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Abstract
In this paper, we study local and global broadcast in the dual graph model, which describes
communication in a radio network with both reliable and unreliable links. Existing work proved
that e�cient solutions to these problems are impossible in the dual graph model under standard
assumptions. In real networks, however, simple back-o� strategies tend to perform well for solving
these basic communication tasks. We address this apparent paradox by introducing a new set of
constraints to the dual graph model that better generalize the slow/fast fading behavior common
in real networks. We prove that in the context of these new constraints, simple back-o� strategies
now provide e�cient solutions to local and global broadcast in the dual graph model. We also
precisely characterize how this e�ciency degrades as the new constraints are reduced down to
non-existent, and prove new lower bounds that establish this degradation as near optimal for a
large class of natural algorithms. We conclude with an analysis of a more general model where
we propose an enhanced back-o� algorithm. These results provide theoretical foundations for the
practical observation that simple back-o� algorithms tend to work well even amid the complicated
link dynamics of real radio networks.
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27:2 On Simple Back-O� in Unreliable Radio Networks

1 Introduction

In this paper, we study upper and lower bounds for e�cient broadcast in the dual graph
radio network model [4, 11, 12, 3, 6, 5, 8, 7, 14, 9], a dynamic network model that describes
wireless communication over both reliable and unreliable links. As argued in previous studies
of this setting, including unpredictable link behavior in theoretical wireless network models
is important because in real world deployments radio links are often quite dynamic.

The Back-O� Paradox. Existing papers [12, 8, 14] proved that it is impossible to solve
standard broadcast problems e�ciently in the dual graph model without the addition of
strong extra assumptions (see related work). In real radio networks, however, which su�er
from the type of link dynamics abstracted by the dual graph model, simple back-o� strategies
tend to perform quite well. These dueling realities seem to imply a dispiriting gap between
theory and practice: basic communication tasks that are easily solved in real networks are
impossible when studied in abstract models of these networks.

What explains this paradox? This paper tackles this fundamental question.
As detailed below, we focus our attention on the adversary entity that decides which

unreliable links to include in the network topology in each round of an execution in the dual
graph model. We introduce a new type of adversary with constraints that better generalize
the dynamic behavior of real radio links. We then reexamine simple back-o� strategies
originally introduced in the standard radio network model [2] (which has only reliable links),
and prove that for reasonable parameters, these simple strategies now do guarantee e�cient
communication in the dual graph model combined with our new, more realistic adversary.

We also detail how this performance degrades toward the existing dual graph lower bounds
as the new constraints are reduced toward non-existent, and prove lower bounds that establish
these bounds to be near tight for a large and natural class of back-o� strategies. Finally,
we perform investigations of even more general (and therefore more di�cult) variations of
this new style of adversary that continue to underscore the versatility of simple back-o�
strategies.

We argue that these results help resolve the back-o� paradox described above. When
unpredictable link behavior is modeled properly, predictable algorithms prove to work
surprisingly well.

The Dual Graph Model. The dual graph model describes a radio network topology with
two graphs, G = (V, E) and GÕ = (V, EÕ), where E ™ EÕ, V corresponds to the wireless
devices, E corresponds to reliable (high quality) links, and EÕ \ E corresponds to unreliable
(quality varies over time) links. In each round, all edges from E are included in the network
topology. Also included is an additional subset of edges from EÕ \ E, chosen by an adversary.
This subset can change from round to round. Once the topology is set for the round, the
model implements the standard communication rules from the classical radio network model:
a node u receives a message broadcast by its neighbor v in the topology if and only if u

decides to receive and v is its only neighbor broadcasting in the round.
We emphasize that the abstract models used in the sizable literature studying distributed

algorithms in wireless settings do not claim to provide high fidelity representations of real
world radio signal communication. They instead each capture core dynamics of this setting,
enabling the investigation of fundamental algorithmic questions. The well-studied radio
network model, for example, provides a simple but instructive abstraction of message loss
due to collision. The dual graph model generalizes this abstraction to also include network
topology dynamics. Studying the gaps between these two models provides insight into the
hardness induced by the types of link quality changes common in real wireless networks.
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The Fading Adversary. Existing studies of the dual graph model focused mainly on the
information about the algorithm known to the model adversary when it makes its edge
choices. In this paper, we place additional constraints on how these choices are generated.

In more detail, in each round, the adversary independently draws the set of edges from
EÕ \ E to add to the topology from some probability distribution defined over this set. We
do not constrain the properties of the distributions selected by the adversary. Indeed, it
is perfectly valid for the adversary in a given round to use a point distribution that puts
the full probability mass on a single subset, giving it full control over its selection for the
round. We also assume the algorithm executing in the model has no advance knowledge of
the distributions used by the adversary.

We do, however, constrain how often the adversary can change the distribution from
which it selects these edge subsets. In more detail, we parameterize the model with a stability
factor, · Ø 1, and restrict the adversary to changing the distribution it uses at most once
every · rounds. For · = 1, the adversary can change the distribution in every round, and
is therefore e�ectively unconstrained and behaves the same as in the existing dual graph
studies. On the other extreme, for · = Œ, the adversary is now quite constrained in that
it must draw edges independently from the same distribution for the entire execution. As
detailed below, we find · ¥ log �, for local neighborhood size �, to be a key threshold after
which e�cient communication becomes tractable.

Notice, these constraints do not prevent the adversary from inducing large amounts of
changes to the network topology from round to round. For non-trivial · values, however, they
do require changes that are nearby in time to share some underlying stochastic structure. This
property is inspired by the general way wireless network engineers think about unreliability
in radio links. In their analytical models of link behavior (used, for example, to analyze
modulation or rate selection schemes, or to model signal propagation in simulation), engineers
often assume that in the short term, changes to link quality come from sources like noise and
multi-path e�ects, which can be approximated by independent draws from an underlying
distribution (Gaussian distributions are common choices for this purpose). Long term changes,
by contrast, can come from modifications to the network environment itself, such as devices
moving, which do not necessarily have an obvious stochastic structure, but unfold at a slower
rate than short term fluctuations.

In our model, the distribution used in a given round captures short term changes, while
the adversary’s arbitrary (but rate-limited) changes to these distributions over time capture
long term changes. Because these general types of changes are sometimes labeled short/fast
fading in the systems literature (e.g., [16]), we call our new adversary a fading adversary.

Our Results and Related Work. In this paper, we study both local and global broadcast.
The local version of this problems assumes some subset of devices in a dual graph network
are provided broadcast messages. The problem is solved once each receiver that neighbors
a broadcaster in E receives at least one message. The global version assumes a single
broadcaster starts with a message that it must disseminate to the entire network. Below we
summarize the relevant related work on these problems, and the new bounds proved in this
paper. We conclude with a discussion of the key ideas behind these new results.

Related Work. In the standard radio network model, which is equivalent to the dual graph
model with E = EÕ, Bar-Yehuda et al. [2] demonstrate that a simple randomized back-o�
strategy called Decay solves local broadcast in O(log2 n) rounds and global broadcast in
O(D log n + log2 n) rounds, where n = |V | is the network size and D is the diameter of G.
Both results hold with high probability in n, and were subsequently proved to be optimal

OPODIS 2018
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Table 1 A summary of the upper and lower bounds proved in this paper, along with pointers

to the corresponding theorems. In the following, n is the network size, � Æ n is an upper bound

on local neighborhood size, D is the (reliable link) network diameter, and · is the stability factor

constraining the adversary.

Problem Time Prob. Remarks Ref.

Local broadcast

O
1

�

1/·̄ ··̄2

log �

· log (1/‘)
2

1 ≠ ‘ ·̄ = min{·, log �} Thm 6

�

1
�

1/· ·
log �

2
1

2

· œ O(log �) Thm 7

�

1
�

1/· ·2

log �

2
1

2

· œ O(log �/ log log �) Thm 8

Global broadcast

O
1

(D + log(n/‘)) · �

1/·̄ ·̄2

log �

2
1 ≠ ‘ ·̄ = min{·, log �} Thm 9

�

1
D · �

1/· ·
log �

2
1

2

· œ O(log �) Thm 10

�

1
D · �

1/· ·2

log �

2
1

2

· œ O(log �/ log log �) Thm 10

or near optimal1 [1, 13, 15]. In [11, 12], it is proved that global broadcast (with constant
diameter), and local broadcast require �(n) rounds to solve with reasonable probability
in the dual graph model with an o�ine adaptive adversary controlling the unreliable edge
selection, while [8] proves that �(n/ log n) rounds are necessary for both problems with an
online adaptive adversary. As also proved in [8]: even with the weaker oblivious adversary,
local broadcast requires �(

Ô
n/ log n) rounds, whereas global broadcast can be solved in an

e�cient O(D log (n/D) + log2 n) rounds, but only if the broadcast message is su�ciently
large to contain enough shared random bits for all nodes to use throughout the execution.
In [14], an e�cient algorithm for local broadcast with an oblivious adversary is provided
given the assumption of geographic constraints on the dual graphs, enabling complicated
clustering strategies that allow nearby devices to coordinate randomness.

New Results. In this paper, we turn our attention to local and global broadcast in the
dual graph model with a fading adversary constrained by some stability factor · (unknown
to the algorithm). We start by considering upper bounds for a simple back-o� style strategy
inspired by the decay routine from [2]. This routine has broadcasters simply cycle through
a fixed set of broadcast probabilities in a synchronized manner (all broadcasters use the
same probability in the same round). We prove that this strategy solves local broadcast with
probability at least 1 ≠ ‘, in O

1
�1/·̄ ··̄2

log � · log (1/‘)
2

rounds, where � is an upper bound on
local neighborhood size, and ·̄ = min{·, log �}.

Notice, for · Ø log � this bound simplifies to O(log � log (1/‘)), matching the optimal
results from the standard radio network model.2 This performance, however, degrades toward
the polynomial lower bounds from the existing dual graph literature as · reduces from log �
toward a minimum value of 1. We show this degradation to be near optimal by proving
that any local broadcast algorithm that uses a fixed sequence of broadcast probabilities
requires �(�1/· ·/ log �) rounds to solve the problem with probability 1/2 for a given · . For
· œ O(log �/ log log �) , we refine this bound further to �(�1/· ·2/ log �), matching our
upper bound within constant factors.

1

The broadcast algorithm from [2] requires O(D log n + log

2 n) rounds, whereas the corresponding lower

bound is �(D log (n/D) + log

2 n). This gap was subsequently closed by a tighter analysis of a natural

variation of the simple Decay strategy used in [2]

2

To make it match exactly, set � = n and ‘ = 1/n, as is often assumed in this prior work.
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We next turn our attention to global broadcast. We consider a straightforward global
broadcast algorithm that uses our local broadcast strategy as a subroutine. We prove that
this algorithm solves global broadcast with probability at least 1 ≠ ‘, in O(D + log(n/‘)) ·
�1/·̄ ·̄2/ log �) rounds, where D is the diameter of G, and ·̄ = min{·, log �}. Notice, for
· Ø log � this bound reduces to O(D log � + log � log (1/‘)), matching the near optimal
result from the standard radio network model. As with local broadcast, we also prove the
degradation of this performance as · shrinks to be near optimal. (See Table 1 for a summary
of these results and pointers to where they are proved in this paper.)

Finally we consider the generalized model when we allow correlation between the dis-
tributions selected by the adversary within a given stable period of · rounds. It turns out
that in the case of arbitrary correlations any simple algorithm needs time �(

Ô
�/l) if it

uses only cycles of length l. In particular any our previous algorithms would require time
�(

Ô
�/ log �) in the model with arbitrary correlations. The adversary construction in this

lower bound requires large changes in the degree of a node in successive steps. Such changes
are unlikely in real networks thus we propose a restricted version of the adversary. We assume
that the expected change in the degree of any node can be at most �1/(·̄(1≠o(1)). With such
restriction it is again possible to propose a simple, but slightly enhanced, back-o� strategy
(with a short cycle of probabilities) that works e�ciently in time O

!
�1/·̄ · ·̄ · log (1/‘)

"
.

Technique Discussion. Simple back-o� strategies can be understood as experimenting
with di�erent guesses at the amount of contention a�icting a given receiver. If the network
topology is static, this contention is fixed, therefore so is the right guess. A simple strategy
cycling through a reasonable set of guesses will soon arrive at this right guess – giving the
message a good chance of propagating.

The existing lower bounds in the dual graph setting deploy an adversary that changes the
topology in each round to specifically thwart that round’s guess. In this way, the algorithm
never has the right guess for the current round so its probability of progress is diminished.
The fading adversary, by contrast, is prevented from adopting this degenerate behavior
because it is required to stick with the same distribution for · consecutive rounds. An
important analysis at the core of our upper bounds reveals that any fixed distribution will
be associated with a right guess defined with respect to the details of that distribution. If ·

is su�ciently large, our algorithms are able to experiment with enough guesses to hit on this
right guess before the adversary is able to change the distribution.

More generally speaking, the di�culty of broadcast in the previous dual graph studies was
not due to the ability of the topology to change dramatically from round to round (which can
happen in practice), but instead due to the model’s ability to precisely tune these changes
to thwart the algorithm (a behavior that is hard to motivate). The dual graph model with
the fading adversary preserves the former (realistic) behavior while minimizing the latter
(unrealistic) behavior.

2 Model and Problem

We study the dual graph model of unreliable radio networks. This model describes the
network topology with two graphs G = (V, E) and GÕ = (V, EÕ), where E ™ EÕ. The n = |V |
vertices in V correspond to the wireless devices in the network, which we call nodes in the
following. The edge in E describe reliable links (which maintain a consistently high quality),
while the edges in EÕ \ E describe unreliable links (which have quality that can vary over
time). For a given dual graph, we use � to describe the maximum degree in GÕ, and D to
describe the diameter of G.

OPODIS 2018
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Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r Ø 1, the
network topology is described by G

r

= (V, E
r

), where E
r

contains all edges in E plus a
subset of the edges in EÕ \ E. The subset of edges from EÕ \ E are selected by an adversary.
The graph G

r

can be interpreted as describing the high quality links during round r. That
is, if {u, v} œ E

r

, this mean the link between u and v is strong enough that u could deliver a
message to v, or garble another message being sent to v at the same time.

With the topology G
r

established for the round, behavior proceeds as in the standard
radio network model. That is, each node u œ V can decide to transmit or receive. If u

transmits, it learns nothing about other messages transmitted in the round (i.e., the radios
are half-duplex). If u receives and exactly one neighbor v of u in E

r

transmits, then u

receives v’s message. If u receives and two or more neighbors in E
r

transmit, u receives
nothing as the messages are lost due to collision. If u receives and no neighbor transmits,
u also receives nothing. We assume u does not have collision detection, meaning it cannot
distinguish between these last two cases.

The Fading Adversary. A key assumption in studying the dual graph model are the
constraints placed on the adversary that selects the unreliable edges to include in the network
topology in each round. In this paper, we study a new set of constraints inspired by real
network behavior. In more detail, we parameterize the adversary with a stability factor that
we represent with an integer · Ø 1. In each round, the adversary must draw the subset of
edges (if any) from EÕ \ E to include in the topology from a distribution defined over these
edges. The adversary selects which distributions it uses. Indeed, we assume it is adaptive in
the sense that it can wait until the beginning of a given round before deciding the distribution
it will use in that round, basing its decision on the history of the nodes’ transmit/receive
behavior up to this point, including the previous messages they send, but not including
knowledge of the nodes’ private random bits.

The adversary is constrained, however, in that it can change this distribution at most
once every · rounds. On one extreme, if · = 1, it can change the distribution in every round
and is e�ectively unconstrained in its choices. On the other other extreme, if · = Œ, it must
stick with the same distribution for every round. For most of this paper, we assume the
draws from these distributions are independent in each round. Toward the end, however, we
briefly discuss what happens when we generalize the model to allow more correlations.

As detailed in the introduction, because these constraints roughly approximate the
fast/slow fading behavior common in the study of real wireless networks, we call a dual
graph adversary constrained in this manner a fading adversary.

Problem. In this paper, we study both the local and global broadcast problems. The local
broadcast problem assumes a set B ™ V of nodes are provided with a message to broadcast.
Each node can receive a unique message. Let R ™ V be the set of nodes in V that neighbor
at least one node in B in E. The problem is solved once every node in R has received at least
one message from a node in B. We assume all nodes in B start the execution during round
1, but do not require that B and R are disjoint (i.e., broadcasters can also be receivers).
The global broadcast problem, by contrast, assumes a single source node in V is provided a
broadcast message during round 1. The problem is solved once all nodes have received this
message. Notice, local broadcast solutions are often used as subroutines to help solve global
broadcast.
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Uniform Algorithms. The broadcast upper and lower bounds we study in this paper focus
on uniform algorithms, which require nodes to make their probabilistic transmission decisions
according to a predetermined sequence of broadcast probabilities that we express as a
repeating cycle, (p1, p2, ..., p

k

) of k probabilities in synchrony. In studying global broadcast,
we assume that on first receiving a message, a node can wait to start making probabilistic
transmission decisions until the cycle resets. We assume these probabilities can depend on n,
� and · (or worst-case bounds on these values).

In uniform algorithms in the model with fading adversary an important parameter of any
node v is its e�ective degree in step t denoted by d

t

(v) and defined as the number of nodes
w such that (v, w) œ E

t

and w has a message to transmit (i.e., participates in step t).
As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2],

solve local and global broadcast with optimal e�ciency in the standard radio network model.
A major focus of this paper is to prove that they work well in the dual graph model as well,
if we assume a fading adversary with a reasonable stability factor.

The fact that our lower bounds assume the algorithms are uniform technically weaken
the results, as there might be more e�cient non-uniform strategies. In the standard radio
network model, however, this does not prove to be the case: uniform algorithms for local and
global broadcast match lower bounds that hold for all algorithms (c.f., discussion in [15]).

3 Local broadcast

We begin by studying upper and lower bounds for the local broadcast problem. Our upper
bound performs e�ciently once the stability factor · reaches a threshold of log �. As ·

decreases toward a minimum value of 1, this e�ciency degrades rapidly. Our lower bounds
capture that this degradation for small · is unavoidable for uniform algorithms. In the
following we use the notation ·̄ = min{·, Álog �Ë}. By log n we will always denote logarithm
at base 2 and by ln n the natural logarithm.

3.1 Upper Bound
All uniform local broadcast algorithms behave in the same manner: the nodes in B

repeatedly broadcast according to fixed cycle of k broadcast probabilities. We formal-
ize this strategy with algorithm RLB (Robust Local Broadcast) described below. We
break out Uniform into its own procedure as we later reuse it in our improved algorithm:

1 Procedure: Uniform(k, p1, p2, . . . , p
k

)
2 for i = 1, 2, . . . , k do

3 if has message then

4 with probability p
i

Transmit otherwise
Listen

5 else Listen

1 Algorithm: RLB(r, ·̄)
2 for i Ω 1 to ·̄ do

p
i

Ω �≠i/·̄

3 repeat r times
4 Uniform

(·̄ , p1, p2, . . . , p
·̄

)

Before we prove the complexity of RLB we will show two useful properties of any uniform
algorithm. Let R

(v)
t

denote the event that v receives a message from its neighbor in step t.

I Lemma 1. For any uniform algorithm and any node v and step t if d
t

(v) > 0 and the
algorithm uses in step t probability p Æ 1/2, then Pr

Ë
R

(v)
t

È
Ø p·dt(v)

(2e)p·dt(v)

.

Proof. For this to happen exactly one among d
t

(v) neighbors of v has to transmit and v

must not transmit. Node v does not transmit with probability 1 ≠ p if it has the message

OPODIS 2018
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and clearly with probability 1 if it has the message. Denote by – = p · d
t

(v). We have

Pr

Ë
R

(v)
t

È
Ø pd

t

(v) · (1 ≠ p)dt(v) = – ·
3

1 ≠ –

d
t

(v)

4
dt(v)

= –

A3
1 ≠ –

d
i

(v)

4
dt(v)/–≠1

· (1 ≠ p)
B

–

Ø –(e≠1(1 ≠ p))– Ø –

(2e)–

.

J

I Lemma 2. For any uniform algorithm, node v and step t if d
t

(v) > 0:

Pr

Ë
R

(v)
t

| d
t

(v) œ [d1, d2]
È

Ø min
Ó

Pr

Ë
R

(v)
t

| d
t

(v) = d1

È
, Pr

Ë
R

(v)
t

| d
t

(v) = d2

ÈÔ
.

Proof. If the algorithm uses probability p in step t then Pr

Ë
R

(v)
t

È
= pd

t

(v)(1 ≠ p)dt(v).
Seeing this expression as a function of d

t

(v) we can compute the derivative and obtain that
this function has a single maximum in d

t

(v) = 1/(ln(1/(1 ≠ p))). Hence if we restrict d
t

(v)
to be within a certain interval, then value of the function is lower bounded by the minimum
at the endpoints of the interval. J

Our upper bound analysis leverages the following useful lemma which can be shown by
induction on n (the left side is also known as the Weierstrass Product Inequality):

I Lemma 3. For any x1, x2, . . . , x
n

such that 0 Æ x
i

Æ 1:

1 ≠
nÿ

i=1
x

i

Æ
nŸ

i=1
(1 ≠ x

i

) Æ 1 ≠
nÿ

i=1
x

i

+
ÿ

1Æi<jÆn

x
i

x
j

.

To begin our analysis, we focus on the behavior of our algorithm with respect to a single re-
ceiver when we use the transmit probability sequence p1, p2, ..., p

·̄

, where ·̄ = min{·, Álog �Ë},
and p

i

= �≠i/·̄ .

I Lemma 4. Fix any receiver u œ R and error bound ‘ > 0. It follows: RLB(2Áln(1/‘)Ë · Á4e ·
�1/·̄ Ë, ·̄) delivers a message to u with probability at least 1 ≠ ‘ in time O(�1/·̄ ·̄ log(1/‘)).

Proof. It is su�cient to prove the claim for · Æ log �. For · > log � we use the algorithm
for · = log �. Note that any algorithm that is correct for some · must also work for any
larger · because the adversary may not choose to change the distribution as frequently as it
is permitted to. In the case where · Æ log � we get that �1/· Ø 2.

We want to show that if the nodes from N
u

fl B execute procedure Uniform(·, p1, . . . , p
·

)
twice, then u receives some message with probability at least log �/(2e�1/· ·). Every time
we execute Uniform twice, we have a total of 2· consecutive time slots out of which, by
the definition of our model, at least · consecutive slots have the same distribution of the
additional edges and moreover stations try all the probabilities p1, p2, . . . , p

·

(not necessarily
in this order). Let T denote the set of these · time slots and for i = 1, 2, . . . , · let t

i

œ T

be the step in which probability p
i

is used. We also denote the distribution used in steps
from set T by E(T ). Hence we can denote the edges between u and its neighbors that
have some message by E

part

= {(u, b) : b œ B} fl EÕ. We know that the edge sets are
chosen independently from the same distribution: E

t

≥ E(T ) for t œ T . Let us denote by
X

t

= |E
t

fl E
part

| the random variable being the number of neighbors that are connected to u

in step t and belong to B. For each i from 1 to · we define q
i

= Pr

#
�(i≠1)/· < X

t

Æ �i/·

$
,

for any t œ T . Observe that probabilities q
i

do not depend on t during the considered ·
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rounds. Moreover since u œ R then u is connected via a reliable edge to at least one node in
B, thus E fl E

part

”= ÿ, hence Pr[ X
t

= 0 ] = 0 thus:
·ÿ

i=1
q

i

= 1, (1)

Let S
i

denote the indicator random variable being 1 if in t
i

-th round if exactly one neighbor
of u transmits and u is not transmitting in round t and 0 otherwise. Clearly if S

i

= 1 in
some round t, then u receives some message in round t. Then we would like to show for each
i = 1, 2, . . . , · that:

Pr[ S
i

= 1 ] Ø q
i

2e�1/·

. (2)

In t
i

-th slot the transmission probability is p
i

= �≠i/· and the transmission choices done by
the stations are independent from the choice of edges E

ti active in round t
i

. Note that u

might also belong R and try to transmit. But since p
i

Æ 1/2 then u is not transmitting with
probability at least 1/2. If Q

i

denotes the event that �(i≠1)/· < X
ti Æ �i/· then:

Pr[ S
i

= 1 ] Ø Pr[ S
i

= 1|Q
i

] · Pr[ Q
i

] Ø p
i

(�(i≠1)/· + 1) · (1 ≠ p
i

)�(i≠1)/·

· 1
2 · q

i

Ø p
i

�(i≠1)/· · (1 ≠ p
i

)�i/· ≠1 · 1
2 · q

i

Ø �≠1/· ·
3

1 ≠ 1
�i/·

4�i/· ≠1
· q

i

2 Ø q
i

2e�1/·

,

because inequality (1 ≠ 1/x)x≠1 Ø e≠1 holds for all x > 0. Since the edge sets are chosen
independently in each step and the random choices of the stations whether to transmit or
not are also independent from each other we have:

Pr

C
·fi

i=1
(S

i

= 0)
D

=
·Ÿ

i=1
Pr[ S

i

= 0 ] Æ
·Ÿ

i=1

1
1 ≠ q

i

2e�1/·

2
by Equation (2)

Æ 1 ≠
·ÿ

i=1

q
i

2e�1/·

+
ÿ

1Æi<jÆ·

q
i

q
j

4e2�2/·

by Lemma 3

Æ 1 ≠
q

·

i=1 q
i

2e�1/·

+ (
q

·

i=1 q
i

)2

4e2�2/·

Æ 1 ≠ 1
2e�1/·

+ 1
4e2�2/·

Æ 1 ≠ 1
4e�1/·

by Equation (1)

Hence if we execute the procedure for 2·Áln(1/‘)Ë · Á4e · �1/· Ë time steps, we have at least
Áln(1/‘)Ë · Á4e · �1/· Ë sequences of · consecutive time steps in which the distribution over
the unreliable edges is the same and the algorithm tries all the probabilities {p1, p2, . . . , p

·

}.
Each of these procedures fails independently with probability at most 1 ≠ 1/(4e�1/· )
hence the probability that all the procedures fail is at most:

!
1 ≠ 1

4e�1/·

"Áln(1/‘)Ë·Á4e�1/· Ë Æ
e≠Áln(1/‘)Ë < ‘ J

On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly
the probabilities used in our algorithm, we require fewer iterations. In more detail, the
probability of a successful transmission in the case where each of the x transmitters broadcasts
independently with probability –/x is approximately –/(2e)–. In the previous algorithm we
were transmitting in successive steps with probabilities �≠1/· , �≠2/· , . . . . Thus if x = 1 we
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would get in i-th step – = �≠i/· and approximately the sum of probabilities of success in ·

consecutive steps would be �≠1/· . The formula –/(2e)≠– shows that the success probability
depends on – linearly if – < 1 (“too small" probability) and depends exponentially on – if
– > 1 (“too large" probability). In the previous theorem we intuitively only use the linear
term. In the next one we would like to also use, to some extent, the exponential term. If
we shift all the probabilities by multiplying them by a factor of — > 1, the total success
probability would be approximately —�≠1/· if x = 1 and —(2e)≠— if x = �. Thus by setting
— = log2e

�/· we maximize both these values.

1 Algorithm: FRLB(r, ·̄)
2 for i Ω 1 to ·̄ do p

i

Ω �≠i/·̄ · log2e

�/·̄

3 repeat r times
4 Uniform (·̄ , p1, p2, . . . , p

·̄

)

The following lemma makes this above intuition precise and gains a log-factor in perfor-
mance in algorithm FRLB (Fast Robust Local Broadcast) compared to RLB. As part of this
analysis, we add a second statement to our lemma that will prove useful during our subsequent
analysis of global broadcast. The correctness of this second lemma is a straightforward
consequence of the analysis.

I Lemma 5. Fix any receiver u œ R and error bound ‘ > 0. It follows:
1. FRLB(2Áln(1/‘)Ë · Á4�1/·̄ ·̄/ log2e

�Ë, ·̄) completes local broadcast with a single receiver in
time O

1
�1/·̄ ··̄2

log � · log (1/‘)
2

with probability at least 1 ≠ ‘, for any ‘ > 0,

2. FRLB(2, ·̄) completes local broadcast with a single receiver with probability at least log
2e �

4�1/·̄
·̄

.

Proof Idea. The proof is similar to the one of Lemma 4. We define the probabilities q
i

and
events Q

i

in the same way. The key di�erence is in the evaluation of the probability of success
in round t

i

conditioned on Q
i

(Pr[ S
i

= 1 | Q
i

]). Event Q
i

restricts the number of neighbors
connected to u to some interval. We prove that the success probability Pr[ S

i

= 1 | Q
i

]
is lower bounded by the minimum of the values at the endpoints of this interval. This is
true because when x stations transmit with probability p to a common neighbor then the
probability of a successful transmission seen as a function of x has a single maximum at
x = 1/p hence its value at any point of some fixed interval is lower bounded by the minimum
of the values at the endpoints. J

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of
algorithms RLB and FRLB. Here we apply this result to bound the time for all nodes in R to
receive a message, therefore solving the local broadcast problem. In particular, for a desired
error bound ‘, if we apply these lemmas with error bound ‘Õ = ‘/n, then we end up solving
the single node problem with a failure probability upper bounded by ‘/n. Applying a union
bound, it follows that the probability that any node from R fails to receive a message is less
than ‘. Formally:

I Theorem 6. Fix an error bound ‘ > 0. It follows that algorithm FRLB(2Áln(n/‘)Ë ·
Á4�1/·̄ ·̄/ log �Ë) solves local broadcast in O

1
�1/·̄ ··̄2

log
2e � · log (n/‘)

2
rounds, with probability at

least 1 ≠ ‘.



S. Gilbert, N. Lynch, C. Newport, and D. Pajak 27:11

3.2 Lower bound
Observe that for · = �(log �), FRLB has a time complexity of O(log � log n) rounds for
‘ = 1/n, which matches the performance of the optimal algorithms for this problem in the
standard radio model. This emphasizes the perhaps surprising result that even large amounts
of topology changes do not impede simple uniform broadcast strategies, so long as there is
independence between nearby changes.

Once · drops below log �, however, a significant gap opens between our model and the
standard radio network model. Here we prove that gap is fundamental for any uniform
algorithm in our model.

In the local broadcast problem, a receiver from set R can have between 1 and � neighbors
in set B. The neighbors should optimally use probabilities close to the inverse of their
number. But since the number of neighbors is unknown, the algorithm has to check all the
values. If we look at the logarithm of the inverse of the probabilities (call them log-estimates)
used in Lemma 4 we get i log �/· , for i = 1, 2, . . . , · – which are spaced equidistantly on the
interval [0, log �]. The goal of the algorithm is to minimize the maximum gap between two
adjacent log-estimates placed on this interval since this maximizes the success probability
in the worst case. With this in mind, in the proof of the following lower bound, we look
at the dual problem. Given a predetermined sequence of probabilities used by an arbitrary
uniform algorithm, we seek the largest gap between adjacent log-estimates, and then select
edge distributions that take advantage of this weakness.

I Theorem 7. Fix a maximum degree � Ø 10, stability factor · Æ log(�≠1)/16, and uniform
local broadcast algorithm A. Assume that A guarantees with probability at least 1/2 to solve
local broadcast in f(�, ·) rounds when executed in any dual graph network with maximum
degree � and fading adversary with stability · . It follows that f(�, ·) œ �(�1/· ·/ log �).

Proof Idea. In this proof we use a star with � arms out of which only one is reliable – all
other arms are controlled by the adversary. The single receiver u is the center of the star.
For any uniform algorithm we divide the probabilities p

i

into sequences of length · and find
a distribution in which the degree of u is “hard” for each sequence. The algorithm places ·

log-estimates on interval [0, log �] we, as an adversary, can clearly find a largest gap between
adjacent log-estimates of length approximately log �/· . We choose the degree d of u such
that its logarithm is inside this gap (in correct distances from both its endpoints). With this
choice we can upper bound the probability of a successful transmission in any step during
these · steps, because the distance between the log-estimate and the logarithm of the degree
of u gives us lower bound on dp

i

if p
i

> 1/d or of 1/(dp
i

) if p
i

< 1/d which in turn upper
bounds the probability of a successful transmission. J

In our next theorem, we refine the argument used in Theorem 7 for the case where · is a
non-trivial amount smaller than the log � threshold. We will argue that for smaller · , the
complexity is �(�1/· ·2/ log �), which more exactly matches our best upper bound. We are
able to trade this small amount of extra wiggle room in · for a stronger lower bound because
it simplifies certain probabilistic obstacles in our argument. Combined with our previous
theorem, the below result shows our upper bound performance is asymptotically optimal for
uniform algorithms for all but a narrow range of stability factors, for which it is near tight.

I Theorem 8. Fix a maximum degree � Ø 10, stability factor · Æ ln(� ≠ 1)/(12 log log(� ≠
1)), and uniform local broadcast algorithm A. Assume that A guarantees with probability
at least 1/2 to solve local broadcast in f(�, ·) rounds when executed in any dual graph
network with maximum degree � and fading adversary with stability · . It follows that
f(�, ·) œ �(�1/· ·2/ log �).
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Proof Idea. The proof is similar to proof of Theorem 7. Here we also find a gap of length
log �/· and then we argue that in a “proximity” of each such a large gap there has to exist
a large number of log-estimates. The proximity is defined so that all log-estimates outside of
it are (almost) irrelevant, give a very small probability of success, if we choose the logarithm
of the degree of u to be inside the considered gap. This in turn implies that in the remaining
part of the interval the “density" of log-estimates is lower hence there must exist another
large gap. By repeating this argument we can derive a contradiction with the assumed time
complexity. The reason why we need to restrict · is that our defined proximity must be of
the same order as log �/· which is no longer true for · being close to log �. J

4 Global Broadcast

We now turn our attention to the global broadcast problem. Our upper bound will use the
same broadcast probability sequence as our best local broadcast algorithm from before. As
with local broadcast, for · Ø log �, our performance nearly matches the optimal performance
in the standard radio network model, and then degrades as · shrinks toward 1. Our lower
bound will establish that this degredation is near optimal for uniform algorithms in this
setting. In this section we also use the notation ·̄ = min{·, Álog �Ë}.

4.1 Upper Bound
A uniform global broadcast algorithm requires each node to cycle through a predetermined
sequence of broadcast probabilities once it becomes active (i.e., has received the broadcast
message). The only slight twist in our algorithm’s presentation is that we assume that
once a node becomes active, it waits until the start of the next probability cycle to start
broadcasting. To implement this logic in pseudocode, we use the variable T ime to indicate
the current global round count. We detail this algorithm below (notice, the FRLB(2) is the
local broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(‘)
2 Wait until receiving the message
3 Wait until (T ime mod 2·̄) = 0
4 repeat Áln (2n/‘)Ë · Á4�1/·̄ ·̄/ log �Ë times
5 FRLB(2)

I Theorem 9. Fix an error bound ‘ > 0. It follows that algorithm RGB(‘) completes global
broadcast in time O

1
(D + log(n/‘)) · �1/·̄

·̄

2

log �

2
, with probability at least 1 ≠ ‘.

Proof Idea. Here we use the same idea as in the proof of [2, Theorem 4]. There a local
broadcast algorithm (Decay) is used as a black box in a global broadcast algorithm. We use
a di�erent local broadcast algorithm (FRLB) but the same analysis applies. J

4.2 Lower Bound
The global broadcast lower bound of �(D log(n/D)), proved by Kushilevitz and Mansour [13]
for the standard radio network model, clearly still holds in our setting, as the radio network
model is a special case of the dual graph model where EÕ = E. Similarly, the �(log n log �)
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lower bound proved by Alon et al. [1] also applies.3 It follows that for · Ø log �, we almost
match the optimal bound for the standard radio network model, and do match the time of
the seminal algorithm of Bar-Yehuda et al. [2].

For smaller · , this performance degrades rapidly. Here we prove this degradation is
near optimal for uniform global broadcast algorithms in our model. We apply the obvious
approach of breaking the problem of global broadcast into multiple sequential instances of
local broadcast (though there are some non-obvious obstacles that arise in implementing this
idea). As with our local broadcast lower bounds, we separate out the case where · is at least
a 1/ log log � factor smaller than our log � threshold, as we can obtain a slightly stronger
bound under this assumption.

I Theorem 10. Fix a maximum degree � Ø 10, stability factor · , diameter D Ø 24 and
uniform global broadcast algorithm A. Assume that A solves global broadcast in expected time
f(�, D, ·) in all graphs with diameter D, maximum degree � and fading adversary with
stability · . It follows that:
1. if · < ln(� ≠ 1)/(12 log log(� ≠ 1)) then f(�, D, ·) œ �(D�1/· ·2/ log �),
2. if · < ln(� ≠ 1)/16 then f(�, D, ·) œ �(D�1/· ·/ log �).

Proof Idea. In this proof we connect together �(D) gadgets used in the proof of Theorem 7
(and 8) and lower bound the time the message spends in each of the gadgets. The only
problem in this approach is that after the message enters to the next gadget, the adversary
might not be allowed to change the distribution for some number of steps. We solve this by
keeping a distribution that is “hard” for the first · probabilities of the algorithm in each of
the gadgets that has not been reached by the message yet. J

5 Correlations

Here we explore a promising direction for the study of broadcast in realistic radio network
models. In particular, the fading adversary studied above assumes that the distribution
draws are independent. As we will show, interesting results are still possible when considering
the even more general case where the marginal distributions in each step are not necessarily
independent in each round. More precisely, in this case, the adversary chooses a distribution
over sequences of length at least · of the sets of unreliable edges. A sequence from this
distribution is used to determine which unreliable edges are active in successive steps. The
adversary after a least · steps can decide to change the distribution. In this model, we first
show a simple lower bound that any uniform algorithm using a short list of probabilities
of length l (our algorithms in previous sections always used list of length min{·, log �})
needs time �(

Ô
n/l) for some graphs. Our lower bound uses distributions over sequences of

graphs in which the degrees of nodes change by a large number in successive steps. Such
large changes in degree turn out to be crucial as we show that if in the sequence taken from
the distribution chosen by the adversary, in every step in expectancy only O(�1/(·≠o(·)))
edges adjacent to each node can be changed then we can get an algorithm working in time
O(�1/· · log(1/‘)) with probability at least 1 ≠ ‘ and using list of probabilities of length
O(min{·, log �}).

3

This bound is actually stated as �(log

2 n), but � = �(n) in the lower bound network, so it can be

expressed in terms of � as well for our purposes here.
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5.1 A Lower Bound for Correlated Distributions
The following lower bound shows that any simple back-o� algorithm, similar to the ones
presented in Section 3, that uses at most log � probabilities requires time �(

Ô
�/ log �) if

arbitrary correlations are permitted.

I Proposition 11. Any uniform local broadcast algorithm that repeats a procedure consisting
of l probabilities requires expected time �(

Ô
�/l) in graph with � = n ≠ 2 even if · = Œ.

Proof. Denote the procedure that is being used by the algorithm by P . Assume for simplicity
that

Ô
� is a natural number. We take as a graph a connected pair of stars.

The fist star has arms v1, v2, . . . , v� and center at u. In the fist star, arms v1, v2, . . . , v�
are connected to center u by reliable edges. The second star has arms v1, v2, . . . , v� and
center at v. In the second star, connection from v1 to v is reliable and all other connections
are unreliable. Note that by such construction, graph G is connected. All nodes, except v,
are initially holding a message.

The single distribution is defined in the following way. Let e
i

= min{1/p
i

, �} for

i = 1, 2, . . . , l be the estimates used by procedure P. Let ē
i

=
I

1 if e
i

Ø
Ô

�,

n otherwise .
Let s be

a number chosen uniformly at random from {1, 2, . . . , l}. In our distribution, the degree of
v in step t is d

t

= ē1+rt , where r
t

is the remainder of t + s modulo l. More precisely, in
step t in the distribution exactly d

t

≠ 1 edges chosen at random among edges between v and
v2, v3, . . . , v� are activated. Observe that before the algorithm starts, the distribution of
the degree of node v in each step is simply a uniform number from multiset {ē1, ē2, . . . , ē

l

}.
But after step 1 the sequence of degrees of v becomes deterministic and depends only on
the value s of the shift. The dependencies are designed in such a way that if s = l (which
happens with probability 1/l) then in any step t of the algorithm, the probability p

t

used
by the algorithm satisfies either p

t

· d
t

Ø
Ô

� or p
t

· d
t

< 1/
Ô

�. This means by Lemma 1
that the success probability is at most 1/

Ô
� in each step and hence by the union bound

the success probability in the whole procedure is at most l/
Ô

�. Thus with probability at
least 1/l the algorithm has to repeat procedure P at least

Ô
�/(2l) times to get a constant

probability of success. Hence the expected time is �(
Ô

�/l). J

5.2 Locally Limited Changes
The previous section shows that under an adversary that is allowed to use arbitrary correla-
tions then any simple procedure need polynomial time in the worst case.

In this section we want to consider the adversary that can use correlations but cannot
change the degree too much in successive steps. Of course once every at most · steps the
adversary is allowed to define a completely new distribution over the unreliable edges. We
want to argue that it is possible to build a simple algorithm resistant to such an adversary.
Intuitively the changes of the degree are problematic only if the changes are by a large
(non-constant) factor. Note by Lemma 1 that if we perturb the e�ective degree by only a
constant factor then the bound also changes only by a constant factor. Hence in order to
design an algorithm that is immune to such changes we should add more “coverage” to the
small-degree nodes. We do this by enhancing each phase of algorithm RLB with additional
steps in which we assume that the e�ective degree of a node is small. The adversary may try
to avoid the successful transmission in these steps by changing the degree (the adversary
knows the probabilities used by the algorithm). But having the restriction on the distance
the adversary can move the degree allows us to define overlapping “zones” such that in two
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consecutive steps we are sure to find the degree in one of the zones. We also have to make
sure that the whole phase of the new algorithm fits into · steps.

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first
show that the algorithm works under (l, ·)–deterministic adversary that can change at most
l edges adjacent to each node per round and all the edges from EÕ \ E once every at most ·

rounds. Our algorithm will be resistant to deterministic adversary that can change at most
·�1/(·≠o(·)) edges adjacent to each node in every step.

Then we show that it also works under restricted fading adversary with parameters · and
l. Restricted fading adversary can change the distribution arbitrarily once every at most ·

steps, if the distribution is not changed then the expected change of the degree of any node
can be at most l. Under these restrictions, the adversary can design arbitrary correlations
between successive steps. We show that RLBC works with restricted fading adversary with l

of at most �1/(·≠o(·)).

1 Algorithm: RLBC(r, ·)
2 ·̄ Ω min{Álog2e

�/2Ë, ·}; a Ω Á·̄/ log2e

·̄Ë; k Ω Á�1/(·≠2a)Ë
3 e1 Ω k · a; e2 Ω k2 · · · a

4 repeat 2r times
5 RLB(1, ·̄ ≠ 2a)
6 repeat a times
7 Uniform (1, 1/e1)
8 Uniform (1, 1/e2)

I Theorem 12. If · Ø 1000 Algorithm RLBC(8eÁln(1/‘)�1/· Ë, ·) solves local broadcast in
the presence of

1Í
�

1

·≠2Á·/ log

2e ·Ë
Î

·/2, ·
2

-deterministic adversary in time O(�1/· · log(1/‘))
with probability at least 1 ≠ ‘.

Proof Idea. For a fixed receiver v we want to show that the probability that v receives the
message in one of the r cycles (each 2 iterations of loop in Lines 7 ≠ 11 is one cycle) is at
least p

s

= 1
8ek

. We do it by separately considering two cases depending on degree d
t

(v),
where t is the first step of the considered cycle. If d

t

(v) Ø 2l2 we can show that the degree
cannot change in total in this cycle by more than a factor of 2 (here we use the restriction
on the adversary) in which case we can show that in one of the steps of procedure RLB the
probability of success is at least p

s

. For smaller degrees d
t

(v) < 2l2 we pick a pairs of steps
such that in the first step of the pair the algorithm uses probability 1/e1 and in the second
it uses 1/e2. Then we observe that either in the first step of the pair the degree is at most 2l

in which case broadcasting with probability 1/e1 gives probability p
s

/a of success. In the
opposite case the degree is at least l (here we use the restriction on the adversary) in the
second step and broadcasting with probability 1/e2 gives probability p

s

/a of success. Since
we have a such pairs the claim follows. J

The case with deterministic adversary can be generalized to stochastic restricted adversary.

I Theorem 13. If · Ø 1000 Algorithm RLBC(16eÁln(1/‘)�1/· Ë, ·) solves local broadcast in
the presence of l-restricted fading adversary using correlations with l =

Í
�

1

·(1≠1/ log

2e ·)

Î
/4

in time O(�1/· · log(1/‘)) with probability at least 1 ≠ ‘.
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Proof Idea. We show that if an algorithm works with 2l· -deterministic adversary then it
also works with l-stochastic adversary with correlations. We note that by Markov’s inequality
with probability at least 1/(2·) the degree of the receiver changes by at most 2l· . By the
union bound with probability at least 1/2, the degree does not change by more then 2l·

throughout the whole cycle of length · . For such cycles, the analysis of the deterministic
case gives us probability p

s

of success. Thus in the stochastic case the probability of success
in each cycle is at least p

s

/2. J
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