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Abstract
For many distributed algorithms, neighborhood size is an important parameter. In radio networks,
however, obtaining this information can be di�cult due to ad hoc deployments and communi-
cation that occurs on a collision-prone shared channel. This paper conducts a comprehensive
survey of the approximate neighbor counting problem, which requires nodes to obtain a constant
factor approximation of the size of their network neighborhood. We produce new lower and upper
bounds for three main variations of this problem in the radio network model: (a) the network
is single-hop and every node must obtain an estimate of its neighborhood size; (b) the network
is multi-hop and only a designated node must obtain an estimate of its neighborhood size; and
(c) the network is multi-hop and every node must obtain an estimate of its neighborhood size.
In studying these problem variations, we consider solutions with and without collision detection,
and with both constant and high success probability. Some of our results are extensions of ex-
isting strategies, while others require technical innovations. We argue this collection of results
provides insight into the nature of this well-motivated problem (including how it di�ers from
related symmetry breaking tasks in radio networks), and provides a useful toolbox for algorithm
designers tackling higher level problems that might benefit from neighborhood size estimates.
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1 Introduction

Many distributed algorithms assume nodes have advance knowledge of their neighborhood,
allowing them to take steps that depend, for example, on gathering information from every
neighbor (e.g., [16]), or flipping a coin weighted with their neighborhood size (e.g., [1]).

In standard wired network models, obtaining this neighbor information is often trivial (e.g.,
as in the LOCAL or CONGEST models). In radio networks, by contrast, this information
might be harder to obtain. Specifically, because nodes in these networks are often deployed
in an ad hoc manner, and subsequently communicate only on a contended shared channel, we
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26:2 Approximate Neighbor Counting in Radio Networks

cannot expect that they possess advance knowledge of their neighborhood. In fact, learning
this information might require non-trivial feats of contention management.

Some distributed algorithms for radio networks depend on nodes possessing an estimate of
their neighborhood size (e.g., [9, 10]), while other algorithms could be significantly simplified
if this information was available (e.g., [22, 18, 13]). Though it is generally assumed that
calculating these size estimates should not take too long in most settings, this problem has
escaped the more systematic scrutiny applied to related tasks like contention resolution.

In this paper, we work toward filling in more of this knowledge gap. We conduct a
comprehensive survey of lower and upper bounds for the approximate neighbor counting
problem in the radio network model under di�erent combinations of common assumptions
for this setting. Some of our results require only extensions of existing strategies, while many
others require non-trivial technical innovations.

Combined, this collection of results provides two important contributions to the study of
distributed algorithms for radio networks. First, it supports a deeper understanding of the
well-motivated neighbor counting problem, highlighting both its similarities and di�erences
to related low-level radio network tasks. Second, the collection acts as a useful toolbox for
algorithm designers tackling higher level problems.

Result summary. The radio network model we study describes the underlying network
topology with an undirected connected graph G = (V, E), with the n = |V | vertices
corresponding to the radio devices (usually called nodes in this paper), and the edges in E
describing which node pairs are within communication range. For every node u œ V , nu

describes the number of neighbors of u in G. We sometimes call this parameter the neighbor
count of u. In single-hop networks (i.e., G is a clique), all nodes have the same neighbor
count, while in multi-hop networks these counts can di�er.

The approximate neighbor counting problem requires nodes to calculate constant factor
estimates of their neighbor counts. We study the variant where every node must obtain
this estimate (e.g., during network initialization), and the variant where only a designated
node must obtain this estimate (e.g., when neighborhood of a node changes). We study
these variants in single-hop and multi-hop networks, and consider solutions with and without
collision detection. We study both lower and upper bounds for randomized solutions. When
relevant, we look at both results that hold with constant and high probability.

Our results are summarized in Table 1. Notice that we do not study both designated
and all nodes counting in single-hop networks, as in this setting all nodes have the same
neighbor count, making these two cases essentially identical (e.g., a designated node in
a single-hop network can simply announce its count, transforming the solution to an all
nodes counting solution). We also do not study constant probability solutions for all nodes
counting in multi-hop networks. This follows because in the multi-hop setting the success
probability applies to each individual node. A constant success probability, therefore, implies
that a constant fraction of the nodes are expected to generate inaccurate neighbor counts – a
result that is too weak in most scenarios. In the single-hop setting, by contrast, the success
probability refers to the probability that all nodes generate good counts.

Also notice that two upper bounds are given for multi-hop all nodes counting without
collision detection: O(lg2 nu) and O(lg3 N). The first bound describes an algorithm that
generates good neighbor counts but never terminates (specifically, each node must keep
participating to help neighbors that are still counting). The second bound does terminate,
but requires an upper bound N on the maximum possible network size. This is the only
algorithm we study that requires this information to work properly.
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Table 1 Summary of all approximate neighbor counting results proved in this paper. In the
above table, “CD” and “no-CD” denote “with collision detection” and “without collision detection”
respectively, while “high probability” is expressed with respect to the parameter in the bound. The
N and N� terms describe upper bounds on the maximum neighbor count in single-hop and multi-hop
networks, respectively. Our lower bounds are expressed with respect to these maximum sizes, while
our upper bounds are expressed with respect to the actual network sizes, with the exception of
the O(lg3 N) bound for multi-hop all nodes counting without collision detection. This is the only
algorithm we study that requires knowledge of network statistics to work properly.

with constant probability with high probability

no-CD CD no-CD CD

all nodes
in single-hop

lower bound �(lg N) �(lg lg N) �(lg2 N) �(lg N)

upper bound O(lg n) O(lg lg n) O(lg2 n) O(lg n)

designated node
in multi-hop

lower bound �(lg N�) �(lg lg N�) �(lg2 N�) �(lg N�)

upper bound O(lg nw) O(lg lg nw) O(lg2 nw) O(lg nw)

all nodes
in multi-hop

lower bound – – �(lg2 N�) �(lg N�)

upper bound – – O(lg2 nu),
O(lg3 N) O(lg2 nu)

Discussion. For all but one cases that we have lower bounds, they match our upper bounds.
For the single-hop results, these bounds also match the relevant bounds from the related
single-hop contention resolution problem (c.f., [19]). In fact, most of the lower bounds in
this single-hop setting follow by reduction from contention resolution. That is, we show
that if you can solve approximate neighbor counting fast, then you can also solve contention
resolution fast – allowing existing lower bounds from the latter to carry over to the former.

The single-hop upper bounds, however, required more than the simple application of
existing contention resolution strategies. In contention resolution, for example, if you get
lucky with your coin flips, and a node broadcasts alone earlier than expected, this is good
news – you have solved the problem even faster! In neighbor counting, however, this “luck”
might lead you to output an inaccurate size estimate. The analysis used for neighbor counting
must bound the probabilities of these precocious symmetry breaking events.

Another complexity of neighbor counting (in single-hop networks) as compared to con-
tention resolution is that all nodes must learn an estimate. This requires extra mechanisms
to ensure that once some nodes learn a good estimate, this information is spread to all others.
The most di�cult single-hop case is the combination of high probability correctness and
collision detection. To achieve an accurate estimate in an optimal O(lg n) rounds required
the adaptation of a technique based on one-dimensional random walks [18, 3].

Obtaining lower bounds for the multi-hop designated node setting required technical
innovations. In the single-hop setting, our lower bounds used reduction arguments that
applied the contention resolution bounds from [19] as a black box. In the multi-hop designated
node setting, by contrast, we were forced to open the black boxes and modify them to handle
the issues specific to multi-hop topologies. For the particular case of collision detection and
high probability, substantial new arguments were needed to transform the bound.

In the multi-hop all nodes setting, obtaining upper bounds also required techniques
beyond standard symmetry breaking strategies, as each node may simultaneously participate
in multiple estimation processes. Our collision detector algorithm for this case has nodes use
detectable noise to notify neighbors that they are still counting. When collision detection
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26:4 Approximate Neighbor Counting in Radio Networks

is not available, we consider two di�erent approaches and hence present two algorithms.
The first one returns an estimate for nu in O(lg2 nu) rounds, which is correct with high
probability in nu. The second algorithm uses a “double counting” trick and takes longer
time, but the returned estimate is correct with high probability in N .

Last but not least, we would like to clarify a point about our lower bound statements.
As shown in Table 1, our lower bounds are expressed with respect to the maximum possible
neighbor counts (e.g., N and N�), whereas, to obtain the strongest possible results, our upper
bounds are expressed with respect to the actual neighbor counts in the analyzed execution
(e.g., n and nu). The right way to interpret our lower bounds is that they claim in a setting
where the number of participants comes from a set of N (or N�) possible participants, there
exists a subset of these participants for which the stated bound holds.

Our lower bound technique does not directly tell us anything about the size of the
participant set that induces the slow performance. Given our matching upper bounds,
however, we can conclude that the worst case participant sets for these algorithms must have
a size close to the maximum bounds. Consider, for example, single-hop counting with no
collision detection. The lower bound says that for each algorithm there exists a collection of
no more than N participants that requires �(lg N) rounds to generate a good count with
constant probability. Our upper bound, on the other hand, guarantees a good count in
O(lg n) rounds with constant probability, where n is the size of the participant set. It follows
that when the lower bound is applied to our algorithm, the bad participant set must have a
size that is polynomial in N (i.e., n = �(N“), for some constant 0 < “ Æ 1), as otherwise
the existence of both bounds is a logical contradiction.

2 Related Work

Algorithms to reduce contention and enable communication on shared channels date back
to the early days of networking (c.f., [11, 6]), and remain an active area of study today. In
the study of distributed algorithms for shared radio channels, many strategies explicitly
execute approximate neighbor counting as a subroutine. For example, in their study of
energy-e�cient initialization with collision detection, Bordim et al. [2] propose a protocol
that returns an estimate of n in the range [n/(16 lg n), 2n/ lg n] within O(lg2 n) time, while
requiring each node to be awake for at most O(lg n) rounds. Similarly, Gilbert et al. [10] use
approximate neighbor counting as part of a neighbor discovery protocol in cognitive radio
networks. It is also common for algorithms in this setting to simply assume these estimates
are provided in advance. E.g., the often-used decay strategy introduced by Bar-Yehuda et
al. [1], requires a bound on local neighborhood size to limit the estimates it tests.

As mentioned throughout this paper, neighbor counting is often closely related to con-
tention resolution, which requires a single node to broadcast alone on the channel. Some
common contention resolution strategies implicitly provide this approximation as a side-e�ect
of their operation (e.g., [22, 18, 13]). At the same time, under some assumptions, a good
estimate simplifies the problem of contention resolution. As we detail throughout this paper,
however, this relationship is not exact. Lower bounds for neighbor counting often require
more intricate arguments than contention resolution, and in some cases, contention resolution
algorithms require nontrivial extra analysis and mechanisms to provide counts. Teasing apart
this intertwined relationship is one of the main contributions of this paper.

Others have directly studied approximate neighbor counting in radio networks. Jurdzinski
et al. [12] develop an algorithm that provides a constant factor approximation of n within
O(lg2+” n) time without collision detection for arbitrary constant ” > 0. Their algorithm
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guarantees that no node participates in more than O((lg lg n)”) rounds. (Our relevant
algorithm only needs O(lg2 n) rounds, but consumes more energy.) Caragiannis et al. [4]
devise two constant-factor approximation algorithms: the first one requires collision detection
and takes O((lg n) · (lg lg n)) time, while the second one works without collision detection
and takes O(lg2 n) time. (Our relevant algorithms only need O(lg n) rounds with collision
detection, and perform as well as theirs without collision detection.) In [14, 15], the authors
discuss how to approximate network size when adversaries are present.

Approximate neighbor counting has also been studied in the beeping model [7], which is
similar to, but somewhat weaker than, the standard radio network model. In this setting,
Chen et al. [5] conduct an excellent mini survey on recent works in RFID counting (e.g.,
[24, 21, 23, 5]). They conclude that a two-phase approach is the key to achieve e�cient and
accurate RFID counting. They also prove several lower bounds, one of which shows �(lg lg n)
rounds are needed to obtain a constant factor approximation with constant probability. More
recently, Brandes et al. [3] study how to e�ciently estimate the size of a single-hop beeping
network: they provide both lower and upper bounds for a parameterized approximation
accuracy. Notice, the main objective of [5] and [3] di�ers from ours not just in the model,
but in that they seek a (1 + ‘) approximation of n for any ‘ > 0 (‘ can be non-constant).
Nonetheless, they both use constant factor approximation as a key subroutine.

3 Model and Problem

We consider a synchronous radio network. We model the topology of this network with a
connected undirected graph G = (V, E), with the n = |V | vertices corresponding to the radio
devices (usually called nodes in this paper), and the edges in E describing which node pairs
are within communication range.

For each node u œ V , we use �u to denote the set of neighbors of u, and use nu = |�u|
to denote the number of neighbors of u. Let n� = maxuœV {nu}. Our algorithms assume
nu Ø 1. That is, we do not confront the possibility of a node isolated from the rest of a
multi-hop network, or a single-hop network consisting of only a single node (we see the
so-called loneliness detection problem as an interesting but somewhat orthogonal challenge;
e.g., [8]). For the ease of presentation, we assume nu and n are always a power of two. This
assumption does not a�ect the correctness or asymptotic time complexities of our results. We
define N and N� to be upper bounds on the maximum possible size of n and n�, respectively.
To obtain the strongest and most general possible results, our algorithms are not provided
with knowledge of N and N�, with the exception of an O(lg3 N) time algorithm for multi-hop
all nodes counting without collision detection.

We divide time into discrete and synchronous slots that we also sometimes call rounds.
We assume all nodes start execution during the same slot. (The definition of “neighbor
counting” becomes complicated once nodes can activate in di�erent time slots.) These
assumptions imply nodes have access to a global clock. We assume each node is equipped
with a half-duplex radio transceiver. That is, in each time slot, each node can choose to
broadcast or listen, but cannot do both. If a node chooses to broadcast, then it gets no
feedback from the communication channel. If a node chooses to listen and no neighbors of it
broadcasts, then the node hears nothing (i.e., silence). If a node chooses to listen and exactly
one of its neighbors broadcasts, then the node receives the message from that neighbor.
Finally, if a node chooses to listen and at least two of its neighbors broadcast, then the
result depends on the availability of a collision detection mechanism: if collision detection is
available, then the listening node hears noise; otherwise, the listening node hears nothing.
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As a result, without collision detection, a listening node cannot tell whether there are no
neighbors broadcasting or there are multiple neighbors broadcasting.

In this paper, we are interested in the approximate neighbor counting problem. This
problem requires selected node(s) to obtain a constant factor approximation of their neigh-
borhood size(s). In more detail, let constant c̃ Ø 1 be the fixed approximation threshold for
this problem. Each node u that produces an estimate n̂u must satisfy nu Æ n̂u Æ c̃ · nu. We
consider three variations of this problem that di�er with respect to the allowable network
topologies and requirements on which nodes produce an estimate. The first variant assumes
G is single-hop and all nodes must produce an identical estimate. The second variant assumes
G is multi-hop, but only a single designated node w must produce an estimate. The third
variant is the same as the second, except that now every node must produce an estimate.
We study randomized algorithms that are proved to be correct with a given probability p. In
the single-hop variant, p describes the probability of the event in which all nodes generate a
single good approximation. In the multi-hop variants, by contrast, p is the probability that
an individual counting node generates a good approximation.

Throughout this paper, we cite the related contention resolution problem. In single-hop
networks, the contention resolution problem is solved once some node broadcasts alone. Later
in the paper, we consider a version of multi-hop contention resolution in which a single
designated node must receive a message from a neighbor to solve the problem.

Finally, in the following, we say an event occurs with high probability in parameter k (or
“w.h.p. in k”) if it occurs with probability at least 1 ≠ 1/k“ , for some constant “ Ø 1.

4 Lower Bounds

In this section, we presents our lower bounds for the approximate neighbor counting problem.
We begin, in Section 4.1 by looking at lower bounds that can be proved by reducing from the
contention resolution problem. That is, in that subsection, we prove lower bounds by arguing
that solving neighbor counting fast implies an e�cient algorithm to contention resolution,
allowing the relevant contention resolution lower bounds to apply.

We employ this approach to derive bounds for constant probability and high probability
counting with no collision detection in both single-hop and designated node multi-hop settings.
We also apply this approach to derive bounds for constant probability counting with collision
detection in these settings. We cannot, however, apply this approach to high probability
counting with collision detection, as the reduction itself is too slow compared to the desired
bounds. We note that for the single-hop arguments, we leverage existing contention resolution
bounds from [19]. For the multi-hop arguments, however, we must first generalize the results
from [19] to hold for the considered network topology.

In Section 4.2, we look at lower bounds for high probability approximate neighbor counting
with collision detection in both single-hop and designated node multi-hop settings. Unlike in
Section 4.1, we cannot deploy a reduction-based argument. We instead prove a new lower
bound that directly argues a su�ciently accurate estimate requires the stated rounds.

Finally, in Section 4.3 we look at lower bounds for the remaining case of multi-hop all
nodes counting. We establish these bounds by reduction from designated node multi-hop
bounds, as solving all nodes counting trivially also solves designated node counting.

4.1 Lower Bounds via Reduction from Contention Resolution
We begin with our lower bound arguments that rely on reductions from contention resolution.
For the single-hop scenario, we can reduce from single-hop contention resolution and apply
existing lower bounds from [19]. (See full version of the paper [20] for details on contention
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resolution lower bounds in single-hop networks.) For multi-hop designated node counting,
however, we must first prove new contention resolution lower bounds.

In particular, consider the definition of multi-hop contention resolution in which there is
a well-defined designated node w, and the goal is for exactly one of w’s neighbors – which
is a size nw subset drawn from a size N� universe – to broadcast alone in some time slot.
At first glance, this problem might seem easier than single-hop contention resolution as we
are provided with a designated node w that could coordinate its neighbors in their quest to
break symmetry among themselves. We prove, however, that this is not the case: the lower
bounds are the same as their single-hop counterparts. In more detail, we prove the following
two lemmas by adapting the techniques from [19] to this new set of assumptions (see full
version of the paper [20] for the omitted proofs of this section):

I Lemma 1. Let A be an algorithm that solves contention resolution in g(N�) time slots
with probability p in multi-hop networks with no collision detection. It follows that: (a) if p is
some constant, then g(N�) œ �(lg N�); and (b) if p Ø 1 ≠ 1/N�, then g(N�) œ �(lg2 N�).

I Lemma 2. Let A be an algorithm that solves contention resolution in g(N�) time slots
with probability p in multi-hop networks with collision detection. It follows that if p is some
constant, then g(N�) œ �(lg lg N�).

With the needed contention resolution lower bounds in hand, we turn our attention to
reducing this problem to approximate neighbor counting. Take the single-hop scenario as an
example, the basic idea behind the reduction is that once nodes have an estimate n̂ of n, they
can simply broadcast with probability 1/n̂ in each time slot. If this estimate is good, then
in each time slot, they have a constant probability of isolating a broadcaster, thus solving
contention resolution. Moreover, repeating this step multiple times increases the chance of
success proportionally. Building on these basic observations, we prove the following:

I Lemma 3. Assume there exists an algorithm A that solves approximate neighbor counting
in h(N) (or, h(N�) in the multi-hop scenario) time slots with probability p. Then, there
exists an algorithm B that solves contention resolution in 2(h(N) + k) (resp., 2h(N�) + k in
the multi-hop scenario) time slots with probability at least (1 ≠ e≠k/(4c̃)) · p. Here, k Ø 1 is
an integer, and c̃ Ø 1 is the constant defined in Section 3.

Combining the reduction described in Lemma 3 with the single-hop lower bounds for
contention resolution from [19] and the new multi-hop lower bounds proved above, we get
the following lower bounds for approximate neighbor counting:

I Theorem 4. In a single-hop radio network containing at most N nodes:
When collision detection is not available, solving approximate neighbor counting with
constant probability requires �(lg N) time in the worst case; solving approximate neighbor
counting with high probability in N requires �(lg2 N) time in the worst case.
When collision detection is available, solving approximate neighbor counting with constant
probability requires �(lg lg N) time in the worst case.

In a multi-hop radio network in which the designated node has at most N� neighbors:
When collision detection is not available, solving approximate neighbor counting with
constant probability requires �(lg N�) time in the worst case; solving approximate neighbor
counting with high probability in N� requires �(lg2 N�) time in the worst case.
When collision detection is available, solving approximate neighbor counting with constant
probability requires �(lg lg N�) time in the worst case.
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4.2 Custom Lower Bounds for High Probability and Collision Detection
At this point, for single-hop and designated node multi-hop variants of the approximate
neighbor counting problem, the only lower bounds missing are the ones of ensuring high
success probability with collision detection. As we detail in full version of the paper [20], our
previous reduction-based approach no longer works in these scenarios. (Roughly speaking,
the reduction itself takes at least as long as the lower bound we intend to prove.) Therefore,
we must construct custom lower bounds for this problem and exact set of assumptions.

We start by proving the following combinatorial result:

I Lemma 5. Let c and k be two positive integers such that c Æ k. Let R be the set containing
all size c subsets from [k] = {1, 2, · · · , k}. Let H be an arbitrary set of size less than lg(k/c)
such that each element in H is a subset of [k]. Then, there exists some R œ R such that for
each H œ H, either R ™ H or R fl H = ÿ.

Intuitively, a set H can be interpreted as a broadcast schedule generated by an algorithm
A: a node labeled i broadcasts in slot j if and only if it is activated, and i is in the jth set in
H. Given this interpretation, Lemma 5 suggests: for both the single-hop and the multi-hop
designated node scenario, for any approximate neighbor counting algorithm A, and for any
broadcast schedule generated by A of length less than lg (k/c), there exists a set of c nodes
(or a set of c neighbors of the designated node in the multi-hop scenario) such that if these c
nodes are activated and execute A, then during each of the first lg (k/c) ≠ 1 time slots, either
none of them broadcast or all of them broadcast. This further implies, if only two of these c
nodes are activated, then their view (of the first lg (k/c) ≠ 1 time slots of the execution) is
indistinguishable from the case in which all of these c nodes are activated.

Now, imagine an adversary who samples a size c subset from R with uniform randomness,
and then flips a fair coin to decide whether to activate all these c nodes, or just two of them.
If the adversary happens to have chosen the set R proved to exist in Lemma 5, then by the
end of slot lg (k/c) ≠ 1, algorithm A cannot distinguish between two and c nodes. Notice, if c
is large compared to the approximation threshold c̃, then this di�erence matters: outputting
two when the real count is c (or vice versa) is unacceptable. Thus, in such case, the algorithm
gets the right answer with only probability 1/2 – not enough for high success probability.

A complete and rigorous proof for the above intuition is actually quite involved, again
see full paper [20] for more details. In the end, we obtain the following lower bounds:

I Theorem 6. Assume collision detection is available, then:

In a single-hop radio network containing at most N nodes, solving approximate neighbor
counting with high probability in N requires �(lg N) time in the worst case.
In a multi-hop radio network in which the designated node has at most N� neighbors,
solving approximate neighbor counting with high probability in N� requires �(lg N�) time
in the worst case.

4.3 All Nodes Multi-Hop Lower Bounds
If an algorithm can solve multi-hop all nodes approximate neighbor counting, then clearly
the same algorithm can be used to solve multi-hop designated node approximate neighbor
counting, with same time complexity and success probability. Therefore, the lower bounds
we previously proved for the latter variant naturally carries over to the former variant:

I Theorem 7. In a multi-hop radio network containing at most N nodes:
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When collision detection is not available, solving approximate neighbor counting with high
probability in N requires �(lg2 N) time in the worst case.
When collision detection is available, solving approximate neighbor counting with high
probability in N requires �(lg N) time in the worst case.

5 Upper Bounds

In this section, we describe and analyze several randomized algorithms that solve the
approximate neighbor counting problem. We will begin with single-hop all nodes counting.
Specifically, four algorithm are presented for this variant, each based on a di�erent approach.
Though most of the strategies used are previously known, extensions to design and analysis
are often needed. We then introduce three algorithms for multi-hop all nodes counting,
including one which is particularly interesting, as it uses a “double counting” trick that is
not related to contention resolution at all to obtain high success probability. Finally, we
briefly discuss solutions for multi-hop designated node counting, as most of these algorithm
are simple variations of their counterparts for single-hop all nodes counting.

Due to space constraint, if not otherwise stated, complete proofs for lemma and theorem
statements are provided in the appendix. Nonetheless, we will usually discuss the intuitions
or high-level strategies for proving them.

5.1 Single-Hop Networks: No Collision Detection
Our algorithms often adopt a classical technique inspired by the contention resolution
literature: “guess and verify”. In more detail, take a guess about the count, and then verify
its accuracy; if the guess is good enough then we are done, otherwise take another guess
and repeat. This simple approach is versatile: depending on how the guesses are made and
verified, many variations exist, resulting in e�cient algorithms suitable for di�erent settings.

A standard approach to this guessing is to use a geometric sequence with common ratio
two, which is usually called (exponential) decay [1]. This sequence leverages the fact that we
only need a constant factor estimate to speed things up. Particularly, if the real count is n,
then only O(lg n) iterations are needed before reaching an accurate estimate.

Once a guess is made, we need to verify its accuracy. To accomplish this, it is su�cient to
let each participating node broadcast with a probability proportional to the reciprocal of the
guess, and then observe the status of the channel. The intuition is simple: underestimate will
result in collision and overestimate will result in silence; and we expect one node to broadcast
alone – a distinguishable event – i� the estimate is accurate enough. The algorithms described
below adapt this general approach to their specific constraints.

Constant probability of success. We now present Count-SH-noCD-Const. (In the
algorithm’s name, SH means “single-hop”, noCD means “no collision detection”, and Const
means “success with constant probability”.) This algorithm applies the most basic form of
the “guess and verify” strategy. It provides a correct estimate with constant probability in
O(lg n) time for single-hop radio networks, when collision detection is not available.

Count-SH-noCD-Const contains multiple iterations, each of which has two time slots.
In the ith iteration, nodes assume n ¥ 2i, and verify whether this estimate is accurate or
not. More specifically, in the first time slot within the ith iteration, each node will broadcast
a beacon message with probability 1/2i and listen otherwise. If a node decides to listen
and hears a beacon message in the first time slot, then it will set its estimate to 2i+2 and
terminate after this iteration. That is, if a single node u broadcasts alone in the first time
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slot of iteration i, then all listening nodes – which is all nodes except u – will terminate by
the end of this iteration, with 2i+2 being their estimate. Notice, we still need to inform u
about this estimate, which is the very purpose of the second time slot within each iteration.
More specifically, in the second time slot within the ith iteration, for each node u, if it has
heard a beacon message in the first time slot of this iteration, then it will broadcast a stop

message with probability 1/(2i ≠ 1). Otherwise, if u has broadcast in the first time slot of
this iteration, then it will listen in this second time slot. Moreover, it will terminate with its
estimate set to 2i+2, if it hears a stop message in this second time slot.

Despite its simplicity, proving the correctness of Count-SH-noCD-Const requires e�orts
beyond what would su�ce for basic contention resolution. First, by carefully calculating
and summing up the failure probabilities, we show no node will terminate during the first
lg n ≠ 3 iterations, with at least constant probability. Then, we show during iteration i where
lg n ≠ 2 Æ i Æ lg n, either no node terminates or all nodes terminate, with at least constant
probability. Finally, we prove that if all nodes are still active by iteration lg n, then all of
them will terminate by the end of it, again with at least constant probability. Complete
analysis can be found in the full paper [20], here we present only the main theorem:

I Theorem 8. The Count-SH-noCD-Const approximate neighbor counting algorithm
ensures the following properties with constant probability when executed in a single-hop
network with no collision detection: (a) all nodes terminate simultaneously within O(lg n)
slots; and (b) all nodes obtain the same estimate of n, which is in the range [n, 4n].

High probability of success. Observe that in the aforementioned simplest form of “guess
and verify”, as the estimate increases, the probability that multiple nodes broadcast decreases,
and the probability that no node broadcasts increases. A more interesting metric is the
probability that a single node broadcasts alone: it first increases, and then decreases; not
surprisingly, the peak value is reached when the estimate is the real count. These facts
suggest, for each estimate n̂, we could repeat the procedure of broadcasting with probability
1/n̂ multiple times, and use the fraction of noisy/silent/clear-message slots to determine
the accuracy of the estimate. This method can provide stronger correctness guarantees, but
complicates termination detection (i.e., when should a node stop), as di�erent nodes may
observe di�erent fraction values. For example, if some nodes have already obtained a correct
estimate but terminate too early, then remaining nodes might never get correct estimates,
since there are fewer nodes remaining. The situation becomes more challenging when an
upper bound of the real count is not available. To resolve this issue, sometimes, we have to
carefully craft and embed a “consensus” mechanism.

Count-SH-noCD-High highlights our above discussion. This algorithm contains mul-
tiple iterations, each of which has three phases. In the ith iteration, nodes assume n ¥ 2i.
The first phase of each iteration i – which contains �(i) time slots – is used to verify the
accuracy of the current estimate. In particular, in each slot within the first phase, each node
will broadcast a beacon message with probability 1/2i, and listen otherwise. By the end of
the first phase, each node will calculate the fraction of time slots (among all its listening slots
in this phase) in which it has heard a beacon message. For each node, if at the end of the
first phase of some iteration j, this fraction value has reached 1/2e for the first time since
the start of execution, the node will set 2j as its private estimate for n. Recall nodes might
not obtain private estimates simultaneously, thus they cannot simply terminate and output
private estimates as the final estimate. This is the place where the latter two phases come
into play. More specifically, in the second phase, nodes that have already obtained private
estimates will try to broadcast informed messages to signal other nodes to stop. In fact,
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hearing an informed message is the only situation in which a node can safely terminate, even
if the node has already obtained its private estimate. On the other hand, the third phase
is used to deal with the case in which one single “unlucky” node successfully broadcasts
an informed message during phase two (thus terminate all other nodes), but never gets the
chance to successfully receive an informed message (thus cannot terminate along with other
nodes). Complete description of Count-SH-noCD-High can be found in full paper [20].

To prove the correctness of Count-SH-noCD-High, we need to show: (a) nodes can
correctly determine the accuracy of their estimates; and (b) all nodes terminate simultaneously
and output identical estimate. Part (b) follows from our careful protocol design, as phase
two and three in each iteration act like a mini “consensus” protocol, allowing nodes to agree
on when to stop. Proving part (a), on the other hand, needs more e�ort. Recall we use the
fraction of clear message slots to determine the accuracy of an estimate, and the expected
fraction value should be identical for all nodes. However, due to random chances, the actual
fraction value observed by each node might deviate from expectation. If we have an upper
bound N of n, then by making the first phase to contain �(lg N) slots, Cherno� bounds [17]
will enforce the observed fraction value to be tightly concentrated around its expectation.
In our case, N is not available, and we rely on more careful analysis. Specifically, during
iterations one to lg(n/(a ln n)) where a is some su�ciently large constant, in each time slot
in phase one, at least two nodes will broadcast (since the estimate is too small), thus no node
will obtain private estimate in these iterations. Starting from iteration lg(n/(a ln n)), the
length of phase one is long enough so that concentration inequalities will ensure the observed
fraction value is close to its expectation. Building on these observations, we can eventually
conclude the following theorem (again, see [20] for full analysis):

I Theorem 9. The Count-SH-noCD-High approximate neighbor counting algorithm
ensures the following properties with high probability in n when executed in a single-hop
network with no collision detection: (a) all nodes terminate simultaneously within O(lg2 n)
slots; and (b) all nodes obtain the same estimate of n, which is in the range [n, 4n].

5.2 Single-Hop Networks: Collision Detection
Without collision detection, the feedback to a listening node is either silence or a message.
Failing to receive a message, therefore, does not hint the nature of the failure: either no
node is sending, or multiple nodes are sending. As a result, in the two previous algorithms,
when nodes “guess” the count, they have to do it in a linear manner: start with a small
estimate, and double if the guess is incorrect. With collision detection, by contrast, listening
nodes can distinguish whether too few (i.e., zero) or too many (i.e., at least two) nodes
are broadcasting. As first pointed out back in the 1980’s [22], this extra power enables an
exponential improvement over linear searching, since nodes can now perform a binary search.

Constant probability of success. Here we leverage the aforementioned binary search strat-
egy to return a constant factor estimate of n in O(lg lg n) time, with at least some constant
probability. Recall e�cient binary search requires a rough upper bound of n as input. To
this end, we first introduce an algorithm called EstUpper-SH: it can provide a polynomial
upper bound of n within O(lg lg n) time. At a high level, EstUpper-SH is doing a linear
“guess and verify” search to estimate lg n. (Notice, it is not estimating n.) This strategy, to
the best of our knowledge, is first discussed by Willard in the seminal paper [22], and has
later been used in other works (see, e.g., [5, 3]). Due to space constraint, detailed description
and analysis of EstUpper-SH are provided in full version of the paper [20].
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Once this estimate is obtained, we switch to the main logic of Count-SH-CD-Const.
This algorithm contains multiple iterations, each of which has four time slots. In each
iteration i, all nodes have a lower bound ai and an upper bound bi, and will test whether
the median mi = Â(ai + bi)/2Ê is close to lg n or not. More specifically, in the first time slot
in iteration i, each node will broadcast a beacon message with probability 1/2mi , and listen
otherwise. Listening nodes will use the channel status they observed to adjust ai (or bi), or
terminate and output the final estimate. On the other hand, the other three time slots in
each iteration allow nodes that have chosen to broadcast in the first time slot to learn the
channel status too, with the help of the nodes that have chosen to listen in the first time
slot. (See full paper [20] for complete description of Count-SH-CD-Const.)

To prove Count-SH-CD-Const can provide a correct estimate, we demonstrate that
during one execution of Count-SH-CD-Const: (a) whenever mi is too large or too small,
all nodes can correctly detect this and adjust ai or bi accordingly; and (b) when mi is a good
estimate, all nodes can correctly detect this as well and stop execution. The full analysis can
be found in the full version of the paper [20], here we state only the main theorem:

I Theorem 10. The Count-SH-CD-Const approximate neighbor counting algorithm
ensures the following properties when executed in a single-hop network with collision detection:
(a) all nodes terminate simultaneously; and (b) with at least constant probability, all nodes
obtain the same estimate of n in the range [n, 4n] within O(lg lg n) time slots.

High probability of success. Our last algorithm for the single-hop scenario is Count-SH-
CD-High. It significantly di�ers from the other algorithms studied so far in that it does not
use a “guess and verify” strategy. Instead, it deploys a random walk to derive an estimate.
The use of random walks for contention resolution was introduced by Nakano and Olariu [18],
in the context of leader election in radio networks. It was later adopted by Brandes et al. [3]
for solving approximate counting in beeping networks.

Prior to executing Count-SH-CD-High, nodes will first use O(lg lg n) time slots to run
EstUpper-SH to obtain a polynomial upper bound of n. Call this upper bound N̂ . All
nodes then perform a random walk, the state space of which consists of potential estimates
of n. More specifically, Count-SH-CD-High contains �(lg N̂) iterations, each of which
has three time slots. In each iteration, all nodes maintain a current estimate on n which
is denoted by n̂. (Initially, n̂ is set to N̂ .) In the first slot in a iteration, each node will
broadcast a beacon message with probability 1/n̂, and listen otherwise. If a node hears
silence, it will decrease n̂ by a factor of four; if a node hears noise, it will increase n̂ by a
factor of four; and if a node hears a beacon message, it will keep n̂ unchanged. Similar to
what we have done in Count-SH-CD-Const, in each iteration, the nodes that have chosen
to listen in the first time slot will use the latter two slots to help nodes that have chosen to
broadcast in the first time slot to learn the channel status of the first time slot. After these
�(lg N̂) iterations, all nodes will use 4ñ to be the final estimate of n, where ñ is the most
frequent estimate used by the nodes during the �(lg N̂) iterations.

The high-level intuition of Count-SH-CD-High is: when the estimate is too large or
too small, it will quickly shift towards correct estimates; and when the estimate is correct, it
will remain unchanged. Therefore, the most frequent estimate will likely to be a correct one.
Complete analysis is deferred to full paper [20], here we provide only the main theorem:

I Theorem 11. The Count-SH-CD-High approximate neighbor counting algorithm ensures
the following properties when executed in a single-hop network with collision detection: (a)
all nodes terminate simultaneously; and (b) with high probability in n, all nodes obtain the
same estimate of n in the range [n, 64n] within O(lg n) time slots.
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5.3 Multi-Hop with All Nodes Counting: No Collision Detection
All nodes counting in a multi-hop network is challenging as di�erent nodes may have
significantly di�erent number of neighbors. In this part, we present two algorithms that
attempt to overcome this obstacle, the second of which is particularly interesting.

We begin with the first algorithm – called Count-All-noCD– which still relies on the
linear “guess and verify” approach. However, it requires the upper bound N� as an input
parameter to enforce termination. Nonetheless, for each node, Count-All-noCD always
returns an accurate estimate, even when knowledge of N� is absent.

In more detail, Count-All-noCD contains lg N� iterations, and the ith iteration
contains �(i) time slots. In each slot in iteration i, each node will choose to be a broadcaster
or a listener each with probability 1/2. If a node chooses to be a listener in a time slot,
it will simply listen. Otherwise, if a node chooses to be a broadcaster, it will broadcast a
beacon message with probability 1/2i, and do nothing otherwise. After an iteration i, for a
node u, if for the first time since the beginning of protocol execution, it has heard beacon

messages in at least 1/10 fraction of slots among the listening slots (within this iteration),
then u will use 2i+3 as its estimate for nu. Proving the correctness of Count-All-noCD
borrows heavily from our analysis of Count-SH-noCD-High (see the full version of the
paper [20] for more details), here we only state the main theorem:

I Theorem 12. For each node u, the Count-All-noCD approximate neighbor counting
algorithm ensures the following with high probability in nu when executed in a multi-hop
network with no collision detection: u will obtain an estimate of nu in the range [nu, 4nu]
within O(lg2 nu) time. Moreover, u will terminate after O(lg2 N�) time when N� is known.

Notice that in Count-All-noCD, for a node u, the high correctness guarantee is with
respect to nu. This implies, when nu is some constant, the probability that the obtained
estimate is desirable is also a constant. Sometimes, we may want identical and high correctness
guarantees for all estimates, such as high probability in n. Our second algorithm – which is
called Count-All-noCD-2– achieves this goal, at the cost of accessing N and demanding
longer execution time. (Count-All-noCD only needs N� to enforce termination, while
Count-All-noCD-2 needs N to work properly.)

Careful readers might suspect Count-All-noCD-2 just extends the length of each
iteration of Count-All-noCD to �(lg N). Unfortunately, this simple modification is
not su�cient: we still cannot change the fact that when a node u listens, the number of
broadcasters among its neighbors is concentrated to nu/2 only with high probability in nu.

Instead, Count-All-noCD-2 takes a di�erent approach, the core of which is a “double
counting” trick. Specifically, Count-All-noCD-2 contains L = �(lg N) iterations, each
of which has �(lg2 N) time slots. At the beginning of each iteration, each node chooses to
be a broadcaster or a listener each with probability 1/2. Then, by applying the “guess and
verify” strategy, each listener will spend the �(lg2 N) time slots in this iteration to obtain
a constant factor estimate on the number of neighboring broadcasters. When all �(lg N)
iterations are done, each node will sum the estimates it has obtained, divide it by L/4, and
output the result as its estimate for the neighborhood size.

Due to space constraint, detailed description for each iteration is deferred to the full
paper [20]. We only note here that the estimates obtained by the listeners are quite accurate:

I Lemma 13. Consider an arbitrary iteration during the execution of Count-All-noCD-2,
assume node u is a listener with m neighboring broadcasters. By the end of this iteration,
node u will obtain an estimate of m in the range [m, 4m], with high probability in N .
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We can now state and prove the guarantees provided by Count-All-noCD-2:

I Theorem 14. The Count-All-noCD-2 approximate neighbor counting algorithm ensures
the following properties when executed in a multi-hop network with no collision detection: (a)
all nodes terminate after O(lg3 N) time slots; and (b) with high probability in N , for each
node u, the node will obtain an estimate of nu in the range [nu, 5nu].

Proof sketch. Consider a node u and one of its neighbor v. Assume Count-All-noCD-
2 contains a lg N iterations, where a is a su�ciently large constant. In expectation, in
(a/4) · lg N iterations, u will be listener and v will be broadcaster. Apply a Cherno� bound,
we know u will be listener and v will be broadcaster in at least (1 ≠ ”) · (a/4) · lg N iterations,
and at most (1 + ”) · (a/4) · lg N iteration, w.h.p. in N . Here, 0 < ” < 1 is a small constant
determined by a. Take a union bound over all O(N) neighbors of u, we know this claim
holds true for them as well. Therefore, if u were able to accurately count the number of
broadcasting neighbors without any error in each listening iteration, the sum it will obtain
would be in the range [(1 ≠ ”) · (a/4) · lg N · nu, (1 + ”) · (a/4) · lg N · nu], w.h.p. in N .

Now, due to Lemma 13, we know the actual sum of counts u will obtain is in the range
[(1 ≠ ”) · (a/4) · lg N · nu, 4 · (1 + ”) · (a/4) · lg N · nu], w.h.p. in N . As a result, according to
our algorithm description, the final estimate u will obtain is in the range [nu, 5nu], w.h.p. in
N . Take a union bound over all nodes, the theorem is proved. J

5.4 Multi-Hop with All Nodes Counting: Collision Detection
In Count-All-noCD, we resolve the termination detection problem by accessing N�. This
allows nodes to run long enough so that they could be sure that everyone has a chance to learn
what it needed to learn. With the addition of collision detection, however, the assumption
that nodes know N� can be removed for many network topologies. In particular, we can
leverage the idea that neighbors of u that have not obtained estimates yet can use noise to
reliably inform u that they wish u to continue. We call this algorithm Count-All-CD.

Count-All-CD contains multiple iterations, each of which has two parts. The first
part of any iteration i is identical to iteration i of Count-All-noCD. The second part,
on the other hand, helps nodes to determine when to stop. In particular, the second part
of iteration i contains a single slot. For a node u, if it has not obtained an estimate of nu

by the end of the first part of iteration i yet, then in the second part, it will broadcast a
continue message. On the other hand, if u has already obtained an estimate of nu by the end
of the first part of iteration i, it will simply listen in part two. Moreover, u will continue into
the next iteration i� it hears continue or noise during part two. The guarantees provided by
Count-All-CD are stated below, and the proof of it is provided in the full paper [20].

I Theorem 15. The Count-All-noCD approximate neighbor counting algorithm ensures
the following properties for each node u when executed in a multi-hop network with collision
detection: (a) u will obtain an estimate of nu in the range [nu, 4nu] within O(lg2 nu) time
slots, with high probability in nu; and (b) if

q
vœ�ufi{u}(1/nv) < 1, then u will terminate

within (maxvœ�ufi{u}{lg nv})2 time slots, with probability at least 1 ≠ q
vœ�ufi{u}(1/nv).

A key point about the above termination bound is that it requires
q

vœ�ufi{u}(1/nv) < 1.
(In fact, this constraint can be relaxed to

q
vœ�ufi{u}(1/n“

v) < 1, for an arbitrarily chosen
constant “ Ø 1.) If this is not the case (e.g., in a dense star network), the termination
detection mechanism might not work properly. In that situation, the default dependence on
N� from the no collision detection case can be applied as a back-up.
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5.5 Multi-Hop with Designated Node Counting
Compared to the all nodes counting variant, multi-hop neighbor counting with only the
designated node is easier: the strategies we previously used for single-hop counting are still
applicable, and the introduction of the designated node can actually make coordination
easier. (In particular, this node can greatly simplify termination detection). Due to space
constraint, we defer the upper bounds for this variant to the full version of the paper [20].

We note that one interesting algorithm in this variant is Count-Desig-noCD-Const,
which achieves constant success probability without collision detection. Count-Desig-
noCD-Const di�ers from its single-hop counterpart (i.e., Count-SH-noCD-Const) in
that it uses fraction of clear message slots to determine the accuracy of nodes’ estimate.
The primary reason we develop this algorithm is that the success probability of Count-
SH-noCD-Const is fixed. In contrast, in Count-Desig-noCD-Const, by tweaking the
running time (up to some constant factor), the success probability – despite being a constant
– can be adjusted accordingly.

6 Discussion

We see at least two problems that worth further exploration. First, how do termination
requirements a�ect the complexity of the problem? This is particularly interesting in the
multi-hop all nodes counting scenario, when knowledge of N� or N is not available. Count-
All-noCD shows lower bound can be achieved at the cost of no termination, but how much
time must we spend if termination needs to be enforced, or is simply impossible without
knowing N� or N? Another open problem concerns the gap between the lower and upper
bounds, in the multi-hop all nodes counting scenario with collision detection. On the one
hand, the lower bound might be loose as it is a simple carry over, ignoring the possibility that
all nodes counting could be fundamentally harder than designated node counting. Yet on
the other hand, we have not found a way to leverage collision detection to reduce algorithm
runtime (e.g., it seems hard to run multiple instances of binary search in parallel). Currently,
our best guess is that both the lower bound and the upper bound are not tight.
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