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ABSTRACT.

26 The term “nanoparticle stability” is widely used to describe the preservation of a particular
nanostructure property ranging from aggregation, composition, crystallinity, shape, size, and

31 surface chemistry. As a result, this catch-all term has various meanings, which depend on the

33 specific nanoparticle property of interest and/or application. In this feature article, we provide an
answer to the question, “What does nanoparticle stability mean?”. Broadly speaking, the

38 definition of nanoparticle stability depends on the targeted size dependent property that is

40 exploited and can only exist for a finite period of time given all nanostructures are inherently
thermodynamically and energetically unfavorable relative to bulk states. To answer this question
45 specifically, however, the relationship between nanoparticle stability and the physical/chemical
47 properties of metal/metal oxide nanoparticles are discussed. Specific definitions are explored in
49 terms of aggregation state, core composition, shape, size, and surface chemistry. Next,
mechanisms of promoting nanoparticle stability are defined and related to these same

54 nanoparticle properties. Metrics involving both kinetics and thermodynamics are considered.

56 Methods that provide quantitative metrics for measuring and modeling nanoparticle stability in
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terms of core composition, shape, size, and surface chemistry are outlined. The stability of
solution-phase nanoparticles are also impacted by aggregation state. Thus, collision and DLVO
theories are discussed. Finally, challenges and opportunities in understanding what nanoparticle

stability means are addressed to facilitate further studies with this important class of materials.

1. INTRODUCTION

Nanoparticles are defined as objects with at least one dimension that ranges from 1 - 100 nm!
thereby influencing a size-dependent property.> As a material’s dimension decreases from bulk
to the nanoscale, both the surface area to volume ratio** and surface energy’ increase. Because
all nanoscale features exhibit higher energies compared to bulk materials, all nanoscale objects
are in a non-thermodynamically favored state in comparison to bulk materials under standard
room temperature and pressure conditions. As such, nanomaterial phases can be considered as
metastable, that is, in a short-lived energetic state relative to macroscale materials. As a result,
defining nanoparticle stability is ubiquitous in the discussion of all nanomaterials and their size
dependent properties as evidenced by a growing number of previous studies on this topic.°
Herein, we focus on metal and metal oxide nanoparticles as well as their stability-dependent
properties ranging from catalytic,’-® optoelectrical,’!! magnetic,'>'* mechanic,!’ and thermal.!6
The initial metastable state of these materials depends on the synthetic route used to generate the
nanomaterials of interest. !7-18 Because of the extensive literature on nanoparticle synthesis, we
have focused this feature article on nanomaterial changes post-synthesis, that is, during storage
and/or subsequent use.

Upon formation, nanoparticle stability is often defined in terms of the specific size dependent
property that is exploited in a particular application. For instance, El-Sayed et. al.!° evaluated

how hydroxyl-terminated poly(amido-amine) (PAMAM) dendrimers, block copolymer
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polystyrene-b-poly(sodium acrylate), and poly(N-vinyl-2-pyrrolidone) (PVP) influenced Pd
nanoparticle stability post-synthesis. In this case, nanoparticle stability was linked to the
maintenance of metal surface area, which was subsequently related to the reduced probability of
nanostructure aggregation. PAMAM dendrimer-stabilized Pd nanoparticles exhibited maximized
catalytic activity followed by those stabilized by the block copolymer then PVP. This finding
suggests that nanoparticle stability is related to the retention of a primary, non-aggregated
particle state. Catalytic nanoparticle stability also depends on the conservation of active crystal
facets® 7 on the nanoparticle surface and not just total nanoparticle surface area. For instance, Pt
nanocubes (d = 7 nm)?° have been shown to more rapidly promote oxygen reduction than
polyhedron (d = 5 nm) or truncated cubes (d = 3 nm). The greatest catalytic activity was
observed for nanocubes while polyhedron and truncated cubes exhibited lower yet similar
activities. Trends were not observed with respect to total surface area. Instead, catalytic activity
depended on the amount of the highly active (100) crystal facet available. X-ray diffraction
(XRD) patterns revealed that nanocubes, polyhedron, and truncated cubes possessed 91%, 24%,
and 26% of (100) facets on their surfaces. Thus, the catalytic activities of these three
nanostructures depend on_the available surface area associated with Pt(100) facets as these
promote oxygen reduction more readily than other crystal facets. Preferred crystal facets are
dependent on the exact catalytic reaction targeted. Stability associated with catalytically-active Pt
or Pd nanoparticles, therefore, depends on the retention and availability of relevant crystal facets.
Common strategies that promote stability rely on the inclusion of stabilizing agents with direct
dependencies on their size!® and thickness'® or indirect implications from variations in
nanostructure surface potential.!”-?! Both dependencies impact the likelihood of nanostructure

aggregation.'”-22 It is important to note that surface chemistry, which promotes the presence of
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primary nanoparticles without preventing interactions between reactants and metal atoms, is
needed for retention of catalytic activity.

In general, the three-dimensional morphology of nanostructures is directly correlated to total
surface area availability, aggregation state, crystal facets, as well as the ability of nanoparticles to
resist dissolution. This final consideration is of utmost importance when considering the activity
associated with Ag nanoparticles.?? In contrast to the examples associated with Pt and Pd
nanoparticles, Ag nanoparticle stability was directly correlated with the lack of metal dissolution.
In this case, surface sulfidation led to the formation of Ag,S from Ag,0 (K, =5.92 X 101 vs.
4 x 10!, respectively). This chemical transformation reduced the likelihood of Ag* release into
the natural environment and promoted primary nanoparticle suspension. In this example, stability
is related to the retention of atomic concentration of the metal (silver) associated with the
nanostructures. Common non-native surface chemistries include thin oxide,?* sulfide,?? or silica®
layers, and the thickness and dielectric properties of these materials are tuned to promote a
particular size-dependent property while suppressing dissolution or metal release into an
environment, 191921, 2617, 222327

In all of these studies, the term “nanoparticle stability” describes the preservation of
nanostructure properties as a function of composition,® shape,!” size,?® and surface chemistry.?’
Size dependent properties and/or targeted applications have also been considered. Because of
their remarkable size-dependent properties and vast applications, nanoparticle stability can mean
very different things to scientists and engineers who make, model, and use these materials. The
purpose of this feature article is to provide an overview of how to categorize and quantify
nanoparticle stability so that we can better define what is meant when the term nanoparticle

stability is used. To do this, metal/metal oxide nanoparticle stability is defined and categorized in
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terms of core composition, shape, size, and surface chemistry. An emphasis is also placed on
nanoparticle aggregation of gas- and solution-phase nanostructures as this is an added concern
for materials that can undergo collisions in a gaseous or liquid medium. Regardless of the
definition for nanoparticle stability, methods that measure and allow for quantification of
stability are described as this allows identification of specific metrics for monitoring potential
transformations of these materials as a function of time. Finally, ongoing practical challenges
and opportunities associated with the inherent metastability associated with metal and metal
oxide nanoparticles are discussed. While infinite shelf-life cannot be expected for these

materials, their many promising applications encourage further investigation.

2. DEFINITION AND MECHANISMS OF NANOPARTICLE STABILITY

Metal and metal oxide based materials are widely exploited in their macroscale form due to
their catalytic, electric, optical, magnetic, mechanic, and thermal properties.’? As their
dimensions decrease to the nanoscale, the wavelength of light becomes large with respect to
size,? the total surface area to volume ratio increases,>* surface energy elevates,’> and the number
of low coordination surface atoms (relative to interior atoms) increases.?! All of these size-
dependent characteristics impact the electronic and crystal structure of these materials and as a
result, their chemical and physical properties as a function of composition, !> 13 size,* and/or
shape.3?-33In order to maintain these properties for further application, understanding these
transformations or by definition, stability, is relevant. As such and as summarized in Table 1,
stability in terms of aggregation, metal/metal oxide composition, shape, size, and surface

chemistry are discussed in this section.
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Table 1. Summary of Nanoparticle Stability Definitions

Nanoparticle Quantitative
o Definition Characterization References
Stability - -
Non-Plasmonic | Plasmonic
Aggregation | Preservation of primary DLS 17, 28, 31,
nanoparticles upon collisions 45, 64
Metal/Metal | Unchanged chemical identity and EDX, XRD 17,28, 31,
Oxide crystallinity of the core during the 45, 65, 66,
Composition | course of an experiment or relevant 67
time period
Shape Preservation of local structure and AFM, HR- LSPR 17,28, 31,
radius of curvature at the atomic and | TEM, SEM, SERS’ 43, 45, 46,
nanoscales XRD 68, 69, 70
Size Preservation of nanoparticle AFM, DLS, 17, 28, 31,
dimension during the course of SEM, SAXS, 33,45, 71,
storage and/or experiment TEM 72,73, 74
Surface Original surface potential, chemical | Low energy ion 17, 28, 31,
Chemistry identity, structure, and functionality | scattering, XPS, 45,775,776
of surface chemistry { potential

Stability in Terms of Aggregation. Aggregation,!”- 2> the most common indicator of gas- and
solution-phase nanoparticle instability, occurs when primary nanostructures undergo clustering
upon interactions at short distances.®> As a result, nanoparticle stability depends on preventing
these processes. Noble metal nanostructures!! are excellent for visualizing aggregation as their
plasmonic properties depend on interparticle distances and can be visually observed.!” Dynamic
light scattering (DLS)® is often used to monitor cluster formation for materials that are non-
plasmonic. When all clusters overcome buoyancy forces, materials undergo sedimentation.®’

For clusters to form, nanoparticles must physically collide thus collision theory is commonly
used to model kinetics.!”-2? The rate at which clusters form will depend on energetics (vide infra)
and collision frequency (z). Assuming Brownian motion,?? the probability that two objects
collide depends on the root mean square velocity ({(v)-m/s) and number density of the

nanoparticles. The root mean square velocity reduces to the following:
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8kT

0.5
w)=(%) (€1
where k is the Boltzmann constant, T is temperature, and p is the reduced mass of the objects.
“Stable” nanostructures undergo elastic collisions and remain as primary nanoparticles after a

collision. “Unstable” nanostructures, however, undergo inelastic interactions.®® To predict if an

elastic or inelastic collision will occur, a kinetic energy barrier (E,) is estimated from calculating

the probability (e "o kBT) of collisional frequency and interaction pair potentials.??
Nanoparticle aggregation also depends on thermodynamics® or the total interaction pair
potential that arises between two objects.!”-2% 6 Derjaguin—Landau—Verwey—Overbeek (DLVO)
theory!”-2% 67 facilitates the calculation of the total interaction potential between two objects as a
function of separation distance (s) and radius of curvature (r). The attractive van der Waals
interaction potential (®4) becomes significant at short separation distances.?? As size decreases
to less than 100 nm, both the Hamaker constant and van der Waals interaction potential increase.
Electrostatic interaction potentials (®p), which give rise to repulsive forces between objects,
depend on the Debye length (x ~1). In the presence of surface chemistry, additional parameters
help promote repulsive interactions between objects.!”- 22 These extended DLVO parameters
include osmotic (V) and elastic-steric (V,y,) interaction potentials, which arise from solvent
induced pressure and molecular entropy variations in surface bound molecules (i.e., polymer,
electrolyte coating, or natural organic matter), respectively.?? At separation distances that are less
than the ligand thickness, the ligands on adjacent object undergo elastic deformation and
compression, which leads to repulsive elastic-steric interaction potentials. Retention of this steric
coating and relevant interaction potential is promoted through stabilizing intermolecular
interactions (m-w interactions) and increasing the layer thickness. The sum of these interaction

potentials allows for predictions of potential energies that arise between objects as a function of
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separation distance. Objects are likely to exhibit elastic conditions when the maximum potential
energy (Vmax) €xceeds the kinetic energy barrier (E,) calculated from collision theory.

When, however, collisions occur with more kinetic than potential energy, particle flocculation
occurs, and the size dependent properties of primary nanostructures typically change. The
probability that aggregation will occur decreases upon reducing collision frequency by
decreasing storage time in a particular medium or particle concentration. This is not always
feasible® ' but parameters such as pH (using SiO,, TiO,, Al,03, and ZnO)%” and capping
agents!”-4%31 (for metals) help increase the maximum potential energy barrier. This barrier is
maximized for silica nanoparticles,?!-%° for instance, where the electrostatic interaction potential
increases at basic pH values. Citrate deprotonation on gold nanospheres’ induces a similar
effect. At short separation distance, self-assembled monolayer formation further promotes gold
nanoparticle stabilization via increases in osmotic and elastic-steric !’by increasing the molecular
volume, weight, and/or packing density of the capping agents. Increasing alkyl chain length does
not always prevent nanoparticle aggregation in organic solvents such as toluene, hexane, and
carbon tetrachloride because osmotic interaction potential barriers are lowered in these solvents
vs. polar solvents.”! Ligands such as branched alkanoates and branched thiolates provide more
entropic stability than alkyl chains in these same non-polar solvents.”! As a consequence, the
concentration of stably suspended nanoparticles attained in solution increased by 3-4 orders of
magnitude when functionalized with ligands that promote higher entropic barriers versus what is
achievable with alkyls. Mixed n-alkanoate monolayers composed of myristate (C;4) and
docosanoate (C,,) increased the solubility of CdSe nanoparticles in organic solvents by ~109

compared to those functionalized with myristate only. The nanostructures stabilized by the
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mixed monolayer were deemed to exhibit anti-aggregation behavior, a result that was attributed
to the interruption of crystalline packing of ligands on particle surfaces.

All in all, solution-phase nanoparticle stability relies on the energetics of collisions versus
potential energy. Nanoparticle stability is promoted when the probability of elastic collisions
increase. Using both collision theory and DLVO theory, relative estimations of these energies for
solution-phase structures can be estimated so that “stability” is promoted. Preventing
nanoparticle aggregation can only be achieved for finite times given the probability dependence.
As such, awareness of factors that drive cluster formation can be considered so that realistic
expectations in nanoparticle stability with respect to aggregation can be made.

Stability as a Function of Metal/Metal Oxide Composition. Typically, the atomic
composition of cores and surfaces of a nanostructure are chemically distinct because of
differences in surface atom coordination,’ so stability refers to the retention of the original
surface atom identity and coordination. '°Because surface atoms on nanostructures have lower
coordination numbers than bulk atoms, their reactivity is relatively higher. Instability then refers
to either chemical composition variations or coordination number changes. Oxidation is a
common example of a surface atom transformation or instability. Oxidation of silver
nanoparticles,’? for instance, leads to progressive dampening of plasmon resonance features.
Silver oxide also undergoes dissolution to form Ag* in aqueous environments.>3 Both of these
instabilities lead to changing reactivity and materials fate. 73-7475-7677

Stability in terms of nanoparticle metal/metal oxide composition can be evaluated before,
during, and/or after use so that changes in elemental or molecular structure can be monitored.
Energy-dispersive X-ray spectroscopy (EDS) is a powerful technique for identifying primary as

well as interfering chemical composition in these materials.”®’® Upon high energy electron
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bombardment, a characteristic X-ray spectrum
can be collected and subsequently used for
both identification and mass quantification of
elements present in a sample.” All elements
except H and He can be detected.® Figure 1
demonstrates the successful analysis of iron
oxide nanoparticles with EDS where clear
evidence of Fe and O content was identified
through X-ray spectra analysis.”® XRD73-74 is a
parallel method that can link core composition
to nanoparticle stability and has been shown to
provide insight into how O and S?3- 74
contamination impacts nanoparticle
morphology.”® This was achieved by

comparing XRD patterns before and after
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storage of ZnO supported Pd-Zn,?' Ag,?? Al1,32 Cu,?? Zn,? and Ni® nanoparticles. In these cases,

oxides influenced nanoparticle stability and/or morphology. In short, these techniques provide

both qualitative and quantitative elemental analysis based on characteristic X-ray signals and

structural parameters from metals, metal oxides, and interfering elements such as O or S. Parallel

information regarding oxidation®® and sulfidation®” can be extracted from localized surface

plasmon resonance (LSPR) spectra associated with plasmonic nanomaterials. Silver oxide

conversion, for instance, caused the plasmon features to red shift and dampen’? thus providing

additional evidence of changes in the stability of nanoparticle cores.
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Regardless of composition, nanoparticle stability in terms of metal/metal oxide composition
depends on both kinetics and thermodynamics. Kinetic stability of the metal/metal oxide atoms is
influenced by large elemental ionization energies® (minimum energy that ejects a ground state
electron). For instance, it is well established that Ag is more easily oxidized than gold,?® 46 a
phenomenon attributed to their relative first ionization energies (7.58 eV (731 kJ/mol) and 9.23
eV (890 kJ/mol), respectively).38 While the standard Gibbs free energy of formation (AGY9g) for
Au,03 indicates a thermodynamically preferred state when temperature drops below 28 K8 Ag
nanoparticles undergo transformation into silver oxide (Ag,O) upon exposure to air regardless of
the presence of stabilizing agents as shown in Figure 2. This is because Ag oxidation is
thermodynamically favored under standard temperature and pressure conditions. The standard
free energy of formation for this reaction is -11.25 kJ/mol.® As particle dimensionality decreases
to the nanoscale, oxidation occurs more readily given the inverse relationship between AGYgg and

nanoparticle radius as follows:

57.5
AGYos(r) = —11.25 — " (Eq. 2).

Reduction potential depends on dimensionality as follows:*

—2YVn1
AE = ENanopartiCle — Epuie = 7F R (Eq. 3)

where Epanoparticie and Epyi are the reduction potential of nanoparticles and bulk materials,
respectively, y is surface tension, V, is the molar volume, and R is radius. Experimental results
for silver®® support this model in that a 0.1 V decrease in standard reduction potential of bulk
silver occurs upon decreasing nanoparticle radius to 14 nm. Similar to oxidation, sulfidation
occurs when H,S is exposed to silver nanoparticles in the aqueous phase. In this example, the

transformation of Ag nanoparticles into Ag,S is more thermodynamically favored than Ag,O
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because the solubility product constant (K,) of Ag,S (5.92x10-) is smaller and
thermodynamically preferred versus Ag,O (4x10-11).88

As shown above, chemical transformations such as oxidation and sulfidation reactions become
more likely as material dimensionality decreases to the nanoscale® 23 %0 because the free energy
of formation becomes more negative and the standard reduction potential decreases with
decreasing nanoparticle size. As a result, nanoparticle metal/metal oxide composition exhibits
worsening stability with decreasing size. As such, exposure to chemically reactive components
should be limited as much as possible to promote stability. This can be accomplished using a thin
exterior oxide layer of a more reactive metal versus the metal/metal oxide,?* inert metal,*6- >0
graphene oxide,”! or a complex surfactant.”? All of these approaches have successfully been used
to improve the stability of nanoparticle metal/metal oxide composition in response to reactive
components in a medium. As an example, coating metallic nanoparticle such as Cu?* with oxides
of a relatively more reactive metal such as Al,O3, which has a more positive standard reduction

potential than the original metal, are more Ag-NPs freshly synthesized ——» Ag-NPs in the environment

0,, HS" 3

chemically stable than uncoated Cu.

Alternatively, metal/metal oxide composition B Us 7 dosnica

Ag*, solubility !

transformations can be halted through metal B

doping. Addition of dopant metals such as Ag Initial organic coatings

Affect stability and toxil ?
ect stabllity and to"Q _— How NOM affect the

stability of Ag,S ?

E Short-term Medium-term  Long-term

Figure 2. Transformations of silver

or Au, which have relatively high redox
potentials versus primary metals such as Cu,”3

successfully promotes electron transfer from ) ) )
nanoparticle cores in the environment.

the primary metal to the dopant. As such, the . . o
Reprinted with permission from ref 6.

inherent structure of bi- and multi-metallic ) ) ) )
Copyright 2012 American Chemical Society.
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structures can improve these applications by preventing oxidation of the primary metal. These
structures, however, can undergo transformations from solid to hollow structures,’*> an
instability attributed to alloying/dealloying processes®® and the Kirkendall effect.’
Alloying/dealloying processes are usually involved in nanoparticle syntheses that have multiple
Galvanic replacement reactions. The alloying process results in the formation of homogeneous
bi-metallic nanostructures. This thermodynamically stable state is preferred over pure metallic
nanostructures. Dealloying processes are observed when there is an imbalance between dissolved
metal atoms from and new metal atoms deposited on a nanostructure. This leads to the formation
of lattice vacancies on the resulting objects. These processes, however, are not common post-
synthesis if reactants are removed from the solution. Another phenomenon that can affect
nanoparticle morphology is the Kirkendall effect. This occurs most effectively at elevated
temperatures (~373 K) 4 for bulk materials but is promoted at room temperatures at defect sites
and in cavities on nanostructures.® Luckily, stability can be promoted by minimizing the
Kirkendall effect by storing nanomaterials at ambient or low temperatures.

Although both metal/metal oxide isolation and doping approaches promote the compositional
stability of nanoparticles, some challenges exist. For instance, nanoparticle encapsulation by
another material improves the stability of the targeted nanomaterial, but this same layer prevents
direct interactions between the original material and its environment. As a result, applications
requiring direct contact between the original metal/metal oxide and its surroundings such as in
catalytic and thermal-based applications can be limited. There are often added benefits for using
this approach to stabilize plasmonic nanoparticles as a thin (2-5 nm) layer can both promote
retention of the desired optical properties while also protecting the original metal/metal oxide

from compositional transformations. In contrast, doping approaches overcome limitations of
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introducing a physical barrier; however, the number of carrier electrons in the particle is
modified thus influencing the electrical properties of the material. As a result, both benefits and
compromises to material properties need to be carefully considered when choosing methods
aimed at improving stability in terms of the original nanoparticle metal/metal oxide composition.

Stability in Terms of Nanoparticle Shape. Nanoparticle stability in terms of shape is defined
as the conservation of the original local structure and radius of curvature at the atomic and
nanoscales as these dimensions directly impact surface free energy.> This important stability
descriptor leads to the retention of catalytic, plasmonic, and mechanical properties of
nanostructures. Morphological changes lead to variations in surface facet percentages; therefore,
instability in this context arises when surface energy decreases from shape variations. The
catalytic activity of Pt nanostructures represents an excellent platform for this stability
indicator.?? Nanocubes with (100) surface facets exhibited deteriorating catalytic activity as
atomic reorganization led to the formation of nanospheres with lower energy and less reactive
(111) surface facets. Another example of surface atom instability was noted during the use of
gold nanostars as surface-enhanced Raman scattering (SERS) substrates.”® Atoms at the tips of
the branched structures underwent structural rearrangement because of their relatively high
surface energy. This caused the branches to shorten and plasmonic resonance wavelengths to
blue-shift by ~200 nm, an effect that caused worsening SERS activity. Both of these examples
emphasize the importance of defining stability in terms of nanoparticle shape as these directly
influence the physicochemical properties of nanomaterials. Stability in terms of nanoparticle
morphology can be assessed from changes in atomic crystal lattice and surface facets. These are
most often monitored using X-ray diffraction® or high-resolution transmission electron

microscopy (HR-TEM).# 190 Tocal structure changes are best assessed using TEM, atomic force
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microscopy (AFM),*” and/or scanning electron microscopy (SEM).!°! HR-TEM has been shown
to identify shape and surface-induced reconstructions of nanoparticle morphology.!%-193 For
instance, surface defects on as-synthesized gold nanorods'® revealed that surface reconstruction
led to the transformations of the (110) into (111) crystal facets. Similar examples for cerium
oxide!%* and Pt nanoparticles!?> were also observed. All of these methods can reveal changes in
nanometer length scale as long as spatial resolution is adequate. One method that is not limited to
spatial resolution is LSPR spectroscopy, where variations in nanoparticle shape are also evident
for plasmonic nanostructures. This is because of the dependence of the LSPR on the shape
factor, y, as described by Mie theory.3* Any change in the length or width of Au nanorods, for
instance, would result in variations in either the longitudinal or transverse spectral features.!'%3
Changes in fine structural detail are important in terms of stability because the percentage of
surface atoms to total atoms increases as the size of a solid object decreases. Surface atoms are
inherently more unstable than interior atoms because they coordinate to relatively fewer adjacent
atoms. As a result, surface atoms exert a radially inward force so that the distance between the
surface and interior atoms are minimized, which can induce morphology changes.’ For
instance,®! the (111) lattice constants for 3.3 and 1.3 nm CdS nanocrystals were determined to be
5.80 and 5.72 A, respectively. This difference was used to explain the size-dependent surface
tension of the studied nanocrystals to be ~2.5 N/m, a value ~3 times larger than bulk (0.75 N/m).

Surface tension (y) in units of N/m can be calculated for a particular facet plane as follows:?

1
¥ =3Nbepq (Eq. 4)
where Ny, is the number of coordinating atoms at that facet, € is bond strength (J/mol), and p, is
surface atomic density. This means that surface tension is greatest for (110) facets vs. (100) and

(111) planes because there are 5, 4, and 3 adjacent atoms per surface atom.’ If given enough
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time, all materials proceed to a state where Gibbs free energy is minimized. As such,
nanoparticle shape tends to undergo transformation to minimize overall surface energy (or
surface tension) so that thermodynamically stable structures are attained.

There are two common mechanisms for practically reducing the surface energy of a
nanostructure while retaining shape and include surface adsorption (chemical** 48 196 and
physical!?”) and surface area reduction.’ Nanoparticle shape is preserved at the nanoscale when
adsorption takes place because surface atoms are energetically stabilized. As such, atomic
coordination of interior atoms remains the same thus reducing the probability of nanoparticle
shape transformations. Complex nanostructures such as nanorods,* 19 nanostars,* and
nanocubes’® are more impacted by shape transformation in comparison to simpler structures.
This is because the density of high energy facets (i.e., (100) and (110)) with low coordination
surface atoms increases with added morphology complexity.’ This can be observed in Figure 3
where (110) and (111) facets are observed
along nanorod sides and ends, respectively.*:
100 CTAB binds preferentially to the (110)
surfaces thus promoting nanoparticle stability.

In the case of ultrathin gold nanowires (d =

1.6 nm),'% surfactants such as oleylamine
selectively stabilize Au (001) facets allowing - - SR N
Figure 3. HR-TEM images of the Au

nanostructure growth at (111) planes. . .
nanorods with facets oriented along (a) (010)

Similarly, highly uniform silver clusters with . .
and (b) (110) planes. Reprinted with

the formula Agyy(p-MBA)3¢* and diameters of o )
permission from ref 100. Copyright 2000

~1.2 nm form in the presence of p- American Chemical Society
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mercaptobenzoic acid. The formation of these structures depend on intermolecular interactions
between both the ligands and metal atoms present.'” As such, these examples indicate the power
of molecular adsorption in forming and retaining nanostructure shape and uniformity.

In the absence of surface chemistry that decreases the energy of low coordination surface
atoms, morphology transformations are common.> For example, desorption of capping agents
from a nanostructure surface often induces shape transformations.!'%-1"! Surface ligand
disruption can also lead to oxidative etching.!'? This process often occurs during reductive
reactions that take place during or post synthesis. These processes can lead to instabilities (i.e.,
blunting) of sharp features such as at the corners and branch tips of nanocubes and nanostars,
respectively. Oxygen promotes the activity of common etchants such as Cl-. Fe3*, CN-, thereby
leading to metal atom removal at high chemical potential features and shape transformations.!!?
This effect promoted the formation of crystalline nanoparticles through the dissolution of
multiply-twinned nanostructures that exhibited relatively higher reactivity.!!3 If chloride and
oxygen were included at early stages of the synthesis, multiply-twinned silver nanoparticles
dissolved at a similar rate as silver ion reduction. These processes occurred until a single-
crystalline nanoparticle phase formed. This example illustrates that the formation of
nanostructures with crystal facets with low reactivity can improve the morphological uniformity
of nanostructures.

In order to promote morphological stability during storage and experiments, effects of
digestive ripening, another mechanism of shape instability, can be suppressed by adding ligands
that adsorb to specific crystal facets or through O, and common etchant removal.''> Common
capping ligands that help prevent oxidative etching include CTAB,* 100 HEPES,!!4 PVP,!!5 and

PEG.!¢ In general, anionic, cationic, zwitterionic, and non-ionic molecules adsorb to
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nanostructure surfaces and when added in excess, can help resist shape transformations by
reversibly binding to high energy facets on non-spherical nanostructures. A good example of this
involves the retention of branches in the HEPES-containing parent solution after the synthesis of
gold nanostars.!' Similarly, PVP binds preferentially to the (100) facets on Ag nanocube faces
thus promoting their shape stability post-synthesis.!!?

Another approach involves the functionalization of nanoparticles using molecules with strong
binding energies to the metal/metal oxide surface atoms (i.e., sulfur to Au)!” thus minimizing
molecular desorption and shape restructuring. In all of these examples, retention of standard
temperature and pressure conditions is important. The major drawback to functionalization is
that morphological changes can occur if the exchangeable ligands in solution are not uniformly
suspended.!!7-118 These changes arise through digestive ripening processes and are promoted at
elevated temperatures. To minimize these effects, ligand exchange should be carried out through
the slow addition of the second, exchangeable ligand at room temperature to minimize effects of
digestive ripening and nanoparticle aggregation.!”-4° In all cases, surface ligand packing density,
chemical composition, and potential all influence surface energy. As such, these studies
emphasize the importance of surface energy in promoting nanostructure stability as a function of
local crystal structure and radius of curvature.

Stability in Terms of Nanoparticle Size. Stability in terms of nanoparticle size is defined as
the preservation of nanoparticle dimensionality during storage and/or an experiment. Because the
physicochemical properties of nanoscale metal/metal oxides are size dependent, instability refers
to an increase or decrease in nanoparticle dimensionality that causes a significant variation in
catalytic, optical, magnetic, mechanical, and thermal properties of materials. Magnetic

nanoparticles,!? for example, can exhibit superparamagnetism where the average magnetic
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moment of small particles is zero in the absence of an external magnetic field but increases
rapidly upon application of an external field. This property is only observed for feature sizes that
support single-domain behavior. Likewise, nanoparticles can become efficient thermal
conductors with decreasing size. This is because diffusion coefficients are indirectly proportional
to size; therefore, heat transfer is facilitated as nanoparticle diffusion coefficients increase and as
size decreases. Thus, retention of nanostructure dimensions is required for reproducible chemical
and physical properties of nanoscale metals and metal oxides. Nanoparticle dimensions can be
imaged directly or inferred through movement in a solution. TEM and scanning electron
spectroscopy (SEM) routinely provide spatial resolution down to 0.2-0.5 nm'!® and 0.4-1.6
nm, %% respectively. Imaging materials using these techniques typically require that a sample is
deposited and dried on a support thus only provide accurate nanoparticle dimensions if the
material is not influenced by solvation and/or mobile surface chemistries/ions. Chemical
transformation is common when the medium changes (i.e., oxidation). High-resolution images
can also be measured using AFM?34 121 ag vertical and lateral resolutions of 0.1 and 0.2 nm,'??
respectively, can be achieved. As with any scanning probe microscopy, sampling is limited by
scan rate, sample size, and probe properties. Other techniques including small-angle X-ray
scattering technique (SAXS)!?3 and DLS!?! can also be used to analyze nanostructure size in
solution. Both SAXS and DLS rely on the Stokes-Einstein equation!?* to quantify nanoparticle
size. DLS, for instance, facilitates the estimation of hydrated particle dimensions from
translational diffusion coefficient (D) estimations from light scattering measurements.
Nanoparticle dimensions can be quantified directly from images> ' or indirectly'?! from
mobility and spectroscopy measurements. The complex dimensionality of core-nanostructures

composed of Ag, Au, and SiO, is shown in Figure 4A.%¢ Dimensions of the various components
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are clearly observed due to differences in how electrons interact with the various materials.

Additional information can be assessed using SAXS as size, shape, and surface details can be

determined.!?* The nucleation and growth of gold nanoparticles, for instance, was evaluated

using SAXS. Details related to size'?> and shape (i.e., nanocubes,!?° nanorods,'?’ or

nanotriangles!?®) were successfully
determined. The dimensionality of plasmonic
nanostructures can also be determined from
LSPR spectroscopy,*?-434 which are in
excellent agreement with theory*># thus
adding an alternative and fast method for
monitoring and quantifying changes in
nanoparticle dimensionality.

These measurements have revealed that
nanoparticle size stability depends on how
nanostructures are synthesized. Whether top-
down or bottom-up methods are used, defects
and surface energy influence size stability.>
Bottom-up synthesized materials typically
contain fewer surface defects than top-down
fabricated structures;>: 12° however, fabricated
structures are influenced by their support and
often have more tunable morphologies and

compositions than synthesized ones.

B
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Figure 4. (A) TEM image of internally
etched Ag@Au@SiO, nanoparticles. (B)
Changes in extinction maximum wavelength
from LSPR spectra (1) without and (2) with
silica membranes as a function of bulk
refractive index. (C) LSPR spectra of the
same materials (1) before and after
incubation with 4-mercaptobenzoic acid in
pH 4.5 buffer for (2) 1, (3) 10, (4) 30, and (5)
45 minutes. Reprinted with permission from
ref 46. Copyright 2018 American Chemical

Society.

ACS Paragon Plus Environment

20



Page 21 of 40

oNOYTULT D WN =

The Journal of Physical Chemistry

Regardless of the mechanism of growth, nanoparticle size stability is driven by homogeneity of
the nanoparticles formed in terms of size, shape, and crystallinity as well as critical size
dimensions.!'?? Other parameters that influence nanoparticle size stability depend on the density®
130 and adsorption energy** 13! of surface stabilizing agents. For a constant total surface area for
nanostructures, low densities of stabilizing agent leads to large stable nanoparticles over time.!3°
This can be understood in terms of maximizing both van der Waals and elastic interaction pair
potentials for nanostructures.

Surface chemistry composition can also promote stability in terms of nanoparticle size because
of binding energetics. For instance, the preservation of stable Ag nanoparticles with diameters
ranging from 44, 39, 35, and 31 nm are observed in the presence of PEG (van der Waals), EDTA
(chelate), PVP (covalent-like-N), and PVA (covalent-like-O), respectively.!?! Similar tunability
is observed for Au nanostars stabilized by various Good’s buffers,** as well as metal oxide
nanostructures®’- 6% stabilized by zwitterions. In addition, thiol molecules'”- 17 can be used to
promote the stability and preservation of size and to improve size distribution. 6-
Mercaptohexanoic acid,* for example, can limit morphological transformations of gold
nanostructures upon adsorption by reducing their effective surface energies. In contrast,
dodecanethiol!'® narrowed the size distribution of nanoparticles via digestive ripening. Non-
thiolated molecules can also be used for these purposes. Similar effects occur with N-
heterocyclic carbenes!32-134 as these adsorb strongly to Au at high temperatures (~373 K) or in
dilute H,O,. These observations suggest that stabilizing agent composition and structure impacts
nanoparticle size stabilization likely through the manipulation of particle surface tension.

All in all, nanoparticle size stability is an important parameter in the observed and exploited

physicochemical properties of nanoscale materials. The conservation of dimensionality depends
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on the homogeneity of the originally synthesized materials® as well as stabilizing agents present
during storage or use. Size does not typically follow normal distributions. As such, methods
deviating from simple averages and standard deviation are encouraged when both quantifying
and classifying changes in nanoparticle size.

Stability in Terms of Surface Chemistry. As conveyed in each of the previous sections, the
nanoparticle interface plays an important role in maintaining stability in terms of composition,
morphology, and size. Nanomaterials stabilized by their native metal/metal oxide surface atoms
require preservation of atomic density, chemical identity, and surface potential while those
containing capping agents also rely on properties related to the terminal group protonation state,
density, and composition. Instability is noted as variations in surface atomic and molecular
density, chemical composition, and potential, which cause unexpected aggregation,®
irreproducible drug delivery,'3> and inconsistent molecular detection.*® 136 Altering the surface
potential from non-zero values to zero, for instance, reduces the electrostatic repulsive potential
between nanoparticles suspended in a medium, an effect that can cause cluster formation.
Surface potential transformations can also influence drug delivery as both drug loading and
particle delivery depend on surface potential. As a result, metal/metal oxide surface chemistry
stability is important when intermolecular forces influence the use of nanoparticles in
applications. While an imperfect technique is because of dependencies on ionic strength and
model assumptions,'3’ changes in surface potential can be estimated using zeta potential.!”- 46
This is an especially powerful method for characterizing metal oxide nanostructures dispersed in
aqueous media as they contain natively oxidized surfaces.!? Silica?® and titania!3® particles as
well as those composed of metal oxides!'3?-140 exhibit pH-dependent stabilities because of this

native oxide layer as indicated from zeta potential measurements. For instance, zeta potential
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measurements revealed that silica nanoparticles exhibit stable surface potentials for up to 50
hours in solutions with pH ranging from 5.5-6.5.%!

Specific information related to the chemical identity, density, and ordering of surface agents is
often learned using X-ray photoelectron spectroscopy (XPS) and low energy ion scattering.!41-142
For instance, metal oxidation and trace elements have been identified!*! as well as surface
chemistry structure'®? extracted using these methods. To identify surface contamination and
defects, low-energy ion scattering!4! is utilized. Furthermore, XPS revealed that the chemical
composition and structure of 16-mercaptohexadecanoic acid monolayers on gold nanoparticles!4?
change with time. Electron spectra for surface analysis simulations were used to understand the
experimental results in terms of monolayer density, thickness, and tilt angle.

Finally, surface sensitive methods such as LSPR and SERS can provide details related to
molecular density,!”- 46 identity,?® 4° orientation,>* 136 and protonation state of molecules on
metals.*® As described in by the previously reported model for shifts in the extinction maximum
wavelength!4 and demonstrated in Figure 4B,* the extinction maximum wavelength associated
with gold coated silver nanoparticles depends on local refractive index (in this example from
varying sucrose concentrations) as well as the presence of a silica protection layer. When a
porous silica membrane encapsulates the nanoparticles, surface modification from small
thiolated molecules is detected from small spectral variations (Figure 4C), yet no instability of
the plasmonic nanoparticles due to aggregation was detected.*¢

It should be noted that techniques that provide chemical information are often influenced by
intermolecular interactions.?® Molecules that readily exchange at an interface!% as well as those
with relatively stronger interactions!# both reach equilibrium interactions thus providing stable

surface chemistries for promoting nanoparticle stability. Concentrations of reagents such as
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citrate,'4 CTAB,!#7 nitrate,'*® and thiolate species® >! must be considered as these can promote
nanoparticle instability because of aggregation upon increasing ionic strength'46 while also
promoting stability by increasing the elastic interaction potential between structures.!4

Surface chemistry is very important in promoting nanoparticle stability in non-polar solvents.”!
Mixed ligands on nanoparticle surfaces have been hypothesized to form random, striped, or
Janus organizations.!>%-!3! Random arrangement is most probable when the ligands possess
similar chemical and structural properties. Striped ordering has been reported when two ligands
with large differences in volume and/or conformational entropy are included.’! In contrast,
Janus nanoparticles form when two ligands form two separate domains on surfaces.!>? Ligands
that lead to the formation of Janus structures likely differ in hydrophobicity such as that between
tetradecane-1-thiol (hydrophobic) and 11-amino-1-undecanethiol (hydrophilic).!>° All three
ligand organizations and their ordering (or lack there-of) depend on ligand chemical identity,
functional group, and packing density. Changes in ordering lead to variations in nanoparticle
stability, so the retention of original properties and formation of mixed ligands on the surface
influences nanoparticle stabilization especially when suspended in non-polar solvents.

Surface functionalization can reduce the probability of nanostructure aggregation; therefore,
stability of this engineered surface chemistry must also be assessed.*®>! Surface chemistry
stability depends on the rate of molecular adsorption, a process that depends on both flux?®-3% and
preexisting surface chemistry,'>? can be monitored in real-time. For instance, Figure 5!36
illustrates the time-dependent process of thiolate monolayer formation on gold. Porous
membranes on SERS substrates,*® for instance, have been shown to control flux as a function of
charge and size!>? and to improve biocompatibility.'>* All in all, surface chemistry stability

depends on the nature of atoms or molecules present in the local medium surrounding a
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nanostructure. These conditions are relevant
during storage where exchange can occur as
well as in complex environments (i.e., the
environment or biological systems) where
displacement or encapsulation might take
place. Implications of changes are important
for nanomaterial performance in various
applications. As such, effective stabilization
methods should be considered.
4. OUTLOOK AND
OPPORTUNITIES

What does nanoparticle stability mean? All
in all, this term means many different things
but ultimately, plays an important role in
defining and maintaining the physicochemical
properties of nanostructures for subsequent
exploitation in both fundamental and applied
studies. Nanoparticle stability is not favored

thermodynamically relative to macroscale

22777
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Figure 5. Structural rearrangement of (a)
low coverage, (b) initial high coverage, and
(c) equilibrium coverages of aromatic ring-
contained molecules on gold. Reprinted with
permission from ref 136. Copyright 2016

American Chemical Society.

materials at the same standard conditions. Despite this, these phases do exhibit prolonged

stability during relevant time periods. As such, nanoparticles are at best, metastable in

comparison to macroscale materials, so this must be considered when exploiting applications

with these materials. In general, size dependent property retention is desired for a given period of
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time, and factors that govern stability can be described in terms of aggregation state, core,
surface chemistry, and/or surface composition. Methods that facilitate quantification help define
these stabilities or lack thereof.

In this section, we outline four opportunities for better understanding and communicating
nanoparticle stability as these materials continue to be exploited in research and technology.
First, processes such as oxidation® or surface modification3? of surface atoms is
thermodynamically favored and can promote retention of nanometer dimensions yet change the
properties of the nanomaterial phase. This is a viable option for promoting some while
prohibiting other applications involving nanomaterials. Second, as our ability to control
nanoparticle morphology expands, traditional techniques for quantifying fine structural details
and size begin to fail. For instance, analysis of complex structures such as nanostars are difficult
to image using traditional two-dimensional electron microscopy imaging.*> Morphology depends
on the orientation of the material with respect to the electron beam. There is an opportunity to
develop methods for standardization of size descriptors for such nanoparticles as a function of
tip-to-tip distances*® branch lengths,* core radius, numbers of branches, and radius of curvature
of the tips.!” These details significantly impact the physicochemical properties of these materials
yet standard and widely available imaging methodologies do not currently allow for this
information to be learned in a straight-forward manner.

Homogeneity of nanostructures can complicate the resulting stability of these materials. For
instance, ripening can lead to dissolution of small(er) particles and growth of large(r) particles so
reporting particle distributions that include small and large outliers are important. Hence, a third
opportunity in better assessing and controlling nanomaterial stability is implementing more

representative metrics for quantifying size. Typical approaches involve the use of averages and
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standard deviations in reporting nanoparticle dimensions.!”-23 46 While size distributions can
follow a Gaussian distribution,'> a lot of information regarding relatively small or large
populations are not communicated. As such, reporting size distributions showing histograms or
box and whisker plots is a viable approach for more accurate communication of nanoparticle
sizes and distributions.

Finally, many size dependent properties of nanomaterials rely on their unique and size
dependent surface energies. This very property, however, leads to instability in terms of
aggregation and morphology retention. Hence, there are opportunities for developing new
strategies for surface modification of these materials. Novel capping agents of non-spherical
nanoparticles would help off-set this high surface energy,’ could prevent undesired surface
chemistry changes,® 46 help preserve nanostructure morphology, and increase entropic interaction
potentials between nanostructures. This last point would help promote retention of primary
nanoparticle states and decrease the probability of aggregation from inelastic collisions.

Overall, the metastability of nanoparticles represents the kinetic trapping of a non-
thermodynamically minimized energy state associated with this phase. By defining and better
quantifying what is meant by stability, we can be more effective at reproducibly realizing
stability-dependent properties ranging from catalytic, electrical, magnetic, mechanical, optical,
and thermal. To do so, limitations of current state of the art characterization tools as well as local
medium conditions should be considered. The goal of this feature article was to break down
stability considerations in terms of aggregation, core composition, shape, size, and surface
chemistry. These stability definitions and mechanisms impact size dependent properties in
unique ways. By defining these and by outlining how these properties can be measured, we hope

that the term “nanoparticle stability” is more clearly conveyed and used realistically as these
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materials continue to be used in research and society.
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