and it was even higher than with 3a (Z = Ph). Stereocontrol from the introduction of heterocyclic rings to the nitrone ($R^2 = 2$ -thiophenyl, 2-furyl) was also successful (3d and 3e), but the yield of 3e was 11% lower than 3d. We have also tested nitrones bearing alkyl substituents (R^2 = cyclopropyl or R^1 = Bn), and no limitations were observed (3i,i). Variations of EDGs and EWGs in the aromatic rings of nitrones $(R^1 \text{ or } R^2 = Ar)$ did not markedly influence catalyst effectiveness (31-o). Only with 1f (Z = p-MeOC₆H₄) was furan formation noticeable (9% yield). The absence of any substantial influence of these substituents on enantioselectivity suggests a 3D profile in which there is close and virtually uninhibited access of the nitrone to the enoldiazoketone.

The scope of [3 + 3]-cycloaddition reactions with acyliminopyridinium ylides 8 was also very broad (Scheme 3). As with nitrones, the same variations of substituents in enoldiazoketones 1 were used (Z = Ar, Alk). Reactions with ylide 8 tolerated any aryl substituents in the acyl group; however, cycloaddition was not limited to only the pyridinium heterocyclic ring: quinolinium and isoquinolinium rings were also used effectively. However, reactions with acetyliminopyridinium ylides led to [3 + 3]-cycloaddition products of low stability.

There was no obvious substituent effect to reaction yields and enantioselectivities on either the benzoyl group of the ylide or the enoldiazoketone (Z = Ar, Me, iso-Bu). Compounds 9a-o were obtained in very high yields (up to 97%) and excellent enantioselectivities (>95% ee). The yields for methoxy-substituted compounds (9b,f,j,m) were lower (82-87%) due to competing furan formation (12% yield, for 9m) or lower stability of the cycloaddition products (9b,f,j). A heterocyclic enoldiazoketone also worked well (Z = 2thiophenyl), and [3 + 3]-cycloaddition afforded 9p in 89% yield and 99% ee. As an indication of steric constraints in this transformation, the 1-naphtoyl group in ylide 8 with 1 (Z = Ph) did not form cycloaddition product 9, but ylide 8 with 1 (Z = Me) gave product 9q in good yield with only slightly diminished enantioselectivity (86% ee). Benzoyliminoquinolinium ylide was a good substrate for [3 + 3]-cycloaddition with both enoldiazoketones (Z = Ph, Me). The expected tricyclic compounds 9r and 9s were formed in yields >88% and up to 97.5% ee. The corresponding benzoyliminoisoquinolinium ylide formed 9t in very high yield (94%) but with relatively

Scheme 2. Substrate Scope of the Enantioselective Copper(I)-Catalyzed Reaction of Enoldiazoketones with Nitrones^a

low enantioselectivity (58% ee). With obvious steric influence, the analogous reactant with Z=Ph gave product 9 with only 4% ee (84% yield). For reactions of acyliminopyridinium ylides with enoldiazoamides, two examples (11a,b) demonstrated similar high yields and enantioselectivities.

Transformations of [3 + 3]-Cycloaddition Products. 3,6-Dihydro-2*H*-1,2-oxazines 3 are attractive molecules because of their potential utilization for further synthetic transformations, ¹⁵ and only catalytic diene-nitrosoarene Diels—Alder cycloaddition reactions offer competitive enantiocontrol. ¹⁶ Silyl deprotection on 3 by TBAF forms heterocyclic 1,3-diketones 12 in near quantitative yields (Scheme 4). As expected, these products exist in both enol- and keto-forms, and their classical transformations with hydrazines and hydroxylamine produce in high yields the corresponding pyrazoles ¹⁷ and isoxazoles, ¹⁸ compounds with a wide spectrum of biological activities, ¹⁹ that also serve as good scaffolds in drug discovery. ²⁰

The reaction of 12a and 12j with hydrazine in ethanol occurred at room temperature and afforded bicyclic pyrazoles 13 in excellent yields (up to 97%). Reductive N–O bond cleavage of 13j using Zn/NH₄Cl produced compound 14 (86% yield), a new example of chiral 1,4-aminoalcohols attached to a pyrazole ring. The analogous reaction of 12a with phenylhydrazine required higher temperatures (refluxed ethanol), but a single regioisomer of bicyclic N-phenylpyrazole 15 was obtained in 78% yield without loss of stereocontrol.

The position of the phenyl group was confirmed by NMR spectroscopy using $^{15}N-^1H$ HMBC 2D correlation. To form the bicyclic isoxazole ring system **16**, compound **12j** was refluxed with hydroxylamine in ethanol in the presence of 10 mol% of p-toluenesulfonic acid (PTSA). Bronsted acid catalysis was required for formation of the C–O bond (cyclization of the intermediate oxime to oxazole ring). The structure of **12** was confirmed by NMR spectroscopy using $^{15}N-^1H$ HMBC 2D correlation.

Inspired by the very efficient derivatization of 3,6-dihydro-2H-1,2-oxazines 3, we also explored possible transformations of the 2,4a-dihydro-1H-pyrido[1,2- \bar{b}]pyridazine system 9. Diazine structures are less well-known than are the corresponding oxazines, 21 and to our knowledge, only Tang and co-workers' chiral nickel complex-catalyzed [3 + 3]cycloaddition of N-iminoisoquinoliniumylides with 1,1-cyclopropane diesters^{22a} and Glorius and co-workers' NHCcatalyzed annulation reaction of enals with aromatic azomethine imines^{22b} are alternative asymmetric approaches to analogous heterocyclic structures using enoldiazocompounds. We anticipated that TBAF removal of the silyl group would form the 1,3-diketone suitable for pyrazole and isoxazole synthesis. However, an unexpected complication arose upon desilylation of 9; bicycle 9 underwent rapid aromatization-cleavage with the extrusion of pyridine and formation of acyclic 17 having extended conjugation (Scheme 5).

^aReactions were carried out on a 0.20 mmol scale of nitrone 2 with 0.22 mmol of enoldiazoketone 1. Isolated yields after flash-chromatography are reported. Enantiomeric excess was determined using Daicel Chiralpak AD-H and AS-H chiral columns. ^bReaction time was 12 h.

Scheme 3. Substrate Scope of the Enantioselective Copper(I)-Catalyzed Reaction of Enoldiazo-Ketones and -Amides with Acyliminopyridinium Ylides^a

^aReactions were carried out at room temperature on a 0.20 mmol scale of ylide 8 with 0.22 mmol of enoldiazocarbonyl compound 1. Isolated yields after flash-chromatography are reported. Enantiomeric excess was determined using a Daicel Chiralpak AD-H chiral column. ^bReaction time was 8 h.

To solve this problem, we decided to stabilize this bicyclic system by palladium-catalyzed hydrogenation of the two C=C bonds of the dihyropyridine ring. The hydrogenation product 18 was obtained in 88% yield after 3 days. Treatment of 18 with TBAF retained the bicyclic system, and the corresponding bicyclic 1,3-diketone 19 was isolated in nearly quantitative yield. Cyclization of 19 with hydrazine occurred under mild conditions in the presence of 10 mol% of PTSA to form

tricyclic pyrazole 20 in 80% yield. Interestingly, a side-reaction to the formation of pyrazole 20 was identified whose product formation (21) involved a nucleophilic attack on the tertiary C2 atom of the piperidine ring by the hydrazine nitrogen at a faster rate than attack on the second carbonyl group. Recyclization led to tricyclic pyrazole derivative 21 whose structure was confirmed by X-ray crystallography. However, a more efficient method for the synthesis of byproduct 21 was

Scheme 4. Transformations of 3,6-Dihydro-2*H*-1,2-oxazine Ring System 3

Scheme 5. Transformations of 2,4a-Dihydro-1*H*-pyrido[1,2-b]pyridazines 9^a

^aX-ray structure of **21** with 50% thermal ellipsoid probability.

found: direct treatment of TBS-protected derivative 18 with hydrazine at room temperature (92% yield). However, the optical purity of 21 was 76% ee, decreased from 96% ee (9a) with inversion of configuration [(R)- to (S)-], suggesting a plausible mechanism of the nucleophilic substitution at C2 carbon as S_N1/S_N2 . Direct treatment of 19 with hydrazine in the absence of acid was not selective, forming a mixture of 20 and 21 in a ratio of 1:2, respectively.

CONCLUSION

Copper(I) catalysts with chiral 4,4',5,5'-tetraphenyl-sabox ligands are demonstrated to provide uniformly high enantiocontrol for [3 + 3]-cycloaddition reactions of enoldiazocarbonyl compounds with nitrone and acyliminopyridinium dipoles. The reactions with enoldiazoketones are

disclosed for the first time. The similarly uniform isolated product yields using only a 10% molar excess of the enoldiazocarbonyl compound show that there is no significant competing transformation using these copper catalysts. The previous reliance on chiral dirhodium(II) catalysts is shown to be unnecessary, and in reactions with enoldiazoketones, the dirhodium catalysts are deleterious due to competing formation of the furan byproduct. However, the synthetic chiral box ligands for copper provide the opposite [3 + 3]cycloaddition enantiomer to that from accessible phthalimideamino acid ligated dirhodium(II) catalysts, making both enantiomers easily accessible without having to use the less available ligand enantiomers. Extensive screening of chiral box ligands for maximum % ee values disclosed the major factors governing enantiocontrol and directed the design of previously undisclosed sabox ligands for increased enantioselectivity. Furthermore, cycloaddition reactions of enoldiazoketones allowed easy access to 1,3-diketones that were converted to new bicyclic and tricyclic pyrazoles and isoxazoles that possess a chiral center.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b03391.

Experimental details for the synthesis and characterization of starting materials and final compounds, catalyst and solvent screening tables, copies of ¹H and ¹³C NMR spectra of new compounds, HPLC traces, and crystallographic report for **21** (PDF) Crystallographic data for **21** (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: michael.doyle@utsa.edu.

ORCID

Kostiantyn O. Marichev: 0000-0001-7674-950X

Michael P. Doyle: 0000-0003-1386-3780

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge U.S. National Science Foundation (CHE-1212446) for supporting this research. The NMR spectrometer used in this research was supported by a grant from U.S. National Science Foundation (1625963). F.G.A. acknowledges financial support from Australia Awards-Endeavour Fellowship 2018 program, Australian Federal Government (ERF_PDR_6425_2018). We thank W. G. Griffith for extensive mass spectral analyses.

REFERENCES

(1) For books, see: (a) Carruthers, W. Cycloaddition reactions in organic synthesis, 1st ed.; Pergamon Press: Oxford, 1990; Vol. 8, p 382. (b) Kobayashi, S.; Jørgensen, K. A. Cycloaddition reactions in organic synthesis; Wiley-VCH: Weinheim, Germany, 2002; Vol. 12, p 332. (c) Nishiwaki, N. Methods and applications of cycloaddition reactions in organic syntheses; John Wiley & Sons: Hoboken, 2014; p 672.

(2) For reviews, see: (a) Herndon, W. C. Theory of Cycloaddition Reactions. *Chem. Rev.* **1972**, *72*, 157–179. (b) Lautens, M.; Klute, W.; Tam, W. Transition Metal-Mediated Cycloaddition Reactions. *Chem. Rev.* **1996**, *96*, 49–92. (c) Frühauf, H.-W. Metal-Assisted Cyclo-

addition Reactions in Organotransition Metal Chemistry. *Chem. Rev.* **1997**, 97, 523–596. (d) Tremblay, M. R.; Dickerson, T. J.; Janda, K. D. Advances in Antibody Catalysis of Cycloaddition Reactions. *Adv. Synth. Catal.* **2001**, 343, 577–585. (e) Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. *Chem. Rev.* **2005**, 105, 2765–2810. (f) López, F.; Mascareñas, J. L. Recent Developments in Gold-Catalyzed Cycloaddition Reactions. *Beilstein J. Org. Chem.* **2011**, 7, 1075–1094. (g) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Cycloaddition Reactions of Enoldiazo Compounds. *Chem. Soc. Rev.* **2017**, 46, 5425–5443. (h) Cheng, Q.-Q.; Yu, Y.; Yedoyan, J.; Doyle, M. P. Vinyldiazo Reagents and Metal Catalysts: A Versatile Toolkit for Heterocycle and Carbocycle Construction. *ChemCatChem* **2018**, 10, 488–496.

- (3) For books, see: (a) Hamer, J. 1,4-Cycloaddition reactions: the Diels-Alder reaction in heterocyclic syntheses, 1st ed.; Academic Press: New York, 1972; p 512. (b) Fringuelli, F.; Taticchi, A. The Diels-Alder reaction: selected practical methods; John Wiley & Sons: New York, 2002; p 358. (c) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis, 1st ed.; Elsevier Science: Burlington, 2012; Vol. 47, p 366.
- (4) For reviews, see: (a) Kagan, H. B.; Riant, O. Catalytic Asymmetric Diels Alder Reactions. Chem. Rev. 1992, 92, 1007-1019. (b) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder Reaction in Total Synthesis. Angew. Chem., Int. Ed. 2002, 41, 1668-1698. (c) Gregoritza, M.; Brandl, F. P. The Diels-Alder Reaction: A Powerful Tool for the Design of Drug Delivery Systems and Biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438-453. (d) Heravi, M. M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. Recent Applications of the Hetero Diels-Alder Reaction in the Total Synthesis of Natural Products. RSC Adv. 2015, 5, 101999-102075. (e) Chirkin, E.; Porée, F.-H. The Diels-Alder Reaction in Total Synthesis: A Review of the State of the Art During the Period 2009-2014. Curr. Org. Chem. 2016, 20, 2284-2325. (f) Constantino, A. F.; Francisco, C. S.; Cubides-Roman, D. C.; Lacerda, V., Jr. Hetero-Diels-Alder Reactions in the Synthesis of Biologically Active Nitrogen Compounds: A Review. Curr. Org. Synth. 2018, 15, 84-104.
- (5) (a) Xu, X.; Doyle, M. P. The [3 + 3]-Cycloaddition Alternative for Heterocycle Syntheses: Catalytically Generated Metalloenolcarbenes as Dipolar Adducts. *Acc. Chem. Res.* **2014**, *47*, 1396–1405. (b) Deng, Y.; Cheng, Q.-Q.; Doyle, M. P. Asymmetric [3 + 3] Cycloaddition for Heterocycle Synthesis. *Synlett* **2017**, *28*, 1695–1706.
- (6) Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. Asymmeric Formal [3 + 3]-Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates. *J. Am. Chem. Soc.* **2011**, *133*, 16402—16405.
- (7) (a) Xu, X.; Zavalij, P. J.; Doyle, M. P. Highly Enantioselective Dearomatizing Formal [3 + 3] Cycloaddition Reactions of N-Acyliminopyridinium Ylides with Electrophilic Enol Carbene Intermediates. Angew. Chem., Int. Ed. 2013, 52, 12664–12668. (b) Xu, X.; Zavalij, P. J.; Doyle, M. P. A Donor–Acceptor Cyclopropene as a Dipole Source for a Silver(I) Catalyzed Asymmetric Catalytic [3 + 3]-Cycloaddition with Nitrones. Chem. Commun. 2013, 49, 10287–10289. (c) Qian, Y.; Zavalij, P. J.; Hu, W.; Doyle, M. P. Bicyclic Pyrazolidinone Derivatives from Diastereoselective Catalytic [3 + 3]-Cycloaddition Reactions of Enoldiazoacetates with Azomethine Imines. Org. Lett. 2013, 15, 1564–1567.
- (8) (a) Xu, X.; Zavalij, P. Y.; Doyle, M. P. Catalytic Asymmetric Syntheses of Quinolizidines by Dirhodium-Catalyzed Dearomatization of Isoquinolinium/Pyridinium Methylides The Role of Catalyst and Carbene Source. *J. Am. Chem. Soc.* **2013**, *135*, 12439—12447. (b) Deng, Y.; Jing, C.; Doyle, M. P. Dinitrogen Extrusion from Enoldiazo Compounds under Thermal Conditions: Synthesis of Donor—Acceptor Cyclopropenes. *Chem. Commun.* **2015**, *51*, 12924—12927.
- (9) Deng, Y.; Jing, C.; Arman, H.; Doyle, M. P. Reactivity and Selectivity in Catalytic Reactions of Enoldiazoacetamides. Assessment

of Metal Carbenes as Intermediates. *Organometallics* **2016**, 35, 3413–3420.

- (10) (a) Xu, X.; Hu, W.-H.; Zavalij, P. Y.; Doyle, M. P. Divergent Outcomes of Carbene Transfer Reactions from Dirhodium- and Copper-Based Catalysts Separately or in Combination. *Angew. Chem., Int. Ed.* **2011**, *50*, 11152–11155. (b) Cheng, Q.-Q.; Yedoyan, J.; Arman, H.; Doyle, M. P. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones. *J. Am. Chem. Soc.* **2016**, *138*, 44–47.
- (11) Marichev, K. O.; Wang, Y.; Carranco, A. M.; Garcia, E. C.; Yu, Z.-X.; Doyle, M. P. Rhodium(II)-Catalysed Generation of Cycloprop1-en-1-yl Ketones and Their Rearrangement to 5-Aryl-2-siloxyfurans. *Chem. Commun.* **2018**, *54*, 9513–9516.
- (12) (a) Liao, S.; Sun, X.-L.; Tang, Y. Side Arm Strategy for Catalyst Design: Modifying Bisoxazolines for Remote Control of Enantiose-lection and Related. *Acc. Chem. Res.* **2014**, *47*, 2260–2272. (b) Liu, Q. J.; Wang, L.; Kang, Q. K.; Zhang, X. P.; Tang, Y. Cy-SaBOX/Copper(II)-Catalyzed Highly Diastereo- and Enantioselective Synthesis of Bicyclic N,O Acetals. *Angew. Chem., Int. Ed.* **2016**, *55*, 9220–9223
- (13) Ligands L7 and L8 are new compounds (see the Supporting Information for synthesis).
- (14) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. Asymmetric Synthesis in Carbon–Carbon Bond Forming Reactions of α -Diazoketones Catalysed by Homochiral Rhodium(II) Carboxylates. *J. Chem. Soc., Chem. Commun.* **1990**, *0*, 361–362.
- (15) (a) Bodnar, B. S.; Miller, M. J. The Nitrosocarbonyl Hetero-Diels-Alder Reaction as a Useful Tool for Organic Syntheses. *Angew. Chem., Int. Ed.* **2011**, *50*, 5630–5647. (b) Krchňák, V.; Zajíček, J.; Miller, P. A.; Miller, M. J. Selective Molecular Sequestration with Concurrent Natural Product Functionalization and Derivatization: From Crude Natural Product Extracts to a Single Natural Product Derivative in One Step. *J. Org. Chem.* **2011**, *76*, 10249–10253. (c) Eschenbrenner-Lux, V.; Kumar, K.; Waldmann, H. The Asymmetric Hetero-Diels-Alder Reaction in the Syntheses of Biologically Relevant Compounds. *Angew. Chem., Int. Ed.* **2014**, *53*, 11146–11157. (d) Carosso, S.; Miller, M. J. Nitroso Diels-Alder (NDA) Reaction as an Efficient Tool for the Functionalization of Diene-Containing Natural Products. *Org. Biomol. Chem.* **2014**, *12*, 7445–7468.
- (16) (a) Pous, J.; Courant, T.; Bernadat, G.; Iorga, B. I.; Blanchard, F.; Masson, G. Regio-, Diastereo-, and Enantioselective Nitroso-Diels—Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids. *J. Am. Chem. Soc.* **2015**, 137, 11950—11953. (b) Dumoulin, A.; Masson, G. Asymmetric Oxidative Nitroso-Diels—Alder Reaction of N-Arylhydroxylamines Catalyzed by a Chiral Phosphoric Acid. *J. Org. Chem.* **2016**, 81, 10154—10159. (c) Maji, B.; Yamamoto, H. Catalytic Enantioselective Nitroso Diels—Alder Reaction. *J. Am. Chem. Soc.* **2015**, 137, 15957—15963.
- (17) (a) Fustero, S.; Simón-Fuentes, A.; Sanz-Cervera, J. F. Recent Advances in the Synthesis of Pyrazoles. A Review. *Org. Prep. Proced. Int.* **2009**, *41*, 253–290. (b) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. *Chem. Rev.* **2011**, *111*, 6984–7034. (c) Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Alaizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. *Molecules* **2018**, *23*, 134.
- (18) (a) Kochetkov, N. K.; Sokolov, S. D. Recent Developments in Isoxazole Chemistry. *Adv. Heterocycl. Chem.* **1963**, *2*, 365–422. (b) Hu, F.; Szostak, M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. *Adv. Synth. Catal.* **2015**, 357, 2583–2614.
- (19) (a) Liu, J.-J.; Zhao, M.-Y.; Zhang, X.; Zhao, X.; Zhu, H.-L. Pyrazole Derivatives as Antitumor, Anti-Inflammatory and Anti-bacterial Agents. *Mini-Rev. Med. Chem.* **2013**, *13*, 1957–1966. (b) Malik, N.; Dhiman, P.; Khatkar, A.; Redhu, N.; Singh, D. P. Pyrazole Derivatives: A Worthy Insight Into Potent Biological Activities: A Review. *Int. J. Pharm. Res. Biosci.* **2013**, *2*, 415–427. (c) Chauhan, S.; Paliwal, S.; Chauhan, R. Anticancer Activity of

Pyrazole via Different Biological Mechanisms. Synth. Commun. 2014, 44, 1333–1374. (d) Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of Pyrazole Derivatives Possessing Anticancer Activity: Current Status. Synth. Commun. 2014, 44, 1521–1578. (e) Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2017, 41, 16–41.

- (20) Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole Ring as a Useful Scaffold in a Search for new Therapeutic Agents. *Eur. J. Med. Chem.* **2017**, *137*, 292–309.
- (21) (a) Chrzanowska, M.; Rozwadowska, M. D. Asymmetric Synthesis of Isoquinoline Alkaloids. *Chem. Rev.* **2004**, *104*, 3341–3370. (b) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Cycloadditions of Aromatic Azomethine Imines with 1,1-Cyclopropane Diesters. *Org. Lett.* **2008**, *10*, 689–692. (c) Zhang, O.; Yang, L.; Tong, X. 2-(Acetoxymethyl)buta-2,3-dienoate, a Versatile 1,4-Biselectrophile for Phosphine-Catalyzed (4 + n) Annulations with 1,n-Bisnucleophiles (n = 1, 2). *J. Am. Chem. Soc.* **2010**, *132*, 2550–2551.
- (22) (a) Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.; Sun, X.-L.; Li, Y.-X.; Wang, L.-J.; Tang, Y. Highly Enantioselective [3+3] Cycloaddition of Aromatic Azomethine Imines with Cyclopropanes Directed by $\pi-\pi$ Stacking Interactions. *Angew. Chem., Int. Ed.* **2013**, *52*, 1452–1456. (b) Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. Switchable Selectivity in an NHC-Catalysed Dearomatizing Annulation Reaction. *Nat. Chem.* **2015**, *7*, 842–847.