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Abstract

Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of
many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants
(POPs), many “legacy” compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues
where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is devel-
opmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human
studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains
related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and
social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders
(ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on
dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we
briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxic-

ity common to those ascribed to PCBs.

Introduction

Epidemiologic [6, 12, 163] and preclinical [158, 192] studies
have identified the brain as a vulnerable target of polychlo-
rinated biphenyls (PCBs). This review focuses on the state of
the science regarding the neurotoxicity of PCBs at epidemio-
logic, neuropathologic, and molecular levels. Much of the
scientific literature describes the developmental neurotoxic-
ity of PCBs, which are arguably among the most extensively
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studied developmental neurotoxicants of the nonmetallic
persistent organic pollutants (POPs). While our knowledge
of how early or mid-life exposures to PCBs influence the
aging brain is not as comprehensive, there is evidence link-
ing PCBs to increased risk of neurodegenerative outcomes,
and this literature is also addressed in this review.

PCBs are a chemically related class (chemotype) within a
vast number of POPs of diverse anthropogenic origins. Com-
mon to all POPs is their chemical stability in the environ-
ment, and their resistance to metabolic degradation. These
properties underlie the ubiquitous environmental distribution
and bioaccumulation of POPs in human tissues, which have
raised global concerns about adverse health consequences of
widespread human exposures [36, 43, 179]. These concerns
have led to restrictions on the production of POPs imposed
by many governments through the Stockholm Convention on
POPs signed in 2001 and appended in 2008 and 2014 [165,
166]. Despite these regulatory efforts, “legacy’” PCBs persist
in the environment and in human tissue, where they are still
routinely detected, thus continuing to pose significant health
risks, particularly among susceptible populations.

Chemically, PCBs are a complex mixture of isomers
or congeners that differ significantly in their structure and
modes of action. PCB congeners have been heuristically
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divided into two categories based on structure: PCBs with
biphenyl rings substituted with zero chlorines in the ortho
position that assume a coplanar biphenyl orientation in solu-
tion, and PCBs with one to four chlorines in the ortho posi-
tion that assume increasing degrees of noncoplanar biphenyl
orientation (Fig. 1). Of the 209 possible PCB congeners,
19 congeners are stable atropisomer or enantiomers, with
chiral asymmetry about their biphenyl bond axes. PCBs
can be hydroxylated or sulfonated metabolically, and each
enantiomer and metabolite has potentially distinct interac-
tions with biological targets, contributing to overall PCB
neurotoxicity.

Coplanar PCBs have been shown to mimic dioxin in that
they bind with relatively high affinity to the aryl hydrocar-
bon receptor (AhR), which regulates the transcription of a
large group of dioxin-responsive genes [105, 156]. Although
low-level exposures to dioxin and dioxin-like PCBs have
been associated with a number of adverse outcomes in sev-
eral organ systems, especially liver, skin, and immune func-
tion [11, 124, 203], and are probably carcinogenic [109],
there is less evidence from epidemiologic and preclinical
studies that they are associated with neurotoxic outcomes.
Recent preclinical studies have demonstrated that dioxin
alters neuronal migration [99] and ultrasonic vocalization
[100] in mice, albeit at doses higher than those required
for induction of other pathological endpoints. But whether
dioxin-like PCBs have similar effects on these neurodevel-
opmental endpoints has yet to be determined. There is also
emerging data linking dioxin-like compounds to increased
risk of neurodegenerative disease, specifically amyotrophic
lateral sclerosis (ALS) [4]. The most prevalent pathology
of ALS is the accumulation of phosphorylated insoluble
aggregates of transactive response DNA binding protein 43
(TDP-43) in neurons. Dioxin-like compounds were shown
to significantly increase TDP-43 in induced pluripotent stem
cells and mouse brains via AhR-dependent mechanism(s)

Polychlorinated biphenyls Brom

[4]. Whether environmentally relevant levels of dioxin-like
PCBs similarly induce TDP-43 expression in neural tissues,
and whether this effect translates into increased ALS risk
remains to be determined.

In contrast, noncoplanar PCBs, also referred to as nondi-
oxin-like PCBs (NDL PCBs) have little to no binding affin-
ity for AhR. However, there is extensive scientific evidence
linking NDL PCBs to neurotoxic outcomes [146, 180]. Fur-
ther, NDL PCBs are predominant not only in contemporary
environmental samples, but also in breast milk, serum, and
adipose tissue from wildlife and humans [9, 146]. Given
that NDL PCBs constitute the predominant congener sub-
class comprising contemporary human exposures, and that
the weight of evidence implicates NDL PCBs in neurotoxic
sequelae, this review largely focuses on the neurotoxicity of
NDL PCBs.

While PCBs are among the most extensively studied POP
chemotype, other major POPs have been shown to have
neuropathogenic potential, including organochlorine insec-
ticides (e.g., DDT, cyclodienes, hexachlorocyclohexanes)
and, more recently, polybrominated diphenyl ether flame
retardants (PBDEs) and newly discovered organohalogens
produced as disinfectant byproducts [96, 146, 223]. Fig-
ure 1 compares PCBs with chemotypes that have emerged
more recently as POPs of human health concern because
of their potential as neuromodulators and neurotoxicants.
Interestingly, many brominated organics from anthropo-
genic sources, especially those released as water disinfec-
tion byproducts, closely mimic organohalogens naturally
produced in marine environments that function as primary
ecological signaling molecules and secondary deterrence
and defense toxins [1].

In this review, we present a critical evaluation of the state
of the science regarding the neurotoxicity of PCBs from
both a neurodevelopmental and neurodegenerative stand-
point. We also review what is known about the underlying

inated diphenyl ethers, phenols and bipyrroles
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Fig. 1 Exemplary non-coplanar and coplanar polychlorinated biphe-
nyls (PCBs) of anthropogenic origin. Coplanar PCBs are also referred
to as dioxin-like (DL) PCBs because of their ability to binding the
AhR with high affinity, a mechanism considered to contribute to can-
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cer risk, whereas non-coplanar PCBs, which are referred to as non-
dioxin-like (NDL) PCBs, which possess one or more ortho chlorine
substitution have negligible AhR activity and have been shown to be
neurotoxic through other mechanisms



Acta Neuropathologica

mechanisms of PCB neurotoxicity, including alterations in
biogenic amines (dopamine in particular), endocrine dis-
ruption, altered calcium signaling in neurons, and oxida-
tive stress. Our understanding about PCB neurotoxicity is
likely to provide broad insights regarding the neurotoxic
potential of a number of chemically related organohalogens
that are eliciting scientific and public attention as emerging
concerns, and these chemically related organohalogens are
briefly discussed in the closing statements.

Mechanisms of PCB neurotoxicity

While significant research effort has focused on understand-
ing how PCBs interfere with neurodevelopment or promote
neurodegeneration, the molecular mechanisms by which
PCBs cause neurotoxicity, and whether all or only a subset
of PCB congeners are neurotoxic, remain key questions in
the field. Prevailing mechanistic hypotheses of PCB neuro-
toxicity include: (1) altered dopamine (DA) signaling; (2)
disruption of thyroid hormone signaling; (3) perturbation
of intracellular Ca** dynamics; and (4) oxidative stress. The
mechanistic studies described below have been highlighted
because the PCB exposure paradigms that elicited changes
in these important biological pathways are relevant to the
PCB levels detected in humans and wildlife as well as the
congener profiles detected in contemporary environmen-
tal and biological samples [9, 67, 146]. Importantly, these
mechanisms have also been implicated in the neurotoxicity
of several contemporary POPs with NDL structures, includ-
ing brominated diphenyl ethers (PBDEs) [34, 96] and bis-
phenols [222].

Evidence that PCBs alter DA neurotransmission

In vitro studies using pheochromocytoma cells (PC12)
exposed to technical PCB mixtures, e.g., the Aroclors, pro-
vided the first evidence that PCBs significantly reduce cel-
lular DA concentrations [174]. Subsequent structure—activ-
ity relationship studies revealed that ortho-substituted NDL
PCBs, but not coplanar DL congeners, significantly depleted
cellular DA [174, 190]. These in vitro observations were
corroborated in vivo in Macaca mulatta (thesus monkeys)
orally exposed to Aroclor 1254 [168]. Analysis of striatal
and substantia nigral concentrations of DA using high-
performance liquid chromatography with electrochemical
detection demonstrated significantly reduced nigroneostri-
atal levels of DA in PCB-exposed subjects, an effect that per-
sisted following termination of PCB exposure [169]. Studies
using Aroclor 1016 (a mixture of lightly chlorinated NDL
PCB congeners) in non-human primates also demonstrated
significant reductions in nigroneostriatal DA concentra-
tions, providing additional verification of in vitro studies

demonstrating that NDL PCB congeners impair DA neuro-
transmission [170]. Similar observations were reported in
adult male mice orally exposed to Aroclor 1254 for 4 weeks
[111]. Experimental evidence suggests that DA depletion
may result from reduced levels of tyrosine hydroxylase, the
rate limiting enzyme in the formation of DA [28], or from
inhibition of vesicular monoamine transporter (VMAT) or
the plasma membrane dopamine transporter (DAT) [22, 120,
172]. However, evidence for direct molecular interactions of
NDL PCBs with one or more of these targets remains weak.

Evidence that PCBs alter thyroid hormone (TH)
signaling

Maternal or infant hypothyroidism is linked to significantly
impaired neurodevelopment, including intellectual disability
[139, 205]. The importance of decreased circulating TH,
primarily measured as changes in levels of thyroxine (T4) in
serum, has been widely debated as the primary mechanism
of PCB neurotoxicity since it was initially proposed [207].
Many studies, performed in a variety of species, including
humans, have demonstrated a negative association between
PCB exposures and serum T4 [19, 61, 62, 88, 224]. Devel-
opmental exposure of rats to Aroclor 1254 was shown to
cause hypothyroxinemia (decreased serum T4) coincident
with hearing loss, and supplementation with T4 throughout
development attenuated PCB-induced motor and auditory
deficits [61]. However, cognitive effects of developmen-
tal PCB exposure do not appear to be mediated by thyroid
hormone-dependent mechanisms. For example, rats devel-
opmentally exposed to Aroclor 1254 at levels sufficient
to reduce serum T4 levels had no deficits in learning and
memory assessed in the T-maze or the Morris water maze
[220]. Conversely, rats developmentally exposed to Aroclor
1254 at levels that did not significantly decrease serum T3 or
T4 levels exhibited poorer performance in the Morris water
maze [215]. Two additional studies of individual PCB con-
geners also failed to support a role for TH deficits in cog-
nitive and behavioral deficits linked to PCBs [131, 162].
Consistent with these preclinical data are recently published
results from a prospective birth cohort, the Hokkaido study,
which included 222 mother—neonate pairs and was designed
to determine whether there was a relationship between spe-
cific hydroxylated PCB metabolites (OH-PCBs) and mater-
nal/neonate serum thyroxine levels [80]. Unexpectedly, and
in direct opposition to the hypothyroidism theory of PCB
developmental neurotoxicity, the Hokkaido study indicated
that maternal and/or neonatal exposure to specific hydroxy-
lated PCB metabolites (OH-PCBs) were positively corre-
lated with free thyroxine levels [80]. Results from another
recently published prospective study performed in Denmark
indicated no significant association between the placental
levels of 35 PCB congeners and placental T4 or T3, although
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one PCB, PCB 81, was positively associated with reverse
T3 (rT3) [117].

Further complicating the thyroid hormone disruption
theory of PCB neurotoxicity, PCBs have been shown to
have both antagonistic and agonistic effects on thyroid hor-
mone receptors, depending on the congener and the dose
[62, 131, 224]. Moreover, direct molecular interactions of
PCBs with TH receptors have not been convincingly dem-
onstrated. Recently Sethi et al. [173] used a novel stable
in vitro reporter gene assay [52, 125] but failed to detect
any thyroid hormone receptor activity for 12 most abundant
PCB congeners mimicking the congener profile in maternal
serum, either singly or as a mixture. These inconsistencies
across both human and rodent studies raise significant ques-
tions regarding an association between PCB effects on serum
thyroid hormone levels and adverse neurodevelopmental
outcomes.

Evidence that PCBs alter Ca?* channel function
and Ca%*-dependent signaling

The precise spatial and temporal patterning of cytoplasmic
Ca”" signals are critical for normal neurodevelopment, the
establishment and refinement of neural networks, and the
dynamic synaptic plasticity associated with many behaviors
[7, 17, 103]. Diverse biochemical, biophysical and cellu-
lar approaches across many laboratories have consistently
shown that NDL PCBs potently alter intracellular Ca**
dynamics [146], and a number of studies have linked PCB-
induced Ca®* dyshomeostasis to specific neurodevelopmen-
tal deficits [180]. An early hypothesis was that developmen-
tal exposures to NDL PCBs caused cognitive and behavioral
deficits by disrupting Ca**-dependent PKC signaling [101,
217]. This hypothesis derived in part from observations that
PCB disruption of Ca*" fluctuations caused rapid redistribu-
tion of protein kinase C (PKC) isoforms in astrocytoma cells
[191]. Further structure—activity relationship studies demon-
strated that NDL PCBs [101, 217], but not DL PCBs [35],
increased the translocation of PKC to the plasma membrane
of cultured cerebellar neurons. In vivo studies demonstrated
that developmental exposure to Aroclor 1254 changed the
subcellular distribution of PKC isoforms in the brain in a
complex region-specific manner [190]. However, whether
influences on PKC signaling represent a primary mecha-
nism driving the behavioral and cognitive impairments
observed following developmental PCB exposure remains
unanswered.

Subsequent studies focused on the primary molecular
mechanism(s) responsible for PCB effects on intracellu-
lar Ca®* dynamics. In vitro studies using pharmacological
blockade of specific Ca** channels have shown that NDL
PCBs increase extracellular Ca>* entry into cells through
a number of mechanisms, including activation of L-type
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voltage-sensitive Ca** channels and NMDA receptors [78,
128]. However, such changes are elicited only at high PCB
concentrations (=10 uM), which have been demonstrated
to produce nonspecific changes in membrane fluidity [102].
NDL-PCBs have also been shown to facilitate the release of
Ca®* from intracellular stores through sensitization of two
genetically related Ca>* channels localized to the endoplas-
mic/sarcoplasmic reticulum (ER/SR): ryanodine receptors
(RyR) [207-211] and inositol 1,4,5-trisphosphate receptors
(IP;R) [77]. Of these, RyR sensitization is more sensitive to
NDL PCBs, and this interaction has been shown to exhibit
a consistent stringent structure—activity relationship, includ-
ing stereoselectivity, as determined using biochemical, elec-
trophysiological, cellular and in vivo approaches [47, 53,
54,71, 72, 134, 146, 214]. Nanomolar PCB concentrations
directly interact with RyR channels to stabilize RyR chan-
nels in their full open conformation [161], which sensitizes
ER/SR Ca?* signals to physiological modulators including
Ca’*, Mg?*, and ATP.

Sensitization of RyRs by NDL PCBs alters the fidelity
of spontaneous Ca** oscillations [200] and the neuroplasti-
city of hippocampal CA1 neurons [209] in vitro. Consistent
with this observation, picomolar to nanomolar concentra-
tions of NDL PCB 95, which is among the most RyR-active
congeners, activate two Ca>*-dependent signaling pathways
in cultured rat hippocampal neurons: (1) sequential activa-
tion of CaMKK, CaMKIa/y, and MEK/ERK and CREB to
increase transcription of Wnt2 [200]; and (2) CREB-medi-
ated miR132 upregulation, which suppresses the translation
of p250GAP [115]. In cultured rat hippocampal neurons,
the former signaling pathway mediates PCB 95-induced
dendritic growth [200], whereas the latter mediates PCB
95-induced synaptogenesis, which is evident as increased
spine density and increased frequency of miniature excita-
tory post-synaptic currents [115]. Several lines of evidence
indicate that PCB effects on RyR activity are causally
linked to dendritic growth and spine formation: (1) RyR-
active PCB congeners, such as PCB 95 and PCB 136, but
not PCB congeners that lack activity at the RyR, such as
PCB 66, enhance dendritic growth and promote spine forma-
tion in cultured hippocampal and cortical neurons; and (2)
pharmacological blockade or siRNA knockdown of RyRs
inhibit the dendrite and spine promoting activity of these
NDL PCBs [115, 201]. An interesting observation from
these studies is that PCB-induced dendritic growth exhib-
its a non-monotonic concentration—effect relationship, with
effects observed in the pico- to nanomolar range but not
at femto- or micromolar concentrations [201, 214]. Eluci-
dating the mechanisms responsible for this non-monotonic
concentration—effect relationship remains a critical data gap
in the field.

These observations suggest that PCB effects on dendritic
growth contribute to PCB-induced behavioral deficits. In
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support of this possibility, developmental exposure of rats
to Aroclor 1254 at 1, but not 6, mg kg™! in the maternal
diet was found to cause learning and memory deficits in
the Morris water maze, and this dose of Aroclor 1254 also
modulated RyR activity and dendritic arborization in brain
regions that subserve Morris water maze behavior [215].
Several interesting findings emerged from this study. First,
developmental PCB exposure promoted dendritic growth
in cerebellar Purkinje cells and neocortical pyramidal neu-
rons among untrained animals but attenuated or reversed
experience-dependent dendritic growth in these brain
regions among Morris water maze-trained littermates. Sec-
ond, deficits in learning and memory were only seen in the
1 mg kg™! group, and the most robust changes in dendritic
arborization were also observed in this dose group, replicat-
ing the non-monotonic dose—response relationship observed
in the in vitro studies. Third, this study demonstrated that
the behavioral deficits correlated better with changes in
RyR expression and activity than with changes in serum
levels of thyroid hormone or sex hormones. In a separate
study, a similar non-monotonic dose-response relationship
was observed for dendritic arborization of CA1 pyramidal
neurons in the hippocampus of rats exposed to PCB 95 in
the maternal diet throughout gestation and lactation [201].
Developmental exposure to PCB 95 has also been shown to
dramatically alter the tonotopy of the primary auditory cor-
tex (A1) [91], presumably by tipping the balance of excita-
tory—inhibitory currents within A1 towards excitation during
critical periods of its development [91, 97, 98, 209]. While
these data strongly support the hypothesis that PCB effects
on RyR activity contribute to behavioral deficits via modu-
lation of calcium-dependent signaling pathways that regu-
late neuroplasticity, experimental evidence demonstrating
that the molecular and cellular effects are causally linked to
behavioral deficits are lacking. Testing this hypothesis using
RyR knockout animals is not feasible because of embryo
lethality, but alternative approaches using knock-in animals
expressing human gain-of-function mutations that enhance
RyR sensitization by organohalogens [44, 219] may increase
confidence in causal inferences.

Although the current data support a primary mechanistic
contribution of RyRs to the developmental neurotoxicity of
NDL PCBs, their possible role in the induction and pro-
gression of neurodegenerative diseases, such as Parkinson’s
disease (PD), is less clear. Although Ca** dyshomeostasis
induced by ER stress is an important molecular mecha-
nism of selective loss of dopaminergic (DA) neurons in
PD, an etiological role for RyR channels has only recently
received experimental attention. Using a 6-hydroxydopa-
mine (6-OHDA)-induced in vitro SN4741 cell model of
PD, Huang et al. [75] showed that 6-OHDA significantly
increased cytoplasmic Ca>* levels, an effect that could be
blocked by either an ER stress inhibitor or a specific RyR

blocker. The authors further demonstrated that 6-OHDA
reduced the spike number and rheobase of DA neurons in
acute brain slices, effects that were also reversed by RyR
blockade. Furthermore, novel 6-aminoquinoxaline deriva-
tives appear to confer neuroprotective effects on DA neurons
in cellular animal models of PD that are at least partially
mediated through interactions with RyRs [110]. Interest-
ingly, blocking Ca** influx did not change PCB effects on
intracellular dopamine levels in a catecholaminergic cell
line [87], suggesting that PCBs may be more likely affect-
ing dopamine homeostasis by mediating dysfunction of ER
Ca’* stores. Clearly this area needs more attention before
inferences can be made about convergent mechanisms link-
ing PCB neurotoxicity across life stages.

Evidence of PCB-induced oxidative stress

Oxidative stress occurs when the production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS)
exceeds the antioxidant capacity of the system [8, 92, 137].
This imbalance can cause oxidative and nitrative damage
to macromolecules, which in turn can cause cell damage
or even cell death. Numerous in vitro studies have dem-
onstrated that PCBs cause oxidative stress in neurons [35,
74, 121]. In cultured cerebellar granule neurons, exposure
to the NDL-congeners, PCB 4 or 153, or to Aroclor 1254,
but not to DL PCBs, increased cellular ROS levels, which
caused concentration-dependent cell death [35]. Similarly,
Aroclor 1254 or the NDL PCB 47, but not the DL PCB 77,
triggered neuronal cell apoptosis in primary hippocampal
neurons that was blocked by co-exposure to the antioxi-
dant alpha-tocopherol [74], suggesting that NDL PCBs
induced apoptosis via increased ROS. Interestingly, this
same study demonstrated that apoptosis induced by PCB
47 was also prevented by pharmacologic blockade of RyRs
[74]. Whether and how RyRs and ROS interact to medi-
ate PCB-induced apoptosis has yet to be determined. One
possibility is that ROS is a consequence of RyR activa-
tion. As discussed above, NDL PCBs stabilize RyRs in the
open conductance state, which increases release of Ca%*
from the ER [146]. Elevated intracellular Ca®* can trigger
apoptosis either by directly activating caspases in neuronal
cells and/or by increasing Ca’* flux into mitochondria,
thereby increasing ROS production, which triggers release
of cytochrome ¢ from mitochondria with subsequent acti-
vation of caspases [113]. Alternatively, ROS can act as
signaling molecules that initiate apoptosis via targeted
interactions with specific cellular components, one of
which is the RyR [23, 144, 146]. ROS have been shown
to interact directly with hyperreactive cysteine residues
on the RyR to enhance its open probability [45, 136, 188,
213]. This suggests an alternative model of PCB-induced
apoptotic signaling in which NDL PCBs activate RyRs
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indirectly as a consequence of PCB-induced increase in
ROS [74]. There is precedence for this proposed mecha-
nism in that ROS generated by quinone have been shown
to increase the calcium conductance of RyR from rabbit
sarcoplasmic reticulum membranes. In fact, RyR chan-
nels are tightly regulated by changes in the ER/SR mem-
brane redox potential [45, 213] and are highly sensitive
to modification by redox active environmental chemicals
including naphthoquinones and benzo[a]pyrene-7,8-dione
[46, 145], providing a possible mechanistic link between
Ca’* dysregulation and oxidative stress. These may not
be mutually exclusive models in that PCBs may indepen-
dently influence both RyR activation and ROS generation,
with each effect augmenting the other in a positive feed-
back mechanism.

There is conflicting evidence as to whether PCBs cause
oxidative stress in the brain in vivo. Oral exposure of adult
male mice to a relatively high dose (25 mg/kg/day) of Aro-
clor 1254 for 4 weeks was associated with increases in
superoxide dismutase (SOD), heme oxygenase (HO-1),
lipid peroxides, and protein carbonyl levels in the stria-
tum and cerebellum [111]. In rats exposed throughout
gestation and lactation to environmentally relevant low
doses of Aroclor 1254 in the maternal diet (0.1 or 1.0 mg/
kg/day), multiple brain regions showed increased expres-
sion of biomarkers of oxidative stress [216]. In contrast, a
study of mice exposed to a mixture of six NDL PCBs via
lactation failed to find any evidence of oxidative damage
in the brain [39]. The discrepancy between these studies
may be due to differences in species, timing and length of
PCB exposure, dose and composition of PCB mixtures to
which animals were exposed, as well as the use of different
biomarkers to measure oxidative stress. Collectively, the
available studies suggest that oxidative stress may contrib-
ute to the developmental neurotoxicity and neurodegenera-
tive toxicity associated with NDL PCBs, potentially via
RyR-dependent mechanisms.

The neuropathologic effects of PCBs

We performed a literature search using PubMed (searched
December 2018) to identify human and animal studies of
neuropathologic effects of PCBs. We used the following
search terms: “polychlorinated biphenyls”, “PCBs but not
printed circuit boards”, “neuropathology”, “neurophysiol-
ogy”’, and “neuroimaging”. Our search yielded seven unique
articles, of which three were reviews [42, 118, 129, 150,
152, 171, 182]. Inspection of the references cited in these
three reviews yielded an additional two articles describ-
ing the neuropathology of PCBs. These articles, as well as
other relevant publications describing PCB-induced effects
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on neuronal cytoarchitecture in vivo are discussed in this
section.

The neuropathology of PCB developmental
neurotoxicity

Currently, there is a very limited literature regarding patho-
logic effects of PCBs in the developing human brain. A pilot
study that conducted magnetic resonance imaging (MRI)
scans on 60 children age 4 years found stronger associa-
tions of PCBs with response inhibition among participants
with smaller splenium size [182]. This indicates that chil-
dren with suboptimal development of the splenium could
be particularly vulnerable to exposure to PCBs, increasing
their risk for poorer response inhibition, a core trait of atten-
tion-deficit hyperactivity disorder (ADHD). Another pilot
study administered functional magnetic resonance imaging
(fMRI) to 12 adolescent boys from a Faroese birth cohort
assembled in 1986-1987 [204]. Boys with high exposure to
both PCBs and methylmercury (MeHg) showed more activa-
tion across brain regions during visual and motor tasks than
boys with lower mixed exposures to PCBs and MeHg. In a
separate cohort of Inuit from Nunavik (Northern Québec)
[40], cord blood concentrations of methylmercury or lead,
but not PCBs, were associated with pattern-reversal visual
evoked potentials (VEPs) recorded at the occipital cortex.
Prenatal exposure to lead was associated with a delay of
the N150 latency at most contrast levels. This study sug-
gests that heavy metal exposure, in particular during the
gestational period, but not PCB exposure, can impair the
development of visual processing. Whether early-life expo-
sures negatively impact healthy brain aging later in life [167]
remains unanswered.

The earliest neuropathologic studies of developmental
exposures to PCBs in preclinical models utilized very high
PCB levels intended to mimic the exposures associated with
the accidental mass poisonings due to ingestion of PCB-con-
taminated cooking oil in Japan in 1968 and Taiwan in 1979
[155]. In one of these studies [29], pregnant CD-1 mice were
dosed orally with the DL PCB 77 at 32 mg/kg/day on days
10 through 16 of gestation. This exposure paradigm caused
significant maternal toxicity as evident by significantly
smaller litter sizes (60% of control) and higher neonatal
mortality (40% at postnatal day 20). In approximately 55%
of surviving offspring from PCB-exposed dams, a perma-
nent motor disturbance, referred to as “spinning syndrome”,
developed at weaning. Spinning syndrome was characterized
by repetitive jerking of the head, hyperkinesia, and swift
stereotyped circular or spinning movement, described as
“chasing one’s tail”.

From over 100 spinners resulting from 60 PCB-exposed
litters, 24 spinners ranging in age from 4 to 34 weeks along
with age-matched controls and 12 littermates who did not
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develop spinning syndrome (nonspinners) were subjected to
pathologic studies [29]. Interestingly, no detectable neuronal
changes, gliotic foci or demyelinating lesions were detected
in the CNS of either PCB-exposed spinners or nonspinners
by light microscopy. However, cylindrical CNS peninsulas
(CCPs) that projected into the cranial and spinal nerve roots
were noted in all spinners and some nonspinners, but none
of the control subjects. The CCPs were characterized by a
cylindrical column of nerve fibers, myelinated or nonmy-
elinated, and/or glial bundles in varying proportions, which
were well-circumscribed and delineated from the neighbor-
ing PNS-type nerve fibers. The diameter and length of CCPs
varied considerably up to 100 um in diameter and 5 mm in
length. They were seen predominantly in the ventral roots,
and to a lesser extent in the dorsal spinal roots, and most
abundantly at lumbar levels. Large, apparently displaced,
motor neurons were often detected within CCPs. Electron
microscopy revealed that the CCPs in both the ventral and
dorsal spinal roots were ensheathed in a glycocalyx layer
that was indistinguishable from the basement membrane;
and while collagen fibrils invested the outer surface of the
CCPs, collagen fibrils were not observed within the CCPs.
The myelinated fibers within the CCPs were distinguished
by the lack of an outer basement membrane, the presence of
oligodendroglia and shorter periodicity of myelin lamellae,
all characteristics typical of CNS myelin. Signs of myelin
sheath degeneration in the absence of macrophage infiltra-
tion were very common in CCPs, but not in the PNS-type
myelinated fibers surrounding the CCP. All the cellular ele-
ments of the CNS (neurons, astroglial and oligodendroglia)
were observed within CCPs. Some of the heterotopic neu-
rons appeared normal with well-preserved terminal boutons
detected along the cell surfaces. Except for frequent dis-
tal displacement in the ventral white matter, ventral horn
motor neurons showed no ultrastructural changes suggestive
of degenerative process in the perikaryon; however, along
the cell surfaces, the nerve terminals appeared dense, amor-
phous and shrunken.

The authors noted that the glial outgrowth observed in the
CCPs in the spinner mice was similar to that reported in pig
spinal roots following transection and anastomosis, but con-
cluded that mechanical injury was unlikely to be the cause
of CCP development in the spinner mice [29]. Rather, the
neuropathology induced by developmental exposure to very
high levels of PCB 77 appeared remarkably similar to that
observed in Werdnig—Hoffman disease. The authors con-
cluded that PCB 77 interfered with the organization rather
than the differentiation of neurons and glia since no histo-
pathologic abnormalities could be detected in the CNS of
mice exposed developmentally to PCB 77. Specifically, the
authors conjectured that PCB 77 selectively interfered with
synaptogenesis of inhibitory dopaminergic terminals, and
that PCB exposure may be relevant to the high incidence of

aberrant motor development in hyperactive boys [29]. This
hypothesis derived in part from pharmacologic observations
in this study that, like hyperactivity in children, ampheta-
mine was effective in attenuating spinning behavior in the
spinner mice [29].

A later histopathologic study of Sprague—Dawley rats
exposed to a more moderate dose of PCBs similarly con-
cluded that PCBs did not cause overt damage to the develop-
ing brain, but rather PCBs interfered with the organization of
neural networks [150]. In this study, pregnant Sprague—Daw-
ley rats were fed chow containing Aroclor 1254 at 125 ppm
throughout gestation and lactation. Upon weaning, offspring
were maintained on chow containing 125 ppm Aroclor 1254
until euthanized for histological processing at 16, 30 and
60 days of age. Using Timm’s silver sulfide staining to
visualize the hippocampal mossy fibers, the authors dem-
onstrated that continuous exposure to Aroclor 1254 from
conception significantly reduced the relative size of II-P
mossy fibers in 16-, 30- and 60-day old rats. In contrast,
developmental exposure to Aroclor 1254 had no effect on the
size of the hilar or suprapyramidal mossy fibers or on corti-
cal thickness. The authors speculated that PCBs decreased
the growth of mossy fibers as a result of increased glutamate
or delayed myelination secondary to PCB-induced hypothy-
roidism or as a result of altered Ca>* homeostasis [150].
However, none of these postulated mechanisms explains the
selective effect of Aroclor 1254 on a subpopulation of gran-
ule cells that give rise to the II-P mossy fibers.

Subsequent preclinical studies of neuropathologic
changes induced by developmental exposures to more envi-
ronmentally relevant doses of PCBs further support the
hypothesis that PCB-induced functional deficits reflect sub-
tle organizational and/or functional defects of key neural
networks of the brain [57, 167, 180]. Classic histopathologic
analyses of brains from weanling rats exposed to Aroclor
1254 at 1 or 6 mg/kg/day in the maternal diet throughout
gestation and lactation did not detect overt structural damage
in the brain [215]. However, Golgi analyses of rat CA1 hip-
pocampal pyramidal neurons and cerebellar Purkinje cells
indicated that exposure to Aroclor 1254 at 6 mg/kg/day in
the maternal diet throughout gestation and lactation caused
a pronounced age-related increase in dendritic growth. Thus,
even though dendritic lengths were significantly attenuated
in PCB-exposed animals at postnatal day 22, by postnatal
day 60, dendritic growth was comparable to or exceeded
that observed in vehicle controls [114]. A subsequent study
of postnatal day 31 rats [215] demonstrated that develop-
mental Aroclor 1254 exposure increased dendritic arbori-
zation of cerebellar Purkinje cells and neocortical pyrami-
dal neurons in animals not trained in a Morris water maze
but caused dose-dependent dendritic retraction in these
same neuronal cell types in littermates trained in the Mor-
ris water maze. These dendritic effects were significantly
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more pronounced in the animals exposed to Aroclor 1254
at 1 mg/kg/day compared to 6 mg/kg/day in the maternal
diet, and the lower dose, but not the higher dose of Aroclor
1254 elicited deficits in spatial learning and memory in the
Morris water maze [215]. Interestingly, postmortem exami-
nations of brains from Autism Spectrum Disorder (ASD)
patients have revealed increased neuropil, which comprised
dendrites, non-myelinated axons, synapses, vasculature and
glial cell processes, in cortical regions [193]. Morphometric
analyses of pyramidal neurons in various cortical regions
altered in ASD, has revealed increased dendritic complexity,
including increased dendritic spines [76, 79], on projection
neurons. While studies from the 1990s indicated less com-
plex dendritic arborization in the hippocampus of subjects
with ASD [193], more recent studies of genetic mouse mod-
els of ASD have identified increased dendritic complexity of
hippocampal neurons [27, 85, 90].

Another pathologic feature associated with ASD is an
imbalance of excitatory to inhibitory neural circuits [60].
Kenet et al. [91] reported that rats developmentally exposed
to NDL PCB 95 at 6 mg/kg/day in the maternal diet during
gestation and lactation exhibited profoundly abnormal devel-
opment of the primary auditory cortex (A1) without impair-
ment of hearing sensitivity and brainstem auditory responses
of pups. Al was irregularly shaped and marked by internal
nonresponsive zones, with grossly abnormal or reversed
topographic organization in about half of the exposed pups.
Changes in A1 network organization occurred concomitantly
with changes in the balance of neuronal inhibition to excita-
tion for A1 neurons, with significant alterations in the criti-
cal period plasticity that underlies normal postnatal auditory
system development [91].

Histologic studies in preclinical models of PCB devel-
opmental neurotoxicity have also detected increased apop-
tosis in the brains of rat pups exposed to Aroclor 1254 at
0.1 or 1.0 mg/kg/day in the maternal diet throughout gesta-
tion and lactation [216]. TUNEL staining of sections from
the cortex, hippocampus and cerebellum revealed signifi-
cantly increased apoptosis in all three brain regions, with
the most pronounced effect in the cerebellum, at postnatal
day 1 but not postnatal day 21 [216]. These findings were
confirmed by assays of caspase 3 activity. Histologic evi-
dence of increased apoptosis coincided spatiotemporally
with biochemical evidence of oxidative stress, specifically
increased levels of 4-HNE and 3-NT as detected by western
blotting [216].

Collectively, the available neuropathologic data suggest
that neither overtly toxic levels of PCBs nor more environ-
mentally relevant levels of PCBs cause major structural
changes in the developing brain. Rather, developmental
exposures to PCBs interfere with the organization of neural
networks, evident by CCPs in spinal roots in response to
very high PCB levels, or by changes in axonal and dendritic
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morphology or altered patterns of apoptosis elicited by more
environmentally relevant PCB exposures.

The neuropathology of PCB-induced
neurodegeneration

A ['Zlodine] 2p-carbomethoxy-3p-[4-iodophenyl) tropane]
single-photon emission computed tomography (['?*I] f-CIT
SPECT) imaging study of former capacitor workers with
documented PCB exposures found that relative to non-
exposed controls, individuals with occupational exposure to
PCBs had significantly decreased striatal dopamine terminal
densities [171], suggesting loss of dopaminergic neurons.
Interestingly, this association was sex-specific. After statisti-
cal correction for a number of confounders, including age,
only women show a significant inverse relationship between
lipid-adjusted total serum PCB concentrations and -CIT
densities in the caudate, putamen or combined caudate and
putamen, despite the fact that neither serum PCB levels nor
age was statistically different between men and women. In
a separate cohort of women participating in the Nun Study
who had no clinical signs or symptoms of PD at death, ele-
vated levels of NDL PCBs 138, 153, and 180 were observed
in brain tissue that exhibited moderate nigral depigmentation
compared to subjects with mild or no depigmentation [68].

Preclinical studies of neuropathologic changes in adult
subjects exposed to PCBs at levels approximating the high
end of occupational exposures are consistent with the limited
neuropathologic findings in humans. As discussed above,
studies in non-human primates demonstrated that long-term
exposure to PCBs significantly reduced basal ganglia DA
concentrations [168, 169]. To determine whether subchronic
PCB exposure would cause cell loss in midbrain DAergic
systems, ventral midbrain neurons were quantified by ste-
reologic analyses at 2 weeks after a month-long exposure
of adult male mice to Aroclor 1254 at 6, 12 and 25 mg/kg/
day [111]. Moderate to high doses of Aroclor 1254 elicited
death of both tyrosine hydroxylase (TH) immunopositive
and TH immunonegative neurons in the ventral tegmental
area. In the substantia nigra, the low and moderate doses of
Aroclor 1254 significantly reduced only TH immunopositive
cells, while the highest dose significantly decreased both TH
immunopositive and TH immunonegative cells. The loss of
DAergic and non-DAergic neurons correlated with increased
levels of oxidative stress biomarkers in these same brain
regions [111]. However, PCB exposure caused persistent
increases in locomotor activity that correlated with dose-
dependent increases in DA levels in the ventral midbrain.
The authors interpreted these paradoxical data as suggesting
the existence of compensatory mechanisms to maintain DA
homeostasis in the face of decreased numbers of DAergic
neurons [111].
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Collectively, the limited literature available regarding the
neuropathologic effects of PCBs on the aging brain suggest
that PCBs promote the loss of DAergic and, at high exposure
levels, non-DAergic neurons, within brain regions critically
involved in motor function. Whether PCBs promote neuronal
cell loss in other regions of the adult brain remains an open
question.

Epidemiological evidence of PCB
neurotoxicity

PCB developmental neurotoxicity

Accidental mass poisonings due to ingestion of PCB-con-
taminated cooking oil in Japan in 1968 and Taiwan in 1979
[155], resulted in a number of clinical morbidities, including
adverse neurodevelopment in response to prenatal exposure
[25, 26]. These incidents were the basis for classifying PCBs
and other organochlorine compounds as suspected devel-
opmental neurotoxicants. The epidemiologic literature on
lower-level PCB exposure, mostly via diet (e.g., fish, meat
and dairy) [107, 119], and neurodevelopment is among
the richest in environmental neuroepidemiology. Results
of these studies, while generally supportive of an adverse
impact of PCBs on the developing brain, have been mixed,
with differences based on methodologic considerations, such
as study design (prospective vs. cross-sectional), window
of exposure (e.g., prenatal vs. postnatal), neurobehavioral
domain (e.g., language, memory, executive function, inhib-
itory control) and age of neuropsychological assessment.
PCBs that bioaccumulate in maternal tissues efficiently cross
the placenta during pregnancy and are transferred postna-
tally through breast milk. This makes them a particular
concern for the developing central nervous system, which
undergoes rapid development during gestation and early life.
Here, we review a subset of the available literature on PCBs
and neurodevelopment with the aim of focusing on studies
with more statistical power and methodologic rigor. To this
end, we reviewed the state of the literature to date on pro-
spective epidemiologic studies of prenatal PCB exposure
measured in biospecimens collected during pregnancy and
neurodevelopment across cognitive and behavioral endpoints
in children age 3 years or older.

Selection of studies for review

We performed a literature search using PubMed (searched
June 2018) to identify human studies of prenatal exposure
to PCBs and neurodevelopmental outcomes across domains
related to cognition (e.g., IQ, language, memory, learning),
attention, behavioral regulation and executive function, and
social behavior, including traits related to attention-deficit

hyperactivity disorder (ADHD) and autism spectrum disor-
ders (ASD). We used the following search terms: “polychlo-

EEINT3 1”
b}

rinated biphenyls”, “PCBs”, “organochlorines”, “prenata

CLINTS

“pregnancy”’, “neurodevelopment”, “attention, “cognition”,
“behavior”, “impulsivity”, “hyperactivity”, “attention deficit
hyperactivity disorder”, and “autism”. We also inspected ref-
erences of previously published review papers on PCBs and
neurodevelopment [5, 41, 163, 207] to confirm that we iden-
tified all papers that met our criteria (detailed below). We
limited our search to papers published in English-language
journals after 1990.

For this review, we included a select body of literature to
identify studies more robust in methodologic rigor and study
power. Our inclusion criteria were: (1) studies that included
analysis sample sizes of 100 or more participants, to focus
on studies with more statistical precision; (2) prospective
cohort studies that measured PCB exposure in the prenatal
period, as neurodevelopment is generally recognized to be
most sensitive to environmental insults during this period
[63]; (3) studies that measured PCB exposure in biospeci-
mens, primarily serum or plasma from blood collected from
the mother during pregnancy or at delivery, including from
the umbilical cord and placenta; and (4) studies of children
3 years of age or older, as neurodevelopmental outcomes can
be measured more reliably in older children.

CLINNYS

Review findings

We identified 29 papers that met our inclusion criteria. These
papers represented 14 different prospective cohort studies.
Geographically, these studies were diverse and included
countries in North America (Canada, Greenland and the
USA), Europe (Belgium, Denmark and the Faroe Islands,
Germany, the Netherlands, Spain, and Ukraine), and Asia
(Japan). Studies were also diverse with respect to cohort
birth year and, therefore, pregnancy PCB concentrations,
which have been slowly decreasing since PCBs were banned.
Studies most often presented findings for the sum of PCB
congeners, though the number of congeners included and
the limit of detection for these individual congeners varied
widely.

Prenatal PCB exposure and child cognition

We identified 12 papers from 9 different cohort studies
that examined associations of PCBs with cognitive func-
tion among children ranging from ages 3 to 11 years. As
shown in Table 1, most studies conducted tests of general
intelligence (most commonly the Wechsler Intelligence
Scale for Children, Kaufman Assessment Battery for Chil-
dren and McCarthy Scales of Children’s Abilities), though
a number also looked at specific cognitive domains, such
as language and memory. Among these 12 papers, most (8)
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may be a sensitive window of exposure due to high levels of
PCBs in breastmilk. In addition, PCBs in dust from caulking
materials and light ballasts used in schools and other build-
ings constructed before 1977 may be a significant source of
exposure among children [20, 66]. Studies of associations of
PCBs from breast milk with neurodevelopment show mixed
findings, with many studies reporting null associations [5,
82, 83, 149, 194]. In addition, disentangling the impact of
prenatal and postnatal exposure on neurodevelopment, par-
ticularly when it comes from breast milk, which may be
highly correlated with transplacental exposure, presents a
challenge.

We also chose to limit our review to studies of slightly
older children (age 3 years or older). A sizable literature
reports association of PCBs with neurodevelopment under
the age of 3 using tests such as the Bayley Scales of Infant
Development [15, 33, 58, 59, 104, 141, 206]; however, neu-
ropsychological measures of infants and toddlers tend to be
noisy, in part due to difficulty in achieving a desired state for
testing in younger children [178]. Measured endpoints are
therefore more likely to be reliable among older children. In
addition, as demonstrated by three studies included in this
review [142, 185, 198], PCB-related decrements in neurode-
velopment may be transient, where decrements in cognitive
or behavioral function found in early childhood recede in
later childhood due to compensation by other brain regions
or more stable measures of neurodevelopment at older ages.

The main limitation of any review article is publication
bias, and this review is no exception. Pressures in the scien-
tific and editorial processes promotes publication of positive
results over null findings, which can skew the balance when
trying to represent the weight of the evidence. Our stringent
inclusion criteria may have offset this slightly, by filtering
out smaller, methodologically less rigorous studies that
are at greater risk for producing spurious findings. Yet, no
review is immune to publication bias, and it is likely that a
number of studies that would have met our inclusion criteria,
but found null associations of PCBs and neurodevelopment,
remain unpublished. Findings of this review paper should
therefore be interpreted with this significant caveat in mind.

Another limitation of this review is that we did not evalu-
ate associations with neurodevelopment for specific PCB
congeners, or mechanism-based classes of congeners. This
limitation is underscored by emerging studies that suggest
it is specific RyR-active NDL PCBs and related organoh-
alogens that may be associated with increased risk of her-
itable neurodevelopmental disorders, including ASDs [21,
63, 65,70, 176, 180], and may be at least in part mediated
by cellular Ca>* dyshomeostasis, mitochondrial dysfunction
and alterations in gene-specific patterns of DNA methyla-
tion [38, 116, 126, 130, 146, 212]. The majority of stud-
ies included in this review used a sum of PCB congeners,
which may be dominated by specific individual congeners

@ Springer

in the mix, such as PCB 153. Correlations across individual
congeners also tend to be high, which makes disentangling
individual congeners difficult due to collinearity. In addition,
the mechanism for PCB neurotoxicity remains unclear and
may be different across congeners and cognitive/behavioral
domains, making a review of congener-specific associations
challenging.

Summary and priorities for future epidemiologic study
of PCBs and neurodevelopment

In summary, we found that among larger studies with more
methodologic rigor, most showed that PCBs were associated
with poorer cognitive and behavioral development. Though
PCB levels have been steadily decreasing since their ban in
the 1970s, their persistence in the environment and in human
tissue and continued exposure in older building materials
make PCBs a continued public health concern. In addition,
as analytic methods improve, measurement of congeners at
lower limits of detection is possible. This may make it pos-
sible to examine outcomes in relation to lower-level conge-
ners that could not be previously quantified, such as lower
chlorinated congeners, which may also be related to neu-
rodevelopment [133]. In addition, assessment of neurode-
velopment continues to improve, in particular neuroimaging
modalities, which have not yet been explored in relation to
PCBs. This presents the opportunity to examine PCB-related
associations with different, and potentially more sensitive,
neurodevelopmental endpoints, including neuroimaging
[73]. Finally, this review may inform the potential neurode-
velopmental impact of more contemporary and emerging
chemicals with structural and toxicological properties simi-
lar to PCBs.

Epidemiology of occupational exposures to PCBs

In contrast to a wealth of epidemiological data showing
associations of perinatal PCB exposures with poorer neu-
rodevelopmental outcomes, there are considerably fewer
published studies that have examined PCB exposures in
relation to impaired brain aging. Negative consequences
have been reported in adults exposed via consumption of
PCB-contaminated foods. Subtle cognitive and behavioral
changes have been reported in recreational fishermen from
the Great Lakes [164] and in adults who consumed PCB-
contaminated fish from the upper Hudson River [49, 50].
Similarly, humans who consumed high amounts of whale
meat, which typically has very high PCB levels, were found
to be at increased risk for PD [148]. With respect to the lat-
ter, it should be noted that a prospective study reported no
association between PCB exposure history and serum levels
of PCBs before PD diagnosis [202].
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A number of studies have examined the effects of occu-
pational PCB exposures on adult neurologic function. Sev-
eral studies provide suggestive evidence that occupational
PCB exposures exert subtle influences on adult behavior and
well-being. For example, PCB exposures during adulthood
were associated with moderately lower well-being scores for
teachers who worked in PCB-contaminated school buildings
[143]. In another study, PCB-exposed firefighters exhibited
higher rates of depressive disorders compared with respec-
tive control groups [94]. Five additional studies have pro-
vided evidence of a positive correlation between PCB body
burden and depressive symptoms in older PCB-exposed
individuals [48, 49, 55, 56, 151]. Results from one of these
studies, a cross-sectional study, indicated a significant nega-
tive influence of NDL PCB exposure on urinary levels of
homovanillic acid, which is a metabolite of dopamine [151].

There have also been indications of an association
between PCBs and increased risk of Parkinson’s disease
(PD). An early study of the caudate nucleus obtained post
mortem from PD patients and from controls not diagnosed
with PD showed significantly higher concentrations of NDL
PCB 153 in the PD tissue [30]. More recently, a study of
postmortem brain tissues from control patients and those
diagnosed with PD disease obtained from the Emory Uni-
versity Brain Bank showed NDL PCB congeners 153 and
180 were significantly elevated in the brains of PD patients.
When stratified by sex, the female PD group demonstrated
significantly elevated concentrations of total PCBs and spe-
cifically congeners NDL PCB 138, 153, and 180 compared
to controls, whereas PCB concentrations in males were not
significantly different between control and PD groups [68].
Epidemiologic studies have similarly noted sex differences
in neurodegenerative outcomes related to PCB exposures.
For example, Steenland and colleagues [181] demonstrated
that female electrical capacitor workers were more likely
to die from either Parkinson’s disease (PD) or amyotrophic
lateral sclerosis than their male counterparts. Seegal and
colleagues [171] reported that occupational exposure to
PCBs significantly decreased striatal dopamine terminal
densities only in women. In a separate cohort of women
participating in the Nun Study who had no clinical signs or
symptoms of PD at death, elevated levels of the same three
PCB congeners were observed in brain tissue that exhibited
moderate nigral depigmentation compared to subjects with
mild or no depigmentation [68]. The reasons for these sexu-
ally dimorphic findings remain unexplained. One potential
explanation, particularly for older women who were either
peri-or post-menopausal during occupational exposure, is
decreased neuroprotection because of reduced levels of cir-
culating estrogen [197]. Another possible explanation is that
PCBs are lipophilic [93], and women typically have higher
PCB body burdens due to a higher body fat content com-
pared to men [10].

The limited human epidemiological data available regard-
ing associations between PCB exposure and frank neuro-
pathological changes associated with Parkinson’s disease is
mixed with studies supporting [30, 68, 148] and not sup-
porting [181, 202] an association between occupational PCB
exposure with Parkinson’s disease. It should be emphasized
that the available occupational literature is limited by a
paucity of specific PCB biomarkers and exposures likely
included other organohalogens. Nevertheless, the envi-
ronmental persistence of PCBs and evidence of continued
human exposure to PCBs, combined with robust animal and
human evidence of PCB neurotoxicity, provide strong justifi-
cation for further longitudinal studies of early life exposures
and later neurodegenerative pathology in aging. Importantly,
future epidemiological studies need to incorporate in their
sampling and exposure assessments the more recent litera-
ture that clearly indicates that not all PCB congeners are
equivalent in their neurotoxic potential. As reviewed above,
there is strong experimental evidence that NDL PCB conge-
ners are significantly more neuroactive than DL congeners.
Among the NDL PCBs there appears to be a stringent struc-
ture—activity relationship that includes a significant degree
of stereoselectivity among the 19 chiral PCBs. Thus, using
the sum of the PCBs or a small number of sentinel PCBs,
such as PCB 153, to reflect exposure may limit or underesti-
mate associations with neurotoxicity throughout the lifespan.

Are PCBs the tip of the NDL-POP iceberg?

Anthropogenic and naturally synthesized
polybrominated diphenyl ether (PBDEs)

PBDE flame retardants share several common chemical
properties with NDL PCBs, including a noncoplanar orienta-
tion of the phenyl rings (Fig. 1). Halogen and hydroxy sub-
stitutions at ortho-, meta- and para-positions exhibit similar
structure—activity profiles toward triggering Ca>* release from
microsomal vesicles [96] as have been reported for NDL-
PCBs [47, 53, 54,71, 72, 147]. PBDEs were shown to cause
intracellular Ca?* dyshomeostasis in vitro by altering both
ionotropic glutamate receptors [32] and RyR channels [94],
and perturbations in the functional coupling of these channels
has been linked to degenerative neuropathology [152]. Like
PCBs, PBDEs alter TH signaling [34], and increase oxidative
stress [31, 130]. Several studies have indicated that the neuro-
toxic activities of NDL PCBs, PBDEs and their hydroxylated
metabolites are additive, and that a dose addition model for
estimating risk may be appropriate [34, 71]. However, unlike
NDL PCBs, which selectively alter dendritic complexity,
neuronal-glial co-cultures from rat hippocampus exposed to
BDE-47 or BDE-49 exhibited delayed neuronal polarization
resulting in significant inhibition of axonal outgrowth during
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the first few days in vitro, but no later influences on dendritic
complexity [24]. Interestingly, the axon inhibitory effects of
these PBDEs were blocked by pharmacological antagonism
of RyR or siRNA knockdown of RyR2, indicating common
molecular mechanisms affecting two distinct developmental
processes of neuronal connectivity. The explanation for the
differential cellular effects of NDL PCBs and PBDEs despite
a common molecular mechanism of action remains unknown
but may possibly reflect differential effects on distinct RyR
isoforms that are spatially segregated [7, 112]. A recent sys-
tematic review regarding the effects of developmental expo-
sure to POPs on intelligence or ADHD and attention-related
behavioral conditions in humans concluded that there is suf-
ficient evidence supporting an association between develop-
mental PBDE exposure and reduced IQ [108], but a similar
association was not observed for PCBs [221].

Finally, contemporary sources of organohalogens pro-
duced as disinfection byproducts [95, 106, 218] and bio-
synthesized by marine organisms [1] are receiving consid-
erable attention as emerging health risks because of their
abundance, persistence, and potential to mimic natural
organohalogens produced by bacteria that serve signaling
and/or toxicological functions in marine environments.

Recently 34 organohalogens from anthropogenic and marine
sources, including hydroxylated PBDEs, bromopyrroles and
bromobipyrroles (Fig. 1), and bromoindoles were tested to
identify compounds active towards RyRs. Several of these
compounds were found to be highly active in not only sen-
sitizing RyR channel activation, but also inhibiting micro-
somal sarcoplasmic/endoplasmic reticulum (SR/ER) Ca?*
ATPase (SERCA) [223]. The temporal and spatial properties
of SR/ER Ca** signals not only depend on the density and
activities of RyRs and IP;R channels, but also the activity
of ATP-dependent driven SERCA pumps, which are neces-
sary for accumulating luminal Ca®* and setting the ionic
force that drives Ca®* signal properties. Several halopyr-
roles formed as disinfectant byproducts that are detected in
waste and drinking water treatment streams have recently
been shown to exert cytotoxic, genotoxic and carcinogenic
activity in mammalian cell culture models [153, 154, 218].
Whether they have neurotoxic effects as predicted by their
mechanistic similarity to NDL PCBs remains to be deter-
mined. However, the risk of developmental neurotoxicity is
plausible given recent evidence that organohalogens of bio-
synthetic and anthropogenic origins accumulate in marine
mammals and human breast milk [3, 175, 196].

NDL-POPs

DL-POPs |

@“’.c
‘@

@QQ

Fig.2 Heuristic hypothesis of modeling known mechanisms by
which nondioxin-like (NDL) and dioxin-like (DL) persistent organic
pollutants (POPs) influence mechanisms converging through their
respective activities on ryanodine receptor (RyR) calcium channel
complexes and expression of TDP-43. Expression of TDP-43 is sig-
nificantly upregulated by a variety of DL environmental chemicals
[4] and TDP-43 mediated neurotoxicity proceeds by Ca>* dyshomeo-
stasis and ER stress [37, 89] via mechanisms requiring RyR channel
activity [2]. Such a model could serve as a basis for improving our
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understanding of adverse outcome pathways that contribute to risk for
neurodevelopmental and neurodegenerative disorders, and the rela-
tionships between them. GAP glycoprotein anchoring complex, IP;R
inositol 1,4,5-trisphosphate receptor, nNOS neuronal nitric oxide syn-
thase, ROS reactive oxygen species, RNS reactive nitrogen species,
SOCE store-operated calcium entry channel, SERCA sarcoplasmic/
endoplasmic reticulum calcium ATPase, TDP-43 transactive response
DNA binding protein 43, TRPC canonical transient receptor protein,
VDCC voltage-dependent calcium channel
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Concluding remarks

There is compelling evidence from animal research and
human epidemiological studies that PCBs are developmen-
tal neurotoxicants that are associated with a number of
early cognitive and motor deficits later in life. Although
less well studied, the influence of PCB exposure on the
risk, onset and severity of late-onset neurodegenerative
disorders are suggestive. It is important to note that the
diversity of PCB chemistry (degree and position of chlo-
rination, and their major hydroxylated and sulfonated
metabolites) make the design of animal and epidemio-
logical studies more challenging, as few studies include
analysis of the major DL- and NDL-congeners and metab-
olites present in human tissues for their biochemical and/
or behavioral outcomes, which can vary significantly by
population demographics, age, sex and specific life-stages
of exposure.

Experiments designed to assess the consequences of
long-term exposures to PCBs and related environmental
organohalogens on aging-related neuropathology present
unique set of challenges. Aging-related declines in cog-
nitive capacity, clinical dementia, and the major neuro-
degenerative disorders such as Parkinson’s disease (PD),
Alzheimer’s disease (AD) and Amyotrophic Lateral Scle-
rosis (ALS) have both genetic and environmental compo-
nents that contribute to temporal onset, progression and
severity [69, 122, 199]. Gene by environment interactions
have also been implicated in several neurodevelopmental
disorders [70, 113, 176]. Future research should encour-
age approaches that test convergent biologically plausible
mechanisms. For example, the transactive response DNA
binding protein 43 (TDP-43) has been implicated in the
etiology of several aging-related neurodegenerative disor-
ders, including PD [138], AD [127], ALS [86], frontotem-
poral dementia [18], and idiopathic late-onset dementia
[123].

RyR dysfunction has been implicated in several aging dis-
orders and may provide a focal point for more detailed stud-
ies of chronic exposures to NDL organohalogens and neuro-
pathological markers. ALS may serve as a proof of principle
for studying convergent mechanisms. Expression of TDP-43
is significantly upregulated by a variety of DL environmental
chemicals [4] and TDP-43 mediated neurotoxicity proceeds
by Ca** dyshomeostasis and ER stress [37, 89] via mecha-
nisms requiring RyR channel activity [2]. Considering the
widespread distribution of dioxin-like and NDL environ-
mental chemicals, TD-43 and RyR (Fig. 2) could serve as a
basis for improving our understanding of adverse outcome
pathways that contribute to risk for neurodevelopmental and
neurodegenerative disorders. A better understanding of the
relationships between the neurodevelopmental impairments

highlighted in this review and their potential impact on neu-
ropathological sequelae later in life are needed.
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