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ABSTRACT 
We extend the lifetime of Flash memory in embedded processors by 
exploiting the fact that data from sensors is inherently analog. Prior 
work in the computer architecture community has assumed that all 
data is digital and has overlooked the opportunities available when 
working with analog data, such as the data recorded by sensors. In 
this work, we introduce redundancy into the quantization of sensor 
data in order to provide several alternative representations. Notably, 
we trade off distortion—the difference between the sensed analog 
value and the digital quantization of that value—to improve lifetime. 
Our simulations show that when combining rate, distortion and 
lifetime tradeoffs we can extend Flash lifetime at a far smaller 
capacity cost compared to prior work. More specifically the 
simulated system shows that it is possible to achieve up to 2.75× 
less capacity cost compared to redundant Flash memory and 1.29× 

less capacity cost compared to the state of the art coding schemes. 

CCS Concepts 

• Information systems➝Information storage systems 

• Hardware➝Robustness. 
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1. INTRODUCTION 
Embedded computer processors often record data from sensor 
inputs.  The processor’s memory logs data such as temperature, 
pressure, light intensity, etc., all of which are inherently analog 
values.  The sensor thus needs to digitize the data—for example, by 
taking an analog temperature and converting it into a 10-bit digital 
value—before the processor can record it in its digital memory. 

These embedded processors typically use non-volatile memory 
(NVM) to log these data. Today, the NVM of choice is Flash, 
although other technologies are emerging that may also serve this 
role well.  Flash is dense, relatively inexpensive, and has sufficient 
performance (latency and bandwidth) for most applications. 

The challenge with NVMs like Flash is that they wear out.  A Flash 
cell can only be erased so many times before it can no longer be re-
written.  For embedded processors that cannot (easily) be accessed 
or repaired, this lifetime limitation can be a crucial limitation on the 
useful lifetime of the processor. Some applications include sensors 
that track driving habits in cars, animal tracking, weather balloons, 
and ocean probes. 

The simplest method of achieving a target lifetime is to simply 
provide additional Flash memory, beyond the host-visible capacity, 
and to use that memory as portions of the Flash wear out. However, 
it is possible to achieve a better tradeoff between lifetime and host-
visible capacity by implementing endurance codes [1, 2, 3, 4, 5, 6, 
7]. The most promising schemes employ coset codes [8, 9] where 
data is encoded as a coset of a linear code. Each coset can be 
represented by multiple binary vectors (bit strings)—thus providing 
flexibility in what to write—and the representative is chosen to 
reduce the number of bits written to memory and/or promote wear-

leveling. Flip-N-Write [10] is perhaps the simplest example of a 
coset code. The linear code is a repetition code, and every coset 
contains two possible representatives, a binary vector and its 
complement. The coset codes proposed in FlipMin [9, 11] are based 
on convolutional codes. More recent work on data shaping [12] 
combines lossless data compression and endurance coding into a 
single encoding operation that transforms structured data into a 
sequence that induces less cell wear. 

All of these prior coding schemes make trade-offs between memory 
lifetime and rate. The rate of a coding scheme is defined as the ratio 
between the host-visible capacity and the raw capacity of the 
memory. As an example, Flip-N-Write [10], at the byte granularity, 
adds an extra bit that represents the choice of coset representative 
between a vector and its complement, thus creating a rate of 8/9. 
High rate codes are attractive because of their low cost, but 
substantial lifetime gains only come with lower rates. We refer to 
these previous schemes as rate/lifetime (RL) coding. 

This paper goes back to the analog sensing application to introduce 
a new degree of freedom, that of distortion, which is the distance 
between the actual analog value and the quantized digital value that 
is recorded. The tradeoff between the number of bits used to 
quantize the analog signal, and the resulting distortion, is governed 
by rate-distortion theory [13]. However, we are not interested in 
finding a single quantization point that minimizes distortion, but 
rather in finding several alternative quantization points, each with 
bounded distortion. We refer to this new tradeoff as 
lifetime/distortion (LD) coding. 

In this paper, we present the first coding schemes that combine RL 
and LD coding. We map each of the alternative quantization points 
to different cosets and thus provide a larger set of coset 
representatives to select from. We refer to these schemes as 
rate/lifetime/distortion (RLD) coding as they enable tunable 
tradeoffs between rate, lifetime, and distortion.  

We also present a novel scheme for using higher-precision sensors 
to enable us to obtain the benefits of RLD techniques without 
suffering any increase in distortion. As a simple example, consider 
an embedded processor that achieves a target distortion using a 10-
bit sensor.  Replacing the 10-bit sensor with a 12-bit sensor can 
provide several alternative quantization points, each represented by 
a 12-bit data vector, and each able to represent the signal within the 
target distortion (or better). We can compare the cost of writing each 
12-bit data vector to memory and select the alternative that 
maximizes memory lifetime. We show that this coding scheme can 
achieve a range of lifetime gains (up to 12×) for up to 2.75× less 

capacity cost compared to redundant Flash memory and 1.29× less 

capacity cost compared to the most promising endurance coding 
schemes that prior works have proposed. 

Our RLD coding schemes, like all coding schemes, have a cost in 
terms of rate.  In this work, we focus specifically on embedded 
systems where Flash durability is extremely critical and repair is 
impractical.  High cost (i.e., low rate) coding schemes are practical 
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for these systems, whereas they are unlikely to be attractive for 
typical consumer electronics or servers. 

2. FLASH MEMORY 
Flash memory currently dominates the market for non-volatile 
storage. It provides a low latency, high bandwidth, and high density 
alternative to hard disk drives. Because of all those benefits, Flash 
can be found in most modern computer systems, from enterprise 
datacenters to personal computers and embedded systems. 

Before explaining our coding schemes, we first provide a primer on 
Flash memory and its characteristics that are relevant to our work.  
Most importantly, we must explain how Flash wears out. 

2.1. Organization  
Flash memory is organized in blocks, and each block contains some 
number of pages (e.g., 256 pages/block). Each page contains some 
number of Flash cells (e.g., 8192 cells/page) that are used to store 
bits.   

Flash cells come in several varieties that are distinguished by how 
many levels they have.  A single-level cell (SLC) has two levels1 
and can thus hold one bit (i.e., one level corresponds to 0 and the 
other level corresponds to 1).  Flash cells can have more than two 
levels, and 4-level cells (MLCs) are most common.  In uncoded 
usage, a cell with L levels can hold log2L bits.   

2.2. Reading, Writing, and Erasing 
Flash can be accessed (read or written) only at the page granularity. 
A Flash cell stores information by trapping charge, and charge can 
be added incrementally to move from one level to another. However, 
charge can only be removed in its entirety through erasing; erasing 
brings the cell’s level to its lowest level. 

For example, a 4-level cell (MLC) has four different levels of charge 
(levels L0, L1, L2, and L3), and thus it can theoretically be used to 
either store two bits or to store one bit that can be re-written three 
times (before needing to erase) as seen in Figure 1. The latter option 
is more attractive for lifetime gain. However, as prior work has 
shown [14, 8], real-life MLCs do not allow for any arbitrary 
transition from a lower level to a higher level. Instead due to 
constraints imposed by the physical layer and the Flash translation 
layer, 4-level cells can only be practically used to store 2 bits. 
Similar is the situation for cells with more levels. 

To overcome this problem, prior work [8] has proposed to alter the 
Flash translation layer and provide an interface with “ideal cells” (or 
virtual cells). These ideal cells can be composed from any 
underlaying cell technology (SLC, MLC, etc.), but they incur a 
capacity cost. For example, we can take a group of Flash cells (of 
whatever kind) that has a capacity of C bits and use it to implement 
a group of C/3 ideal 4-level cells, where each cell now stores one bit 
that can be re-written 3 times. For the rest of this work, we assume 
as a baseline a Flash memory with ideal 4-level cells; our work and 
all comparison schemes start from this same baseline. 

Although pages are the granularity for reading/writing, blocks are 
the granularity for erasing. Thus, all the pages of a single block must 
be erased at the same time. This granularity of erasing is significant 
because we might not want to erase all of them at the same time. For 
a variety of reasons, updates of data in Flash are performed “out of 
place”. When we want to update the contents of a page we mark that 
page as invalid and pick a new, clean page to write our new data. 
Eventually we run out of clean pages and need to reclaim some 
previously used pages. Ideally, we could find a block that has only 
invalid pages on it, but often blocks have some number of valid 

                                                           
1 The name SLC is standard, even though it is perhaps counter-

intuitive that a single-level cell has more than a single level. 

pages on them that need to get moved before the block can be erased; 
the extra writes to move these valid pages is a cost called write 
amplification.  

2.3. Flash Wearout and Mitigation 
Flash wears out because of its physics. During a block erasure, the 
trapped charge of its cells is released. This process can slowly 
damage the cells and cause them to degrade [14, 15]. Eventually the 
cells become unable to retain their charge (and thus store bits). That 
means that after a certain number of erases the cells are unable to be 
written again. The number of erases before the cells wear out 
depends primarily on the Flash technology and the number of levels 
per cell. 

To improve the lifetime of Flash, one must increase the number of 
times cells can be written before needing to be erased. The key idea 
is that a Flash page can be re-written as long as every cell in that 
page can be re-written, i.e., no cell needs to have its charge level 
decreased [16]. (Recall that decreasing the charge level can only be 
achieved by erasing a whole block.) 

Figure 2(a) presents an example of a valid Flash page re-write. Each 
square represents a 4-level cell of the page. The number inside the 
square represents the level of the cell (L0-L3) and it corresponds to 
a bit value. Observe that we only re-write the cells whose 
corresponding bits need to change.  Figure 2(b) shows an example 
of an invalid update. The update fails this time as we need to write a 
cell that is already saturated. To achieve that, we need to erase that 
cell. However, as we already discussed, erasing individual cells is 
not possible in Flash memory. It is clear from Figure 2 that the bit-
sequences of successive updates can dictate the number of re-writes. 

In this work, we carefully pick the bit sequences we write on a page 
in order to maximize the number of possible re-writes and thus 
lifetime. 

3. RATE/LIFETIME (RL) CODING 

BACKGROUND 
There is a long history of using RL coding to improve the lifetime 
of Flash, and our RLD codes build on this literature. In this section, 
we discuss the most promising RL coding scheme for Flash (coset 
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Figure 1. An ideal 4-level cell can either store two or one bits  
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Figure 2. Re-writing a simplistically short page with five 4-

level cells (i.e., each cell can have value 0, 1, 2, or 3). 
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codes), and we discuss a more traditional error correction code 
(Reed-Solomon codes) that we use in conjunction with coset coding.   

3.1. Coset Codes 
Coset codes were introduced by Forney [17, 18] and they have been 
used before as RL codes for Flash [8, 9]. They show the greatest 
promise for Flash, and we also incorporate them into our RLD 
codes. We now present a brief primer on coset codes. 

3.1.1.  Using Coset Codes 
 A conventional error detection/correction code (e.g., Hamming) 
takes as an input a k-bit dataword and produces an n-bit codeword. 
The rate of the code is k/n.   

 A coset code is different in that it maps a k-bit dataword to a 
unique group of n-bit codewords called a coset. Each coset contains 
2m codewords, where n=k+m. Thus, each dataword can be 
represented by any of the 2m codewords (known as coset 
representatives) that belong to its unique coset. This procedure is 
shown in Figure 3. 

 The benefit of coset coding—both for prior RL codes and for our 
new RLD codes—is that it provides multiple options for what to 
write. An RL coding scheme can choose which coset representative 
to write so as to optimize an objective (e.g., intra-word wear 
leveling).  To select a codeword from a coset requires a metric 
function, and we can choose this function based on our desired 
goals.  We assign costs to each codeword and pick the one with the 
least cost. 

3.1.2. Generating Coset Codes 
 Coset codes can be generated by using a linear code C, and C can 
either be a convolutional code or a block code. Prior work on 
extending Flash lifetime [8, 9] has mainly focused on coset codes 
that are generated through convolutional codes that enable one to 
encode long datawords (i.e., thousands of bits). However, these 
codes are less useful for encoding sensor data where the datawords 
may be very short (i.e., tens of bits). For this reason, in this work, 
we focus on block codes that we organize in such a manner to allow 
for efficient coset generation as well as coset representative 
selection. 

We demonstrate the process of coset generation through a simple 
example. We use the Hamming(7,4) code as C, to create a coset code 
with n=7, k=3, and m=4. This code has 3-bit datawords, 7-bit 
codewords, and 24 codewords per coset.  Its rate is 3/7. 

The generator matrix G’ of the Hamming code is, 

𝐺′ = [

1 1 1
0 0 1
0 1 1

1 1 1
1 1 1
0 0 1

1
0
1

1 0 1 0 1 0 1

] 

We reduce 𝐺′ to its echelon form G=[𝐼𝑛−𝑘|B], 

𝐺 = [

1 0 0
0 1 0
0 0 1

0 0 1
0 1 0
0 1 1

1
1
0

0 0 0 1 1 1 1

] 

The code C contains p = 2m codewords, each codeword of the form 
𝑐 = 𝑤 × 𝐺, for some m-bit string 𝑤. 

𝐶 =

[
 
 
 
 
𝒄𝟏
𝒄𝟐
𝒄𝟑
⋮
𝒄𝒑]
 
 
 
 

=

[
 
 
 
 
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 1 1 0

⋮
1 1 1 1 1 1 1]

 
 
 
 

 

 Now let us assume that we want to encode the dataword 𝒂 = [101]. 
Every dataword maps to a unique coset, and every coset has a unique 
coset label of the form 𝒒 = [𝟎𝐦, 𝒂]. For this example, 

𝒒 =  [0 0 0 0 1 0 1] 

We can now generate all the coset representatives v that belong in 
the unique coset q by performing a logical exclusive-or operation 
between q and C. 

[
 
 
 
 
𝒗𝟏
𝒗𝟐
𝒗𝟑
⋮
𝒗𝒑]
 
 
 
 

= 𝒒 𝑋𝑂𝑅 𝐶 =

[
 
 
 
 
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 1 0 0 1 1

⋮
1 1 1 1 0 1 0]

 
 
 
 

 

Any of the p coset representatives above can be used to represent 
our dataword a. In order to recover our initial data a from a coset 
representative v we will need the parity check matrix H of the code 
C. This matrix is of the form 𝐻 = [𝐻1|𝐻2] and for our example, in 
its echelon form, is simply: 

𝐻 = [
0 1 1 1
1 0 1 1
1 1 0 1

1 0 0
0 1 0
0 0 1

] 

𝐻1 = [
0 1 1 1
1 0 1 1
1 1 0 1

], 𝐻2 = [
1 0 0
0 1 0
0 0 1

] 

By solving the equation 𝐻2 × 𝒂
𝑻 = 𝐻 × 𝒗𝑻 we can recover a. In 

other words, we can use the parity check matrix 𝐻 as a “decoding 
matrix.” This process can be performed for any block code C with 
dimensions (n,m). 

3.1.3. Encoding Example 
We now present a short example of how the metric function and the 
coset representatives are combined to re-write a Flash page. We 
assume that we want to store the dataword 𝒂 = [101] and our goal 
is to minimize bit flips.  For simplicity, assume a page that consists 
of a single codeword. 

We initially read the page we intend to rewrite. Let us assume that 
its content is given by, 

𝒗𝒐𝒍𝒅 = [0 0 1 0 0 1 0] 

Now we calculate a cost for each one of the coset representatives of 
𝒂 according to a metric function that tries to minimize bit-flips. Note 
that the coset representatives that map to dataword 𝒂 were generated 
in Section 3.1.2. For the purpose of this example, we assume that the 
metric function adds a cost of one for each bit flip. Thus, the cost of 
each representative becomes, 

[
 
 
 
 
𝑐𝑜𝑠𝑡1
𝑐𝑜𝑠𝑡2
𝑐𝑜𝑠𝑡3
⋮

𝑐𝑜𝑠𝑡𝑝]
 
 
 
 

=

[
 
 
 
4
2
1
⋮
3]
 
 
 

 

codeword 𝒄𝟏
codeword 𝒄𝟐
codeword 𝒄𝟑

codeword  𝒄𝟐   

dataword - 1

dataword - 2

dataword - 3

dataword - 𝟐 

Coset - 1

Coset - 2

Coset - 3

Coset - 𝟐 

Codewords of Coset-3

Figure 3. Mapping datawords to cosets to codewords 
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We then select the representative with the least cost; here that is 𝒗𝟑, 

which has a cost of 1. We now update the Flash page with a new 

codeword 𝒗 𝒆𝒘, 
𝒗 𝒆𝒘 = 𝒗𝟑 = [0 0 1 0 0 1 1] 

In a more realistic example, our metric function will also account for 
other objectives (not only minimizing bit flips), like avoiding 
rewriting of saturated cells. Coset representatives that cannot be 
used to rewrite a page (because they need to rewrite saturated cells) 
are given an infinite cost. If all of the coset representatives that map 
to a dataword have infinite cost, we declare a rewrite failure. We 
then proceed to mark the page as invalid and pick a new clean page 
on which to store our data. 

3.2. Reed-Solomon Codes 
Our RLD codes are based on coset coding, but they also incorporate 
Reed-Solomon codes to enhance their benefits.  Reed-Solomon (RS) 
codes [19] are well known for their error correction capabilities. To 
encode a message with a RS code, we first need to segment it into 
symbols of a fixed bit length. Encoding a K-symbol long message 
with RS produces a new message that is N-symbols long. The 
encoded message can now detect and correct errors at a symbol 
granularity. More specifically, we can correct up to t=N-K erroneous 
symbols and detect up to 2t.  

Figure 4 gives a naïve example of a RS code operating on a 5-
symbol message where each symbol is 3-bits long. Note that the cost 
of this code is given by the rate K/N. 

4. UNIFORM QUANTIZATION 
Sensors use analog-to-digital converters (ADCs) to represent an 
analog signal as a bit string that can be digitally stored and 
processed. This process introduces distortion and the relationship 
between rate and distortion has been studied extensively in the 
information theory literature. Here we only consider Pulse Code 
Modulation (PCM), where a b-bit sensor has 2b different, uniform, 
scalar quantization levels, each of width Δ [20].  

Figure 5 shows a 3-bit uniform quantizer (3-bit PCM), with 23 = 8 
quantization levels. Any analog value within the boundaries of a 
quantization level is quantized to the point at the center of that level. 
In other words, the analog value is rounded to a discrete digital 
value. 

Because of this rounding process, the digital value and the analog 
value are not identical. The distortion is the difference between the 
two values and is typically measured as the squared Euclidean 
distance. Consider a sensor with b bits of resolution and a range x of 
analog values.  In this situation, the maximum possible distortion is 
given by d=(Δ/2)2=(x/2b+1)2. Going back to the example of the 3-bit 
sensor, if we assume that we are reading values ranging from 0 to 1, 
then the maximum distortion is d=0.06252. Another often used 
metric is the mean squared error (MSE), which describes the 
expected average distortion and is given by Δ2/12. 

5.  RLD CODING 
The main contribution of this paper is the introduction of a coding 
theoretic framework that makes it possible for computer architects 
to tradeoff rate, memory lifetime, and distortion. 

5.1. LD Coding 
We now introduce lifetime/distortion (LD) coding, in which we 
trade off distortion and Flash lifetime. We first show how to increase 
lifetime by allowing more distortion, and we later (Section 5.3) show 
how to obtain the same lifetime benefits with no additional distortion 
by increasing the resolution of the sensor. 

 Suppose that a b-bit sensor is used to record analog data, and that 
the digital values are then stored in Flash memory. Suppose now that 

an analog value, quantized as QL, can instead be quantized to either 
itself or any of its 2M immediate neighbors QL-M, ……., QL, ……., 
QL+M, as shown in Figure 6(a). That flexibility allows us to carefully 
choose the bit string to write so as to increase how many times we 
can re-write the Flash and thus increase its lifetime. However, 
distortion grows with the number of nearest neighbors M. The 
growth in distortion is predictable and M can be adjusted to meet 
specific constraints.  

5.2. LD + RL = RLD Coding 
 To further increase the potential lifetime gains of our scheme we 
combine the lifetime/distortion (LD) tradeoff with a rate/lifetime 
(RL) tradeoff to create a RLD code. To achieve this goal, we 
integrate the multiple analog signal representations (quantization 
levels) with coset codes and Reed-Solomon codes to create RLD 
codes.  

5.2.1. Coset Coding 
We combine coset coding and LD coding in a complementary way.  
With LD, we take a given dataword (the quantization value) and 
consider multiple datawords near its value.  With RL, we take a 
single dataword and map it to multiple codewords.  The combination 
is RLD coding, which takes a given dataword and considers it along 
with nearby datawords and, for each of those candidate datawords, 
considers any of the codewords in its coset.  If LD provides us with 
2M+1 datawords and RL provides us with C codewords per 
dataword, then RLD coding provides us with C(2M+1) codewords 
from which we can choose.  Intuitively, as M and C increase, we 
have more flexibility, but we have more distortion and lower rate, 
respectively. 

RLD provides many options for what to write for a given dataword, 
and we need a metric function for choosing the best one.  We borrow 
the metric function that was introduced by Methuselah Codes [8] to 
help us make that decision. This metric function is tailored 
specifically for Flash and helps extend its lifetime by promoting 
three objectives: (1) Avoid codewords that require rewriting 
saturated cells, (2) minimize the number of cells that need to be 
rewritten, and (3) balance level increments across cells. 

For each one of the 2M+1 different cosets we use the metric function 
to select a winner codeword. From the 2M+1 winning codewords 
we simply use the one that has the least overall cost. We illustrate 
this coset selection procedure in Figure 6(b). 

5.2.2. Coset Coding and Reed-Solomon 
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Figure 5. Uniform scalar quantization with 3 bits 

Dataword: 001  100  010  000  111

RS Encoding

K=5 Symbols

N=7 Symbols

Codeword: 001 100  010  000  111  110  101

Figure 4. Reed-Solomon example with 3-bit 

symbols 
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The RLD code described above can provide a tunable number of 
options for what to write.  However, sometimes even with many 
options, we still might not have an option we like.  This situation is 
particularly frustrating when one or a small number of datawords 
with this problem cause an entire page to be un-writeable. 

To mitigate this problem, we introduce a second layer of code that 
allows us to “skip” writing a codeword that is problematic.  Rather 
than immediately storing each codeword after coset selection, we 
first buffer K of them. Codeword buffering is actually a standard 
practice for Flash, anyway, because we write full pages at a time (not 
just individual codewords).  

We now use Reed-Solomon coding to skip these problematic 
codewords, as illustrated in Figure 6(c). We treat each of the K 
selected codewords as a symbol. Each symbol represents the coset 
of the codeword. We use Reed-Solomon coding to produce N-K 
additional symbols (cosets) that we write to Flash. As the new 
symbols represent cosets (and not codewords) we still need to 
perform the Viterbi algorithm in order to select the best codeword 
for the redundant N-K cosets. Reed-Solomon coding provides error 
correction at the symbol granularity, so a Reed-Solomon code that 
can correct t symbols would allow us to skip (not write) the t most 
problematic codewords (i.e., treat them as errors).  That is, we could 
choose the t codewords with that scored the highest costs during the 
coset selection process. Additionally, if some codewords cannot be 
re-written because the Flash page is getting saturated, then we can 
just skip them as long as the total number of codewords that is not 
updated is less than or equal to t. The Reed-Solomon code can later 
recover the codewords that were not written. 

Although this scheme can extend lifetime beyond our initial RLD 
code, with each additional layer of code we further decrease the 
code’s rate because we must store more redundant bits. Thus, this 
Reed-Solomon coding is only optional and we can choose to use it 
depending on our implementation’s goals and constraints.  

Figure 6 presents the entire process from the moment an analog 
value is recorded from the sensor until it is stored into the Flash 
memory.  

5.3. Extending Lifetime for a Fixed Distortion 
We have shown that it is possible to extend lifetime at the cost of 
increased distortion. However, there are circumstances in which it is 
not acceptable to increase distortion, and so we now describe how it 
is possible to use a higher precision sensor to extend lifetime without 
increasing distortion.   

To demonstrate this idea, we focus on a simple example. We assume 
that a b-bit sensor has been chosen for a specific implementation and 

the maximum allowable distortion (squared Euclidean distance) is 
d. Now we replace the b-bit sensor with an (b+2)-bit sensor and thus 
the maximum quantization error is now d/16. However, this time we 
will allow for some flexibility when recording data. When an analog 
value is mapped to a quantization point QL, we consider writing any 
of the three options QL-1, QL and QL+1. (That is, M=1). Thus, we now 
have three (b+2)-bit candidates to choose from when storing each 
sensor reading. Note that because of this process, the maximum 
distortion is 9d/16 which is still lower than our initial distortion of 
d. We refer to this scenario as 2-bit sensor cost, because we use a 
sensor with 2 extra bits of precision. 

 

In another scenario, we replace the b-bit sensor with a (b+1)-bit 
sensor and again consider three quantization options per sensor 
recording (i.e., M=1), with maximum distortion of 9d/4. Note that in 
this scenario the distortion is worse than that of the b-bit sensor but 
better than that of the (b-1)-bit sensor, and we show later that this 
design enables significant lifetime gains. We refer to this scenario 
as 1-bit sensor cost. 

 We note that different sensor precisions lead to different MSE 
values. If the b-bit sensor has an MSE=e=Δ2/12, then the (b+1)-bit 
sensor has MSE=e/4, and the (b+2)-bit sensor has MSE=e/16. 

6. IMPLEMENTATION 
In this section, we explain the processes for encoding and decoding, 
and we discuss how we would implement these processes in 
hardware. Although some of these processes may appear 
complicated at first, most of them can be reduced to simple logic. 

6.1. Encoding 
The encoding process involves three steps: (1) map a dataword 
(quantization point) to its corresponding coset, (2) generate the coset 
representatives, and (3) search the coset to select the best 
representative according to our metric function. As we presented in 
Section 3.1, mapping a dataword to its coset is simply done by 
prepending a string of 0s to the dataword in order to get the coset 
label q. In other words, there is a direct mapping from quantization 
levels to cosets. A simple up-down counter can generate all of the 
quantization levels/cosets we consider for each sensor reading. 

The most critical and computation challenging process are the last 
two steps. We present the three possible ways to generate the coset 
representatives and perform the search to select the best of these 
codewords. For reasons explained below, we implement the third 
option. 

 

Figure 6. RLD Coding.  Qw is the quantization point corresponding to Cosetw, and Cosetw has the codeword with the least cost among 

all codewords in all 2M+1 cosets.  With Reed-Solomon, we buffer K symbols (i.e., codewords that were produced during coset 

selection) and then encode them as N symbols; these N symbols are what ultimately get written to the Flash memory 
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The first option is to straightforwardly implement the matrix 
computations presented in Section 3.1.2. Generating the coset 
through the generator matrix of a block code requires substantial 
computation (matrix multiplication) but only minimal storage 
overhead as we would only need to store the generator matrix G and 
the decoding matrix D. Additionally, after generating the coset 
representatives, we would need to apply the metric function though 
a brute force approach to select the best codeword. However brute 
force algorithms may incur high latencies.   

The second option is to replace the on-the-fly computation of the 
first option by generating and storing all the cosets and their 
representatives in look-up tables before we start recording data with 
our sensor. This computation only needs to be performed once but 
incurs additional capacity overheads that become more significant 
for longer codes. Additionally, we would still need to apply brute 
force search in order to select the desired representative. 

The third option—and the one we implement—is using the Viterbi 
algorithm to efficiently generate and at the same time search the 
representatives for the one with the least cost. The Viterbi algorithm 
is based on dynamic programming and can efficiently generate and 
select the best representative.  However, in order to use the Viterbi 
algorithm, we first need to express our code as paths through a trellis 
(see Forney [17, 18]). Although this is an easy process when using 
convolution codes (as the code C), there is an additional level of 
complexity when doing so for block codes. Prior work [17, 18, 21] 
has shown how block codes can be described by trellis paths by 
adding some constraints on the last paths of the trellis. Because of 
these constraints, the Viterbi algorithm needs to be executed 
multiple times to find the best codeword. More specifically, if the 
trellis has S states we need to run the Viterbi algorithm S times; these 
S executions can be parallelized. Prior work [8, 9] has also used the 
Viterbi algorithm to generate coset codes and select the 
representatives with the least cost. Viterbi incurs minimal capacity 
and latency overheads compared to the two previous options. We 
only consider codes with 4-16 states at each trellis stage and trellis 
states with out-degree of 2. 

In Figure 7, we present all of the hardware components needed for 
the encoding process. Note that the codeword selection process, 
performed by a Viterbi hardware accelerator, is repeated serially for 
each quantization level. Although we could parallelize the 
procedure, we choose not to in order to minimize the amount of 
hardware and power needed. The selected codeword is stored along 
with its cost. A comparator later selects the codeword with the 
overall least cost. We also note that we need to buffer a single Flash 
page, because the Viterbi accelerator needs to know the current state 
of the Flash page in order to select the best coset representative. The 
final codeword is first stored in the buffered Flash page. When we 
are done re-writing the whole page, we proceed to store it in the 
actual Flash memory. The next page we intend to re-write is loaded 
into the buffer and the process is repeated. 

If we choose to also apply the Reed-Solomon optimization, we also 
need an additional encoding matrix. The RS uses a simple binary 

vector for matrix multiplication. The cost of that multiplication can 
be amortized through the number of symbols we encode, as each 
symbol represents a recorded value from our sensor. Thus, the most 
critical part is the Viterbi accelerator that needs to execute multiple 
computations for every value that the sensor records. 

In Section 8.4, we analyze the cost of the Viterbi hardware 
accelerator. 

6.2. Decoding   
To decode a codeword (i.e., a coset representative), we just need to 
multiply it with the parity check matrix, H, as discussed in Section 
3.1.2, in order to recover the initial dataword. Although this may 
sound difficult, the parity check matrix is usually a sparse binary 
matrix and thus the multiplication can be reduced to several logical 
XOR operations. 

In the case we also used Reed-Solomon coding, additional 
processing is necessary to recover any codewords that we 
intentionally decided not to write. This process requires solving a 
number of linear equations in order to detect the location of 
potentially erroneous symbols. Although this process can be 
relatively computational intense, the latency overheads can be 
amortized over the number of sensors readings (K) that are decoded 
at the same time.  

The decoding logic can be located either on the embedded processor 
or on the system that receives and consumes the embedded 
processor’s data. 

7. EXPERIMENTAL METHODOLOGY 
We envision RLD coding being used primarily on embedded 
processors with demanding requirements for Flash endurance.  
These processors will have a range of tolerances for other metrics 
that depend on the processor’s usage model, and these metrics 
include Flash capacity, performance, energy, power, and distortion.  
Because we cannot possibly evaluate all possible sensor 
applications, we focus mainly on one example application.  

7.1. System Model 
We use Matlab to simulate the behavior of our Flash memory 
system, both with and without our coding schemes.  We simulate a 
Flash memory that consists of pages of ideal 4-level cells (recall 
from Section 2), and all schemes evaluated use these ideal cells. 
Unless otherwise specified, the baseline’s sensor has 10 bits of 
precision. 

For RLD coding, we vary the following parameters: sensor 
precision, amount of distortion (M), coset code, and Reed-Solomon 
rate. Nevertheless, we focus most of our experiments on a 12-bit 
sensor, M=1, and a coset code generated through a Golay(24,12) 
code [22].  When used, the default Reed-Solomon rate is 0.5.  With 
these parameters, for each sensor reading, we can now select among 
three quantization points (cosets) where each one contains 212 
different 24-bit codewords. 

 

Figure 7. A Hardware Implementation of the Encoding Process 
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We refer to RLD codes with the following notation: RLD[coset 
code, value of M].  For example, when we use the Golay(24,12) 
coset code with M=1, we denote it as RLD[Golay(24,12), 1].  If we 
also use the Reed-Solomon option with a rate of s, we denote it with 
“+RS(s)” appended to the coset code, as in 
RLD[Golay(24,12)+RS(s), 1].  

7.2. Experiments 
To test our RLD codes and calculate their gains, we consider both 
random data inputs and data inputs from a sensor that records 
gradually increasing/decreasing light intensity as a voltage between 
0 and 3.3 volts every 20 milliseconds. In the case of real data, we 
first record the data using a 12-bit sensor and then input them to 
Matlab to perform our simulation. In the case of random input data, 
we generate random binary vectors of length b+2 or b+1. We vary 
the value of b to test different codes with different rates. The 
simulator reads the data in the same order that were generated and 
forwards them to our RLD scheme to be processed.  

After the data are processed they are stored to a Flash page. We 
simulate a single page of Flash, starting with a blank page, and re-
writing data to the page, without erasure, as many times as 
allowable. When the cells are saturated and re-writing is no longer 
possible, we erase the page and start again.  

Simulating a single page suffices for random data, for two reasons. 
First, the Flash interface performs writes “out of place” and thus 
effectively randomizes the data that are written each time (i.e., there 
is no correlation between what is being written to a page and what 
was previously written to it), as explained in Section 2. Second, 
because we run our simulations multiple times and take average 
results, we expect to have statistically the same results as with 
simulating many pages. 

Simulating a single page with real data inputs is actually less realistic 
than using random data, because there will be unlikely correlations 
between what is being written and what was written previously. We 
perform this experiment to determine if these correlations greatly 
help our coding schemes.  If so, that result would argue for “in-
place” updates in Flash for sensor devices. 

We measure Flash lifetime as the average number of re-writes per 
erase. There are two other metrics we considered, but neither is as 
insightful.  One option is the lifetime of an entire Flash memory (or 
even just a page of Flash memory), but those results are proportional 
to our metric multiplied by a very large and not exactly known 
number, which is the expected number of erases a cell can tolerate 
before wearout. Another option for a metric is the percentage of 
saturated cells in a page, but this is also less informative. Consider 
two example scenarios: one where we re-write a page 10 times 
before erasing and only half the cells are saturated, and one where 
we re-write 2 times with all the cells being saturated. The first 
example is still better in terms of lifetime as we utilized the page 
more before erasing it.  

We compare our scheme against a baseline (denoted as “Baseline”) 
that uses each ideal 4-level cell to hold one bit and can thus write the 
cell 3 times before each erase, as discussed in Section 2 (i.e., its 
lifetime is 3) and illustrated in Figure 1(b).  We also compare against 
an RL code (denoted as “RL”) that uses the same coset code as we 
do.  

7.3. Metrics 
The primary coding metrics we consider are lifetime, distortion, and 
rate.  We express rate as the ratio of host-visible capacity to total 
(raw) capacity.   

One other insightful coding metric is aggregate gain, which was 
introduced by Mappouras et al. [8].  Aggregate gain is the product 
of rate and lifetime. Thus, for a given lifetime, greater aggregate 

gains indicate more efficient implementation, in terms of capacity 
cost. Consider a baseline system with no coding (i.e., rate = 1), that 
uses ideal 4-level cells (and thus has a lifetime of 3); its aggregate 
gain is equal to 3. We normalize all aggregate gains to this baseline 
system. Although higher aggregate gains are generally preferable, 
sometimes the lifetime gain may be an overkill. For example, a 
lifetime gain of 12× for a Flash memory may exceed the lifetime of 

the sensor itself and be wasteful. Thus, one may prefer an 
implementation with lower lifetime gains but higher rate (i.e., host-
visible capacity) even if the overall aggregate gain is reduced. 

Lastly, we consider implementation metrics including latency and 
power. 

8. EVALUATION 
In this section, we evaluate and compare RLD coding to the Baseline 
and to RL coding. 

8.1. Lifetime Gain 
The most important metric in this work is lifetime gain.  Figure 8 
presents the lifetime gains for the Baseline, RL[Golay(24,12)], and 
RLD[Golay(24,12), 1]. Recall that the Baseline achieves 3 writes 
per erase. 

Our simulations show that, on random data, RLD achieves a lifetime 
of 14.8 writes per erase, which is 15.6% better than RL’s 12.8 writes 
per erase. We see that RLD provides an even greater advantage 
when considering real data. The reason behind that is because the 
recorded values often change slowly over time and thus consecutive 
updates exhibit high correlation. This characteristic—which may 
not occur in typical Flash—allows our distortion/lifetime tradeoff to 
maximize its gains and demonstrate that “in-place” updates may be 
a more suitable interface for sensor devices. 

In Figure 9, we present the lifetime of our RLD+RS code, as a 
function of its rate s. We fix the coset code (Golay(24,12)) and the 
distortion (M=1). We can see that the Reed-Solomon option can help 
RLD achieve remarkable lifetime gains that increase as s decreases. 
However there is not much difference between real and random data 
any more. Although we do not have any formal way to prove why 
this is the case, it could be that the page is already pushed to its limit 
of available re-writes for the given rate and distortion tradeoffs. 

8.2. Capacity Loss and Aggregate Gain (AG) 
Although RLD’s lifetime gains seem quite promising, we have to 
justify the rate (host-visible capacity) loss of our scheme. For that 
reason, we present the aggregate gain of each code.  We normalize 
the host-visible capacity of each code to that of the Baseline, which 
we denote as C. We explore the two different sensor resolution 
scenarios that we discussed in Section 5.3 (1-bit and 2-bit sensor 
costs).  

In Figure 10, we graphically present the results for the 2-bit sensor 
cost scenario; the Baseline has a 10-bit resolution while RLD has a 
12-bit resolution. We observe that, based on our simulations, 

Figure 8. Comparing Lifetimes 
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RLD[Golay(24,12)+RS(0.5),1] achieves the best aggregate gain of 
2.5 with a lifetime of 36 . That means that 
RLD[Golay(24,12)+RS(0.5),1] can achieve a lifetime of 36 for 2.5× 

less capacity cost compared to Baseline. RLD[Golay(24,12),1] 
achieves better lifetime than the RL code, but its aggregate gain is 
just less. This discrepancy is because the RLD code’s host-visible 
capacity is 10/12 that of the RL code, in order to account for the two 
additional bits of its higher precision sensor. 

To calculate the aggregate gains for the 1-bit sensor cost scenario 
we project these results for a Baseline that uses an 11-bit resolution. 
In this situations where some distortion is tolerable—perhaps 
because b-1 bits is too little resolution and b bits is more than 
necessary— RLD[Golay(24,12)+RS(0.5),1] achieves an aggregate 
gain of 2.75, while RLD[Golay(24,12),1] achieves an aggregate 
gain of 2.26, and thus both exceed the aggregate gain of prior work. 
The increase in aggregate gain is due to using only one extra bit of 
resolution (instead of 2). 

8.3. Exploring Other RLD Codes 
RLD comprises a range of codes. One can obtain the desired Flash 
lifetime by choosing the allowable distortion (determined by M) and 
rate (determined by the choice of coset code).   

8.3.1. Varying the Coset Code 
In Figure 11, we present the results for a fixed distortion (M=1), but 
a range of different coset codes.  We consider coset codes that are 
generated from various typical block codes (Hadamard, Golay) as 
well as block codes that are based on convolutional codes. We also 
include RLD[Golay(24,12)+RS(0.5), 1], which was in the previous 
figure, because it is our best code in terms of aggregate gain. 
Comparisons are somewhat tricky in that the different coset codes 
have different dataword sizes.  We assume the Baseline has b-bit 
resolution (the resolution of the Baseline does not affect its 
aggregate gain) and each RLD code has (b+2)-bit resolution.  This 
added resolution introduces a cost (in terms of rate) for the RLD 
codes. 

Our simulations show that different RLD codes can achieve better 
rate (greater host-visible capacity) than RLD[Golay(24,12), 1], but 
the aggregate gain is worse. This result is because codes that have a 
rate close to 0.5, like Golay(24,12), have been shown to “behave 
better”. However, no formal proof exists, in the field of information 
theory, that can explain this common observation between codes of 
different rate.  

8.3.2.  Varying the Distortion 

Figure 9. Lifetime of RLD+RS 
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We now consider the impact of distortion beyond M=1. In Figure 
12, we present results for RLD[Golay(24,12),M] as we vary the 
amount of distortion. When M=0, this code is the same as 
RL[Golay(24,12)]. 

We observe that as we increase the value of M, lifetime initially 
increases linearly. However, beyond M=4, we see a diminishing 
lifetime gain. The reason behind that is that we reach a point where 
adding more quantization points does not provide significant 
variation during the codeword selection process. To further explain 
this effect, one can imagine that we are trying to re-write an initially 
erased p-bit page. There are many codewords (p to be precise) that 
can re-write the page with only flipping a single bit. However, all of 
them are equivalent in terms of lifetime gain and thus adding more 
options does not result in significant lifetime gains.  

Further increasing M will eventually result in extremely high 
lifetime gains (until we reach infinite lifetime) because we will 
rarely have to re-write our memory as almost every quantization 
point will be considered for every recorded value. However, we are 
not interested in such a scenario as it results in no actual information 
stored to our memory because distortion also reaches infinity.   

8.4.  Power and Latency 
Any RLD (or RL) implementation must incur latency and power 
overheads, particularly because of the coset generation and selection 
process. As we already discussed, we can use a Viterbi accelerator 
to perform this process. For the RLD[Golay(24,12), M] 
implementation we use a single hardware accelerator. Because the 
RLD[Golay(24,12), M] implementation is based on a 16-state block 
code (i.e., Golay(24,12)), the accelerator needs to run 16 sequential 
times for each recorded value (see Section 6.1). Additionally, we 
need to repeat the whole process for every one of the three 
quantization points we consider. We could parallelize this process 
by adding several accelerator devices, if needed. We note that the 
latency of this process must never exceed the sampling rate of our 
sensor, otherwise values will be recorded faster than they can be 
encoded. 

There are several proposed Viterbi accelerators [23, 24, 25] that can 
achieve low latency and power. Using the power and latency 
overheads that are reported in those papers we can predict the 
overheads of our implementation. It is worth mentioning that these 
accelerators target implementations that use lengthy inputs (~100s 
of bits). Our implementation, however, only requires 12-bit inputs. 
Thus, the latency and power we report are on the high end of what 
should be expected.  

The Viterbi accelerator reported by Azhar et al. [25] has a latency of 
~70ns. Because we need to run 16×3=48 sequential times, our 
latency is 3.36ms, which is well below the 20ms sampling rate of 
our sensor. The power of the accelerator is just 12.4mW and it runs 
at 370MHz. Other Viterbi accelerators have lower latencies but 
higher power overheads. However, for our implementation, we 
prefer lower power as the latency is already sufficiently low. 

Other costs of our implementation include the intermediate buffers 
shown in Figure 7. The amount of buffering needed depends on the 
details of the implementation. For the RLD[Golay(24,12), M=1] this 
is just three 24-bit buffers and thus their area and energy overheads 
are not significant. Additionally, we perform an extra read before 
each write. This read is performed in the background, while 
recording data, and its latency is completely hidden. As the power 
of reads is about half that of writes [14], our scheme increases the 
power of Flash writes by 50%. However, this is an overhead that (to 
the best of our knowledge) all re-writing codes have to incur.   

As we can see, the overheads are minimal. We should mention, 
however, that for different sensors that have higher sampling rates 
we may need to use multiple accelerators to meet the latency 
constrains. That will result in higher power overheads. 

9. RELATED WORK 
Because of its importance, there is plenty of prior work that tries to 
extend the lifetime of Flash memory. The research in this topic can 
be categorized into three orthogonal approaches. The first approach 
is using codes that enable Flash pages to be re-written in order to 
increase how many times a page is written before it has to be erased. 
A number of prior papers [1, 2, 3, 4, 5, 6, 7, 26, 27] have focused on 
write-once memory (WOM) codes [28] (or variations of WOM 
codes) to extend the lifetime of Flash memory and other non-volatile 
memories. However, feasible WOM codes only allow 2-4 updates 
while more complicated implementations become infeasible due to 
their high complexity. Other re-writing techniques also exist [29] 
that use invalid pages to re-write data but only provide minimal 
lifetime gains. The most promising re-writing codes presented by 
prior work [8, 9] were based on coset codes (similarly to our RL 
implementation). Because of the high flexibility of coset codes, they 
can achieve high lifetime gains while providing a range of solutions 
and tradeoffs. However, none of the prior work on re-writing codes 
has considered the lifetime/distortion tradeoff that we present in this 
work. 

The second approach to extend Flash lifetime is by rethinking the 
organization and page management of a Flash device in order to 
perform wear-leveling and reduce the number of erases. Researchers 
have observed that the lifetime of Flash memory can be extended if 
we ensure that all of the blocks (and thus pages) are equally erased 
across the lifetime of the memory. By doing so we can assure that 
the memory will wear out evenly and thus prolong its overall 
lifetime. Prior work [30, 31, 32, 33, 34] focused on performing wear-
leveling across blocks and pages by enhancing the Flash translation 
layer (FTL), software that is responsible for performing various 
operations like garbage collection. Other researchers [35] focused 
on the system file level in order to reduce the number of unnecessary 
updates to the Flash. 

The third way to increase Flash lifetime is by tolerating errors that 
occur due to degraded cells and thus prolonging its effective time-
span. Dolacek et al. [36] and Sala et al. [37] have introduced channel 
coding techniques to minimize bit flip errors due to degraded cells. 
This body of work translates physical processes to channel models 
and then develops channel coding strategies that remediate errors in 
digital data. Guo et al. [38] provide error codes for Flash memory 
with flexible rates. They introduce different error protection levels 
for compressed data that have different impact on the final signal to 
noise ratio. Thus, they try to maximize the tradeoff between rate and 
noise on compressed data on Flash memory. 

We should also note that our work is relevant to approximate 
computing. Approximate computing [39] can be used to reduce 
energy and capacity as well as minimize the effect of early failures 
in NVMs. In this work though, we choose not to trade data accuracy 
and we extend lifetime beyond the point of what approximate 
computing can achieve. 

Figure 12. Lifetime while varying distortion 



10 

 

10. CONCLUSION 
Increasing the lifetime of Flash is important, particularly for 
embedded processors.  For embedded processors that record analog 
data from sensors, there is an exciting opportunity to consider 
multiple quantization points so as to provide flexibility in what to 
write.  We synergistically combine this flexibility in quantization 
with the flexibility provided by coset coding, and the resulting RLD 
codes provide a way to increase Flash lifetime while tuning the 
trade-offs with distortion and rate. 
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