Artificial Intelligence 272 (2019) 86-100

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

The algorithm selection competitions 2015 and 2017 * f

Check for
updates

Marius Lindauer®*, Jan N. van Rijn®, Lars Kotthoff ¢

4 University of Freiburg, Germany
b Columbia University, USA
€ University of Wyoming, USA

ARTICLE INFO ABSTRACT
Article history: The algorithm selection problem is to choose the most suitable algorithm for solving a
Received 2 May 2018 given problem instance. It leverages the complementarity between different approaches

Received in revised form 14 September
2018

Accepted 14 October 2018

Available online 4 January 2019

that is present in many areas of Al. We report on the state of the art in algorithm selection,
as defined by the Algorithm Selection competitions in 2015 and 2017. The results of these
competitions show how the state of the art improved over the years. We show that
although performance in some cases is very good, there is still room for improvement

Keywords: in other cases. Finally, we provide insights into why some scenarios are hard, and pose
Algorithm Selection challenges to the community on how to advance the current state of the art.
Meta-Learning © 2018 Elsevier B.V. All rights reserved.

Competition Analysis

1. Introduction

In many areas of Al, there are different algorithms to solve the same type of problem. Often, these algorithms are
complementary in the sense that one algorithm works well when others fail and vice versa. For example in propositional
satisfiability solving (SAT), there are complete tree-based solvers aimed at structured, industrial-like problems, and local
search solvers aimed at randomly generated problems. In many practical cases, the performance difference between algo-
rithms can be very large, for example as shown by Xu et al. [59] for SAT. Unfortunately, the correct selection of an algorithm
is not always as easy as described above and even easy decisions require substantial expert knowledge about algorithms
and the problem instances at hand.

Per-instance algorithm selection [45] is a way to leverage this complementarity between different algorithms. Instead of
running a single algorithm, a portfolio [24,15] consisting of several complementary algorithms is employed together with a
learned selector. The selector automatically chooses the best algorithm from the portfolio for each instance to be solved.

Formally, the task is to select the best algorithm A from a portfolio of algorithms P for a given instance i from a set
of instances Z with respect to a performance metric m: P x Z — R (e.g., runtime, error, solution quality or accuracy). To
this end, an algorithm selection system learns a mapping from an instance to a selected algorithm s:Z — P such that the
performance, measured as cost, across all instances Z is minimized (w.l.o.g.):

argsmian(s(i),i) (1)

ieZ

* This paper was submitted to the Competition Section of the journal.
* Corresponding author.
E-mail addresses: lindauer@cs.uni-freiburg.de (M. Lindauer), j.n.vanrijn@columbia.edu (J.N. van Rijn), larsko@uwyo.edu (L. Kotthoff).

https://doi.org/10.1016/j.artint.2018.10.004
0004-3702/© 2018 Elsevier B.V. All rights reserved.

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 87

Algorithm
Portfolio P

Compute Select Solve i
nstance ¢ Features F (i) s(F@#)=AeP with A

Fig. 1. Per-instance algorithm selection workflow for a given instance.

Algorithm selection has gained prominence in many areas and made tremendous progress in recent years. Algorithm
selection systems established new state-of-the-art performance in several areas of Al, for example propositional satisfia-
bility solving [57],' machine learning [5,54], maximum satisfiability solving [2], answer set programming [39,6], constraint
programming [25,1], and the traveling salesperson problem [36]. However, the multitude of different approaches and ap-
plication domains makes it difficult to compare different algorithm selection systems, which presented users with a very
practical meta-algorithm selection problem - which algorithm selection system should be used for a given task. The al-
gorithm selection competitions can help users to make the decision which system and approach to use, based on a fair
comparison across a diverse range of different domains.

The first step towards being able to perform such comparisons was the introduction of the Algorithm Selection Bench-
mark Library (ASlib, [4]). ASlib consists of many algorithm selection scenarios for which performance data of all algorithms
on all instances is available. These scenarios allow for fair and reproducible comparisons of different algorithm selection
systems. ASlib enabled the competitions we report on here.

Structure of the paper. In this competition report, we summarize the results and insights gained by running two algorithm
selection competitions based on ASlib. These competitions were organized in 2015 - the ICON Challenge on Algorithm Selec-
tion - and in 2017 - the Open Algorithm Selection Challenge.> We start by giving a brief background on algorithm selection
(Section 2) and an overview on how we designed both competitions (Section 3). Afterwards we present the results of both
competitions (Section 4) and discuss the insights obtained and open challenges in the field of algorithm selection, identified
through the competitions (Section 5).

2. Background on algorithm selection

In this section, we discuss the importance of algorithm selection, several classes of algorithm selection methods and
ways to evaluate algorithm selection problems.

2.1. Importance of algorithm selection

The impact of algorithm selection in several Al fields is best illustrated by the performance of such approaches in Al
competitions. One of the first well-know algorithm selection systems was SATzilla [57], which won several first places in
the SAT competition 2009 and the SAT challenge 2012. To refocus on core SAT solvers, portfolio solvers (including algorithm
selection systems) were banned from the SAT competition for several years—now, they are allowed in a special track. In the
answer set competition 2011, the algorithm selection system claspfolio [21] won the NP-track and later in 2015, ME-ASP [44]
won the competition. In constraint programming, sunny-cp [1] won the open track of the MiniZinc Challenge for several
years (2015, 2016 & 2017). In Al planning, a simple static portfolio of planners (fast downward stone soup; [19]) won a
track at the International Planning Competition (IPC) in 2011. More recently, the online algorithm selection system Delfi [29]
won a first place at IPC 2018. In QBF, an algorithm selection system called QBF Portfolio [22] won third place at the prenex
track of QBFEVAL 2018.

Algorithm selection does not only perform well for combinatorial problems, but it is also an important component in
automated machine learning (AutoML) systems. For example, the AutoML system auto-sklearn uses algorithm selection to
initialize its hyperparameter optimization [14] and won two AutoML challenges [12].

There are also applications of algorithm selection in non-Al domains, e.g. diagnosis [30], databases [11], and network
design [47].

2.2. Algorithm selection approaches

Fig. 1 shows a basic per-instance algorithm selection framework that is used in practice. A basic approach involves (i)
representing a given instance i with a vector of numerical features F (i) (e.g., number of variables and constraints of a CSP

1 In propositional satisfiability solving (SAT), algorithm selection system were even banned from the SAT competition for some years, but are allowed in
a special track now.

2 This paper builds upon individual short papers for each competition [35,40] and presents a unified view with a discussion of the setups, results and
lessons learned.

88 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

instance), (ii) inducing a selection machine learning model s that selects an algorithm for the given instance i based on its
features F(i). Generally, these machine learning models are induced based on a dataset D = {(xj,y;) | j=1,...,n} with
n datapoints to map an input X to output f(x), which closely represents y. In this setting, x; is typically the vector of
numerical features F (i) from some instance i that has been observed before. There are various variations for representing
the y values and ways for algorithm selection system s to leverage the predictions f(x). We briefly review several classes
of solutions.

Regression that models the performance of individual algorithms in the portfolio. A regression model fa can be trained
for each A€ P on D with x; = F(i) and y; =m(A, i) for each previously observed instance i that A was ran on.
The machine learning algorithm can then predict how well algorithm A performs on a given instance from Z. The
algorithm with the best predicted performance is selected for solving the instance (e.g., [23,57]).

Combinations of unsupervised clustering and classification that partitions instances into clusters H based on the instance
features JF (i), and determines the best algorithm A; for each cluster h; € H. Given a new instance i’, the instance
features F(i’) determine the nearest cluster i’ w.r.t. some distance metric; the algorithm A’ assigned to h’ is
applied (e.g., [3]).

Pairwise classification that considers pairs of algorithms (A, Aj). For a new instance, the machine-learning-induced model
predicts for each pair of algorithms which one will perform better (m(Ag, i) < m(Aj,i)), and the algorithm with
most “is better” predictions is selected (e.g., [58,53]).

Stacking of several approaches that combine multiple models to predict the algorithm to choose, for example by predicting
the performance of each portfolio algorithm through regression models and combining these predictions through
a classification model (e.g., [31,46,43]).

2.3. Why is algorithm selection more than traditional machine learning?

In contrast to typical machine learning tasks, each instance has a weight attached to it. It is not be important to select
the best algorithm on instances on which all algorithms perform nearly equally, but it is crucial to select the best algorithm
on an instance on which all but one algorithm perform poorly (e.g., all but one time out). The potential gain from making
the best decision can be seen as a weight for that particular instance.

Instead of predicting a single algorithm, schedules of algorithms can also be used. One variant of algorithm sched-
ules [28,20] are static (instance-independent) pre-solving schedules which are applied before any instance features are
computed [57]. Computing the best-performing schedule is usually an NP-hard problem. Alternatively, a sequence of algo-
rithms can be predicted for instance-specific schedules [1,37].

Computing instance features can come with a large amount of overhead, and if the objective is to minimize runtime, this
overhead should be minimized. For example, on industrial-like SAT instances, computing some instance features can take
more than half of the total time budget.

For more details on algorithm selection systems and the different approaches used in the literature, we refer the inter-
ested reader to the surveys by Smith-Miles [48] and Kotthoff [33].

2.4. Evaluation of algorithm selection systems

The purpose of performing algorithm selection is to achieve performance better than any individual algorithm could. In
many cases, overhead through the computation of the instance features used as input for the machine learning models is
incurred. This diminishes performance gains achieved through selecting good algorithms and has to be taken into account
for evaluating algorithm selection systems.

To be able to assess the performance gain of algorithm selection systems, two baselines are commonly compared
against [59,38,2]: (i) the performance of the individual algorithm performing best on all training instances (called single
best solver (SBS)), which denotes what can be achieved without algorithm selection; (ii) the performance of the virtual best
solver (VBS) (also called oracle performance), which makes perfect decisions and chooses the best-performing algorithm on
each instance without any overhead. The VBS corresponds to the overhead-free parallel portfolio that runs all algorithms in
parallel and terminates as soon as the first algorithm finishes.

The performance of the baselines and of any algorithm selection system varies for different scenarios. We normalize the
performance ms =) ;.7 m(s(i), i) of an algorithm selection system s on a given scenario by the performance of the SBS and
VBS, as a cost to be minimized, and measure how much of the gap between the two it closed as follows:

~ ms —m
s VBS 2)

S _——
msps —MyBs

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

Scenario 3
description '
Performance |
- Irrain -
Alg(.nlthm m of each pair ‘ ! Build AS System
Portfolio A € P ; '
(A, i) Aep,icT
Compare
Cost to compute &
Instances i € T features for Evaluate

eachi € 7

89

Instance features Trest | Predictions for
for eachi € 7 Test Instances
Train-Test
splits of Z
Data Gathering ASlib Scenario Files Evaluation of AS Systems

Fig. 2. Illustration of ASlib.

where 0 corresponds to perfect performance, equivalent to the VBS, and 1 corresponds to the performance of the SBS.> The
performance of an algorithm selection system will usually be between 0 and 1; if it is larger than 1 it means that simply
always selecting the SBS is a better strategy.

A common way of measuring runtime performance is penalized average runtime (PAR10) [27,38,2]: the average runtime
across all instances, where algorithms are run with a timeout and penalized with a runtime ten times the timeout if they
do not complete within the time limit.

3. Competition setups

In this section, we discuss the setups of both competitions. Both competitions were based on ASlib, with submissions
required to read the ASlib format as input.

3.1. General setup: ASlib

Fig. 2 shows the general structure of an ASlib scenario [4]. ASlib scenarios contain pre-computed performance values
m(A, i) for all algorithms in a portfolio A € P on a set of training instances i € Z (e.g., runtime for SAT instances or accuracy
for Machine Learning datasets). In addition, a set of pre-computed instance features F (i) are available for each instance,
as well as the time required to compute the feature values (the overhead). The corresponding task description provides
further information, e.g., runtime cutoff, grouping of features, performance metric (runtime or solution quality) and indicates
whether the performance metric is to be maximized or minimized. Finally, it contains a file describing the train-test splits.
This file specifies which instances should be used for training the system (Ztqin), and which should be used for evaluating
the system (Zrest).

3.2. Competition 2015

In 2015, the competition asked for complete systems to be submitted which would be trained and evaluated by the
organizers. This way, the general applicability of submissions was emphasized - rather than doing well only with specific
models and after manual tweaks, submissions had to demonstrate that they can be used off-the-shelf to produce algorithm
selection models with good performance. For this reason, submissions were required to be open source or free for academic
use.

The scenarios used in 2015 are shown in Table 1. The competition used existing ASlib scenarios that were known to the
participants beforehand. There was no secret test data in 2015; however, the splits into training and testing data were not
known to participants. We note that these are all runtime scenarios, reflecting what was available in ASlib at the time.

Submissions were allowed to specify the feature groups and a single pre-solver for each ASlib scenario (a statically-
defined algorithm to be run before any feature computation to avoid overheads on easy instances), and required to produce
a list of the algorithms to run for each instance (each with an associated timeout). The training time for a submission
was limited to 12 CPU hours on each scenario; each submission had the same computational resources available and was

3 In the 2017 competition, the gap was defined such that 1 corresponded to VBS and 0 to SBS. For consistency with the 2015 results, we use the metric
as defined in Equation (2) here.

90 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

Table 1

Overview of algorithm selection scenarios used in 2015, showing the number of algorithms
|A], the number of instances |Z|, the number of instance features |F|, the performance objec-
tive, and the improvement factor of the virtual best solver (VBS) over the single best solver
(msps/mygs) without considering instances on which all algorithms timed out.

Scenario Al 17| |7 Obj. Factor
ASP-POTASSCO 11 1294 138 Time 25
CSP-2010 2 2024 17 Time 10
MAXSAT12-PMS 6 876 37 Time 53
CPMP-2013 4 527 22 Time 31
PROTEUS-2014 22 4021 198 Time 413
QBF-2011 5 1368 46 Time 9%
SAT11-HAND 15 296 115 Time 37
SAT11-INDU 18 300 115 Time 22
SAT11-RAND 9 600 115 Time 66
SAT12-ALL 31 1614 115 Time 30
SAT12-HAND 31 1167 138 Time 35
SAT12-INDU 31 767 138 Time 15
SAT12-RAND 31 1167 138 Time 12

executed on the same hardware. AutoFolio was the only submission that used the full 12 hours. The submissions were
evaluated on 10 different train-test splits, to reduce the potential influence of randomness. We considered the three metrics
mean PAR10 score, mean misclassification penalty (the additional time that was required to solve an instance compared to
the best algorithm on that instance), and number of instances solved within the timeout. The final score was the average
remaining gap m (Equation (2)) across these three metrics, the 10 train-test splits, and the scenarios.

3.3. Competition 2017

Compared to 2015, we changed the setup of the competition in 2017 with the following goals in mind:

1. fewer restrictions on the submissions regarding computational resources and licensing;

2. better scaling of the organizational overhead to more submissions, in particular not having to run each submission
manually;

3. more flexible schedules for computing features and running algorithms; and

4. a more diverse set of algorithm selection scenarios, including new scenarios.

To achieve the first and second goal, the participants did not submit their systems directly, but only the predictions made
by their system for new test instances (using a single train-test split). Thus, also submissions from closed-source systems
were possible, although all participants made their submissions open-source in the end. We provided full information,
including algorithms’ performances, for a set of training instances, but only the feature values for the test instances to
submitters. Participants could invest as many computational resources as they wanted to compute their predictions. While
this may give an advantage to participants who have access to large amounts of computational resources, such a competition
is typically won through better ideas and not through better computational resources. To facilitate easy submission of results,
we did not run multiple train-test splits as in 2015. We be briefly investigated the effects of this in Section 5.4. We note
that this setup is quite common in other machine learning competitions, e.g., the Kaggle competitions [9].

To support more complex algorithm selection approaches, the submitted predictions were allowed to be an arbitrary se-
quence of algorithms with timeouts and interleaved feature computations. Thus, any combination of these two components
was possible (e.g., complex pre-solving schedules with interleaved feature computation). Complex pre-solving schedules
were used by most submissions for scenarios with runtime as performance metric.

We collected several new algorithm selection benchmarks from different domains; 8 out of the 11 used scenarios were
completely new and not disclosed to participants before the competition (see Table 2). We obfuscated the instance and
algorithm names such that the participants were not able to easily recognize existing scenarios.

To show the impact of algorithm selection on the state of the art in different domains, we focused the search for new
scenarios on recent competitions for CSP, MAXSAT, MIP, QBF, and SAT. Additionally, we developed an open-source Python
tool that connects to OpenML [56] and converts a Machine Learning study into an ASlib scenario.* To ensure diversity of the
scenarios with respect to the application domains, we selected at most two scenarios from each domain to avoid any bias
introduced by focusing on a single domain. In the 2015 competition, most of the scenarios came from SAT, which skewed
the evaluation in favor of that. Finally, we also considered scenarios with solution quality as performance metric (instead
of runtime) for the first time. The new scenarios were added to ASlib after the competition; thus the competition was not
only enabled by ASlib, but furthers its expansion.

For a detailed description of the competition setup in 2017, we refer the interested reader to [40].

4 See https://github.com/openml/openml-aslib.

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 91

Table 2

Overview of algorithm selection scenarios used in 2017, showing the alias in the competition,
the number of algorithms |A|, the number of instances |Z|, the number of instance features
|F|, the performance objective, and the improvement factor of the virtual best solver (VBS)
over the single best solver (msps/mygs) without considering instances on which all algorithms
timed out. Scenarios marked with an asterisk were available in ASlib before the competition.

Scenario Alias |A| |Z| | F| Obj. Factor
BNSL-2016* Bado 8 1179 86 Time 41
CSP-Minizinc-Obj-2016 Camilla 8 100 95 Quality 1.7
CSP-Minizinc-Time-2016 Caren 8 100 95 Time 61
MAXSAT-PMS-2016 Magnus 19 601 37 Time 25
MAXSAT-WPMS-2016 Monty 18 630 37 Time 16
MIP-2016 Mira 5 218 143 Time 11
OPENML-WEKA-2017 Oberon 30 105 103 Quality 1.02
QBF-2016 Qill 24 825 46 Time 265
SAT12-ALL* Svea 31 1614 115 Time 30
SAT03-16_INDU Sora 10 2000 483 Time 13
TTP-2016* Titus 22 9720 50 Quality 1.04
Table 3

Results in 2015 with some system running out of com-
petition (ooc). The average gap is aggregated across all
scenarios according to Equation (2).

Rank System Avg. gap

All PAR10
1st zilla cooooiiiiiin 0.366 0.344
2nd zillafolio 0.370 0.341
ooc AutoFolio-48 0.375 0.334
3rd AutoFolio 0.390 0.341
ooc LLAMA-regrPairs .. 0.395 0.375
4th ASAP_RF 0.416 0.377
5th ASAP_KNN 0.423 0.387
ooc LLAMA-regr 0.425 0.407
6th flexfolio-schedules 0.442 0.395
7th SUNNY .vvvvvvvnnnns 0.482 0.461
8th sunny-presolv 0.484 0.467

4. Results
We now discuss the results of both competitions.
4.1. Competition 2015

The competition received a total of 8 submissions from 4 different groups of researchers comprising 15 people. Partici-
pants were based in 4 different countries on 2 continents. Appendix A provides an overview of all submissions.

Table 3 shows the final ranking. The zilla system is the overall winner, although the first- and second-placed entries are
very close. All systems perform well on average, closing more than half of the gap between virtual and single best solver.
Additionally, we show the normalized PAR10 score for comparison to the 2017 results, where only the PAR10 metric was
used. Detailed results of all metrics (PAR10, misclassification penalty, and solved) are presented in Appendix D.

For comparison, we show three additional systems. Autofolio-48 is identical to Autofolio (a submitted algorithm selec-
tor that searches over different selection approaches and their hyperparameter settings [38]), but was allowed 48 hours
training time (four times the default) to assess the impact of additional tuning of hyperparameters. LLAMA-regrPairs and
LLAMA-regr are simple approaches based on the LLAMA algorithm selection toolkit [32].° The relatively small difference
between AutoFolio and AutoFolio-48 shows that allowing more training time does not increase performance significantly.
The good ranking of the two simple LLAMA models shows that reasonable performance can be achieved even with simple
off-the-shelf approaches without customization or tuning. Fig. 3 (combined scores) and Fig. 4 (PAR10 scores) show critical
distance plots on the average ranks of the submissions. According to the Friedman test with post-hoc Nemenyi test, there is
no statistically significant difference between any of the submissions.

More detailed results can be found in [34].

5 Both LLAMA approaches use regression models to predict the performance of each algorithm individually and for each pair of algorithms to predict their
performance difference. Both approaches did not use pre-solvers and feature selection, both selected only a single algorithm, and their hyperparameters
were not tuned.

92 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

CD
L 1
T 1
1 2 3 4 5 6 7 8
L 1 1 1 1 1 1
zilla L—— sunny
zillafolio L sunny-presolv
autofolio flexfolio-schedules
ASAP_RF ASAP kNN

Fig. 3. Critical distance plots with Nemenyi Test on the ‘All’ scores (average across normalized scores based on PAR10, misclassification penalty, and number
of solved instances) of the participants of the 2015 competition. If two submissions are connected by a thick line, there was not enough statistical evidence
that their performances are significantly different.

CD
L 1
T 1
1 2 3 4 5 6 7 8
L 1 1 1 1 1 1 1
autofolio L sunny
zilla L—————————————— sunny-presolv
zillafolio ASAP kNN
flexfolio-schedules ASAP_RF

Fig. 4. Critical distance plots with Nemenyi Test on the PAR10 scores of the participants of the 2015 competition.

Table 4

Results in 2017 with some system running out of com-
petition (ooc). The average gap is aggregated across all
scenarios according to Equation (2).

Rank System Avg. gap Avg. rank
st ASAPV2 0.38 2.6
2nd ASAPV3 0.40 2.8
3rd Sunny-fkvar ... 0.43 2.7
4th Sunny-autok 0.57 3.9
ooc *Zilla(fixed version) 0.57 N/A
5th *Zilla ..o 0.93 53
6th *Zilla(dyn) 0.96 5.4
7th AS-RF 2.10 6.1
8th AS-ASL 2.51 7.2
L CD 1
T 1
1 2 3 4 5 6 7 8
L 1 1 1 1 1 1 1
ASAPv2 —M8M8M L AS-ASL
Sunny-fkvar —M8 — L AS-RF
ASAPv3 —M8M¥ star-zilla
Sunny-autok star-zilla_dyn_sched

Fig. 5. Critical distance plots with Nemenyi Test on the PAR10 scores of the participants in 2017.

4.2. Competition 2017

In 2017, there were 8 submissions from 4 groups. Similar to 2015, participants were based in 4 different countries on 2
continents. While most of the submissions came from participants of the 2015 competition, there were also submissions by
researchers who did not participate in 2015.

Table 4 shows the results in terms of the gap metric (see Equation (2)) based on PAR10, as well as the ranks; detailed
results are in Table E.9 (Appendix E). The competition was won by ASAP.v2, which obtained the highest scores on the
gap metric both in terms of the average over all datasets, and the average rank across all scenarios. Both ASAP systems
clearly outperformed all other participants on the quality scenarios. However, Sunny-fkvar did best on the runtime scenarios,
followed by ASAP.v2.

Fig. 5 shows critical distance plots on the average ranks of the submissions. There is no statistically significant difference
between the best six submissions, but the difference to the worst submissions is statistically significant.

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 93

5. Open challenges and insights
In this section, we discuss insights and open challenges indicated by the results of the competitions.
5.1. Progress from 2015 to 2017

The progress of algorithm selection as a field from 2015 to 2017 seems to be rather small. In terms of the remaining gap
between virtual best and single best solver, the results were nearly the same (the best system in 2015 achieved about 33%
in terms of PAR10, and the best system in 2017 about 38%). On the only scenario used in both competitions (SAT12-ALL),
the performance stayed nearly constant. Nevertheless, the competition in 2017 was more challenging because of the new
and more diverse scenarios. While the community succeeded in coming up with more challenging problems, there appears
to be room for more innovative solutions.

5.2. Statistical significance

Figs. 3, 4 and 5 show ranked plots, with the critical distance required according to the Friedman with post-hoc Nemenyi
test to assert statistical significant difference between multiple systems [10]. In the 2015 competition, none of the differ-
ences between the submitted systems were statistical significant, whereas in the 2017 competition only some differences
where statistical significant.

Failure to detect a significant difference does not imply that there is no such difference: the statistical tests are based on
a relatively low number of samples and thus have limited power.

Even though the statistical significance results should be interpreted with care, the critical difference plots are still
informative. They show, e.g., that the systems submitted in the 2015 challenge were closer together (ranked approximately
between 3.5 and 6) than the systems submitted in 2017 (ranked approximately between 2.5 and 7).

5.3. Robustness of algorithm selection systems

As the results of both competitions show, choosing one of the state-of-the-art algorithm selection systems is still a
much better choice than simply always using the single best algorithm. However, as different algorithm selection systems
have different strengths, we are now confronted with a meta-algorithm selection problem - selecting the best algorithm
selection approach for the task at hand. For example, while the best submission in 2017 achieved 38% gap between SBS and
VBS remaining, the virtual best selector over the portfolio of all submissions would have achieved 29%. An open challenge
is to develop such a meta-algorithm selection system, or a single algorithm selection system that performs well across a
wide range of scenarios.

One step in this direction is the per-scenario customization of the systems, e.g., by using hyperparameter optimization
methods [17,41,8], per-scenario model selection [42], or even per-scenario selection of the general approach combined with
hyperparameter optimization [38]. However, as the results show, more fine-tuning of an algorithm selection system does
not always result in a better-performing system. In 2015, giving much more time to Autofolio resulted in only a very minor
performance improvement, and in 2017 ASAP.v2 performed better than its refined successor ASAP.v3.

In addition to the general observations above, we note the following points regarding robustness of the submissions:

e zilla performed very well on SAT scenarios (average rank: 1.4) but only mediocre on other domains (average rank: 6.5
out of 8 submissions) in 2015;

e ASAP won in 2017, but sunny-fkvar performed better on runtime scenarios;

e both CSP scenarios in 2017 were very similar (same algorithm portfolio, same instances, same instance features) but the
performance metric was changed (one scenario with runtime and one scenario with solution quality). On the runtime
scenario, Sunny-fkvar performed very well, but on the quality scenario ASAP.v3/2 performed much better.

5.4. Impact of randomness

One of the main differences between the 2015 and 2017 challenges was that in 2015, the submissions were evaluated
on 10 cross-validation splits to determine the final ranking, whereas in 2017, only a single training-test split was used.
While this greatly reduced the effort for the competition organizers, it increased the risk of a particular submission with
randomized components getting lucky.

In general, our expectation for the performance of a submission is that it does not depend on randomness much, i.e., its
performance does not vary significantly across different test sets or random seeds. On the other hand, as we observed in
Section 5.3, achieving good performance across multiple scenarios is an issue.

To determine the effect of randomness on performance, we ran the competition winner, ASAP.v2, with different random
seeds on the CSP-Minizinc-Obj-2016 (Camilla) scenario, where it performed particularly well. Fig. 6 shows the cumulative
distribution function of the performance across different random seeds. The probability of ASAP.v2 performing as good or
better than it did is very low, suggesting that it did choose a lucky random seed.

94 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

1.0

0.8 1

0.6 1

0.4 A

Cumulative Likelihood

0.2 Score of Submission

0.0 +—=

0.0 0.1 0.2 0.3 0.4 0.5
Obtained score

Fig. 6. Cumulative distribution function of the closed gap of ASAP.v2 on CSP-Minizinc-Obj-2016, across 1500 random seeds. The plot shows that the actual
obtained score (0.025) has a probability of 0.466%.

This result demonstrates the importance of evaluating algorithm selection systems across multiple random seeds, or
multiple test sets. If we replace ASAP’s obtained score with the median score of the CDF shown in Fig. 6, it would have
ranked at third place.

5.5. Hyperparameter optimization

All systems submitted to either of the competitions leverage a machine learning model that predicts the performance of
algorithms. It is well known that hyperparameter optimization is important to get well-performing machine learning models
(see, e.g., [49,51,55]). Nevertheless, not all submissions optimized hyperparameters, e.g., the winner in 2017 ASAP.v2 [17]
used the default hyperparameters of its random forest. Given previous results by Lindauer et al. [38], we would expect that
adding hyperparameter optimization to recent algorithm selection systems will further boost their performances.

5.6. Handling of quality scenarios

ASlib distinguishes between two types of scenarios: runtime scenarios and quality scenarios. In runtime scenarios, the goal
is to minimize the time the selected algorithm requires to solve an instances (e.g., SAT, ASP), whereas in quality scenarios
the goal is to find the algorithm that obtains the highest score or lowest error according to some metric (e.g., plan quality
in Al planning or prediction error in Machine Learning). In the current version of ASlib, the most important difference
between the two scenario types is that for runtime scenario a schedule of different algorithms can be provided, whereas
for quality scenarios only a single algorithm. The reason for this limitation is that ASlib does not contain information on
intermediate solution qualities of any-time algorithms (e.g., the solution quality after half the timeout). For the same reason,
the cost of feature computation cannot be considered for quality scenarios - it is unknown how much additional quality
could be achieved in the time required for feature computation. This setup is common in algorithm selection methods for
machine learning (meta-learning). Intermediate solutions and the time at which they were obtained could enable schedules
for quality scenarios and analyzing trade-offs between obtaining a better solution quality by expending more resources or
switching to another algorithm. For example, the MiniZinc Challenge [50] started to record these information in 2017. Future
versions of ASlib will consider addressing this limitation.

5.7. Challenging scenarios

On average, algorithm selection systems perform well and the best systems had a remaining gap between the single best
and virtual best solver of only 38% in 2017. However, some of the scenarios are harder than others for algorithm selection.
Table 5 shows the median and best performance of all submissions on all scenarios. To identify challenging scenarios, we
studied the best-performing submission on each scenario and compared the remaining gap with the average remaining gap
over all scenarios. In 2015, SAT12-RAND and SAT11-INDU were particularly challenging, and in 2017 OPENML-WEKA-2017
and SAT03-16_INDU.

SAT12-RAND was a challenging scenario in 2015 and most of the participating systems performed not better than the
single best solver on it, although the VBS has a 12-fold speedup over the single best solver. The main reason
is probably that not only the SAT instances considered in this scenario are randomly generated but also most
of the best-performing solvers are stochastic local search solvers which are highly randomized. The data in this

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 95

Table 5
Average remaining gap and the best remaining gap across all submissions
for all scenarios. The bold scenarios are particularly challenging.

Scenario Median rem. gap Best rem. gap
2015

ASP-POTASSCO 0.31 0.28
CSP-2010 ...ovvvvvvennnnn 0.23 0.14
MAXSAT12-PMS 0.18 0.14
CPMP-2013 0.35 0.29
PROTEUS-2014 0.16 0.05
QBF-2011 0.15 0.09
SAT11-HAND 0.34 0.30
SAT11-INDU 1.00 0.87
SAT11-RAND 0.08 0.04
SAT12-ALL 0.38 0.27
SAT12-HAND 0.32 0.25
SAT12-INDU 0.90 0.59
SAT12-RAND 1.00 0.77
Average 0.41 0.31
2017

BNSL-2016 0.25 0.15
CSP-Minizinc-Obj-2016 . 1.59 0.02
CSP-Minizinc-Time-2016 0.41 0.05
MAXSAT-PMS-2016 0.49 0.41
MAXSAT-WPMS-2016 ... 0.51 0.08
MIP-2016 0.56 0.49
OPENML-WEKA-2017 ... 1.0 0.78
QBF-2016 0.43 0.15
SAT12-ALL 0.42 0.31
SAT03-16_INDU 0.77 0.65
TTP-2016* 0.33 0.15
Average 0.61 0.30

scenario was obtained from single runs of each algorithm, which introduces strong noise. After the competition in
2015, Cameron et al. [7] showed that in such noisy scenarios, the performance of the virtual best solver is often
overestimated. Thus, we do not recommend to study algorithm selection on SAT12-RAND at this moment and plan
to remove SAT12-RAND in the next ASlib release.

SAT11-INDU was a hard scenario in 2015; in particular it was hard for systems that selected schedules per instance (such
as Sunny). Applying schedules on these industrial-like instances is quite hard because even the single best solver
has an average PAR10 score of 8030 (with a timeout of 5000 seconds) to solve an instance; thus, allocating a
fraction of the total available resources to an algorithm on this scenario is often not a good idea (also shown by
Hoos et al. [20]).

SAT03-16_INDU was a challenging scenario for the participants in 2017. It is mainly an extension of a previously-used
scenario called SAT12-INDU. Zilla was one of the best submissions in 2015 on SAT12-INDU with a remaining gap
of roughly 61%; however in 2017 on SAT03-16_INDU, zilla had a remaining gap of 83%. Similar observations apply
to ASAP. SAT03-16_INDU could be much harder than SAT12-INDU because of the smaller number of algorithms
(31 — 10), the larger number of instances (767 — 2000) or the larger number of instance features (138 — 483).

OPENML-WEKA-2017 was a new scenario in the 2017 competition and appeared to be very challenging, as six out of eight
submissions performed almost equal to or worse than the single best solver (> 95% remaining gap). This scenario
featured algorithm selection for machine learning problems (cf. meta-learning [5]). The objective was to select the
best machine learning algorithm from a selection of WEKA algorithms [18], based on simple characteristics of the
dataset (i.e., meta-features). The scenario was introduced by van Rijn [52] [Chapter 6]. We verified empirically that
(i) there is a learnable concept in this scenario, and (ii) the chosen holdout set was sufficiently similar to the
training data by evaluating a simple baseline algorithm selector (a regression approach using a random forest as
model). The experimental setup and results are presented in Fig. 7. It is indeed a challenging scenario; on half of
the sampled holdout sets, our baseline was unable to close the gap by more than 10%. In 18% of the holdout sets,
the baseline performed worse than the SBS. However, our simple baseline achieved 67.5% remaining gap on the
holdout set used in the competition (compared to the best submission Sunny-fkvar with 78%).

6. Conclusions

In this paper, we discussed the setup and results of two algorithm selection competitions. These competitions allow the
community to objectively compare different systems and assess their benefits. They confirmed that per-instance algorithm

96 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

1.0

T

|—"''_r'_'_'_

L

0.8 1

0.6 i

0.4 1 _,.r"rl

/!

_H_H_H'L Oberon Splits

0.0 T T T T T T T T
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Obtained score

Cumulative Likelihood

Fig. 7. Cumulative distribution function of the obtained gap-remaining score of a random forest regressor (a single model trained to predict for all classifiers,
64 trees) on 100 randomly sampled 33% holdout sets of the OPENML-WEKA-2017 scenario. The dashed line indicates the performance of the single best
solver; the score on the actual splits as presented in Oberon was 0.675.

selection can substantially improve the state of the art in many areas of Al. For example, the virtual best solver obtains
on average a 31.8 fold speedup over the single best solver on the runtime scenarios from 2017. While the submissions fell
short of this perfect performance, they did achieve significant improvements.

Perhaps more importantly, the competitions highlighted challenges for the community in a field that has been well-
established for more than a decade. We identified several challenging scenarios on which the recent algorithm selection sys-
tems do not perform well. Furthermore, there is no system that performs well on all types of scenarios — a meta-algorithm
selection problem is very much relevant in practice and warrants further research. The competitions also highlighted re-
strictions in the current version of ASlib, which enabled the competitions, that need to be addressed in future work.

Acknowledgements

Marius Lindauer acknowledges funding by the DFG (German Research Foundation) under Emmy Noether grant HU
1900/2-1. Lars Kotthoff acknowledges funding from the National Science Foundation (NSF), award number 1813537.

Appendix A. Submitted systems in 2015

e ASAP based on random forests (RF) and k-nearest neighbor (kNN) as selection models combine pre-solving schedule and
per-instance algorithm selection by training both jointly [16].

e AutoFolio combines several algorithm selection approaches in a single systems and uses algorithm configuration [26] to
search for the best approach and its hyperparameter settings for the scenario at hand.

e Sunny selects an algorithm schedule on a per-instance base [1]. The time assigned to each algorithm is proportional to
the number of solved instances in the neighborhood in the feature space with respect to the instance at hand.

e Zilla is the newest version of SATzilla [57,58] which uses pair-wise, cost-sensitive random forests combined with pre-
solving schedules.

e ZillaFolio is a combination of Zilla and AutoFolio by evaluating both approaches on the training set and using the better
approach for generating the predictions for the test set.

Appendix B. Technical evaluation details in 2015

The evaluation was performed as follows. For each scenario, 10 bootstrap samples of the entire data were used to create
10 different train/test splits. No stratification was used. The training part was left unmodified. For the test part, algorithm
performances were set to 0 and runstatus to “ok” for all algorithms and all instances - the ASlib specification requires
algorithm performance data to be part of a scenario.

There was a time limit of 12 hours for the training phase. Systems that exceeded this limit were disqualified. The
time limit was chosen for practical reasons, to make it possible to evaluate the submissions with reasonable resource
requirements.

For systems that specified a pre-solver, the instances that were solved by the pre-solver within the specified time were
removed from the training set. If a subset of features was specified, only these features (and only the costs associated with
these features) were left in both training and test set, with all other feature values removed.

Each system was trained on each train scenario and predicted on each test scenario. In total, 130 evaluations (10 for
each of the 13 scenarios) per submitted system were performed. The total CPU time spent was 4685.11 hours on 8-core
Xeon E5-2640 CPUs.

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 97

Each system was evaluated in terms of mean PAR10 score, mean misclassification penalty (the additional time that was

required to solve an instance because an algorithm that was not the best was chosen; the difference to the VBS), and mean
number of instances solved for each of the 130 evaluations on each scenario and split. These are the same performance
measures used in ASlib, and enable a direct comparison.

The final score of a submission group (i.e. a system submitted for different ASlib scenarios) was computed as the average

score over all ASlib scenarios. For scenarios for which no system belonging to the group was submitted, the performance of

the single best algorithm was assumed.

Appendix C. Submitted systems in 2017

e Gonard et al. [17] submitted ASAP.v2 and ASAP.v3 [16]. ASAP combines pre-solving schedules and per-instance algorithm
selection by training both jointly. The main difference between ASAP.v2 and ASAP.v3 is that ASAP.v2 used a pre-solving
schedule with a fixed length of 3, whereas ASAP.v3 optimized the schedule length between 1 and 4 on a per-scenario
base.

Malone et al. [42] submitted AS-RF and AS-ASL [43]. It also combines pre-solving schedules and per-instance algorithm
selection, whereas the selection model is a two-level stacking model with the first level being regression models to
predict the performance of each algorithm and the second level combines these performance predictions in a multi-class
model to obtain a selected algorithm. AS-RF uses random forest and AS-ASL used auto-sklearn [13] to obtain a machine
learning model.

Liu et al. [41] submitted Sunny (autok and fkvar) [1]. Sunny selects per-instance algorithm schedules with the goal of
minimizing the number of possible timeouts. Sunny-autok optimized the neighborhood size on a per-scenario base [37]
and Sunny.fkvar additionally also applied greedy forward selection for instance feature subset selection.

Cameron et al. [8] submitted *Zilla (vanilla and dynamic), the successor of SATzilla [57,58]. *Zilla also combines per-
solving schedules and pre-instance algorithm selection but based on pair-wise weighted random forest models. The

dynamic version of *Zilla additionally uses the trained random forest to extract a per-instance algorithm schedule.®

Appendix D. Detailed results 2015 competition

See Tables D.6-D.8.

Table D.6

Original results of the PAR10 scores of the 2015 competition.

Scenario Zilla Zillafolio Autofolio Flexfolio-schedules
ASP-POTASSCO 537 (5.0) 516 (1.0) 525 (3.0) 527 (4.0)
CSP-2010 6582 (4.0) 6549 (2.0) 6621 (7.0) 6573 (3.0)
MAXSAT12-PMS 3524 (6.0) 3598 (8.0) 3559 (7.0) 3375 (1.0)
PREMARSHALLING-ASTAR-2013 2599 (5.0) 2722 (7.0) 2482 (4.0) 2054 (2.0)
PROTEUS-2014 5324 (7.0) 5070 (5.0) 5057 (4.0) 4435 (1.0)
QBF-2011 9339 (7.0) 9366 (8.0) 9177 (6.0) 8653 (1.0)
SAT11-HAND 17436 (3.0) 17130 (1.0 17746 (6.0) 17560 (4.0)
SAT11-INDU 13418 (3.0) 13768 (4.0 13314 (1.0) 14560 (6.0)
SAT11-RAND 9495 (2.0) 9731 (3.0) 9428 (1.0) 10339 (8.0)
SAT12-ALL 964 (1.0) 1100 (3.0) 1066 (2.0) 1436 (6.0)
SAT12-HAND 4370 (2.0) 4432 (4.0) 4303 (1.0) 4602 (6.0)
SAT12-INDU 2754 (3.0) 2680 (1.0) 2688 (2.0) 2972 (4.0)
SAT12-RAND 3139 (1.0) 3146 (2.0) 3160 (3.0) 3240 (7.0)
Average 6114 (3.8) 6139 (3.8) 6087 (3.6) 6179 (4.1)
Scenario ASAP_RF ASAP_KNN Sunny Sunny-presolv
ASP-POTASSCO 517 (2.0) 554 (7.0) 575 (8.0) 547 (6.0)
CSP-2010 6516 (1.0) 6601 (5.0) 6615 (6.0) 6704 (8.0)
MAXSAT12-PMS 3421 (3.0) 3395 (2.0) 3465 (4.0) 3521 (5.0)
PREMARSHALLING-ASTAR-2013 2660 (6.0) 2830 (8.0) 2151 (3.0) 1979 (1.0)
PROTEUS-2014 5169 (6.0) 5338 (8.0) 4866 (3.0) 4798 (2.0)
QBF-2011 8793 (2.0) 8813 (3.0) 8907 (4.0) 9044 (5.0)
SAT11-HAND 17581 (5.0) 17289 (2.0 19130 (7.0) 19238 (8.0)
SAT11-INDU 13858 (5.0) 13359 (2.0 14681 (7.0) 15160 (8.0)
SAT11-RAND 10018 (6.0) 9795 (4.0) 10212 (7.0) 9973 (5.0)
SAT12-ALL 1201 (5.0) 1181 (4.0) 1579 (7.0) 1661 (8.0)
SAT12-HAND 4434 (5.0) 4395 (3.0) 4823 (7.0) 4875 (8.0)
SAT12-INDU 3005 (6.0) 2974 (5.0) 3201 (8.0) 3173 (7.0)
SAT12-RAND 3211 (4.0) 3239 (6.0) 3263 (8.0) 3222 (5.0)
Average 6183 (4.3) 6136 (4.5) 6421 (6.1) 6453 (5.8)

6 *Zilla had a critical bug and the results were strongly degraded because of it. The authors of *Zilla submitted fixed results after the official deadline but
before the test data and the results were announced. We list the fixed results of *Zilla; but these are not officially part of the competition.

98

Table D.7

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

Original results of the misclassification penalty scores of the 2015 competition.

Scenario Zilla Zillafolio Autofolio Flexfolio-schedules
ASP-POTASSCO 22 (5.0) 21 (2.0) 22 (3.0) 24 (7.0)
CSP-2010 14 (2.0) 11 (1.0) 28 (7.0) 23 (6.0)
MAXSAT12-PMS 38 (2.0) 42 (4.0) 177 (8.0) 41 (3.0)
PREMARSHALLING-ASTAR-2013 323 (5.0) 336 (7.0) 330 (6.0) 307 (4.0)
PROTEUS-2014 482 (8.0) 470 (7.0) 470 (6.0) 70 (1.0)
QBF-2011 192 (6.0) 194 (8.0) 182 (5.0) 133 (3.0)
SAT11-HAND 462 (3.0) 406 (1.0) 486 (5.0) 514 (6.0)
SAT11-INDU 615 (2.0) 639 (3.0) 574 (1.0) 779 (8.0)
SAT11-RAND 70 (3.0) 65 (2.0) 62 (1.0) 448 (8.0)
SAT12-ALL 95 (1.0) 111 (3.0) 103 (2.0) 211 (8.0)
SAT12-HAND 75 (1.0) 82 (3.0) 7 (2.0) 160 (8.0)
SAT12-INDU 87 (1.0) 100 (2.0) 103 (3.0) 139 (5.0)
SAT12-RAND 39 (1.0) 40 (2.0) 49 (4.0) 58 (5.0)
Average 194 (3.1) 194 (3.5) 205 (4.1) 224 (5.5)
Scenario ASAP_RF ASAP_KNN Sunny Sunny-presolv
ASP-POTASSCO 23 (6.0) 25 (8.0) 20 (1.0) 22 (4.0)
CSP-2010 14 (3.0) 21 (4.0) 22 (5.0) 39 (8.0)
MAXSAT12-PMS 45 (6.0) 43 (5.0) 31 (1.0) 57 (7.0)
PREMARSHALLING-ASTAR-2013 271 (1.0) 275 (2.0) 338 (8.0) 296 (3.0)
PROTEUS-2014 235 (4.0) 249 (5.0) 224 (3.0) 136 (2.0)
QBF-2011 98 (2.0) 80 (1.0) 181 (4.0) 194 (7.0)
SAT11-HAND 466 (4.0) 431 (2.0) 634 (8.0) 618 (7.0)
SAT11-INDU 736 (6.0) 673 (4.0) 701 (5.0) 772 (7.0)
SAT11-RAND 124 (6.0) 129 (7.0) 122 (5.0) 85 (4.0)
SAT12-ALL 157 (5.0) 153 (4.0) 182 (6.0) 183 (7.0)
SAT12-HAND 114 (5.0) 102 (4.0) 124 (6.0) 129 (7.0)
SAT12-INDU 160 (8.0) 154 (7.0) 154 (6.0) 138 (4.0)
SAT12-RAND 60 (7.0) 67 (8.0) 58 (6.0) 45 (3.0)
Average 193 (4.8) 185 (4.7) 215 (4.9) 209 (5.4)

Table D.8

Original results of the solved scores of the 2015 competition.
Scenario Zilla Zillafolio Autofolio Flexfolio-schedules
ASP-POTASSCO 0.915 (5.0) 0.919 (2.0) 0.917 (4.0) 0.918 (3.0)
CSP-2010 0.870 (4.0) 0.871 (2.0) 0.870 (6.0) 0.870 (3.0)
MAXSAT12-PMS 0.834 (7.0) 0.830 (8.0) 0.840 (4.0) 0.842 (1.0)
PREMARSHALLING-ASTAR-2013 0.937 (5.0) 0.933 (6.0) 0.940 (4.0) 0.953 (2.0)
PROTEUS-2014 0.863 (6.0) 0.871 (3.0) 0.871 (2.0) 0.878 (1.0)
QBF-2011 0.745 (7.0) 0.744 (8.0) 0.750 (6.0) 0.765 (1.0)
SAT11-HAND 0.659 (3.0) 0.665 (1.0) 0.653 (6.0) 0.658 (4.0)
SAT11-INDU 0.741 (3.0) 0.734 (5.0) 0.742 (2.0) 0.719 (6.0)
SAT11-RAND 0.815 (2.0) 0.809 (3.0) 0.816 (1.0) 0.804 (6.0)
SAT12-ALL 0.930 (1.0) 0.918 (3.0) 0.921 (2.0) 0.897 (6.0)
SAT12-HAND 0.643 (3.0) 0.638 (5.0) 0.649 (1.0) 0.629 (6.0)
SAT12-INDU 0.779 (3.0) 0.787 (1.0) 0.787 (2.0) 0.764 (5.0)
SAT12-RAND 0.742 (1.0) 0.742 (2.0) 0.741 (3.0) 0.735 (7.0)
Average 0.806 (3.8) 0.805 (3.8) 0.807 (3.3) 0.802 (3.9)
Scenario ASAP_RF ASAP_KNN Sunny Sunny-presolv
ASP-POTASSCO 0.919 (1.0) 0.913 (7.0) 0.908 (8.0) 0.913 (6.0)
CSP-2010 0.872 (1.0) 0.870 (5.0) 0.870 (7.0) 0.868 (8.0)
MAXSAT12-PMS 0.840 (3.0) 0.841 (2.0) 0.837 (5.0) 0.835 (6.0)
PREMARSHALLING-ASTAR-2013 0.933 (7.0) 0.928 (8.0) 0.951 (3.0) 0.955 (1.0)
PROTEUS-2014 0.861 (7.0) 0.856 (8.0) 0.870 (4.0) 0.869 (5.0)
QBF-2011 0.759 (2.0) 0.758 (4.0) 0.758 (3.0) 0.754 (5.0)
SAT11-HAND 0.656 (5.0) 0.662 (2.0) 0.625 (7.0) 0.623 (8.0)
SAT11-INDU 0.734 (4.0) 0.744 (1.0) 0.715 (7.0) 0.706 (8.0)
SAT11-RAND 0.804 (7 0) 0.809 (4.0) 0.800 (8.0) 0.804 (5.0)
SAT12-ALL 0.913 (5.0) 0.915 (4.0) 0.881 (7.0) 0.873 (8.0)
SAT12-HAND 0.640 (4.0) 0.643 (2.0) 0.605 (7.0) 0.601 (8.0)
SAT12-INDU 0.763 (6.0) 0.765 (4.0) 0.744 (8.0) 0.745 (7.0)
SAT12-RAND 0.738 (4.0) 0.736 (5.0) 0.733 (8.0) 0.735 (6.0)
Average 0.802 (4.3) 0.803 (4.3) 0.792 (6.3) 0.791 (6.2)

M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100 99

Appendix E. Detailed results 2017 competition

Table E.9

Original results of the 2017 competition - score of 0 refers to the virtual best solver and 1 to the single best solver.
Scenario ASAP.v2 ASAP.v3 Sunny-fkvar Sunny-autok
Bado 0.239 (4.0) 0.192 (3.0) 0.153 (1.0) 0.252 (5.0)
Camilla 0.025 (1.5) 0.025 (1.5) 0.894 (3.0) 1.475 (4.0)
Caren 0.412 (5.0) 0.410 (4.0) 0.055 (1.0) 0.217 (2.0)
Magnus 0.492 (4.0) 0.494 (5.0) 0.419 (3.0) 0.498 (6.0)
Mira 0.495 (2.0) 0.491 (1.0) 0.568 (4.0) 1.014 (6.0)
Monty 0.167 (2.0) 0.237 (3.0) 0.090 (1.0) 0.368 (4.0)
Oberon 0.950 (3.5) 0.950 (3.5) 0.787 (1.0) 0.877 (2.0)
Quill 0.302 (2.0) 0.420 (3.0) 0.431 (4.0) 0.150 (1.0)
Sora 0.650 (1.0) 0.775 (4.0) 0.821 (5.0) 0.827 (6.0)
Svea 0.324 (2.0) 0.312 (1.0) 0.342 (3.0) 0.421 (4.0)
Titus 0.154 (1.5) 0.154 (1.5) 0.201 (4.0) 0.195 (3.0)
Average 0.383 (2.6) 0.405 (2.8) 0.433 (2.7) 0.572 (3.9)
Scenario Star-zilla_dyn_sched Star-zilla AS-RF AS-ASL
Bado 0.516 (8.0) 0.293 (6.0) 0.164 (2.0) 0.319 (7.0)
Camilla 3.218 (7.5) 3.218 (7.5) 1.974 (5.0) 2.289 (6.0)
Caren 0.223 (3.0) 1.001 (6.0) 1.659 (7.0) 2.068 (8.0)
Magnus 0.410 (1.0) 0.417 (2.0) 2.012 (7.0) 2.013 (8.0)
Mira 2.337 (8.0) 0.967 (5.0) 0.505 (3.0) 1.407 (7.0)
Monty 0.513 (5.0) 0.827 (6.0) 8.482 (8.0) 7.973 (7.0)
Oberon 1.000 (5.5) 1.000 (5.5) 3.798 (7.0) 7.233 (8.0)
Quill 0.541 (5.0) 0.692 (6.0) 1.328 (8.0) 1.299 (7.0)
Sora 0.687 (2.5) 0.687 (2.5) 1.135 (7.0) 1.383 (8.0)
Svea 0.829 (7.5) 0.829 (7.5) 0.543 (5.0) 0.561 (6.0)
Titus 0.335 (5.5) 0.335 (5.5) 1.535 (8.0) 1.113 (7.0)
Average 0.964 (5.3) 0.933 (5.4) 2.103 (6.1) 2.514 (7.2)

References

[1] R. Amadini, M. Gabbrielli,]. Mauro, SUNNY: a lazy portfolio approach for constraint solving, Theory Pract. Log. Program. 14 (4-5) (2014) 509-524.

[2] C. Ansétegui,]. Gabas, Y. Malitsky, M. Sellmann, Maxsat by improved instance-specific algorithm configuration, Artif. Intell. 235 (2016) 26-39.

[3] C. Ansétegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic configuration of algorithms, in: I. Gent (Ed.), Proceedings of
the Fifteenth International Conference on Principles and Practice of Constraint Programming, CP'09, in: Lecture Notes in Computer Science, vol. 5732,
Springer-Verlag, 2009, pp. 142-157.

[4] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Frechétte, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, J. Vanschoren, ASlib: a bench-
mark library for algorithm selection, Artif. Intell. (2016) 41-58.

[5] P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to Data Mining, 1st edition, Springer Publishing Company, 2008, Incorpo-
rated.

[6] F. Calimeri, D. Fusca, S. Perri,]. Zangari, [-DLV+MS: preliminary report on an automatic asp solver selector, in: Proceedings of the 24th RCRA Interna-
tional Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion, 2017, pp. 26-32.

[7] C. Cameron, H. Hoos, K. Leyton-Brown, Bias in algorithm portfolio performance evaluation, in: S. Kambhampati (Ed.), Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, [JCAI, IJCAI/AAAI Press, 2016, pp. 712-719.

[8] C. Cameron, H.H. Hoos, K. Leyton-Brown, F. Hutter, Oasc-2017: *zilla submission, in: M. Lindauer, J.N. van Rijn, L. Kotthoff (Eds.), Proceedings of the
Open Algorithm Selection Challenge, vol. 79, 2017, pp. 15-18.

[9] J. Carpenter, May the best analyst win, Science 331 (6018) (2011) 698-699.

[10] J. Demsar, Statistical comparisons of classifiers over multiple data sets, . Mach. Learn. Res. 7 (2006) 1-30.

[11] A. Dutt, J. Haritsa, Plan bouquets: a fragrant approach to robust query processing, ACM Trans. Database Syst. 41 (2) (2016) 1-37.

[12] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter, Practical automated machine learning for the AutoML challenge 2018, in: ICML 2018
AutoML Workshop, July 2018.

[13] M. Feurer, A. Klein, K. Eggensperger,].T. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine learning, in: C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, R. Garnett (Eds.), Proceedings of the 29th International Conference on Advances in Neural Information Processing Systems, NIPS'15,
2015, pp. 2962-2970.

[14] M. Feurer, T. Springenberg, F. Hutter, Initializing Bayesian hyperparameter optimization via meta-learning, in: B. Bonet, S. Koenig (Eds.), Proceedings of
the Twenty-Ninth National Conference on Artificial Intelligence, AAAI'15, AAAI Press, 2015, pp. 1128-1135.

[15] C. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (1-2) (2001) 43-62.

[16] E. Gonard, M. Schoenauer, M. Sebag, Algorithm selector and prescheduler in the icon challenge, in: Proceedings of the International Conference on
Metaheuristics and Nature Inspired Computing, META'2016, 2016.

[17] E Gonard, M. Schoenauer, M. Sebag, Asap.v2 and asap.v3: sequential optimization of an algorithm selector and a scheduler, in: M. Lindauer, J.N. van
Rijn, L. Kotthoff (Eds.), Proceedings of the Open Algorithm Selection Challenge, vol. 79, 2017, pp. 8-11.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, The WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1)
(2009) 10-18.

[19] M. Helmert, G. Roger, E. Karpas, Fast downward stone soup: a baseline for building planner portfolios, in: ICAPS-2011 Workshop on Planning and
Learning, PAL, 2011, pp. 28-35.

[20] H. Hoos, R. Kaminski, M. Lindauer, T. Schaub, aspeed: solver scheduling via answer set programming, Theory Pract. Log. Program. 15 (2015) 117-142.

[21] H. Hoos, M. Lindauer, T. Schaub, claspfolio 2: advances in algorithm selection for answer set programming, Theory Pract. Log. Program. 14 (2014)
569-585.

100 M. Lindauer et al. / Artificial Intelligence 272 (2019) 86-100

[22] H. Hoos, T. Peitl, F. Slivovsky, S. Szeider, Portfolio-based algorithm selection for circuit gbfs, in: J.N. Hooker (Ed.), Proceedings of the International
Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 11008, Springer, 2018, pp. 195-209.

[23] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, M. Chickering, A bayesian approach to tackling hard computational problems, in: Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2001, pp. 235-244.

[24] B. Huberman, R. Lukose, T. Hogg, An economic approach to hard computational problems, Science 275 (1997) 51-54.

[25] B. Hurley, L. Kotthoff, Y. Malitsky, B. O’Sullivan, Proteus: a hierarchical portfolio of solvers and transformations, in: H. Simonis (Ed.), Proceedings of
the Eleventh International Conference on Integration of Al and OR Techniques in Constraint Programming, CPAIOR'14, in: Lecture Notes in Computer
Science, vol. 8451, Springer-Verlag, 2014, pp. 301-317.

[26] E. Hutter, H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: C. Coello (Ed.), Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization, LION'11, in: Lecture Notes in Computer Science, vol. 6683, Springer-Verlag,
2011, pp. 507-523.

[27] E. Hutter, L. Xu, H. Hoos, K. Leyton-Brown, Algorithm runtime prediction: methods and evaluation, Artif. Intell. 206 (2014) 79-111.

[28] S. Kadiogluy, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm selection and scheduling, in: J. Lee (Ed.), Proceedings of the Seventeenth
International Conference on Principles and Practice of Constraint Programming, CP'11, in: Lecture Notes in Computer Science, vol. 6876, Springer-Verlag,
2011, pp. 454-469.

[29] M. Katz, S. Sohrabi, H. Samulowitz, S. Sievers, Delfi: online planner selection for cost-optimal planning, in: Ninth International Planning Competition,
IPC 2018, 2018, pp. 55-62.

[30] R. Koitz, F. Wotawa, Improving abductive diagnosis through structural features: a meta-approach, in: Proceedings of the International Workshop on
Defeasible and Ampliative Reasoning (DARe-16). CEUR WS Proceedings, 2016.

[31] L. Kotthoff, Hybrid regression-classification models for algorithm selection, in: 20th European Conference on Artificial Intelligence, Aug. 2012,
pp. 480-485.

[32] L. Kotthoff, LLAMA: leveraging learning to automatically manage algorithms, arXiv:1306.1031, 2013.

[33] L. Kotthoff, Algorithm selection for combinatorial search problems: a survey, Al Mag. 35 (3) (2014) 48-60.

[34] L. Kotthoff, ICON challenge on algorithm selection, CoRR 2015, arXiv:1511.04326, http://arxiv.org/abs/1511.04326.

[35] L. Kotthoff, B. Hurley, B. O'Sullivan, The ICON challenge on algorithm selection, Al Mag. 38 (2) (2017) 91-93.

[36] L. Kotthoff, P. Kerschke, H. Hoos, H. Trautmann, Improving the state of the art in inexact TSP solving using per-instance algorithm selection, in: C.
Dhaenens, L. Jourdan, M. Marmion (Eds.), Proceedings of the Ninth International Conference on Learning and Intelligent Optimization, LION'15, in:
Lecture Notes in Computer Science, Springer-Verlag, 2015, pp. 202-217.

[37] M. Lindauer, D. Bergdoll, F. Hutter, An empirical study of per-instance algorithm scheduling, in: P. Festa, M. Sellmann, J. Vanschoren (Eds.), Proceedings
of the Tenth International Conference on Learning and Intelligent Optimization, LION'16, in: Lecture Notes in Computer Science, Springer-Verlag, 2016,
pp. 253-259.

[38] M. Lindauer, H. Hoos, F. Hutter, T. Schaub, Autofolio: an automatically configured algorithm selector, J. Artif. Intell. Res. 53 (Aug. 2015) 745-778.

[39] M. Lindauer, H. Hoos, K. Leyton-Brown, T. Schaub, Automatic construction of parallel portfolios via algorithm configuration, Artif. Intell. 244 (2017)
272-290.

[40] M. Lindauer, J.N. van Rijn, L. Kotthoff, Open algorithm selection challenge 2017: setup and scenarios, in: M. Lindauer,].N. van Rijn, L. Kotthoff (Eds.),
Proceedings of the Open Algorithm Selection Challenge, vol. 79, 2017, pp. 1-7.

[41] T. Liu, R. Amadini,]J. Mauro, Sunny with algorithm configuration, in: M. Lindauer,].N. van Rijn, L. Kotthoff (Eds.), Proceedings of the Open Algorithm
Selection Challenge, vol. 79, 2017, pp. 12-14.

[42] B. Malone, K. Kangas, M. Jarvisalo, M. Koivisto, P. Myllymaki, as-asl: algorithm selection with auto-sklearn, in: M. Lindauer,].N. van Rijn, L. Kotthoff
(Eds.), Proceedings of the Open Algorithm Selection Challenge, vol. 79, 2017, pp. 19-22.

[43] B. Malone, K. Kangas, M. Jdrvisalo, M. Koivisto, P. Myllymadki, Empirical hardness of finding optimal bayesian network structures: algorithm selection
and runtime prediction, Mach. Learn. (2018) 247-283.

[44] M. Maratea, L. Pulina, F. Ricca, A multi-engine approach to answer-set programming, Theory Pract. Log. Program. 14 (6) (2015) 841-868.

[45] J. Rice, The algorithm selection problem, Adv. Comput. 15 (1976) 65-118.

[46] H. Samulowitz, C. Reddy, A. Sabharwal, M. Sellmann, Snappy: a simple algorithm portfolio, in: M. Jarvisalo, A.V. Gelder (Eds.), Proceedings of the
16th International Conference on Theory and Applications of Satisfiability Testing, in: Lecture Notes in Computer Science, vol. 7962, Springer, 2013,
pp. 422-428.

[47] P. Selvaraj, V. Nagarajan, PCE-based path computation algorithm selection framework for the next generation SDON, J. Theor. Appl. Inf. Technol. 95 (11)
(2017) 2370-2382.

[48] K. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Comput. Surv. 41 (1) (2008).

[49] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: P. Bartlett, F. Pereira, C. Burges, L. Bot-
tou, K. Weinberger (Eds.), Proceedings of the 26th International Conference on Advances in Neural Information Processing Systems, NIPS'12, 2012,
pp. 2960-2968.

[50] P. Stuckey, T. Feydy, A. Schutt, G. Tack, J. Fischer, The minizinc challenge 2008-2013, Al Mag. 35 (2) (2014) 55-60.

[51] C. Thornton, F. Hutter, H. Hoos, K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, in: I.
Dhillon, Y. Koren, R. Ghani, T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, R. Uthurusamy (Eds.), The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD'13, ACM Press, 2013, pp. 847-855.

[52] J.N. van Rijn, Massively Collaborative Machine Learning, Ph.D. thesis, Leiden University, 2016.

[53] J.N. van Rijn, S. Abdulrahman, P. Brazdil,]. Vanschoren, Fast algorithm selection using learning curves, in: Advances in Intelligent Data Analysis XIV,
Springer, 2015, pp. 298-309.

[54] J.N. van Rijn, G. Holmes, B. Pfahringer, J. Vanschoren, The online performance estimation framework: heterogeneous ensemble learning for data streams,
Mach. Learn. 107 (1) (2018) 149-167.

[55] J.N. van Rijn, F. Hutter, Hyperparameter importance across datasets, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2018, pp. 2367-2376.

[56] J. Vanschoren, J.N. van Rijn, B. Bischl, L. Torgo, OpenML: networked science in machine learning, ACM SIGKDD Explor. Newsl. 15 (2) (2014) 49-60.

[57] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT,]. Artif. Intell. Res. 32 (2008) 565-606.

[58] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Hydra-MIP: automated algorithm configuration and selection for mixed integer programming, in: RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on
Artificial Intelligence, I[JCAI, 2011.

[59] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Evaluating component solver contributions to portfolio-based algorithm selectors, in: A. Cimatti, R. Sebastiani
(Eds.), Proceedings of the Fifteenth International Conference on Theory and Applications of Satisfiability Testing, SAT'12, in: Lecture Notes in Computer
Science, vol. 7317, Springer-Verlag, 2012, pp. 228-241.

	The algorithm selection competitions 2015 and 2017
	1 Introduction
	2 Background on algorithm selection
	2.1 Importance of algorithm selection
	2.2 Algorithm selection approaches
	2.3 Why is algorithm selection more than traditional machine learning?
	2.4 Evaluation of algorithm selection systems

	3 Competition setups
	3.1 General setup: ASlib
	3.2 Competition 2015
	3.3 Competition 2017

	4 Results
	4.1 Competition 2015
	4.2 Competition 2017

	5 Open challenges and insights
	5.1 Progress from 2015 to 2017
	5.2 Statistical signiﬁcance
	5.3 Robustness of algorithm selection systems
	5.4 Impact of randomness
	5.5 Hyperparameter optimization
	5.6 Handling of quality scenarios
	5.7 Challenging scenarios

	6 Conclusions
	Acknowledgements
	Appendix A Submitted systems in 2015
	Appendix B Technical evaluation details in 2015
	Appendix C Submitted systems in 2017
	Appendix D Detailed results 2015 competition
	Appendix E Detailed results 2017 competition
	References

