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Abstract— The state-space models (SSMs) are widely used in
a variety of areas where a set of observable variables are used to
track some latent variables. While most existing works focus on
the statistical modeling of the relationship between the latent
variables and observable variables or statistical inferences of
the latent variables based on the observable variables, it comes
to our awareness that an important problem has been largely
neglected. In many applications, although the latent variables
cannot be routinely acquired, they can be occasionally acquired
to enhance the monitoring of the state-space system. Therefore,
in this paper, novel dynamic inspection (DI) methods under a
general framework of SSMs are developed to identify and inspect
the latent variables that are most uncertain. Extensive numeric
studies are conducted to demonstrate the effectiveness of the
proposed methods.

Note to Practitioners—The SSM aims to estimate crucial latent
variables that characterize the states of a system but cannot be
measured routinely or directly. The conventional way has been
solely based on a measurement capacity dedicated to observed
variables. However, we realize there are situations that, although
latent variables cannot be measured routinely, it is possible to
inspect a small portion of latent variables at a given frequency.
Thus, the problem is how to allocate the inspection resources
to help monitor the latent variables of the state-space system
optimally, conditioning on the established statistical machinery
of the SSM for model estimation and inference. We propose a
DI method to select and partially measure the latent variables
and improve the estimation accuracy by combining the measured
latent variables and observations.

Index Terms— Dynamic inspection (DI), state-space mod-
els (SSMs).
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I. INTRODUCTION

RECENT advances in sensing and information
technologies provide the unprecedented volume of

measurements for complex systems in different applications.
However, we still face the situations that some variables in
complex systems cannot be directly measured, either due to
technological limitations or economic reasons. For example,
in healthcare applications, monitoring patients’ health condi-
tions is apparently a crucial task. However, a patient’s health
condition cannot be measured as the definition of health con-
dition is often subjective or experience-based, characterized by
multiple biological variables that can be challenging to acquire
routinely outside of clinical settings. Examples can be found
in engineering applications as well, such as the monitoring of
the working conditions of Lithium-ion batteries [1] and wind
turbines [2]. Indeed, these variables are considered as the states
of interest of the underlying systems. They are not directly
measurable and often considered as the latent variables. Often,
we can measure some other observable variables associated
with these latent variables to infer their corresponding status.
Thus, in many real-world applications, we have to face the
challenge of latent variable inference from the observed
data, regardless of the available data volume from sensing
technologies.

To tackle this challenge, the state-space model (SSM) has
been one of the mathematical system models that characterize
the internal behavior or system states by the latent variables,
in addition to the observable variables as the input and output
of the system models [3]. It is hoped that, with the statistical
modeling of the relationship between the latent variables and
observable variables, the latent variables can be inferred based
on the measurements acquired on the observable variables.
Applications of the SSMs have been ubiquitous in different
areas, such as engineering [4], healthcare [5], bioinformat-
ics [6]–[8], robotics [9], and even economics [10], [11] and
climatology [12]. For example, in [1], an SSM is used to
monitor the working condition of Lithium-ion batteries, where
the latent variables are the open-circuit voltage, the voltage
of a resistance-capacitance network and the state of charge,
and the observable variable is the output voltage. In [13],
an SSM is used to analyze the real-time urban traffic infor-
mation and improve the short-term prediction accuracy of
traffic parameters, in order to control traffic and reduce traffic
congestion and delays, where the latent variable is a time-
dependent linear transformation of the observable variables
with the addition of exogenous regressors, such as roadway
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capacity and weather, and the observable variables are the
traffic volumes. While most of the SSMs mentioned above
characterize linear systems, they can also be extended for non-
linear systems, e.g., as shown in a recent work that combines
the SSM and deep learning methods [14] to characterize the
brain dynamics measured by resting-state functional magnetic
resonance imaging data.

Despite the popularity of the SSM, an important problem
has been neglected in the literature. In many applications,
although the latent variables cannot be routinely acquired
due to economic reasons, they can be occasionally acquired.
Actually, our work is motivated by our previous effort in two
applications. One is the risk monitoring for disease onset of
type 1 diabetes (T1D). It is important for T1D patients to
monitor their immunological and metabolic variables regularly,
based on which their doctors can analyze the patients’ current
health status and make proper medical plans. However, it can
be challenging for patients to acquire these immunological and
metabolic variables outside of clinical settings. Rather, it is
more realistic for them to regularly measure their glucose level
and body mass index (BMI). It is known that these “cheap”
and measurable variables correlate with those “expensive”
immunological and metabolic variables that are difficult to
measure by patients but are measurable by their doctors.
Another example is the emerging crowdsourcing applications
that design online platforms to harvest expertise and idle labors
all over the world. Briefly speaking, crowdsourcing employs
anonymous workers who volunteer their labors to complete
tasks. The quality of the workers is latent, which can only be
acquired with testing tasks (answers known in advance). The
responses to the tasks are the measurements that we use to
infer the underlying quality.

For both applications, first of all, the latent variables are
the most useful for decision making. Second, although these
latent variables cannot be measured on a regular basis, it is
possible to measure them with a higher cost and less frequent
sampling patterns. In such scenarios, there is a dynamic
inspection (DI) problem to decide on which latent variables
to be measured given the observed data at each time epoch so
that the uncertainty of the state estimation can be maximally
reduced with the limited budget. The basic idea is that, based
on the observed data, we can not only infer the status of
the latent variables but also evaluate their conditional uncer-
tainty conditioning on the data. Intuitively, estimation variance
implies uncertainty, and a latent variable is more uncertain than
others if its estimation variance is larger than those of other
latent variables. Thus, the task is to dynamically identify and
further inspect the most uncertain latent variables at every time
epoch. However, a complication arises that the uncertainty of
the latent variables is interrelated, encoded in the conditional
covariance structure. To solve these problems, we propose
a novel DI method under the general framework of SSMs.
At each time epoch, DI selects and inspects latent variables
that are most uncertain in a collective way, e.g., measured by
their covariance matrix. Under the DI, the selection of the
latent variables to be inspected integrating marginal variances
and associations between the latent variables derived from

the SSM formulation is achieved by solving a nonconvex
optimization problem with a set of constraints at each time.

The paper is organized as follows. In Section II, we will
review the related works. In Section III, we will introduce the
basic framework of the SSM and formulate our DI framework.
In Section IV, we will develop a simulation study to evaluate
the performance of our DI method in comparison with other
state-of-the-art methods. In Section V, we will demonstrate
how our method can be applied to type 1 diabetes and
crowdsourcing problems. Section VI concludes this paper.

II. RELATED WORKS

One type of related works focuses on sensor allocation
under SSMs, i.e., the study of how to optimize the layout
of a sensor network in a manufacturing process [15]–[19].
These works differ from ours as they aim to optimize the
design of the observable variables in order to monitor the
latent variables better. For example, the works in [15]–[17]
proposed strategies to determine the locations of measurement
stations and the minimum number of sensors by integrat-
ing sensing information into an SSM. Jin et al. [18] and
Jin and Tsung [19] proposed to allocate control charts by
considering the interrelationship between stages in serial-
parallel multistage manufacturing processes described by an
SSM. Another approach for dynamic sensor selection method
is called the maximum mutual information principle [20] in
which sensors were selected to query for tracking the target by
maximizing the mutual information between the sensor output
and target state. It was shown that maximizing the mutual
information between the sensor output and target state was
equivalent to minimizing the expected posterior uncertainty.
This idea is further improved in terms of computational
efficiency [21] and extended for prediction [22] and high-
dimensional problems [23].

There have been considerable research efforts in extending
the SSMs, such as the continuous time SSMs and nonlinear
SSMs [24]. Much of the attention was given to the mod-
eling of the system and the estimation of the parameters
of the model. For example, Oud and Jansen [25] proposed
the maximum likelihood estimation of the parameters of the
continuous time SSMs on panel data using the structural equa-
tion modeling. Different approximation approaches are pro-
posed for non-Gaussian/nonlinear SSMs, such as Monte Carlo
methods [26], [27] and the particle filter [28]. However, our
work is different from this line of research as well, since we
focus more on how to monitor the latent variables better with
a given knowledge of the SSM.

There exist several works that try to identify the structures
of dynamic systems with partial observations [29]–[33]. For
example, Yuan et al. [29] tried to infer the structure of the
network based on partial exact observation of states. Our
work is different from this line of works because we aim at
selecting latent variables to be inspected and estimating latent
variables according to previous observations which are linear
combinations of latent variables with noise, and the structure
of the system in our model is estimated from established
methods which will be introduced in Section III.
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One particularly related work that actually inspired this
paper is [34]. This paper shares a similar motivation as ours,
although it was mainly motivated to show that the ill-posed
state-space problem, where the number of the observed vari-
ables was much less than the latent variables, could become
well-posed with partial inspection of the latent variables.
In [34], only a simple heuristic approach was developed to
dynamically acquire measurements from the latent variables
by selecting the latent variables with the largest variances
conditioning on the observations without considering their
covariance structure. Also, [34] only considered a simple SSM
with fixed structure of process errors and no observation error.
Our work extends this line of works to applications where
there are observation errors and nontrivial process errors, and
optimize the DI problem using a systematical formulation
rather than heuristics to account for the covariance structure of
the latent variables. Incorporation of the covariance between
the latent variables provides a better evaluation of the true
uncertainty of the latent variables. In other words, if a latent
variable is closely associated with the latent variables with
larger uncertainty, then the underlying true uncertainty of this
latent variable is more likely to be large even though it has a
relatively small estimated conditional variance.

III. METHODOLOGY

In this section, we will introduce a general framework of
the SSM in Section III-A. Then, based on this framework,
we will introduce our proposed DI method in Section III-B and
its computational algorithm in Section III-C. As our method
integrates statistical inference, model updating, and sensing
simultaneously, a summary of the entire process is presented
in Section III-D. Note that in this paper, we use lower case
letters, e.g., x , to represent scalars, bold-face lower case letters,
e.g., x, to represent vectors, bold-face upper case letters, e.g.,
X, to represent matrices, and bold-face upper case italic letters,
e.g., X , to represent random variables.

A. Review of the State-Space Model

The SSM is a big umbrella that includes many variants.
Basically, it has two parts. One is the state equation that
characterizes the dynamics of the latent variables. Another one
is the measurement equation that characterizes the relationship
between the latent variables and observable variables. In this
paper, we use I and J as the number of the observable
variables and the number of the latent variables, respectively.
Also, we denote x(t), a J × 1 vector, as the realization of
the latent variables at time t . The state equation is shown as
follows:

x(t+1) = Bx(t) + ε(t) (1)

ε(t) ∼ N(0, Q). (2)

Here, the matrix B, a J×J matrix, is commonly referred as the
state transition matrix, that characterizes the autocorrelation
between the latent variables. For example, in the example
of T1D patient monitoring, the latent variables can be some
expensive physiological variables such as HbA1c and glu-
tamic acid decarboxylase. Then, the state transition matrix B

characterizes how the previous states of these physiological
variables impact the current states as J linear regression
models. The error term, ε(t), corresponds to the variability of
these physiological variables that cannot be explained by their
temporal correlations. It is often assumed that ε(t) is from a
multivariate normal distribution N(0, Q), while Q is a J × J
variance-covariance matrix that is stationary over time.

Similarly, we denote y(t), an I × 1 vector, as the realiza-
tion of the observable variables at time t . The measurement
equation is shown in the following:

y(t+1) = Zx(t+1) + v(t) (3)

v(t) ∼ N(0, R). (4)

Here, Z, an I × J matrix, is the measurement matrix. Each
row of Z corresponds to an observable variable and encodes
the linear coefficients of the J latent variables. In other words,
this essentially suggests that there are I linear regression mod-
els, while each model represents how the J latent variables
impact one of the observable variables. The error term, v(t),
corresponds to the variability of these observable variables
that cannot be explained by the latent variables. It is often
assumed that v(t) is from a multivariate normal distribution
N(0, R), while R is an I × I variance-covariance matrix that
is stationary over time.

As mentioned earlier in this paper, we focus on how to
monitor the latent variables better with a given knowledge of
the SSM. Thus, we assume that the model parameters, B, Z,
Q, have been known while R is unknown. This can be done in
many applications given the availability of historical data (i.e.,
measurements of y) and domain knowledge for training the
model. In particular, in our paper, we employ the expectation–
maximization (EM) algorithm proposed in [35] to estimate the
unknown parameter R of the model with observations, and
solve for the expected values and estimation variances of the
latent variables with the classic Kalman filter [36]. The log-
likelihood function, as well as details of the derivative of the
EM algorithm, can be found in [37]. Note that although B, Z,
Q are assumed to be known in this paper, they can be estimated
with the EM algorithm as well, as described in [37].

B. Dynamic Inspection Strategy

Inspecting some latent variables can greatly help us to
estimate and monitor the latent variables. Suppose that if
there are available resources allowing us to inspect a small
number of latent variables at each time epoch, we then can
estimate the other latent variables based on the inspections
and the observations on the observable variables. To optimally
decide on which latent variables to be inspected at each time
point, we need to devise an optimization formulation first. The
naive approach, denote as the random inspection (RI), is to
choose and inspect the latent variables randomly. However,
at each time epoch, there are unequal levels of uncertainty
of the latent variables. In order to gain as much information
about the latent variables as possible, it is better to inspect
the most uncertain latent variables conditioning on previous
observations and inspections, i.e., the latent variables with
the largest S(t)

ii , where S(t) = Var(X(t)|Y (1:t), X(1:t−1)
I ), Y (1:t)



4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Example of how marginal conditional variance changes over time.

represents the observations until time t , X(1:t−1)
I denotes the

inspections until time t−1, and X(t) is the random vector of the
latent variables at time t . Note that because the variance S(t)

is conditioning on previous inspections X(1:t−1)
I , the ranking

of the uncertainty changes over time. This is from the fact
that the conditional variance of X(t)

i becomes small if we
know the value of X(t−1)

i and how latent variables transit,
which, in turn, changes the ranking of the uncertainty of latent
variables. One simple example with two related variables is
shown in Fig. 1. The red solid line represents the marginal
conditional variance of variable 1 while the blue dashed line
denotes that of variable 2. Variable 1 is inspected at time
points 40 and 80, and the ranking of the uncertainty of the
two variables changes after each inspection. If an additional
inspection is required at t = 45, then variable 2 should be
chosen to reduce the overall uncertainty of the latent variables.
Based on this motivation, we propose two approaches based
on the conditional variance S(t) = Var(X(t)|Y (1:t), X(1:t−1)

I ).
The details of how S(t) is derived can be found in the proof of
Theorem 1, which involves the variance of noise in the states
transition Q and the variance of noise in measurement R.

The first approach is called the marginal inspection (MI) that
inspects the latent variables with the largest marginal estima-
tion variances conditioning on the observations and previous
inspections at each time. Introducing a binary decision variable
δit for the latent variable i such that δit = 1 if and only if
the latent variable i is inspected at time t , the MI approach
is to find the optimal δ∗

t that maximizes δT
t diag(|Ŝ(t)|)δt with

the constraint
∑J

i=1 ciδit ≤ M , where each element |Ŝ(t)
i j | of

|Ŝ(t)| is the absolute value of Ŝ(t)
i j , diag(S) is a diagonal matrix

with the corresponding diagonal entries in S, ci is the cost of
inspecting latent variable i and M is the cost budget. The MI
strategy solves the following optimization problem:

max
δt ∈{0,1}J

δT
t diag(|Ŝ(t)|)δt

s.t.
J∑

i=1

ciδit ≤ M . (5)

Another approach, called the DI, is to further account for
the correlation between the latent variables. This may help us
overcome the limitation of MI considering only the marginal
variance of the latent variables. For example, suppose that

the conditional estimation variance of the latent variable i is
much higher than that of the latent variables j and k, and the
conditional estimation variances of j and k are close to each
other, then, with the consideration of the covariance between
the latent variables, we prefer to inspect j rather than k if j
is more correlated with i . This is because the underlying true
variance of the latent variable j is more likely to be higher
than that of the latent variable k with the knowledge from
the latent variable i . Note that the uncertainty of the latent
variables comes from Q, R, and thus the relation of the latent
variables is influenced by the parameters B, Z, Q, R.

Thus, the DI is to find the optimal δ∗
t that maximizes

δT
t diag(|Ŝ(t)|)δt with the constraint

∑J
i=1 ciδit ≤ M and the

regularization on the off-diagonal elements |Ŝ(t)
i j |. Here, |Ŝ(t)

i j |
refers to the association between latent variables i and j ,
conditioning on the observations and previous inspections.
Formally, the DI strategy leads to the following optimization
problem:

max
δt ∈{0,1}J

δT
t diag(|Ŝ(t)|)δt + β

∑

i �= j

δit δ j t
∣
∣Ŝ(t)

i j

∣
∣

s.t.
J∑

i=1

ciδit ≤ M . (6)

The regularization term, β
∑

i �= j δitδ j t |Ŝ(t)
i j |, on the decision

variables in (6) controls the association of inspection deci-
sions such that the larger the β is, the more associated the
inspection decisions are. If β = 0, DI degenerates to MI.
Now, the Lagrangian form of the optimization problem (6) is

max
δt∈{0,1}J

δT
t diag(|Ŝ(t)|)δt − η

J∑

i=1

ciδit + β
∑

i �= j

δit δ j t
∣
∣Ŝ(t)

i j

∣
∣. (7)

After solving (7) and getting the optimal set of indices of
the selected latent variables at time t , �(t) = {i |δ∗

it = 1},
we replace the estimated states of latent variables in �(t) with
observed values x(t)

I from inspection.
Note that existing inference algorithms developed for the

SSM have not considered the inference tasks when both data
of the observable variables and partial data of some latent vari-
ables are given. Thus, there seems to be no readily available
algorithm for us to derive S(t) = Var(X(t)|Y (1:t), X(1:t−1)

I ).
Fortunately, as shown in Theorem 1 (proof in Appendix VI),
this problem can be readily derived based on existing results on
the SSM. Lemmas 2 and 3 justify the correctness of the model
construction in the proof of Theorem 1. If we can inspect all
the latent variables at time t , the conditional variances after
inspection become zeros, and the expected values of the latent
variables are substituted by the observed values. By using the
block matrices and Moore–Penrose inverse and following the
deduction in the proofs, our computation also shows that any
inspected latent variable has the marginal conditional variance
being zero and the expected value being replaced with the
observed value after inspection. Recall that, in [34], it has
been shown that the ill-posed state-space problem, where the
number of the observations I is much less than that of the
hidden states J , can become well-posed with partial inspection
of hidden states.
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Theorem 1: The expected values and estimation vari-
ances of the latent variables conditioning on the obser-
vations and inspections, i.e., E[X(t)|Y (1:t), X(1:t−1)

I ], and
Var(X(t)|Y (1:t), X(1:t−1)

I ), can be computed with the Kalman
filter (proof in Appendix A).

Lemma 2: If all the latent variables are inspected at a time
point, then under the model construction and notations from
the proof of Theorem 1, we have the conditional covariance
matrix of the latent variables P(t)

t = 0, and the states of the
latent variables replaced by the inspections x̂(t)

t = ỹ(t)
(I+1):(I+J )

(proof in Appendix B).
Lemma 3: If none of the latent variables is inspected, then

under the model construction and notations from the proof of
Theorem 1, the inspection methods degenerate to the original
SSM (proof in Appendix C).

C. Computational Algorithm

To solve the optimization problem in (7), because the
decision variables are binary, first, we rewrite the objective
function as

min
δt∈{0,1}J

J∑

i=1

δit
(
ciη − ∣

∣Ŝ(t)
ii

∣
∣
) − β

∑

i �= j

δitδ j t
∣
∣Ŝ(t)

i j

∣
∣. (8)

Because

J∑

i=1

δit
(
ciη − ∣

∣Ŝ(t)
ii

∣
∣
) − β

∑

i �= j

δit δ j t
∣
∣Ŝ(t)

i j

∣
∣

=
J∑

i=1

δit
(
ciη − ∣

∣Ŝ(t)
ii

∣
∣
) − β

∑

i �= j

δit
∣
∣Ŝ(t)

i j

∣
∣

+β
∑

i �= j

δit (1 − δ j t)
∣
∣Ŝ(t)

i j

∣
∣

=
J∑

i=1

δit

⎛

⎝ciη − β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ − (1 − β)

∣
∣Ŝ(t)

ii

∣
∣

⎞

⎠

+β
∑

i, j

δit (1 − δ j t)
∣
∣Ŝ(t)

i j

∣
∣

the problem can be further formulated as

min
δt ∈{0,1}J

J∑

i=1

δit

⎛

⎝ciη − β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ − (1 − β)

∣
∣Ŝ(t)

ii

∣
∣

⎞

⎠

+β

J∑

i, j=1

∣
∣Ŝ(t)

i j

∣
∣δit (1 − δ j t). (9)

Theorem 4: The optimization problem (9) is equivalent to
an s-t min-cut problem

min
δt ∈{0,1}J

J∑

i=1

|Ŝ(t)|u1,iδu1t (1 − δit ) +
J∑

i=1

|Ŝ(t)|i,u2δit (1 − δu2t )

+β

J∑

i, j=1

∣
∣Ŝ(t)

i j

∣
∣δit (1 − δ j t) (10)

Fig. 2. Illustration of the s-t min-cut formulation for the DI strategy.

where δu1,t = 1 and δu2,t = 0

|Ŝ(t)|u1,i =
⎛

⎝β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ + (1 − β)

∣
∣Ŝ(t)

ii

∣
∣ − ciη

⎞

⎠

+

|Ŝ(t)|i,u2 =
⎛

⎝ciη − β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ − (1 − β)

∣
∣Ŝ(t)

ii

∣
∣

⎞

⎠

+
and (x)+ = max{x, 0} (proof in Appendix D).

According to the max-flow min-cut theorem [38], the s-t
min-cut problem in Theorem 4 can be efficiently solved with
the maximum flow algorithm [39]. An illustration graph of the
s-t min-cut problem for the DI strategy is shown in Fig. 2.

D. Summary of the DI Method

In this section, we introduce the framework of the DI. First,
we construct an SSM for a given data set. Then, at each
time t , we estimate the states and variances of latent variables
with the Kalman filter based on the observations and previous
inspections and inspect the states of selected latent variables
with the DI. These latent variables are chosen by solving an
s-t min-cut problem. Finally, we replace the estimated states
of selected latent variables with the inspections of them. The
parameter η controls the number of latent variables we choose,
and β reflects how important we consider the covariance is in
the model. A discussion about how to choose the parameters
η and β can be found in the Supplementary file where we
propose a search algorithm (as illustrated in Algorithm S.1 in
the Supplementary file) to identify an interval of β using
historical data within which β can achieve satisfying results.
When β = 0, DI degenerates to MI. Note that the cost budget
M at each time epoch is not a parameter to be tuned, but the
resource constraint. Larger M tends to lead to better results,
because it implies more latent variables can be inspected at
each time epoch. Therefore, we should choose the largest
M allowed. The algorithm for the DI method is given in
Algorithm 1, and the corresponding flowchart is illustrated
in Fig. 3.

IV. SIMULATIONS

A. Experiment Design

In this section, we conduct simulation experiments to
compare the three inspection methods, the RI, the MI, and
the DI. Furthermore, we include the state estimation by the
Kalman filter for the SSM without inspection that solely relies
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Algorithm 1 Dynamic Inspection Method

Initialize states of latent variables x(0) and unknown
parameters with historical observations of length Th ;
Find the approximate interval for β with Algorithm S.1;
for each time epoch t do

Estimate unknown parameters with EM algorithm;
Obtain expected values and variances
E[X(t)|Y (1:t), X(1:t−1)

I ] and V ar(X(t)|Y (1:t), X(1:t−1)
I )

by applying the Kalman filter following Theorem 1;
Select a β from the interval and find the η following
the discussion in the Supplementary file;
Solve the optimization problem (10) and get �(t);
Obtain x(t)

I , and replace the expected values of the
latent variables in �(t) with x(t)

I ;
end
Output E[X(1:T )|Y (1:T ), X(1:T )

I ];

Fig. 3. Flowchart of the DI method.

on observations on the observable variables, to evaluate the
impact of inspection. We evaluate the performance of the
methods by the root-mean-square error (RMSE) of the condi-
tional expectation E[X(t)|Y (1:t), X(1:t−1)

I ], which is calculated

as r (t) = (1/
√

J)‖E[X(t)|Y (1:t), X(1:t−1)
I ]−x(t)‖2 at each time

epoch t . The lower the RMSE is, the better the method is to
estimate the latent variables.

We conduct the comparison across a number of scenarios
with different numbers of observable variables and latent
variables. Specifically, first, we randomly generate the initial
vector x(0) for the latent variables from a multivariate normal
distribution N(0, Q). The matrix Q is randomly generated in
the following way to ensure that it is a positive-definite matrix
as required for a eligible covariance matrix: let P be a matrix
with the same size of Q whose elements are randomly sampled
from a standard normal distribution, then, we construct Q as
the inner product of P, i.e., Q = P′P. With the initial value
x(0), then, at each iteration t , the latent variable vector x(t) is
obtained via x(t) = Bx(t−1) + ε(t), and the observations vector
y(t) is obtained via y(t) = Zx(t) + v(t). Here, without loss of
generality, we set B = I where I is the identity matrix and
draw the elements of Z from {0, 1, 2} with equal probability
and under the constraint that each row or column of Z is non-
zero (i.e., to avoid the trivial scenario in which either some
observable variables correspond to no latent variables or some
latent variables cannot be observed). The process noise is
simulated by εt ∼ N(0, Q), while the measurement error is

simulated by v(t) ∼ N(0, I). After T iterations, we can obtain
the matrix of states of the latent variables X = (x(1), . . . , x(T ))
and the matrix of the observations Y = (y(1), . . . , y(T )).
In this paper, because we focus on the inspection strategy
rather than model estimation, we assume the availability of
the matrices B, Z, Q and observations y that will be used
in the three inspection methods. For simplicity, we assume
the costs of inspections ci , i = 1, . . . J are equal for all the
latent variables. Since the methods are generic, weights can
be applied if needed.

B. Results

The experiment is conducted with T = 50, J = 10, 12, 14
and I = 4, 6, 8. The length of historical data Th varies
depending on the number of latent variables. Here, we choose
Th = 50; 100; 200 for J = 10; 12; 14, respectively. Under
each combination of J and I , we follow the aforementioned
experimental design, simulate the data, implement the three
inspection methods, and obtain their performance evaluated
by the RMSE criterion. Without loss of generality, here,
we present results when the cost budget M is set to 2 and
ci = 1 for i = 1, . . . , J .

The results are summarized in Table I and Fig. 4. Specifi-
cally, in Fig. 4, the points denote the RMSE of the estimations
from different methods at different times, and each line
represents the local regression of these points from a certain
method. Table I summarizes Fig. 4 and reports the mean and
standard derivation of the RMSE of each method in each
combination of I and J across the simulated time points. Note
that the results for SSM are omitted in Fig. 4 because the
scale of the RMSE of SSM is very large that will distort the
presentation of other methods. This can be seen from Table I
that the RMSE values of SSM are much larger than those
of the inspection methods. The first five time points are also
removed so that we can focus on the converged results without
distortion. Thus, a major observation is that with the inspection
methods, even with the RI on only a few latent variables,
the estimation of the latent variables can be much improved.
This advantage is even bigger, as we can observe that, when
the state-space systems have much less observable variables
than the latent variables, i.e., I = 4, all the inspection models
can dramatically improve the accuracy and robustness of
estimations compared with SSM. Another major observation is
that the DI method is overall the best approach that can achieve
the lowest average RMSE and the smallest standard derivation
of RMSE. This advantage will be smaller, however, if we
increase the number of observable variables, as the difference
between DI and MI decreases. One explanation can be that
the estimations of latent variables and their uncertainty from
the Kalman filter become more accurate with more observable
variables; therefore, the MI model can correctly select the
latent variables with high variances. Last but not least, as we
can observe that the standard deviations of the RMSE from
DI are smaller than those from MI and RI most of the time,
incorporating the knowledge of the association between latent
variables can improve the robustness of the inspection decision
making.
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Fig. 4. Comparison of rooted mean squared errors under DI, MI, and RI methods. (a) RMSE, J = 10, I = 4. (b) RMSE, J = 10, I = 6. (c) RMSE, J = 10,
I = 8. (d) RMSE, J = 12, I = 4. (e) RMSE, J = 12, I = 6. (f) RMSE, J = 12, I = 8. (g) RMSE, J = 14, I = 4. (h) RMSE, J = 14, I = 6. (i) RMSE,
J = 14, I = 8.

TABLE I

PERFORMANCE OF INSPECTION METHODS WITH TWO INSPECTIONS ON SIMULATED DATA SERIES

V. REAL-WORLD APPLICATIONS

A. Type 1 Diabetes

SSMs have a wide range of applications in healthcare.
Here, we illustrate how the inspection methods can be applied

to the type 1 diabetes (T1D). In management of type 1
diabetes (T1D) patients, it is important for patients to monitor
their immunological and metabolic variables on schedule,
so that doctors can identify the change of patients’ state of
health in time and modify the treatment plan. However, as
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TABLE II

SELECTED EXPENSIVE (LATENT) AND
CHEAP (MEASUREMENT) VARIABLES

Fig. 5. RMSE of inspection methods on type 1 diabetes problem.

these variables are not easily acquired outside of clinical set-
tings, it is more realistic for patients to monitor other variables
such as glucose levels and BMI which may correlate with
the inaccessible immunological and metabolic variables. This
generates a typical state-space system, while the inaccessible
immunological and metabolic variables are the latent variables
and the accessible variables are the observable variables.
Inspection methods developed in this paper provide a remedy
to enhance patient monitoring that can provide valuable data-
driven insight for doctors to optimize visit schedules for
patients to measure their critical variables in clinics.

To demonstrate this, we leverage our previous studies on
type 1 diabetes (T1D), particularly, the diabetes prevention
trial—type 1 (DPT-1) [40], to build an SSM for T1D and
implement the inspections methods. In this model, there are
seven “expensive” variables that are critical to assessing the
T1D patients’ health conditions but are inaccessible to patients
(thus, our latent variables) and three “cheap” variables that
can be measured by patients (thus, our observable variables),
as listed in Table II. The “cheap” variables can be measured
through simple oral glucose tolerance testing (OGTT) by
patients themselves but is less accurate than the “expensive”
variables from intravenous glucose tolerance test and other
tests for assessment of insulin resistance because of their
invasiveness, duration, and cost of reagents [41]. Thus, rather
than just monitoring the cheap but inaccurate variables, with
inspections, we can enable monitoring of the patients with
both the “cheap” variables and selected “expensive” variables
in each week (here, each monitoring epoch is a week). Without
loss of generality, we assume that M = 2 and ci = 1 for
i = 1, . . . , J . The parameters of the SSM can be estimated
from the scaled DPT-1 data set [40], based on which we
randomly simulate a data series and use it to test our inspection
methods.

The results are presented in Table III and Fig. 5. Overall,
it can be observed that inspection methods outperform the

TABLE III

PERFORMANCE OF INSPECTION METHODS ON SIMULATED T1D SERIES

Fig. 6. Framework of crowdsourcing problem.

SSM method, indicating their significant contribution in track-
ing the patients’ underlying health conditions with a combi-
nation of passive monitoring and proactive inspection. Also,
the DI method is more accurate and robust than the other
inspection methods. These observations are consistent with the
observations on the simulated SSMs in Section IV.

B. Crowdsourcing

Another example of the state-space systems is the crowd-
sourcing problem. Crowdsourcing is an emerging paradigm
[42]–[45] for companies to dynamically recruit specialized
skills for solving challenges that consist of massive online
tasks. It can be used to solve a variety of tasks, such as
image recognition, data entry, and innovation and product
development [46]–[48]. An illustration of this crowdsourcing
process is shown in Fig. 6, which includes three workers
assigned to two tasks. The first and second workers are
assigned to task type 1, and the second and third workers
are assigned to task type 2. As shown in Fig. 6, at each time
epoch, the two tasks will be completed by the three workers.
The quality of the completion of the tasks can be measured,
i.e., the response score for task 1 at a certain time epoch is
the average of the quality of workers 1 and 2 at that certain
time epoch, corrupted with a measurement error (i.e., v

(t)
1 ).

Obviously, estimating the quality of the workers is very
crucial for monitoring and optimization of the crowdsourcing
platforms. This can be cast into an SSM with the latent
variables characterizing the quality of the workers, and the
response scores of the tasks being the observable variables.
Previous works in crowdsourcing have shown the validity
of the assumption of normality on workers’ quality and
responses [49], [50]. Jung [49] showed that the quality of
workers (latent variables) could be modeled with normal distri-
butions using a data set from the Amazon’s Mechanical Turk,
which is a major crowdsourcing platform. Zhao et al. [50]
also defined “response score” as the measurement of workers’
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TABLE IV

PERFORMANCE OF INSPECTION METHODS ON SIMULATED
CROWDSOURCING DATA SERIES

Fig. 7. RMSE of inspection methods on crowdsourcing problem with
different number of testing tasks. (a) # of Testing tasks = 3. (b) # of Testing
tasks = 4.

responses on the tasks, and showed the validity of normal
assumptions on the scores. However, existing works only
focus on statistical estimation using the measurements from
the task completion. In practice, we can inspect the workers
with additional testing tasks that we have known answers,
to evaluate their quality. Neither the state-space formulation
has been proposed nor the inspection strategy has been devel-
oped to combine measurement, monitoring, and inference.
Thus, in this experiment, we articulate this state-space system
and illustrate how our inspection methods can be applied to
better estimate the quality of workers.

The experiment is conducted with 18 workers and 4 types
of tasks on a simulated data series. Each worker is assigned to
2 of 4 types of tasks throughout the experiment, and therefore,
we receive nine responses for each type of tasks at each
time epoch. In our simulation setting, the quality of a worker
changes over time according to a Brownian motion and is
independent of other workers’ quality. The response score of
a task is assumed to be the average of workers’ quality who
are assigned to the task, plus an measurement error v(t)

i that
is randomly generated from the normal distribution N(0, Rii )
where Rii is the variance of the measurement error and is
stationary. We also assume the score errors are independent
of each other, i.e., Ri j = 0 for i �= j . The matrix B is set to
be the identity matrix, and Z is specified to be a 0–1 matrix
based on the allocation of tasks. The parameter Q is also
a diagonal matrix where each element is sampled between
2 and 4. Therefore, in this experiment, the relation of latent
variables is from the allocation of tasks only. Although the
matrix B is identical in this experiment, the workers are still
conditionally dependent given the response scores. At each
time epoch, we can inspect M workers (here, we set M to be
3 and 4 and ci = 1 for i = 1, . . . , J ).

The results are given in Table IV and Fig. 7. We can observe
that the inspection methods can largely improve the estimation
of the quality of the workers, while the DI method outperforms
MI and RI in terms of both accuracy and robustness. The
estimation accuracy and robustness of DI and MI improve
when increasing the cost budget at each time epoch. We also
note that a small number of inspections (M 
 J ) is sufficient
to reach a good estimation of the latent quality of workers most
of the time. The standard deviations of RMSE of RI are much
larger than those of DI, MI, and the original SSM because RI
takes approximate 20 iterations to converge on this data set,
and the RMSE is away from the mean before convergence,
as shown in Fig. 7.

VI. CONCLUSION

In this paper, we propose a novel DI method to improve
the state estimation in SSMs, by inspecting a small portion
of latent variables at each time epoch. The selection of latent
variables relies on the conditional estimation variances and
the association of latent variables and is obtained by solving
an s-t min-cut optimization problem. Simulation experiments
show the DI method can achieve better performance than
the original state estimation by the Kalman filter and other
inspection methods. We apply the proposed methods to two
real-world problems in type 1 diabetes and crowdsourcing. In
the type 1 diabetes problem, we fill in the need of patients
to monitor their levels of antibodies with our DI method.
Compared with MI, RI, and classic SSM, the proposed DI
model provides the most accurate and robust estimation of the
levels of patient’s antibodies. In the crowdsourcing problem,
our method provides a DI strategy by assigning testing tasks
to workers based on their responses and estimating the quality
of workers. The proposed DI method also outperforms other
methods with the most accurate and robust estimations of
workers’ quality.

The current method can be further improved. For example,
the current DI method becomes slow when the length of data
series grows, and it needs to be reestimated every time a new
observation is added. It can be more efficient if the parameters
and DI can be updated simultaneously. Previous works provide
potential approaches to this problem but none of them solves
it completely. Shwe and Yamamoto [51] showed that some
parameters could be updated with given hidden states and
observations. Another work in [52] proposed a method for
point estimation of static parameters which did not suffer
from “degeneracy problem” that many sequential Monte Carlo
(SMC)-based algorithms suffered. Improved SMC method,
SMC2, can be used to update the parameters but suffers from
bias or exponential cost in the dimension of the parameter
space [53]. It is also interesting to explore the use of our
method in the large hidden state-space scenario, e.g., a crowd-
sourcing project involves tens of thousands of workers that
are assigned to hundreds of tasks. Therefore, it is necessary to
develop an efficient inspection method which can make use of
the sparsity of relation between tasks and between workers and
tasks, and provide an accurate estimation of hidden states with
a limited number of inspections. In the current DI formulation,
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we assume a resource constraint exists at each time point. It is
worth exploring how to formulate the optimization problem if
we have a resource constraint for the entire process.

APPENDIX A
PROOF OF THEOREM 1

In this proof, we will introduce how to solve for the
expected values and variances of the latent variables with
the Kalman filter. First, the I × 1 vector that represents
the realization of the observable variables at time t, y(t),
is expanded to an (I + J )×1 vector ỹ(t) where ỹ(t)

1:I = y(t) and
ỹ(t)

I+1:I+J is initialized as a missing vector. Then, the I × J
matrix Z is expended to an (I + J ) × J matrix Z̃ where
Z̃1:I,1:J = Z, Z̃I+1:I+J,1:J = IJ , IJ is the identical matrix
of size J , and the rest elements are zeros. The I × I matrix
R is extended to R̃ where R̃1:I,1:I = R and the rest elements
are zeros. The extended observation error ṽ(t)is from N(0, R̃).
If variable i is inspected at time t , we replace the missing
value ỹ(t)

I+i with the observed value. Therefore, in this problem,
we actually solve (11) for the estimation of parameters and
conditional variance

x(t+1) = Bx(t) + ε(t), ε(t) ∼ N(0, Q)

ỹ(t+1) = Z̃x(t+1) + ṽ(t), ṽ(t) ∼ N(0, R̃). (11)

This construction benefits from the feature of the Kalman
filter that it can incorporate missing values in the observa-
tions which we will discuss later. Note that based on the
construction

P(X(t)|Ỹ (1:t)) = P(X(t)|Y (1:t), X(1:t−1)
I ).

This equivalence is crucial for us to derive the needed statistics
for implementing the DI methods. We will use Ỹ (1:t) in the
following proof.

Then, we introduce the Kalman filter used in this problem.
This section largely follows the deduction in [54, Sec. 6] with
a slight abuse of notations. Let us define

x̂(t)
s = E[X(t)|Ỹ (1:s)]

P(t1,t2)
s = E

[(
X(t1) − x̂(t1)

s

)(
X(t2) − x̂(t2)

s

)′|Ỹ (1:s)].

We write P(t)
s for convenience if t1 = t2 = t , and P(t)

t is the
conditional covariance we want to obtain from the Kalman
filter.

For the SSM specified in (11), first we define (I + J ) ×
(I + J ) matrix I(t)∗ , where

I(t)
∗,(i, j ) = 0, for i �= j

I(t)
∗,(i,i) =

{
0, if ỹ(t)

i is missing at t

1, otherwise

and

ỹ(t)∗ = I(t)∗ ỹ(t), Z̃(t)∗ = I(t)∗ Z̃.

Then with the initial conditions x̂(0)
0 = μ0 and P(0)

0 = �0,
we can compute P(t)

t in the following way:

for t = 1, . . . , n

x̂(t)
t−1 = Bx̂(t−1)

t−1

P(t)
t−1 = BP(t−1)

t−1 B′ + Q

x̂(t)
t = x̂(t)

t−1 + K(t)(ỹ(t)∗ − Z̃(t)∗ x̂(t)
t−1

)

P(t)
t = (

I − K(t)Z̃(t)∗
)
P(t)

t−1

where K(t) = P(t)
t−1Z̃′∗(Z̃

(t)∗ P(t)
t−1(Z̃

(t)∗ )′ + R̃)−1 is called the
Kalman gain. The proof of this process can be found in [54].
Therefore, we can solve for the expectations and variances
of the latent variables with the Kalman filter combining the
inspections and observations.

APPENDIX B
PROOF OF LEMMA 2

Based on the construction in the proof of Theorem 1, if all
the latent variables are inspected, we have (Z̃(t)∗ )′ = [Z′ IJ ].
Then, we can write the multiplication of the Kalman gain
and Z̃(t)∗ as

K(t)Z̃(t)∗ = P(t)
t−1

(
Z̃(t)∗

)′(Z̃(t)∗ P(t)
t−1

(
Z̃(t)∗

)′ + R̃
)−1Z̃(t)∗

= P(t)
t−1

(
Z̃(t)∗

)′
([

Z
IJ

]

P(t)
t−1[Z′ IJ ]+

[
R 0
0 0

])−1

Z̃(t)∗

= P(t)
t−1

(
Z̃(t)∗

)′
[

R−1 −R−1Z
−Z′R−1

(
P(t)

t−1

)−1+Z′R−1Z

]

Z̃(t)∗

= P(t)
t−1

(
P(t)

t−1

)−1 = I.

This implies P(t)
t = 0.

APPENDIX C
PROOF OF LEMMA 3

This follows from the proof of Theorem 1 and the deduction
of the Kalman filter.

APENDIX D
PROOF OF THEOREM 4

In this proof, we will show the optimization problem (9) is
equivalent to the s-t min-cut problem introduced as follows.

An s-t cut (C, V \C) on a weighted graph (V , E) of size J
is a partition of V such that the source s ∈ C and the sink
t ∈ V \C . The cut-set EC is the set of edges such that

EC = {(u, v) ∈ E |u ∈ C, v ∈ V \C}.
If S is the adjacency matrix of the graph, the s-t min-cut
problem can be expressed as

min
u

∑

(u,v)∈EC

Su,v =
J∑

u=1

J∑

v=1

δu(1 − δv )Su,v

where δu = 1 if u ∈ C and 0 otherwise, δs = 1 and δt = 0.
The optimization problem (9) can be solved as an s-t min-

cut problem mentioned earlier. First, let us define �(t) as the
set of indices of the chosen latent variables at time t , and
introduce artificial units u1 ∈ �(t) and u2 /∈ �(t) as the source
and the sink, while the related decision variables are fixed
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to be δu1,t = 1 and δu2,t = 0. The covariances between the
observed units and the artificial units are defined as

|Ŝ(t)|u1,i =
⎛

⎝β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ + (1 − β)

∣
∣Ŝ(t)

ii

∣
∣ − ciη

⎞

⎠

+

|Ŝ(t)|i,u2 =
⎛

⎝ciη − β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ − (1 − β)

∣
∣Ŝ(t)

ii

∣
∣

⎞

⎠

+
where (x)+ = max{x, 0}.

Then, the first part of (9) can be written as

J∑

i=1

δit

⎛

⎝ciη − β

J∑

j=1

∣
∣Ŝ(t)

i j

∣
∣ − (1 − β)

∣
∣Ŝ(t)

ii

∣
∣

⎞

⎠

=
J∑

i=1

|Ŝ(t)|u1,iδu1t (1 − δit )

+
J∑

i=1

|Ŝ(t)|i,u2δit (1 − δu2t ) −
J∑

i=1

|Ŝ(t)|u1,i

where
∑J

i=1 |Ŝ(t)|u1,i is a constant.
Thus, the problem can be transformed into an s-t min-cut

problem on a graph

min
δt∈{0,1}J

J∑

i=1

|Ŝ(t)|u1,iδu1t (1 − δit ) +
J∑

i=1

|Ŝ(t)|i,u2 δit (1 − δu2t )

+β

J∑

i, j=1

∣
∣Ŝ(t)

i j

∣
∣δit (1 − δ j t)

which can be solved by applying the maximal flow algorithm.
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