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Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of 
many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants 
(POPs), many “legacy” compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues 
where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is devel-
opmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human 
studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains 
related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and 
social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders 
(ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on 
dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we 
briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxic-
ity common to those ascribed to PCBs.

Introduction

Epidemiologic [6, 12, 163] and preclinical [158, 192] studies 
have identified the brain as a vulnerable target of polychlo-
rinated biphenyls (PCBs). This review focuses on the state of 
the science regarding the neurotoxicity of PCBs at epidemio-
logic, neuropathologic, and molecular levels. Much of the 
scientific literature describes the developmental neurotoxic-
ity of PCBs, which are arguably among the most extensively 

studied developmental neurotoxicants of the nonmetallic 
persistent organic pollutants (POPs). While our knowledge 
of how early or mid-life exposures to PCBs influence the 
aging brain is not as comprehensive, there is evidence link-
ing PCBs to increased risk of neurodegenerative outcomes, 
and this literature is also addressed in this review.

PCBs are a chemically related class (chemotype) within a 
vast number of POPs of diverse anthropogenic origins. Com-
mon to all POPs is their chemical stability in the environ-
ment, and their resistance to metabolic degradation. These 
properties underlie the ubiquitous environmental distribution 
and bioaccumulation of POPs in human tissues, which have 
raised global concerns about adverse health consequences of 
widespread human exposures [36, 43, 179]. These concerns 
have led to restrictions on the production of POPs imposed 
by many governments through the Stockholm Convention on 
POPs signed in 2001 and appended in 2008 and 2014 [165, 
166]. Despite these regulatory efforts, “legacy” PCBs persist 
in the environment and in human tissue, where they are still 
routinely detected, thus continuing to pose significant health 
risks, particularly among susceptible populations.

Chemically, PCBs are a complex mixture of isomers 
or congeners that differ significantly in their structure and 
modes of action. PCB congeners have been heuristically 
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divided into two categories based on structure: PCBs with 
biphenyl rings substituted with zero chlorines in the ortho 
position that assume a coplanar biphenyl orientation in solu-
tion, and PCBs with one to four chlorines in the ortho posi-
tion that assume increasing degrees of noncoplanar biphenyl 
orientation (Fig. 1). Of the 209 possible PCB congeners, 
19 congeners are stable atropisomer or enantiomers, with 
chiral asymmetry about their biphenyl bond axes. PCBs 
can be hydroxylated or sulfonated metabolically, and each 
enantiomer and metabolite has potentially distinct interac-
tions with biological targets, contributing to overall PCB 
neurotoxicity.

Coplanar PCBs have been shown to mimic dioxin in that 
they bind with relatively high affinity to the aryl hydrocar-
bon receptor (AhR), which regulates the transcription of a 
large group of dioxin-responsive genes [105, 156]. Although 
low-level exposures to dioxin and dioxin-like PCBs have 
been associated with a number of adverse outcomes in sev-
eral organ systems, especially liver, skin, and immune func-
tion [11, 124, 203], and are probably carcinogenic [109], 
there is less evidence from epidemiologic and preclinical 
studies that they are associated with neurotoxic outcomes. 
Recent preclinical studies have demonstrated that dioxin 
alters neuronal migration [99] and ultrasonic vocalization 
[100] in mice, albeit at doses higher than those required 
for induction of other pathological endpoints. But whether 
dioxin-like PCBs have similar effects on these neurodevel-
opmental endpoints has yet to be determined. There is also 
emerging data linking dioxin-like compounds to increased 
risk of neurodegenerative disease, specifically amyotrophic 
lateral sclerosis (ALS) [4]. The most prevalent pathology 
of ALS is the accumulation of phosphorylated insoluble 
aggregates of transactive response DNA binding protein 43 
(TDP-43) in neurons. Dioxin-like compounds were shown 
to significantly increase TDP-43 in induced pluripotent stem 
cells and mouse brains via AhR-dependent mechanism(s) 

[4]. Whether environmentally relevant levels of dioxin-like 
PCBs similarly induce TDP-43 expression in neural tissues, 
and whether this effect translates into increased ALS risk 
remains to be determined.

In contrast, noncoplanar PCBs, also referred to as nondi-
oxin-like PCBs (NDL PCBs) have little to no binding affin-
ity for AhR. However, there is extensive scientific evidence 
linking NDL PCBs to neurotoxic outcomes [146, 180]. Fur-
ther, NDL PCBs are predominant not only in contemporary 
environmental samples, but also in breast milk, serum, and 
adipose tissue from wildlife and humans [9, 146]. Given 
that NDL PCBs constitute the predominant congener sub-
class comprising contemporary human exposures, and that 
the weight of evidence implicates NDL PCBs in neurotoxic 
sequelae, this review largely focuses on the neurotoxicity of 
NDL PCBs.

While PCBs are among the most extensively studied POP 
chemotype, other major POPs have been shown to have 
neuropathogenic potential, including organochlorine insec-
ticides (e.g., DDT, cyclodienes, hexachlorocyclohexanes) 
and, more recently, polybrominated diphenyl ether flame 
retardants (PBDEs) and newly discovered organohalogens 
produced as disinfectant byproducts [96, 146, 223]. Fig-
ure 1 compares PCBs with chemotypes that have emerged 
more recently as POPs of human health concern because 
of their potential as neuromodulators and neurotoxicants. 
Interestingly, many brominated organics from anthropo-
genic sources, especially those released as water disinfec-
tion byproducts, closely mimic organohalogens naturally 
produced in marine environments that function as primary 
ecological signaling molecules and secondary deterrence 
and defense toxins [1].

In this review, we present a critical evaluation of the state 
of the science regarding the neurotoxicity of PCBs from 
both a neurodevelopmental and neurodegenerative stand-
point. We also review what is known about the underlying 
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Fig. 1   Exemplary non-coplanar and coplanar polychlorinated biphe-
nyls (PCBs) of anthropogenic origin. Coplanar PCBs are also referred 
to as dioxin-like (DL) PCBs because of their ability to binding the 
AhR with high affinity, a mechanism considered to contribute to can-

cer risk, whereas non-coplanar PCBs, which are referred to as non-
dioxin-like (NDL) PCBs, which possess one or more ortho chlorine 
substitution have negligible AhR activity and have been shown to be 
neurotoxic through other mechanisms
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mechanisms of PCB neurotoxicity, including alterations in 
biogenic amines (dopamine in particular), endocrine dis-
ruption, altered calcium signaling in neurons, and oxida-
tive stress. Our understanding about PCB neurotoxicity is 
likely to provide broad insights regarding the neurotoxic 
potential of a number of chemically related organohalogens 
that are eliciting scientific and public attention as emerging 
concerns, and these chemically related organohalogens are 
briefly discussed in the closing statements.

Mechanisms of PCB neurotoxicity

While significant research effort has focused on understand-
ing how PCBs interfere with neurodevelopment or promote 
neurodegeneration, the molecular mechanisms by which 
PCBs cause neurotoxicity, and whether all or only a subset 
of PCB congeners are neurotoxic, remain key questions in 
the field. Prevailing mechanistic hypotheses of PCB neuro-
toxicity include: (1) altered dopamine (DA) signaling; (2) 
disruption of thyroid hormone signaling; (3) perturbation 
of intracellular Ca2+ dynamics; and (4) oxidative stress. The 
mechanistic studies described below have been highlighted 
because the PCB exposure paradigms that elicited changes 
in these important biological pathways are relevant to the 
PCB levels detected in humans and wildlife as well as the 
congener profiles detected in contemporary environmen-
tal and biological samples [9, 67, 146]. Importantly, these 
mechanisms have also been implicated in the neurotoxicity 
of several contemporary POPs with NDL structures, includ-
ing brominated diphenyl ethers (PBDEs) [34, 96] and bis-
phenols [222].

Evidence that PCBs alter DA neurotransmission

In vitro studies using pheochromocytoma cells (PC12) 
exposed to technical PCB mixtures, e.g., the Aroclors, pro-
vided the first evidence that PCBs significantly reduce cel-
lular DA concentrations [174]. Subsequent structure–activ-
ity relationship studies revealed that ortho-substituted NDL 
PCBs, but not coplanar DL congeners, significantly depleted 
cellular DA [174, 190]. These in vitro observations were 
corroborated in vivo in Macaca mulatta (rhesus monkeys) 
orally exposed to Aroclor 1254 [168]. Analysis of striatal 
and substantia nigral concentrations of DA using high-
performance liquid chromatography with electrochemical 
detection demonstrated significantly reduced nigroneostri-
atal levels of DA in PCB-exposed subjects, an effect that per-
sisted following termination of PCB exposure [169]. Studies 
using Aroclor 1016 (a mixture of lightly chlorinated NDL 
PCB congeners) in non-human primates also demonstrated 
significant reductions in nigroneostriatal DA concentra-
tions, providing additional verification of in vitro studies 

demonstrating that NDL PCB congeners impair DA neuro-
transmission [170]. Similar observations were reported in 
adult male mice orally exposed to Aroclor 1254 for 4 weeks 
[111]. Experimental evidence suggests that DA depletion 
may result from reduced levels of tyrosine hydroxylase, the 
rate limiting enzyme in the formation of DA [28], or from 
inhibition of vesicular monoamine transporter (VMAT) or 
the plasma membrane dopamine transporter (DAT) [22, 120, 
172]. However, evidence for direct molecular interactions of 
NDL PCBs with one or more of these targets remains weak.

Evidence that PCBs alter thyroid hormone (TH) 
signaling

Maternal or infant hypothyroidism is linked to significantly 
impaired neurodevelopment, including intellectual disability 
[139, 205]. The importance of decreased circulating TH, 
primarily measured as changes in levels of thyroxine (T4) in 
serum, has been widely debated as the primary mechanism 
of PCB neurotoxicity since it was initially proposed [207]. 
Many studies, performed in a variety of species, including 
humans, have demonstrated a negative association between 
PCB exposures and serum T4 [19, 61, 62, 88, 224]. Devel-
opmental exposure of rats to Aroclor 1254 was shown to 
cause hypothyroxinemia (decreased serum T4) coincident 
with hearing loss, and supplementation with T4 throughout 
development attenuated PCB-induced motor and auditory 
deficits [61]. However, cognitive effects of developmen-
tal PCB exposure do not appear to be mediated by thyroid 
hormone-dependent mechanisms. For example, rats devel-
opmentally exposed to Aroclor 1254 at levels sufficient 
to reduce serum T4 levels had no deficits in learning and 
memory assessed in the T-maze or the Morris water maze 
[220]. Conversely, rats developmentally exposed to Aroclor 
1254 at levels that did not significantly decrease serum T3 or 
T4 levels exhibited poorer performance in the Morris water 
maze [215]. Two additional studies of individual PCB con-
geners also failed to support a role for TH deficits in cog-
nitive and behavioral deficits linked to PCBs [131, 162]. 
Consistent with these preclinical data are recently published 
results from a prospective birth cohort, the Hokkaido study, 
which included 222 mother–neonate pairs and was designed 
to determine whether there was a relationship between spe-
cific hydroxylated PCB metabolites (OH-PCBs) and mater-
nal/neonate serum thyroxine levels [80]. Unexpectedly, and 
in direct opposition to the hypothyroidism theory of PCB 
developmental neurotoxicity, the Hokkaido study indicated 
that maternal and/or neonatal exposure to specific hydroxy-
lated PCB metabolites (OH-PCBs) were positively corre-
lated with free thyroxine levels [80]. Results from another 
recently published prospective study performed in Denmark 
indicated no significant association between the placental 
levels of 35 PCB congeners and placental T4 or T3, although 
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one PCB, PCB 81, was positively associated with reverse 
T3 (rT3) [117].

Further complicating the thyroid hormone disruption 
theory of PCB neurotoxicity, PCBs have been shown to 
have both antagonistic and agonistic effects on thyroid hor-
mone receptors, depending on the congener and the dose 
[62, 131, 224]. Moreover, direct molecular interactions of 
PCBs with TH receptors have not been convincingly dem-
onstrated. Recently Sethi et al. [173] used a novel stable 
in vitro reporter gene assay [52, 125] but failed to detect 
any thyroid hormone receptor activity for 12 most abundant 
PCB congeners mimicking the congener profile in maternal 
serum, either singly or as a mixture. These inconsistencies 
across both human and rodent studies raise significant ques-
tions regarding an association between PCB effects on serum 
thyroid hormone levels and adverse neurodevelopmental 
outcomes.

Evidence that PCBs alter Ca2+ channel function 
and Ca2+‑dependent signaling

The precise spatial and temporal patterning of cytoplasmic 
Ca2+ signals are critical for normal neurodevelopment, the 
establishment and refinement of neural networks, and the 
dynamic synaptic plasticity associated with many behaviors 
[7, 17, 103]. Diverse biochemical, biophysical and cellu-
lar approaches across many laboratories have consistently 
shown that NDL PCBs potently alter intracellular Ca2+ 
dynamics [146], and a number of studies have linked PCB-
induced Ca2+ dyshomeostasis to specific neurodevelopmen-
tal deficits [180]. An early hypothesis was that developmen-
tal exposures to NDL PCBs caused cognitive and behavioral 
deficits by disrupting Ca2+-dependent PKC signaling [101, 
217]. This hypothesis derived in part from observations that 
PCB disruption of Ca2+ fluctuations caused rapid redistribu-
tion of protein kinase C (PKC) isoforms in astrocytoma cells 
[191]. Further structure–activity relationship studies demon-
strated that NDL PCBs [101, 217], but not DL PCBs [35], 
increased the translocation of PKC to the plasma membrane 
of cultured cerebellar neurons. In vivo studies demonstrated 
that developmental exposure to Aroclor 1254 changed the 
subcellular distribution of PKC isoforms in the brain in a 
complex region-specific manner [190]. However, whether 
influences on PKC signaling represent a primary mecha-
nism driving the behavioral and cognitive impairments 
observed following developmental PCB exposure remains 
unanswered.

Subsequent studies focused on the primary molecular 
mechanism(s) responsible for PCB effects on intracellu-
lar Ca2+ dynamics. In vitro studies using pharmacological 
blockade of specific Ca2+ channels have shown that NDL 
PCBs increase extracellular Ca2+ entry into cells through 
a number of mechanisms, including activation of L-type 

voltage-sensitive Ca2+ channels and NMDA receptors [78, 
128]. However, such changes are elicited only at high PCB 
concentrations (≥ 10 µM), which have been demonstrated 
to produce nonspecific changes in membrane fluidity [102]. 
NDL-PCBs have also been shown to facilitate the release of 
Ca2+ from intracellular stores through sensitization of two 
genetically related Ca2+ channels localized to the endoplas-
mic/sarcoplasmic reticulum (ER/SR): ryanodine receptors 
(RyR) [207–211] and inositol 1,4,5-trisphosphate receptors 
(IP3R) [77]. Of these, RyR sensitization is more sensitive to 
NDL PCBs, and this interaction has been shown to exhibit 
a consistent stringent structure–activity relationship, includ-
ing stereoselectivity, as determined using biochemical, elec-
trophysiological, cellular and in vivo approaches [47, 53, 
54, 71, 72, 134, 146, 214]. Nanomolar PCB concentrations 
directly interact with RyR channels to stabilize RyR chan-
nels in their full open conformation [161], which sensitizes 
ER/SR Ca2+ signals to physiological modulators including 
Ca2+, Mg2+, and ATP.

Sensitization of RyRs by NDL PCBs alters the fidelity 
of spontaneous Ca2+ oscillations [200] and the neuroplasti-
city of hippocampal CA1 neurons [209] in vitro. Consistent 
with this observation, picomolar to nanomolar concentra-
tions of NDL PCB 95, which is among the most RyR-active 
congeners, activate two Ca2+-dependent signaling pathways 
in cultured rat hippocampal neurons: (1) sequential activa-
tion of CaMKK, CaMKIα/γ, and MEK/ERK and CREB to 
increase transcription of Wnt2 [200]; and (2) CREB-medi-
ated miR132 upregulation, which suppresses the translation 
of p250GAP [115]. In cultured rat hippocampal neurons, 
the former signaling pathway mediates PCB 95-induced 
dendritic growth [200], whereas the latter mediates PCB 
95-induced synaptogenesis, which is evident as increased 
spine density and increased frequency of miniature excita-
tory post-synaptic currents [115]. Several lines of evidence 
indicate that PCB effects on RyR activity are causally 
linked to dendritic growth and spine formation: (1) RyR-
active PCB congeners, such as PCB 95 and PCB 136, but 
not PCB congeners that lack activity at the RyR, such as 
PCB 66, enhance dendritic growth and promote spine forma-
tion in cultured hippocampal and cortical neurons; and (2) 
pharmacological blockade or siRNA knockdown of RyRs 
inhibit the dendrite and spine promoting activity of these 
NDL PCBs [115, 201]. An interesting observation from 
these studies is that PCB-induced dendritic growth exhib-
its a non-monotonic concentration–effect relationship, with 
effects observed in the pico- to nanomolar range but not 
at femto- or micromolar concentrations [201, 214]. Eluci-
dating the mechanisms responsible for this non-monotonic 
concentration–effect relationship remains a critical data gap 
in the field.

These observations suggest that PCB effects on dendritic 
growth contribute to PCB-induced behavioral deficits. In 
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support of this possibility, developmental exposure of rats 
to Aroclor 1254 at 1, but not 6, mg kg−1 in the maternal 
diet was found to cause learning and memory deficits in 
the Morris water maze, and this dose of Aroclor 1254 also 
modulated RyR activity and dendritic arborization in brain 
regions that subserve Morris water maze behavior [215]. 
Several interesting findings emerged from this study. First, 
developmental PCB exposure promoted dendritic growth 
in cerebellar Purkinje cells and neocortical pyramidal neu-
rons among untrained animals but attenuated or reversed 
experience-dependent dendritic growth in these brain 
regions among Morris water maze-trained littermates. Sec-
ond, deficits in learning and memory were only seen in the 
1 mg kg−1 group, and the most robust changes in dendritic 
arborization were also observed in this dose group, replicat-
ing the non-monotonic dose–response relationship observed 
in the in vitro studies. Third, this study demonstrated that 
the behavioral deficits correlated better with changes in 
RyR expression and activity than with changes in serum 
levels of thyroid hormone or sex hormones. In a separate 
study, a similar non-monotonic dose–response relationship 
was observed for dendritic arborization of CA1 pyramidal 
neurons in the hippocampus of rats exposed to PCB 95 in 
the maternal diet throughout gestation and lactation [201]. 
Developmental exposure to PCB 95 has also been shown to 
dramatically alter the tonotopy of the primary auditory cor-
tex (A1) [91], presumably by tipping the balance of excita-
tory–inhibitory currents within A1 towards excitation during 
critical periods of its development [91, 97, 98, 209]. While 
these data strongly support the hypothesis that PCB effects 
on RyR activity contribute to behavioral deficits via modu-
lation of calcium-dependent signaling pathways that regu-
late neuroplasticity, experimental evidence demonstrating 
that the molecular and cellular effects are causally linked to 
behavioral deficits are lacking. Testing this hypothesis using 
RyR knockout animals is not feasible because of embryo 
lethality, but alternative approaches using knock-in animals 
expressing human gain-of-function mutations that enhance 
RyR sensitization by organohalogens [44, 219] may increase 
confidence in causal inferences.

Although the current data support a primary mechanistic 
contribution of RyRs to the developmental neurotoxicity of 
NDL PCBs, their possible role in the induction and pro-
gression of neurodegenerative diseases, such as Parkinson’s 
disease (PD), is less clear. Although Ca2+ dyshomeostasis 
induced by ER stress is an important molecular mecha-
nism of selective loss of dopaminergic (DA) neurons in 
PD, an etiological role for RyR channels has only recently 
received experimental attention. Using a 6-hydroxydopa-
mine (6-OHDA)-induced in vitro SN4741 cell model of 
PD, Huang et al. [75] showed that 6-OHDA significantly 
increased cytoplasmic Ca2+ levels, an effect that could be 
blocked by either an ER stress inhibitor or a specific RyR 

blocker. The authors further demonstrated that 6-OHDA 
reduced the spike number and rheobase of DA neurons in 
acute brain slices, effects that were also reversed by RyR 
blockade. Furthermore, novel 6-aminoquinoxaline deriva-
tives appear to confer neuroprotective effects on DA neurons 
in cellular animal models of PD that are at least partially 
mediated through interactions with RyRs [110]. Interest-
ingly, blocking Ca2+ influx did not change PCB effects on 
intracellular dopamine levels in a catecholaminergic cell 
line [87], suggesting that PCBs may be more likely affect-
ing dopamine homeostasis by mediating dysfunction of ER 
Ca2+ stores. Clearly this area needs more attention before 
inferences can be made about convergent mechanisms link-
ing PCB neurotoxicity across life stages.

Evidence of PCB‑induced oxidative stress

Oxidative stress occurs when the production of reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) 
exceeds the antioxidant capacity of the system [8, 92, 137]. 
This imbalance can cause oxidative and nitrative damage 
to macromolecules, which in turn can cause cell damage 
or even cell death. Numerous in vitro studies have dem-
onstrated that PCBs cause oxidative stress in neurons [35, 
74, 121]. In cultured cerebellar granule neurons, exposure 
to the NDL-congeners, PCB 4 or 153, or to Aroclor 1254, 
but not to DL PCBs, increased cellular ROS levels, which 
caused concentration-dependent cell death [35]. Similarly, 
Aroclor 1254 or the NDL PCB 47, but not the DL PCB 77, 
triggered neuronal cell apoptosis in primary hippocampal 
neurons that was blocked by co-exposure to the antioxi-
dant alpha-tocopherol [74], suggesting that NDL PCBs 
induced apoptosis via increased ROS. Interestingly, this 
same study demonstrated that apoptosis induced by PCB 
47 was also prevented by pharmacologic blockade of RyRs 
[74]. Whether and how RyRs and ROS interact to medi-
ate PCB-induced apoptosis has yet to be determined. One 
possibility is that ROS is a consequence of RyR activa-
tion. As discussed above, NDL PCBs stabilize RyRs in the 
open conductance state, which increases release of Ca2+ 
from the ER [146]. Elevated intracellular Ca2+ can trigger 
apoptosis either by directly activating caspases in neuronal 
cells and/or by increasing Ca2+ flux into mitochondria, 
thereby increasing ROS production, which triggers release 
of cytochrome c from mitochondria with subsequent acti-
vation of caspases [113]. Alternatively, ROS can act as 
signaling molecules that initiate apoptosis via targeted 
interactions with specific cellular components, one of 
which is the RyR [23, 144, 146]. ROS have been shown 
to interact directly with hyperreactive cysteine residues 
on the RyR to enhance its open probability [45, 136, 188, 
213]. This suggests an alternative model of PCB-induced 
apoptotic signaling in which NDL PCBs activate RyRs 
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indirectly as a consequence of PCB-induced increase in 
ROS [74]. There is precedence for this proposed mecha-
nism in that ROS generated by quinone have been shown 
to increase the calcium conductance of RyR from rabbit 
sarcoplasmic reticulum membranes. In fact, RyR chan-
nels are tightly regulated by changes in the ER/SR mem-
brane redox potential [45, 213] and are highly sensitive 
to modification by redox active environmental chemicals 
including naphthoquinones and benzo[a]pyrene-7,8-dione 
[46, 145], providing a possible mechanistic link between 
Ca2+ dysregulation and oxidative stress. These may not 
be mutually exclusive models in that PCBs may indepen-
dently influence both RyR activation and ROS generation, 
with each effect augmenting the other in a positive feed-
back mechanism.

There is conflicting evidence as to whether PCBs cause 
oxidative stress in the brain in vivo. Oral exposure of adult 
male mice to a relatively high dose (25 mg/kg/day) of Aro-
clor 1254 for 4 weeks was associated with increases in 
superoxide dismutase (SOD), heme oxygenase (HO-1), 
lipid peroxides, and protein carbonyl levels in the stria-
tum and cerebellum [111]. In rats exposed throughout 
gestation and lactation to environmentally relevant low 
doses of Aroclor 1254 in the maternal diet (0.1 or 1.0 mg/
kg/day), multiple brain regions showed increased expres-
sion of biomarkers of oxidative stress [216]. In contrast, a 
study of mice exposed to a mixture of six NDL PCBs via 
lactation failed to find any evidence of oxidative damage 
in the brain [39]. The discrepancy between these studies 
may be due to differences in species, timing and length of 
PCB exposure, dose and composition of PCB mixtures to 
which animals were exposed, as well as the use of different 
biomarkers to measure oxidative stress. Collectively, the 
available studies suggest that oxidative stress may contrib-
ute to the developmental neurotoxicity and neurodegenera-
tive toxicity associated with NDL PCBs, potentially via 
RyR-dependent mechanisms.

The neuropathologic effects of PCBs

We performed a literature search using PubMed (searched 
December 2018) to identify human and animal studies of 
neuropathologic effects of PCBs. We used the following 
search terms: “polychlorinated biphenyls”, “PCBs but not 
printed circuit boards”, “neuropathology”, “neurophysiol-
ogy”, and “neuroimaging”. Our search yielded seven unique 
articles, of which three were reviews [42, 118, 129, 150, 
152, 171, 182]. Inspection of the references cited in these 
three reviews yielded an additional two articles describ-
ing the neuropathology of PCBs. These articles, as well as 
other relevant publications describing PCB-induced effects 

on neuronal cytoarchitecture in vivo are discussed in this 
section.

The neuropathology of PCB developmental 
neurotoxicity

Currently, there is a very limited literature regarding patho-
logic effects of PCBs in the developing human brain. A pilot 
study that conducted magnetic resonance imaging (MRI) 
scans on 60 children age 4 years found stronger associa-
tions of PCBs with response inhibition among participants 
with smaller splenium size [182]. This indicates that chil-
dren with suboptimal development of the splenium could 
be particularly vulnerable to exposure to PCBs, increasing 
their risk for poorer response inhibition, a core trait of atten-
tion-deficit hyperactivity disorder (ADHD). Another pilot 
study administered functional magnetic resonance imaging 
(fMRI) to 12 adolescent boys from a Faroese birth cohort 
assembled in 1986–1987 [204]. Boys with high exposure to 
both PCBs and methylmercury (MeHg) showed more activa-
tion across brain regions during visual and motor tasks than 
boys with lower mixed exposures to PCBs and MeHg. In a 
separate cohort of Inuit from Nunavik (Northern Québec) 
[40], cord blood concentrations of methylmercury or lead, 
but not PCBs, were associated with pattern-reversal visual 
evoked potentials (VEPs) recorded at the occipital cortex. 
Prenatal exposure to lead was associated with a delay of 
the N150 latency at most contrast levels. This study sug-
gests that heavy metal exposure, in particular during the 
gestational period, but not PCB exposure, can impair the 
development of visual processing. Whether early-life expo-
sures negatively impact healthy brain aging later in life [167] 
remains unanswered.

The earliest neuropathologic studies of developmental 
exposures to PCBs in preclinical models utilized very high 
PCB levels intended to mimic the exposures associated with 
the accidental mass poisonings due to ingestion of PCB-con-
taminated cooking oil in Japan in 1968 and Taiwan in 1979 
[155]. In one of these studies [29], pregnant CD-1 mice were 
dosed orally with the DL PCB 77 at 32 mg/kg/day on days 
10 through 16 of gestation. This exposure paradigm caused 
significant maternal toxicity as evident by significantly 
smaller litter sizes (60% of control) and higher neonatal 
mortality (40% at postnatal day 20). In approximately 55% 
of surviving offspring from PCB-exposed dams, a perma-
nent motor disturbance, referred to as “spinning syndrome”, 
developed at weaning. Spinning syndrome was characterized 
by repetitive jerking of the head, hyperkinesia, and swift 
stereotyped circular or spinning movement, described as 
“chasing one’s tail”.

From over 100 spinners resulting from 60 PCB-exposed 
litters, 24 spinners ranging in age from 4 to 34 weeks along 
with age-matched controls and 12 littermates who did not 
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develop spinning syndrome (nonspinners) were subjected to 
pathologic studies [29]. Interestingly, no detectable neuronal 
changes, gliotic foci or demyelinating lesions were detected 
in the CNS of either PCB-exposed spinners or nonspinners 
by light microscopy. However, cylindrical CNS peninsulas 
(CCPs) that projected into the cranial and spinal nerve roots 
were noted in all spinners and some nonspinners, but none 
of the control subjects. The CCPs were characterized by a 
cylindrical column of nerve fibers, myelinated or nonmy-
elinated, and/or glial bundles in varying proportions, which 
were well-circumscribed and delineated from the neighbor-
ing PNS-type nerve fibers. The diameter and length of CCPs 
varied considerably up to 100 µm in diameter and 5 mm in 
length. They were seen predominantly in the ventral roots, 
and to a lesser extent in the dorsal spinal roots, and most 
abundantly at lumbar levels. Large, apparently displaced, 
motor neurons were often detected within CCPs. Electron 
microscopy revealed that the CCPs in both the ventral and 
dorsal spinal roots were ensheathed in a glycocalyx layer 
that was indistinguishable from the basement membrane; 
and while collagen fibrils invested the outer surface of the 
CCPs, collagen fibrils were not observed within the CCPs. 
The myelinated fibers within the CCPs were distinguished 
by the lack of an outer basement membrane, the presence of 
oligodendroglia and shorter periodicity of myelin lamellae, 
all characteristics typical of CNS myelin. Signs of myelin 
sheath degeneration in the absence of macrophage infiltra-
tion were very common in CCPs, but not in the PNS-type 
myelinated fibers surrounding the CCP. All the cellular ele-
ments of the CNS (neurons, astroglial and oligodendroglia) 
were observed within CCPs. Some of the heterotopic neu-
rons appeared normal with well-preserved terminal boutons 
detected along the cell surfaces. Except for frequent dis-
tal displacement in the ventral white matter, ventral horn 
motor neurons showed no ultrastructural changes suggestive 
of degenerative process in the perikaryon; however, along 
the cell surfaces, the nerve terminals appeared dense, amor-
phous and shrunken.

The authors noted that the glial outgrowth observed in the 
CCPs in the spinner mice was similar to that reported in pig 
spinal roots following transection and anastomosis, but con-
cluded that mechanical injury was unlikely to be the cause 
of CCP development in the spinner mice [29]. Rather, the 
neuropathology induced by developmental exposure to very 
high levels of PCB 77 appeared remarkably similar to that 
observed in Werdnig–Hoffman disease. The authors con-
cluded that PCB 77 interfered with the organization rather 
than the differentiation of neurons and glia since no histo-
pathologic abnormalities could be detected in the CNS of 
mice exposed developmentally to PCB 77. Specifically, the 
authors conjectured that PCB 77 selectively interfered with 
synaptogenesis of inhibitory dopaminergic terminals, and 
that PCB exposure may be relevant to the high incidence of 

aberrant motor development in hyperactive boys [29]. This 
hypothesis derived in part from pharmacologic observations 
in this study that, like hyperactivity in children, ampheta-
mine was effective in attenuating spinning behavior in the 
spinner mice [29].

A later histopathologic study of Sprague–Dawley rats 
exposed to a more moderate dose of PCBs similarly con-
cluded that PCBs did not cause overt damage to the develop-
ing brain, but rather PCBs interfered with the organization of 
neural networks [150]. In this study, pregnant Sprague–Daw-
ley rats were fed chow containing Aroclor 1254 at 125 ppm 
throughout gestation and lactation. Upon weaning, offspring 
were maintained on chow containing 125 ppm Aroclor 1254 
until euthanized for histological processing at 16, 30 and 
60 days of age. Using Timm’s silver sulfide staining to 
visualize the hippocampal mossy fibers, the authors dem-
onstrated that continuous exposure to Aroclor 1254 from 
conception significantly reduced the relative size of II-P 
mossy fibers in 16-, 30- and 60-day old rats. In contrast, 
developmental exposure to Aroclor 1254 had no effect on the 
size of the hilar or suprapyramidal mossy fibers or on corti-
cal thickness. The authors speculated that PCBs decreased 
the growth of mossy fibers as a result of increased glutamate 
or delayed myelination secondary to PCB-induced hypothy-
roidism or as a result of altered Ca2+ homeostasis [150]. 
However, none of these postulated mechanisms explains the 
selective effect of Aroclor 1254 on a subpopulation of gran-
ule cells that give rise to the II-P mossy fibers.

Subsequent preclinical studies of neuropathologic 
changes induced by developmental exposures to more envi-
ronmentally relevant doses of PCBs further support the 
hypothesis that PCB-induced functional deficits reflect sub-
tle organizational and/or functional defects of key neural 
networks of the brain [57, 167, 180]. Classic histopathologic 
analyses of brains from weanling rats exposed to Aroclor 
1254 at 1 or 6 mg/kg/day in the maternal diet throughout 
gestation and lactation did not detect overt structural damage 
in the brain [215]. However, Golgi analyses of rat CA1 hip-
pocampal pyramidal neurons and cerebellar Purkinje cells 
indicated that exposure to Aroclor 1254 at 6 mg/kg/day in 
the maternal diet throughout gestation and lactation caused 
a pronounced age-related increase in dendritic growth. Thus, 
even though dendritic lengths were significantly attenuated 
in PCB-exposed animals at postnatal day 22, by postnatal 
day 60, dendritic growth was comparable to or exceeded 
that observed in vehicle controls [114]. A subsequent study 
of postnatal day 31 rats [215] demonstrated that develop-
mental Aroclor 1254 exposure increased dendritic arbori-
zation of cerebellar Purkinje cells and neocortical pyrami-
dal neurons in animals not trained in a Morris water maze 
but caused dose-dependent dendritic retraction in these 
same neuronal cell types in littermates trained in the Mor-
ris water maze. These dendritic effects were significantly 
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more pronounced in the animals exposed to Aroclor 1254 
at 1 mg/kg/day compared to 6 mg/kg/day in the maternal 
diet, and the lower dose, but not the higher dose of Aroclor 
1254 elicited deficits in spatial learning and memory in the 
Morris water maze [215]. Interestingly, postmortem exami-
nations of brains from Autism Spectrum Disorder (ASD) 
patients have revealed increased neuropil, which comprised 
dendrites, non-myelinated axons, synapses, vasculature and 
glial cell processes, in cortical regions [193]. Morphometric 
analyses of pyramidal neurons in various cortical regions 
altered in ASD, has revealed increased dendritic complexity, 
including increased dendritic spines [76, 79], on projection 
neurons. While studies from the 1990s indicated less com-
plex dendritic arborization in the hippocampus of subjects 
with ASD [193], more recent studies of genetic mouse mod-
els of ASD have identified increased dendritic complexity of 
hippocampal neurons [27, 85, 90].

Another pathologic feature associated with ASD is an 
imbalance of excitatory to inhibitory neural circuits [60]. 
Kenet et al. [91] reported that rats developmentally exposed 
to NDL PCB 95 at 6 mg/kg/day in the maternal diet during 
gestation and lactation exhibited profoundly abnormal devel-
opment of the primary auditory cortex (A1) without impair-
ment of hearing sensitivity and brainstem auditory responses 
of pups. A1 was irregularly shaped and marked by internal 
nonresponsive zones, with grossly abnormal or reversed 
topographic organization in about half of the exposed pups. 
Changes in A1 network organization occurred concomitantly 
with changes in the balance of neuronal inhibition to excita-
tion for A1 neurons, with significant alterations in the criti-
cal period plasticity that underlies normal postnatal auditory 
system development [91].

Histologic studies in preclinical models of PCB devel-
opmental neurotoxicity have also detected increased apop-
tosis in the brains of rat pups exposed to Aroclor 1254 at 
0.1 or 1.0 mg/kg/day in the maternal diet throughout gesta-
tion and lactation [216]. TUNEL staining of sections from 
the cortex, hippocampus and cerebellum revealed signifi-
cantly increased apoptosis in all three brain regions, with 
the most pronounced effect in the cerebellum, at postnatal 
day 1 but not postnatal day 21 [216]. These findings were 
confirmed by assays of caspase 3 activity. Histologic evi-
dence of increased apoptosis coincided spatiotemporally 
with biochemical evidence of oxidative stress, specifically 
increased levels of 4-HNE and 3-NT as detected by western 
blotting [216].

Collectively, the available neuropathologic data suggest 
that neither overtly toxic levels of PCBs nor more environ-
mentally relevant levels of PCBs cause major structural 
changes in the developing brain. Rather, developmental 
exposures to PCBs interfere with the organization of neural 
networks, evident by CCPs in spinal roots in response to 
very high PCB levels, or by changes in axonal and dendritic 

morphology or altered patterns of apoptosis elicited by more 
environmentally relevant PCB exposures.

The neuropathology of PCB‑induced 
neurodegeneration

A [123Iodine] 2β-carbomethoxy-3β-[4-iodophenyl) tropane] 
single-photon emission computed tomography ([123I] β-CIT 
SPECT) imaging study of former capacitor workers with 
documented PCB exposures found that relative to non-
exposed controls, individuals with occupational exposure to 
PCBs had significantly decreased striatal dopamine terminal 
densities [171], suggesting loss of dopaminergic neurons. 
Interestingly, this association was sex-specific. After statisti-
cal correction for a number of confounders, including age, 
only women show a significant inverse relationship between 
lipid-adjusted total serum PCB concentrations and β-CIT 
densities in the caudate, putamen or combined caudate and 
putamen, despite the fact that neither serum PCB levels nor 
age was statistically different between men and women. In 
a separate cohort of women participating in the Nun Study 
who had no clinical signs or symptoms of PD at death, ele-
vated levels of NDL PCBs 138, 153, and 180 were observed 
in brain tissue that exhibited moderate nigral depigmentation 
compared to subjects with mild or no depigmentation [68].

Preclinical studies of neuropathologic changes in adult 
subjects exposed to PCBs at levels approximating the high 
end of occupational exposures are consistent with the limited 
neuropathologic findings in humans. As discussed above, 
studies in non-human primates demonstrated that long-term 
exposure to PCBs significantly reduced basal ganglia DA 
concentrations [168, 169]. To determine whether subchronic 
PCB exposure would cause cell loss in midbrain DAergic 
systems, ventral midbrain neurons were quantified by ste-
reologic analyses at 2 weeks after a month-long exposure 
of adult male mice to Aroclor 1254 at 6, 12 and 25 mg/kg/
day [111]. Moderate to high doses of Aroclor 1254 elicited 
death of both tyrosine hydroxylase (TH) immunopositive 
and TH immunonegative neurons in the ventral tegmental 
area. In the substantia nigra, the low and moderate doses of 
Aroclor 1254 significantly reduced only TH immunopositive 
cells, while the highest dose significantly decreased both TH 
immunopositive and TH immunonegative cells. The loss of 
DAergic and non-DAergic neurons correlated with increased 
levels of oxidative stress biomarkers in these same brain 
regions [111]. However, PCB exposure caused persistent 
increases in locomotor activity that correlated with dose-
dependent increases in DA levels in the ventral midbrain. 
The authors interpreted these paradoxical data as suggesting 
the existence of compensatory mechanisms to maintain DA 
homeostasis in the face of decreased numbers of DAergic 
neurons [111].
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Collectively, the limited literature available regarding the 
neuropathologic effects of PCBs on the aging brain suggest 
that PCBs promote the loss of DAergic and, at high exposure 
levels, non-DAergic neurons, within brain regions critically 
involved in motor function. Whether PCBs promote neuronal 
cell loss in other regions of the adult brain remains an open 
question.

Epidemiological evidence of PCB 
neurotoxicity

PCB developmental neurotoxicity

Accidental mass poisonings due to ingestion of PCB-con-
taminated cooking oil in Japan in 1968 and Taiwan in 1979 
[155], resulted in a number of clinical morbidities, including 
adverse neurodevelopment in response to prenatal exposure 
[25, 26]. These incidents were the basis for classifying PCBs 
and other organochlorine compounds as suspected devel-
opmental neurotoxicants. The epidemiologic literature on 
lower-level PCB exposure, mostly via diet (e.g., fish, meat 
and dairy) [107, 119], and neurodevelopment is among 
the richest in environmental neuroepidemiology. Results 
of these studies, while generally supportive of an adverse 
impact of PCBs on the developing brain, have been mixed, 
with differences based on methodologic considerations, such 
as study design (prospective vs. cross-sectional), window 
of exposure (e.g., prenatal vs. postnatal), neurobehavioral 
domain (e.g., language, memory, executive function, inhib-
itory control) and age of neuropsychological assessment. 
PCBs that bioaccumulate in maternal tissues efficiently cross 
the placenta during pregnancy and are transferred postna-
tally through breast milk. This makes them a particular 
concern for the developing central nervous system, which 
undergoes rapid development during gestation and early life. 
Here, we review a subset of the available literature on PCBs 
and neurodevelopment with the aim of focusing on studies 
with more statistical power and methodologic rigor. To this 
end, we reviewed the state of the literature to date on pro-
spective epidemiologic studies of prenatal PCB exposure 
measured in biospecimens collected during pregnancy and 
neurodevelopment across cognitive and behavioral endpoints 
in children age 3 years or older.

Selection of studies for review

We performed a literature search using PubMed (searched 
June 2018) to identify human studies of prenatal exposure 
to PCBs and neurodevelopmental outcomes across domains 
related to cognition (e.g., IQ, language, memory, learning), 
attention, behavioral regulation and executive function, and 
social behavior, including traits related to attention-deficit 

hyperactivity disorder (ADHD) and autism spectrum disor-
ders (ASD). We used the following search terms: “polychlo-
rinated biphenyls”, “PCBs”, “organochlorines”, “prenatal”, 
“pregnancy”, “neurodevelopment”, “attention, “cognition”, 
“behavior”, “impulsivity”, “hyperactivity”, “attention deficit 
hyperactivity disorder”, and “autism”. We also inspected ref-
erences of previously published review papers on PCBs and 
neurodevelopment [5, 41, 163, 207] to confirm that we iden-
tified all papers that met our criteria (detailed below). We 
limited our search to papers published in English-language 
journals after 1990.

For this review, we included a select body of literature to 
identify studies more robust in methodologic rigor and study 
power. Our inclusion criteria were: (1) studies that included 
analysis sample sizes of 100 or more participants, to focus 
on studies with more statistical precision; (2) prospective 
cohort studies that measured PCB exposure in the prenatal 
period, as neurodevelopment is generally recognized to be 
most sensitive to environmental insults during this period 
[63]; (3) studies that measured PCB exposure in biospeci-
mens, primarily serum or plasma from blood collected from 
the mother during pregnancy or at delivery, including from 
the umbilical cord and placenta; and (4) studies of children 
3 years of age or older, as neurodevelopmental outcomes can 
be measured more reliably in older children.

Review findings

We identified 29 papers that met our inclusion criteria. These 
papers represented 14 different prospective cohort studies. 
Geographically, these studies were diverse and included 
countries in North America (Canada, Greenland and the 
USA), Europe (Belgium, Denmark and the Faroe Islands, 
Germany, the Netherlands, Spain, and Ukraine), and Asia 
(Japan). Studies were also diverse with respect to cohort 
birth year and, therefore, pregnancy PCB concentrations, 
which have been slowly decreasing since PCBs were banned. 
Studies most often presented findings for the sum of PCB 
congeners, though the number of congeners included and 
the limit of detection for these individual congeners varied 
widely.

Prenatal PCB exposure and child cognition

We identified 12 papers from 9 different cohort studies 
that examined associations of PCBs with cognitive func-
tion among children ranging from ages 3 to 11 years. As 
shown in Table 1, most studies conducted tests of general 
intelligence (most commonly the Wechsler Intelligence 
Scale for Children, Kaufman Assessment Battery for Chil-
dren and McCarthy Scales of Children’s Abilities), though 
a number also looked at specific cognitive domains, such 
as language and memory. Among these 12 papers, most (8) 
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found associations of PCBs with at least one aspect of cogni-
tion, including poorer scores on overall intelligence [51, 81, 
142, 184, 185], language [64], processing speed [84], short-
term memory [187], and reading comprehension [81]. Four 
papers report null effects of PCBs on all reported measures 
of cognition [66, 140, 198, 220]. In addition, two studies 
which found associations of PCBs with IQ at age 3 years 
[142, 185], found that these associations attenuated to the 
null at slightly older ages (ages 4 and 6 years) [185, 198]; 
though, for one of the studies, associations re-emerged when 
children were older (age 9) [184].

Prenatal PCB exposure and child attention, behavioral 
regulation and social behavior

Table 2 summarizes results of 17 studies from 11 different 
cohorts that examined associations of prenatal PCBs with 
child attention, behavioral regulation and social behavior 
among children ranging mostly from ages 3–12 years (one 
study included participants up to age 22 years [187]). The 
majority of studies (10 of the 17) reported PCB-related asso-
ciations with traits related to ADHD, including problems 
with impulse control [14, 82, 160, 182, 183, 186], hyperac-
tivity [157, 160], and attention [51, 64, 82, 132, 159, 160, 
195]. However, one of these studies, which reported more 
omission errors (indicating poorer attention) on a continu-
ous performance test, also reported the opposite result when 
looking at parent-reported behaviors, with PCBs related to 
fewer parent-reported ADHD-related behaviors [132]. Four 
studies reported null associations of PCBs with behavioral 
problems, including ADHD diagnosis [13, 177, 187, 221]. 
Only two studies examined prenatal PCBs in relation to 
social behavior and autistic traits, with one study reporting 
that PCBs were associated with fewer autistic traits [135] 
and another study reporting mixed associations with autistic 
traits, depending on the specific PCB congener [16].

The epidemiologic literature on PCBs and neurodevel-
opment is extensive and continues to grow. We present a 
focused summary based on studies we determined to be 
the most rigorous in study design and statistical precision. 
Despite these narrow inclusion criteria, we found a large 
number of studies for this review (29 papers representing 
14 prospective cohort studies). While the results of these 
studies were mixed, overall our review showed that most 
studies reported that prenatal PCBs were related to poorer 
cognitive function and more behavior problems. We chose 
to focus our review on prospective birth cohort studies with 
PCB exposure measured during the prenatal period. Studies 
have shown that gestation may be the most sensitive period 
of neurodevelopment [63], when the central nervous system 
is rapidly developing. However, neurodevelopment contin-
ues through childhood into early adulthood and is also vul-
nerable to chemical exposures. Early infancy, in particular, Ta
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may be a sensitive window of exposure due to high levels of 
PCBs in breastmilk. In addition, PCBs in dust from caulking 
materials and light ballasts used in schools and other build-
ings constructed before 1977 may be a significant source of 
exposure among children [20, 66]. Studies of associations of 
PCBs from breast milk with neurodevelopment show mixed 
findings, with many studies reporting null associations [5, 
82, 83, 149, 194]. In addition, disentangling the impact of 
prenatal and postnatal exposure on neurodevelopment, par-
ticularly when it comes from breast milk, which may be 
highly correlated with transplacental exposure, presents a 
challenge.

We also chose to limit our review to studies of slightly 
older children (age 3 years or older). A sizable literature 
reports association of PCBs with neurodevelopment under 
the age of 3 using tests such as the Bayley Scales of Infant 
Development [15, 33, 58, 59, 104, 141, 206]; however, neu-
ropsychological measures of infants and toddlers tend to be 
noisy, in part due to difficulty in achieving a desired state for 
testing in younger children [178]. Measured endpoints are 
therefore more likely to be reliable among older children. In 
addition, as demonstrated by three studies included in this 
review [142, 185, 198], PCB-related decrements in neurode-
velopment may be transient, where decrements in cognitive 
or behavioral function found in early childhood recede in 
later childhood due to compensation by other brain regions 
or more stable measures of neurodevelopment at older ages.

The main limitation of any review article is publication 
bias, and this review is no exception. Pressures in the scien-
tific and editorial processes promotes publication of positive 
results over null findings, which can skew the balance when 
trying to represent the weight of the evidence. Our stringent 
inclusion criteria may have offset this slightly, by filtering 
out smaller, methodologically less rigorous studies that 
are at greater risk for producing spurious findings. Yet, no 
review is immune to publication bias, and it is likely that a 
number of studies that would have met our inclusion criteria, 
but found null associations of PCBs and neurodevelopment, 
remain unpublished. Findings of this review paper should 
therefore be interpreted with this significant caveat in mind.

Another limitation of this review is that we did not evalu-
ate associations with neurodevelopment for specific PCB 
congeners, or mechanism-based classes of congeners. This 
limitation is underscored by emerging studies that suggest 
it is specific RyR-active NDL PCBs and related organoh-
alogens that may be associated with increased risk of her-
itable neurodevelopmental disorders, including ASDs [21, 
63, 65, 70, 176, 180], and may be at least in part mediated 
by cellular Ca2+ dyshomeostasis, mitochondrial dysfunction 
and alterations in gene-specific patterns of DNA methyla-
tion [38, 116, 126, 130, 146, 212]. The majority of stud-
ies included in this review used a sum of PCB congeners, 
which may be dominated by specific individual congeners 

in the mix, such as PCB 153. Correlations across individual 
congeners also tend to be high, which makes disentangling 
individual congeners difficult due to collinearity. In addition, 
the mechanism for PCB neurotoxicity remains unclear and 
may be different across congeners and cognitive/behavioral 
domains, making a review of congener-specific associations 
challenging.

Summary and priorities for future epidemiologic study 
of PCBs and neurodevelopment

In summary, we found that among larger studies with more 
methodologic rigor, most showed that PCBs were associated 
with poorer cognitive and behavioral development. Though 
PCB levels have been steadily decreasing since their ban in 
the 1970s, their persistence in the environment and in human 
tissue and continued exposure in older building materials 
make PCBs a continued public health concern. In addition, 
as analytic methods improve, measurement of congeners at 
lower limits of detection is possible. This may make it pos-
sible to examine outcomes in relation to lower-level conge-
ners that could not be previously quantified, such as lower 
chlorinated congeners, which may also be related to neu-
rodevelopment [133]. In addition, assessment of neurode-
velopment continues to improve, in particular neuroimaging 
modalities, which have not yet been explored in relation to 
PCBs. This presents the opportunity to examine PCB-related 
associations with different, and potentially more sensitive, 
neurodevelopmental endpoints, including neuroimaging 
[73]. Finally, this review may inform the potential neurode-
velopmental impact of more contemporary and emerging 
chemicals with structural and toxicological properties simi-
lar to PCBs.

Epidemiology of occupational exposures to PCBs

In contrast to a wealth of epidemiological data showing 
associations of perinatal PCB exposures with poorer neu-
rodevelopmental outcomes, there are considerably fewer 
published studies that have examined PCB exposures in 
relation to impaired brain aging. Negative consequences 
have been reported in adults exposed via consumption of 
PCB-contaminated foods. Subtle cognitive and behavioral 
changes have been reported in recreational fishermen from 
the Great Lakes [164] and in adults who consumed PCB-
contaminated fish from the upper Hudson River [49, 50]. 
Similarly, humans who consumed high amounts of whale 
meat, which typically has very high PCB levels, were found 
to be at increased risk for PD [148]. With respect to the lat-
ter, it should be noted that a prospective study reported no 
association between PCB exposure history and serum levels 
of PCBs before PD diagnosis [202].
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A number of studies have examined the effects of occu-
pational PCB exposures on adult neurologic function. Sev-
eral studies provide suggestive evidence that occupational 
PCB exposures exert subtle influences on adult behavior and 
well-being. For example, PCB exposures during adulthood 
were associated with moderately lower well-being scores for 
teachers who worked in PCB-contaminated school buildings 
[143]. In another study, PCB-exposed firefighters exhibited 
higher rates of depressive disorders compared with respec-
tive control groups [94]. Five additional studies have pro-
vided evidence of a positive correlation between PCB body 
burden and depressive symptoms in older PCB-exposed 
individuals [48, 49, 55, 56, 151]. Results from one of these 
studies, a cross-sectional study, indicated a significant nega-
tive influence of NDL PCB exposure on urinary levels of 
homovanillic acid, which is a metabolite of dopamine [151].

There have also been indications of an association 
between PCBs and increased risk of Parkinson’s disease 
(PD). An early study of the caudate nucleus obtained post 
mortem from PD patients and from controls not diagnosed 
with PD showed significantly higher concentrations of NDL 
PCB 153 in the PD tissue [30]. More recently, a study of 
postmortem brain tissues from control patients and those 
diagnosed with PD disease obtained from the Emory Uni-
versity Brain Bank showed NDL PCB congeners 153 and 
180 were significantly elevated in the brains of PD patients. 
When stratified by sex, the female PD group demonstrated 
significantly elevated concentrations of total PCBs and spe-
cifically congeners NDL PCB 138, 153, and 180 compared 
to controls, whereas PCB concentrations in males were not 
significantly different between control and PD groups [68]. 
Epidemiologic studies have similarly noted sex differences 
in neurodegenerative outcomes related to PCB exposures. 
For example, Steenland and colleagues [181] demonstrated 
that female electrical capacitor workers were more likely 
to die from either Parkinson’s disease (PD) or amyotrophic 
lateral sclerosis than their male counterparts. Seegal and 
colleagues [171] reported that occupational exposure to 
PCBs significantly decreased striatal dopamine terminal 
densities only in women. In a separate cohort of women 
participating in the Nun Study who had no clinical signs or 
symptoms of PD at death, elevated levels of the same three 
PCB congeners were observed in brain tissue that exhibited 
moderate nigral depigmentation compared to subjects with 
mild or no depigmentation [68]. The reasons for these sexu-
ally dimorphic findings remain unexplained. One potential 
explanation, particularly for older women who were either 
peri-or post-menopausal during occupational exposure, is 
decreased neuroprotection because of reduced levels of cir-
culating estrogen [197]. Another possible explanation is that 
PCBs are lipophilic [93], and women typically have higher 
PCB body burdens due to a higher body fat content com-
pared to men [10].

The limited human epidemiological data available regard-
ing associations between PCB exposure and frank neuro-
pathological changes associated with Parkinson’s disease is 
mixed with studies supporting [30, 68, 148] and not sup-
porting [181, 202] an association between occupational PCB 
exposure with Parkinson’s disease. It should be emphasized 
that the available occupational literature is limited by a 
paucity of specific PCB biomarkers and exposures likely 
included other organohalogens. Nevertheless, the envi-
ronmental persistence of PCBs and evidence of continued 
human exposure to PCBs, combined with robust animal and 
human evidence of PCB neurotoxicity, provide strong justifi-
cation for further longitudinal studies of early life exposures 
and later neurodegenerative pathology in aging. Importantly, 
future epidemiological studies need to incorporate in their 
sampling and exposure assessments the more recent litera-
ture that clearly indicates that not all PCB congeners are 
equivalent in their neurotoxic potential. As reviewed above, 
there is strong experimental evidence that NDL PCB conge-
ners are significantly more neuroactive than DL congeners. 
Among the NDL PCBs there appears to be a stringent struc-
ture–activity relationship that includes a significant degree 
of stereoselectivity among the 19 chiral PCBs. Thus, using 
the sum of the PCBs or a small number of sentinel PCBs, 
such as PCB 153, to reflect exposure may limit or underesti-
mate associations with neurotoxicity throughout the lifespan.

Are PCBs the tip of the NDL‑POP iceberg?

Anthropogenic and naturally synthesized 
polybrominated diphenyl ether (PBDEs)

PBDE flame retardants share several common chemical 
properties with NDL PCBs, including a noncoplanar orienta-
tion of the phenyl rings (Fig. 1). Halogen and hydroxy sub-
stitutions at ortho-, meta- and para-positions exhibit similar 
structure–activity profiles toward triggering Ca2+ release from 
microsomal vesicles [96] as have been reported for NDL-
PCBs [47, 53, 54, 71, 72, 147]. PBDEs were shown to cause 
intracellular Ca2+ dyshomeostasis in vitro by altering both 
ionotropic glutamate receptors [32] and RyR channels [94], 
and perturbations in the functional coupling of these channels 
has been linked to degenerative neuropathology [152]. Like 
PCBs, PBDEs alter TH signaling [34], and increase oxidative 
stress [31, 130]. Several studies have indicated that the neuro-
toxic activities of NDL PCBs, PBDEs and their hydroxylated 
metabolites are additive, and that a dose addition model for 
estimating risk may be appropriate [34, 71]. However, unlike 
NDL PCBs, which selectively alter dendritic complexity, 
neuronal-glial co-cultures from rat hippocampus exposed to 
BDE-47 or BDE-49 exhibited delayed neuronal polarization 
resulting in significant inhibition of axonal outgrowth during 
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the first few days in vitro, but no later influences on dendritic 
complexity [24]. Interestingly, the axon inhibitory effects of 
these PBDEs were blocked by pharmacological antagonism 
of RyR or siRNA knockdown of RyR2, indicating common 
molecular mechanisms affecting two distinct developmental 
processes of neuronal connectivity. The explanation for the 
differential cellular effects of NDL PCBs and PBDEs despite 
a common molecular mechanism of action remains unknown 
but may possibly reflect differential effects on distinct RyR 
isoforms that are spatially segregated [7, 112]. A recent sys-
tematic review regarding the effects of developmental expo-
sure to POPs on intelligence or ADHD and attention-related 
behavioral conditions in humans concluded that there is suf-
ficient evidence supporting an association between develop-
mental PBDE exposure and reduced IQ [108], but a similar 
association was not observed for PCBs [221].

Finally, contemporary sources of organohalogens pro-
duced as disinfection byproducts [95, 106, 218] and bio-
synthesized by marine organisms [1] are receiving consid-
erable attention as emerging health risks because of their 
abundance, persistence, and potential to mimic natural 
organohalogens produced by bacteria that serve signaling 
and/or toxicological functions in marine environments. 

Recently 34 organohalogens from anthropogenic and marine 
sources, including hydroxylated PBDEs, bromopyrroles and 
bromobipyrroles (Fig. 1), and bromoindoles were tested to 
identify compounds active towards RyRs. Several of these 
compounds were found to be highly active in not only sen-
sitizing RyR channel activation, but also inhibiting micro-
somal sarcoplasmic/endoplasmic reticulum (SR/ER) Ca2+ 
ATPase (SERCA) [223]. The temporal and spatial properties 
of SR/ER Ca2+ signals not only depend on the density and 
activities of RyRs and IP3R channels, but also the activity 
of ATP-dependent driven SERCA pumps, which are neces-
sary for accumulating luminal Ca2+ and setting the ionic 
force that drives Ca2+ signal properties. Several halopyr-
roles formed as disinfectant byproducts that are detected in 
waste and drinking water treatment streams have recently 
been shown to exert cytotoxic, genotoxic and carcinogenic 
activity in mammalian cell culture models [153, 154, 218]. 
Whether they have neurotoxic effects as predicted by their 
mechanistic similarity to NDL PCBs remains to be deter-
mined. However, the risk of developmental neurotoxicity is 
plausible given recent evidence that organohalogens of bio-
synthetic and anthropogenic origins accumulate in marine 
mammals and human breast milk [3, 175, 196].

Fig. 2   Heuristic hypothesis of modeling known mechanisms by 
which nondioxin-like (NDL) and dioxin-like (DL) persistent organic 
pollutants (POPs) influence mechanisms converging through their 
respective activities on ryanodine receptor (RyR) calcium channel 
complexes and expression of TDP-43. Expression of TDP-43 is sig-
nificantly upregulated by a variety of DL environmental chemicals 
[4] and TDP-43 mediated neurotoxicity proceeds by Ca2+ dyshomeo-
stasis and ER stress [37, 89] via mechanisms requiring RyR channel 
activity [2]. Such a model could serve as a basis for improving our 

understanding of adverse outcome pathways that contribute to risk for 
neurodevelopmental and neurodegenerative disorders, and the rela-
tionships between them. GAP glycoprotein anchoring complex, IP3R 
inositol 1,4,5-trisphosphate receptor, nNOS neuronal nitric oxide syn-
thase, ROS reactive oxygen species, RNS reactive nitrogen species, 
SOCE store-operated calcium entry channel, SERCA​ sarcoplasmic/
endoplasmic reticulum calcium ATPase, TDP-43 transactive response 
DNA binding protein 43, TRPC canonical transient receptor protein, 
VDCC voltage-dependent calcium channel
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Concluding remarks

There is compelling evidence from animal research and 
human epidemiological studies that PCBs are developmen-
tal neurotoxicants that are associated with a number of 
early cognitive and motor deficits later in life. Although 
less well studied, the influence of PCB exposure on the 
risk, onset and severity of late-onset neurodegenerative 
disorders are suggestive. It is important to note that the 
diversity of PCB chemistry (degree and position of chlo-
rination, and their major hydroxylated and sulfonated 
metabolites) make the design of animal and epidemio-
logical studies more challenging, as few studies include 
analysis of the major DL- and NDL-congeners and metab-
olites present in human tissues for their biochemical and/
or behavioral outcomes, which can vary significantly by 
population demographics, age, sex and specific life-stages 
of exposure.

Experiments designed to assess the consequences of 
long-term exposures to PCBs and related environmental 
organohalogens on aging-related neuropathology present 
unique set of challenges. Aging-related declines in cog-
nitive capacity, clinical dementia, and the major neuro-
degenerative disorders such as Parkinson’s disease (PD), 
Alzheimer’s disease (AD) and Amyotrophic Lateral Scle-
rosis (ALS) have both genetic and environmental compo-
nents that contribute to temporal onset, progression and 
severity [69, 122, 199]. Gene by environment interactions 
have also been implicated in several neurodevelopmental 
disorders [70, 113, 176]. Future research should encour-
age approaches that test convergent biologically plausible 
mechanisms. For example, the transactive response DNA 
binding protein 43 (TDP-43) has been implicated in the 
etiology of several aging-related neurodegenerative disor-
ders, including PD [138], AD [127], ALS [86], frontotem-
poral dementia [18], and idiopathic late-onset dementia 
[123].

RyR dysfunction has been implicated in several aging dis-
orders and may provide a focal point for more detailed stud-
ies of chronic exposures to NDL organohalogens and neuro-
pathological markers. ALS may serve as a proof of principle 
for studying convergent mechanisms. Expression of TDP-43 
is significantly upregulated by a variety of DL environmental 
chemicals [4] and TDP-43 mediated neurotoxicity proceeds 
by Ca2+ dyshomeostasis and ER stress [37, 89] via mecha-
nisms requiring RyR channel activity [2]. Considering the 
widespread distribution of dioxin-like and NDL environ-
mental chemicals, TD-43 and RyR (Fig. 2) could serve as a 
basis for improving our understanding of adverse outcome 
pathways that contribute to risk for neurodevelopmental and 
neurodegenerative disorders. A better understanding of the 
relationships between the neurodevelopmental impairments 

highlighted in this review and their potential impact on neu-
ropathological sequelae later in life are needed.
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