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ABSTRACT

We extend the lifetime of Flash memory in embedded processors by
exploiting the fact that data from sensors is inherently analog. Prior
work in the computer architecture community has assumed that all
data is digital and has overlooked the opportunities available when
working with analog data, such as the data recorded by sensors. In
this work, we introduce redundancy into the quantization of sensor
data in order to provide several alternative representations. Notably,
we trade off distortion—the difference between the sensed analog
value and the digital quantization of that value—to improve lifetime.
Our simulations show that when combining rate, distortion and
lifetime tradeoffs we can extend Flash lifetime at a far smaller
capacity cost compared to prior work. More specifically the
simulated system shows that it is possible to achieve up to 2.75%
less capacity cost compared to redundant Flash memory and 1.29%
less capacity cost compared to the state of the art coding schemes.
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1. INTRODUCTION

Embedded computer processors often record data from sensor
inputs. The processor’s memory logs data such as temperature,
pressure, light intensity, etc., all of which are inherently analog
values. The sensor thus needs to digitize the data—for example, by
taking an analog temperature and converting it into a 10-bit digital
value—before the processor can record it in its digital memory.

These embedded processors typically use non-volatile memory
(NVM) to log these data. Today, the NVM of choice is Flash,
although other technologies are emerging that may also serve this
role well. Flash is dense, relatively inexpensive, and has sufficient
performance (latency and bandwidth) for most applications.

The challenge with NVMs like Flash is that they wear out. A Flash
cell can only be erased so many times before it can no longer be re-
written. For embedded processors that cannot (easily) be accessed
or repaired, this lifetime limitation can be a crucial limitation on the
useful lifetime of the processor. Some applications include sensors
that track driving habits in cars, animal tracking, weather balloons,
and ocean probes.

The simplest method of achieving a target lifetime is to simply
provide additional Flash memory, beyond the host-visible capacity,
and to use that memory as portions of the Flash wear out. However,
it is possible to achieve a better tradeoff between lifetime and host-
visible capacity by implementing endurance codes [1, 2, 3, 4, 5, 6,
7]. The most promising schemes employ coset codes [8, 9] where
data is encoded as a coset of a linear code. Each coset can be
represented by multiple binary vectors (bit strings)—thus providing
flexibility in what to write—and the representative is chosen to
reduce the number of bits written to memory and/or promote wear-

leveling. Flip-N-Write [10] is perhaps the simplest example of a
coset code. The linear code is a repetition code, and every coset
contains two possible representatives, a binary vector and its
complement. The coset codes proposed in FlipMin [9, 11] are based
on convolutional codes. More recent work on data shaping [12]
combines lossless data compression and endurance coding into a
single encoding operation that transforms structured data into a
sequence that induces less cell wear.

All of these prior coding schemes make trade-offs between memory
lifetime and rate. The rate of a coding scheme is defined as the ratio
between the host-visible capacity and the raw capacity of the
memory. As an example, Flip-N-Write [10], at the byte granularity,
adds an extra bit that represents the choice of coset representative
between a vector and its complement, thus creating a rate of 8/9.
High rate codes are attractive because of their low cost, but
substantial lifetime gains only come with lower rates. We refer to
these previous schemes as rate/lifetime (RL) coding.

This paper goes back to the analog sensing application to introduce
a new degree of freedom, that of distortion, which is the distance
between the actual analog value and the quantized digital value that
is recorded. The tradeoff between the number of bits used to
quantize the analog signal, and the resulting distortion, is governed
by rate-distortion theory [13]. However, we are not interested in
finding a single quantization point that minimizes distortion, but
rather in finding several alternative quantization points, each with
bounded distortion. We refer to this new tradeoff as
lifetime/distortion (LD) coding.

In this paper, we present the first coding schemes that combine RL
and LD coding. We map each of the alternative quantization points
to different cosets and thus provide a larger set of coset
representatives to select from. We refer to these schemes as
rate/lifetime/distortion (RLD) coding as they enable tunable
tradeoffs between rate, lifetime, and distortion.

We also present a novel scheme for using higher-precision sensors
to enable us to obtain the benefits of RLD techniques without
suffering any increase in distortion. As a simple example, consider
an embedded processor that achieves a target distortion using a 10-
bit sensor. Replacing the 10-bit sensor with a 12-bit sensor can
provide several alternative quantization points, each represented by
a 12-bit data vector, and each able to represent the signal within the
target distortion (or better). We can compare the cost of writing each
12-bit data vector to memory and select the alternative that
maximizes memory lifetime. We show that this coding scheme can
achieve a range of lifetime gains (up to 12X) for up to 2.75% less
capacity cost compared to redundant Flash memory and 1.29x less
capacity cost compared to the most promising endurance coding
schemes that prior works have proposed.

Our RLD coding schemes, like all coding schemes, have a cost in
terms of rate. In this work, we focus specifically on embedded
systems where Flash durability is extremely critical and repair is
impractical. High cost (i.e., low rate) coding schemes are practical



for these systems, whereas they are unlikely to be attractive for
typical consumer electronics or servers.

2. FLASH MEMORY

Flash memory currently dominates the market for non-volatile
storage. It provides a low latency, high bandwidth, and high density
alternative to hard disk drives. Because of all those benefits, Flash
can be found in most modern computer systems, from enterprise
datacenters to personal computers and embedded systems.

Before explaining our coding schemes, we first provide a primer on
Flash memory and its characteristics that are relevant to our work.
Most importantly, we must explain how Flash wears out.

2.1. Organization

Flash memory is organized in blocks, and each block contains some
number of pages (e.g., 256 pages/block). Each page contains some
number of Flash cells (e.g., 8192 cells/page) that are used to store
bits.

Flash cells come in several varieties that are distinguished by how
many levels they have. A single-level cell (SLC) has two levels!
and can thus hold one bit (i.e., one level corresponds to 0 and the
other level corresponds to 1). Flash cells can have more than two
levels, and 4-level cells (MLCs) are most common. In uncoded
usage, a cell with L levels can hold log2L bits.

2.2. Reading, Writing, and Erasing

Flash can be accessed (read or written) only at the page granularity.
A Flash cell stores information by trapping charge, and charge can
be added incrementally to move from one level to another. However,
charge can only be removed in its entirety through erasing; erasing
brings the cell’s level to its lowest level.

For example, a 4-level cell (MLC) has four different levels of charge
(levels LO, L1, L2, and L3), and thus it can theoretically be used to
either store two bits or to store one bit that can be re-written three
times (before needing to erase) as seen in Figure 1. The latter option
is more attractive for lifetime gain. However, as prior work has
shown [14, 8], real-life MLCs do not allow for any arbitrary
transition from a lower level to a higher level. Instead due to
constraints imposed by the physical layer and the Flash translation
layer, 4-level cells can only be practically used to store 2 bits.
Similar is the situation for cells with more levels.

To overcome this problem, prior work [8] has proposed to alter the
Flash translation layer and provide an interface with “ideal cells” (or
virtual cells). These ideal cells can be composed from any
underlaying cell technology (SLC, MLC, etc.), but they incur a
capacity cost. For example, we can take a group of Flash cells (of
whatever kind) that has a capacity of C bits and use it to implement
a group of (/3 ideal 4-level cells, where each cell now stores one bit
that can be re-written 3 times. For the rest of this work, we assume
as a baseline a Flash memory with ideal 4-level cells; our work and
all comparison schemes start from this same baseline.

Although pages are the granularity for reading/writing, blocks are
the granularity for erasing. Thus, all the pages of a single block must
be erased at the same time. This granularity of erasing is significant
because we might not want to erase all of them at the same time. For
a variety of reasons, updates of data in Flash are performed “out of
place”. When we want to update the contents of a page we mark that
page as invalid and pick a new, clean page to write our new data.
Eventually we run out of clean pages and need to reclaim some
previously used pages. Ideally, we could find a block that has only
invalid pages on it, but often blocks have some number of valid

4-level cell
bit-value bit-value
Level L3 =——— 11 Level L3 =—— 1
Level L2 =—1— 10 Level L2 =—— 0
Level L1 =—— 01 Level L1 =—— 1
Level LO —— 00 Level LO —— 0

(a) Storing 2 bits (b) Storing 1 bits
Figure 1. An ideal 4-level cell can either store two or one bits

pages on them that need to get moved before the block can be erased;
the extra writes to move these valid pages is a cost called write
amplification.

2.3. Flash Wearout and Mitigation

Flash wears out because of its physics. During a block erasure, the
trapped charge of its cells is released. This process can slowly
damage the cells and cause them to degrade [14, 15]. Eventually the
cells become unable to retain their charge (and thus store bits). That
means that after a certain number of erases the cells are unable to be
written again. The number of erases before the cells wear out
depends primarily on the Flash technology and the number of levels
per cell.

To improve the lifetime of Flash, one must increase the number of
times cells can be written before needing to be erased. The key idea
is that a Flash page can be re-written as long as every cell in that
page can be re-written, i.e., no cell needs to have its charge level
decreased [16]. (Recall that decreasing the charge level can only be
achieved by erasing a whole block.)

Figure 2(a) presents an example of a valid Flash page re-write. Each
square represents a 4-level cell of the page. The number inside the
square represents the level of the cell (L0-L3) and it corresponds to
a bit value. Observe that we only re-write the cells whose
corresponding bits need to change. Figure 2(b) shows an example
of an invalid update. The update fails this time as we need to write a
cell that is already saturated. To achieve that, we need to erase that
cell. However, as we already discussed, erasing individual cells is
not possible in Flash memory. It is clear from Figure 2 that the bit-
sequences of successive updates can dictate the number of re-writes.

In this work, we carefully pick the bit sequences we write on a page
in order to maximize the number of possible re-writes and thus
lifetime.

3. RATE/LIFETIME (RL) CODING
BACKGROUND

There is a long history of using RL coding to improve the lifetime
of Flash, and our RLD codes build on this literature. In this section,
we discuss the most promising RL coding scheme for Flash (coset

Initial state of a Flash page
Bit Sequence: | 0 0 1 0
FlashPage:| 3 | 2 | 0 | 1 | 2 |

1 0 1 1 1 0 0 0 1 1

(a) A successful page re-write (b) An unsuccessful page re-write

Figure 2. Re-writing a simplistically short page with five 4-
level cells (i.e., each cell can have value 0, 1, 2, or 3).

! The name SLC is standard, even though it is perhaps counter-
intuitive that a single-level cell has more than a single level.



codes), and we discuss a more traditional error correction code
(Reed-Solomon codes) that we use in conjunction with coset coding.

3.1. Coset Codes

Coset codes were introduced by Forney [17, 18] and they have been
used before as RL codes for Flash [8, 9]. They show the greatest
promise for Flash, and we also incorporate them into our RLD
codes. We now present a brief primer on coset codes.

3.1.1. Using Coset Codes

A conventional error detection/correction code (e.g., Hamming)
takes as an input a k-bit dataword and produces an n-bit codeword.
The rate of the code is k/n.

A coset code is different in that it maps a k-bit dataword to a
unique group of n-bit codewords called a coset. Each coset contains
2" codewords, where n=k+m. Thus, each dataword can be
represented by any of the 2" codewords (known as coset
representatives) that belong to its unique coset. This procedure is
shown in Figure 3.

The benefit of coset coding—both for prior RL codes and for our
new RLD codes—is that it provides multiple options for what to
write. An RL coding scheme can choose which coset representative
to write so as to optimize an objective (e.g., intra-word wear
leveling). To select a codeword from a coset requires a metric
function, and we can choose this function based on our desired
goals. We assign costs to each codeword and pick the one with the
least cost.

3.1.2.Generating Coset Codes

Coset codes can be generated by using a linear code C, and C can
either be a convolutional code or a block code. Prior work on
extending Flash lifetime [8, 9] has mainly focused on coset codes
that are generated through convolutional codes that enable one to
encode long datawords (i.e., thousands of bits). However, these
codes are less useful for encoding sensor data where the datawords
may be very short (i.e., tens of bits). For this reason, in this work,
we focus on block codes that we organize in such a manner to allow
for efficient coset generation as well as coset representative
selection.

We demonstrate the process of coset generation through a simple
example. We use the Hamming(7,4) code as C, to create a coset code
with n=7, k=3, and m=4. This code has 3-bit datawords, 7-bit
codewords, and 24 codewords per coset. Its rate is 3/7.

The generator matrix G’ of the Hamming code is,

1 111111
G = 0 01 1110
0110 011
101 0101
We reduce G’ to its echelon form G=[I,,_|B],
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Figure 3. Mapping datawords to cosets to codewords
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The code C contains p = 2™ codewords, each codeword of the form
¢ = w X G, for some m-bit string w.
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Now let us assume that we want to encode the dataword a = [101].
Every dataword maps to a unique coset, and every coset has a unique
coset label of the form q = [0y, a]. For this example,

g=1[0 0 0 0 1 0 1]

We can now generate all the coset representatives v that belong in
the unique coset ¢ by performing a logical exclusive-or operation
between ¢ and C.

v, 000010 1
v, 0001010
Vsl=qXORC=[0 0 1 0 0 1 1
lv,] i 11101 o

Any of the p coset representatives above can be used to represent
our dataword a. In order to recover our initial data @ from a coset
representative v we will need the parity check matrix H of the code
C. This matrix is of the form H = [H,|H,] and for our example, in
its echelon form, is simply:

01 1 110 0
H=|1 0 1 1 0 1 Ol
11 0 1 0 0 1
01 1 1 1 0 0
H=|1 0 1 l,sz[O 1 0]
1 1 0 1 0 0 1

By solving the equation H, x al = H X vT we can recover a. In
other words, we can use the parity check matrix H as a “decoding
matrix.” This process can be performed for any block code C with
dimensions (n,m).

3.1.3.Encoding Example

We now present a short example of how the metric function and the
coset representatives are combined to re-write a Flash page. We
assume that we want to store the dataword a = [101] and our goal
is to minimize bit flips. For simplicity, assume a page that consists
of a single codeword.

We initially read the page we intend to rewrite. Let us assume that
its content is given by,
Vog=[0 0 1 0 0 1 0]

Now we calculate a cost for each one of the coset representatives of
a according to a metric function that tries to minimize bit-flips. Note
that the coset representatives that map to dataword a were generated
in Section 3.1.2. For the purpose of this example, we assume that the
metric function adds a cost of one for each bit flip. Thus, the cost of
each representative becomes,

cost; 4
| cost, | [2]

costs l1|
Losth 3



We then select the representative with the least cost; here that is vz,
which has a cost of 1. We now update the Flash page with a new
codeword Ve,

Vpew=v3=1[0 0 1 0 0 1 1]

In a more realistic example, our metric function will also account for
other objectives (not only minimizing bit flips), like avoiding
rewriting of saturated cells. Coset representatives that cannot be
used to rewrite a page (because they need to rewrite saturated cells)
are given an infinite cost. If all of the coset representatives that map
to a dataword have infinite cost, we declare a rewrite failure. We
then proceed to mark the page as invalid and pick a new clean page
on which to store our data.

3.2. Reed-Solomon Codes

Our RLD codes are based on coset coding, but they also incorporate
Reed-Solomon codes to enhance their benefits. Reed-Solomon (RS)
codes [19] are well known for their error correction capabilities. To
encode a message with a RS code, we first need to segment it into
symbols of a fixed bit length. Encoding a K-symbol long message
with RS produces a new message that is N-symbols long. The
encoded message can now detect and correct errors at a symbol
granularity. More specifically, we can correct up to =N-K erroneous
symbols and detect up to 2¢.

Figure 4 gives a naive example of a RS code operating on a 5-
symbol message where each symbol is 3-bits long. Note that the cost
of'this code is given by the rate K/N.

4. UNIFORM QUANTIZATION

Sensors use analog-to-digital converters (ADCs) to represent an
analog signal as a bit string that can be digitally stored and
processed. This process introduces distortion and the relationship
between rate and distortion has been studied extensively in the
information theory literature. Here we only consider Pulse Code
Modulation (PCM), where a b-bit sensor has 2° different, uniform,
scalar quantization levels, each of width 4 [20].

Figure 5 shows a 3-bit uniform quantizer (3-bit PCM), with 23 = 8
quantization levels. Any analog value within the boundaries of a
quantization level is quantized to the point at the center of that level.
In other words, the analog value is rounded to a discrete digital
value.

Because of this rounding process, the digital value and the analog
value are not identical. The distortion is the difference between the
two values and is typically measured as the squared Euclidean
distance. Consider a sensor with b bits of resolution and a range x of
analog values. In this situation, the maximum possible distortion is
given by d=(4/2)?=(x/2°*!)?. Going back to the example of the 3-bit
sensor, if we assume that we are reading values ranging from 0 to 1,
then the maximum distortion is @=0.0625%. Another often used
metric is the mean squared error (MSE), which describes the
expected average distortion and is given by 4%/12.

S. RLD CODING

The main contribution of this paper is the introduction of a coding
theoretic framework that makes it possible for computer architects
to tradeoff rate, memory lifetime, and distortion.

5.1. LD Coding

We now introduce lifetime/distortion (LD) coding, in which we
trade off distortion and Flash lifetime. We first show how to increase
lifetime by allowing more distortion, and we later (Section 5.3) show
how to obtain the same lifetime benefits with no additional distortion
by increasing the resolution of the sensor.

Suppose that a b-bit sensor is used to record analog data, and that
the digital values are then stored in Flash memory. Suppose now that

Dataword: \001 100 010 000 11;
Y
K=5 Symbols

RS Encoding

Codeword: 001 100 010 000 111 110 101

Y
N=7 Symbols
Figure 4. Reed-Solomon example with 3-bit

an analog value, quantized as Q, can instead be quantized to either
itself or any of its 2}/ immediate neighbors QLm, ....... ,QL, .nl. S
Qr+m, as shown in Figure 6(a). That flexibility allows us to carefully
choose the bit string to write so as to increase how many times we
can re-write the Flash and thus increase its lifetime. However,
distortion grows with the number of nearest neighbors M. The
growth in distortion is predictable and M can be adjusted to meet
specific constraints.

5.2. LD+ RL =RLD Coding

To further increase the potential lifetime gains of our scheme we
combine the lifetime/distortion (LD) tradeoff with a rate/lifetime
(RL) tradeoff to create a RLD code. To achieve this goal, we
integrate the multiple analog signal representations (quantization
levels) with coset codes and Reed-Solomon codes to create RLD
codes.

5.2.1.Coset Coding

We combine coset coding and LD coding in a complementary way.
With LD, we take a given dataword (the quantization value) and
consider multiple datawords near its value. With RL, we take a
single dataword and map it to multiple codewords. The combination
is RLD coding, which takes a given dataword and considers it along
with nearby datawords and, for each of those candidate datawords,
considers any of the codewords in its coset. If LD provides us with
2M+1 datawords and RL provides us with C codewords per
dataword, then RLD coding provides us with C(2M+1) codewords
from which we can choose. Intuitively, as M and C increase, we
have more flexibility, but we have more distortion and lower rate,
respectively.

RLD provides many options for what to write for a given dataword,
and we need a metric function for choosing the best one. We borrow
the metric function that was introduced by Methuselah Codes [8] to
help us make that decision. This metric function is tailored
specifically for Flash and helps extend its lifetime by promoting
three objectives: (1) Avoid codewords that require rewriting
saturated cells, (2) minimize the number of cells that need to be
rewritten, and (3) balance level increments across cells.

For each one of the 2A+1 different cosets we use the metric function
to select a winner codeword. From the 2M+1 winning codewords
we simply use the one that has the least overall cost. We illustrate
this coset selection procedure in Figure 6(b).

5.2.2.Coset Coding and Reed-Solomon

Quantization levels of a 3—bit sensor
h
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Figure S. Uniform scalar quantization with 3 bits




The RLD code described above can provide a tunable number of
options for what to write. However, sometimes even with many
options, we still might not have an option we like. This situation is
particularly frustrating when one or a small number of datawords
with this problem cause an entire page to be un-writeable.

To mitigate this problem, we introduce a second layer of code that
allows us to “skip” writing a codeword that is problematic. Rather
than immediately storing each codeword after coset selection, we
first buffer K of them. Codeword buffering is actually a standard
practice for Flash, anyway, because we write full pages at a time (not
just individual codewords).

We now use Reed-Solomon coding to skip these problematic
codewords, as illustrated in Figure 6(c). We treat each of the K
selected codewords as a symbol. Each symbol represents the coset
of the codeword. We use Reed-Solomon coding to produce N-K
additional symbols (cosets) that we write to Flash. As the new
symbols represent cosets (and not codewords) we still need to
perform the Viterbi algorithm in order to select the best codeword
for the redundant N-K cosets. Reed-Solomon coding provides error
correction at the symbol granularity, so a Reed-Solomon code that
can correct ¢ symbols would allow us to skip (not write) the # most
problematic codewords (i.e., treat them as errors). That is, we could
choose the # codewords with that scored the highest costs during the
coset selection process. Additionally, if some codewords cannot be
re-written because the Flash page is getting saturated, then we can
just skip them as long as the total number of codewords that is not
updated is less than or equal to ¢. The Reed-Solomon code can later
recover the codewords that were not written.

Although this scheme can extend lifetime beyond our initial RLD
code, with each additional layer of code we further decrease the
code’s rate because we must store more redundant bits. Thus, this
Reed-Solomon coding is only optional and we can choose to use it
depending on our implementation’s goals and constraints.

Figure 6 presents the entire process from the moment an analog
value is recorded from the sensor until it is stored into the Flash
memory.

5.3. Extending Lifetime for a Fixed Distortion
We have shown that it is possible to extend lifetime at the cost of
increased distortion. However, there are circumstances in which it is
not acceptable to increase distortion, and so we now describe how it
is possible to use a higher precision sensor to extend lifetime without
increasing distortion.

To demonstrate this idea, we focus on a simple example. We assume
that a b-bit sensor has been chosen for a specific implementation and

Coset,

the maximum allowable distortion (squared Euclidean distance) is
d. Now we replace the b-bit sensor with an (b+2)-bit sensor and thus
the maximum quantization error is now d/16. However, this time we
will allow for some flexibility when recording data. When an analog
value is mapped to a quantization point QL, we consider writing any
of the three options Qr-1, Qu and Qr+1. (That is, M=1). Thus, we now
have three (b+2)-bit candidates to choose from when storing each
sensor reading. Note that because of this process, the maximum
distortion is 94/16 which is still lower than our initial distortion of
d. We refer to this scenario as 2-bit sensor cost, because we use a
sensor with 2 extra bits of precision.

In another scenario, we replace the b-bit sensor with a (b+1)-bit
sensor and again consider three quantization options per sensor
recording (i.e., M=1), with maximum distortion of 94/4. Note that in
this scenario the distortion is worse than that of the b-bit sensor but
better than that of the (b-1)-bit sensor, and we show later that this
design enables significant lifetime gains. We refer to this scenario
as I-bit sensor cost.

We note that different sensor precisions lead to different MSE
values. If the b-bit sensor has an MSE=e=4%/12, then the (b+1)-bit
sensor has MSE=e/4, and the (b+2)-bit sensor has MSE=e¢/16.

6. IMPLEMENTATION

In this section, we explain the processes for encoding and decoding,
and we discuss how we would implement these processes in
hardware. Although some of these processes may appear
complicated at first, most of them can be reduced to simple logic.

6.1. Encoding

The encoding process involves three steps: (1) map a dataword
(quantization point) to its corresponding coset, (2) generate the coset
representatives, and (3) search the coset to select the best
representative according to our metric function. As we presented in
Section 3.1, mapping a dataword to its coset is simply done by
prepending a string of Os to the dataword in order to get the coset
label ¢. In other words, there is a direct mapping from quantization
levels to cosets. A simple up-down counter can generate all of the
quantization levels/cosets we consider for each sensor reading.

The most critical and computation challenging process are the last
two steps. We present the three possible ways to generate the coset
representatives and perform the search to select the best of these
codewords. For reasons explained below, we implement the third
option.

codewordy|

K-symbols (codewords)

]
=]
H
g
:
E
3

Figure 6. RLD Coding. Qw is the quantization point corresponding to Cosetw, and Cosetw has the codeword with the least cost among
all codewords in all 2M+1 cosets. With Reed-Solomon, we buffer K symbols (i.e., codewords that were produced during coset
selection) and then encode them as N symbols; these N symbols are what ultimately get written to the Flash memory



The first option is to straightforwardly implement the matrix
computations presented in Section 3.1.2. Generating the coset
through the generator matrix of a block code requires substantial
computation (matrix multiplication) but only minimal storage
overhead as we would only need to store the generator matrix G and
the decoding matrix D. Additionally, after generating the coset
representatives, we would need to apply the metric function though
a brute force approach to select the best codeword. However brute
force algorithms may incur high latencies.

The second option is to replace the on-the-fly computation of the
first option by generating and storing all the cosets and their
representatives in look-up tables before we start recording data with
our sensor. This computation only needs to be performed once but
incurs additional capacity overheads that become more significant
for longer codes. Additionally, we would still need to apply brute
force search in order to select the desired representative.

The third option—and the one we implement—is using the Viterbi
algorithm to efficiently generate and at the same time search the
representatives for the one with the least cost. The Viterbi algorithm
is based on dynamic programming and can efficiently generate and
select the best representative. However, in order to use the Viterbi
algorithm, we first need to express our code as paths through a trellis
(see Forney [17, 18]). Although this is an easy process when using
convolution codes (as the code C), there is an additional level of
complexity when doing so for block codes. Prior work [17, 18, 21]
has shown how block codes can be described by trellis paths by
adding some constraints on the last paths of the trellis. Because of
these constraints, the Viterbi algorithm needs to be executed
multiple times to find the best codeword. More specifically, if the
trellis has S states we need to run the Viterbi algorithm S times; these
S executions can be parallelized. Prior work [8, 9] has also used the
Viterbi algorithm to generate coset codes and select the
representatives with the least cost. Viterbi incurs minimal capacity
and latency overheads compared to the two previous options. We
only consider codes with 4-16 states at each trellis stage and trellis
states with out-degree of 2.

In Figure 7, we present all of the hardware components needed for
the encoding process. Note that the codeword selection process,
performed by a Viterbi hardware accelerator, is repeated serially for
each quantization level. Although we could parallelize the
procedure, we choose not to in order to minimize the amount of
hardware and power needed. The selected codeword is stored along
with its cost. A comparator later selects the codeword with the
overall least cost. We also note that we need to buffer a single Flash
page, because the Viterbi accelerator needs to know the current state
of the Flash page in order to select the best coset representative. The
final codeword is first stored in the buffered Flash page. When we
are done re-writing the whole page, we proceed to store it in the
actual Flash memory. The next page we intend to re-write is loaded
into the buffer and the process is repeated.

If we choose to also apply the Reed-Solomon optimization, we also
need an additional encoding matrix. The RS uses a simple binary

Codeword,

Viterbi
Accelerator .

Up/Down
Counter

Codword,

Codeword,

vector for matrix multiplication. The cost of that multiplication can
be amortized through the number of symbols we encode, as each
symbol represents a recorded value from our sensor. Thus, the most
critical part is the Viterbi accelerator that needs to execute multiple
computations for every value that the sensor records.

In Section 8.4, we analyze the cost of the Viterbi hardware
accelerator.

6.2. Decoding

To decode a codeword (i.e., a coset representative), we just need to
multiply it with the parity check matrix, H, as discussed in Section
3.1.2, in order to recover the initial dataword. Although this may
sound difficult, the parity check matrix is usually a sparse binary
matrix and thus the multiplication can be reduced to several logical
XOR operations.

In the case we also used Reed-Solomon coding, additional
processing is necessary to recover any codewords that we
intentionally decided not to write. This process requires solving a
number of linear equations in order to detect the location of
potentially erroneous symbols. Although this process can be
relatively computational intense, the latency overheads can be
amortized over the number of sensors readings (K) that are decoded
at the same time.

The decoding logic can be located either on the embedded processor
or on the system that receives and consumes the embedded
processor’s data.

7. EXPERIMENTAL METHODOLOGY

We envision RLD coding being used primarily on embedded
processors with demanding requirements for Flash endurance.
These processors will have a range of tolerances for other metrics
that depend on the processor’s usage model, and these metrics
include Flash capacity, performance, energy, power, and distortion.
Because we cannot possibly evaluate all possible sensor
applications, we focus mainly on one example application.

7.1. System Model

We use Matlab to simulate the behavior of our Flash memory
system, both with and without our coding schemes. We simulate a
Flash memory that consists of pages of ideal 4-level cells (recall
from Section 2), and all schemes evaluated use these ideal cells.
Unless otherwise specified, the baseline’s sensor has 10 bits of
precision.

For RLD coding, we vary the following parameters: sensor
precision, amount of distortion (M), coset code, and Reed-Solomon
rate. Nevertheless, we focus most of our experiments on a 12-bit
sensor, M=1, and a coset code generated through a Golay(24,12)
code [22]. When used, the default Reed-Solomon rate is 0.5. With
these parameters, for each sensor reading, we can now select among
three quantization points (cosets) where each one contains 2'2
different 24-bit codewords.

Optional
RS-Encoder

ad Comparator fpug

Single Buffered Flash Page

Figure 7. A Hardware Implementation of the Encoding Process

6



We refer to RLD codes with the following notation: RLD[coset
code, value of M]. For example, when we use the Golay(24,12)
coset code with M=1, we denote it as RLD[Golay(24,12), 1]. If we
also use the Reed-Solomon option with a rate of s, we denote it with
“+RS(s)” appended to the coset code, as in
RLD[Golay(24,12)+RS(s), 1].

7.2. Experiments

To test our RLD codes and calculate their gains, we consider both
random data inputs and data inputs from a sensor that records
gradually increasing/decreasing light intensity as a voltage between
0 and 3.3 volts every 20 milliseconds. In the case of real data, we
first record the data using a 12-bit sensor and then input them to
Matlab to perform our simulation. In the case of random input data,
we generate random binary vectors of length h+2 or b+1. We vary
the value of b to test different codes with different rates. The
simulator reads the data in the same order that were generated and
forwards them to our RLD scheme to be processed.

After the data are processed they are stored to a Flash page. We
simulate a single page of Flash, starting with a blank page, and re-
writing data to the page, without erasure, as many times as
allowable. When the cells are saturated and re-writing is no longer
possible, we erase the page and start again.

Simulating a single page suffices for random data, for two reasons.
First, the Flash interface performs writes “out of place” and thus
effectively randomizes the data that are written each time (i.e., there
is no correlation between what is being written to a page and what
was previously written to it), as explained in Section 2. Second,
because we run our simulations multiple times and take average
results, we expect to have statistically the same results as with
simulating many pages.

Simulating a single page with real data inputs is actually /ess realistic
than using random data, because there will be unlikely correlations
between what is being written and what was written previously. We
perform this experiment to determine if these correlations greatly
help our coding schemes. If so, that result would argue for “in-
place” updates in Flash for sensor devices.

We measure Flash lifetime as the average number of re-writes per
erase. There are two other metrics we considered, but neither is as
insightful. One option is the lifetime of an entire Flash memory (or
even just a page of Flash memory), but those results are proportional
to our metric multiplied by a very large and not exactly known
number, which is the expected number of erases a cell can tolerate
before wearout. Another option for a metric is the percentage of
saturated cells in a page, but this is also less informative. Consider
two example scenarios: one where we re-write a page 10 times
before erasing and only half the cells are saturated, and one where
we re-write 2 times with all the cells being saturated. The first
example is still better in terms of lifetime as we utilized the page
more before erasing it.

We compare our scheme against a baseline (denoted as “Baseline™)
that uses each ideal 4-level cell to hold one bit and can thus write the
cell 3 times before each erase, as discussed in Section 2 (i.e., its
lifetime is 3) and illustrated in Figure 1(b). We also compare against
an RL code (denoted as “RL”) that uses the same coset code as we
do.

7.3. Metrics

The primary coding metrics we consider are lifetime, distortion, and
rate. We express rate as the ratio of host-visible capacity to total
(raw) capacity.

One other insightful coding metric is aggregate gain, which was
introduced by Mappouras et al. [8]. Aggregate gain is the product
of rate and lifetime. Thus, for a given lifetime, greater aggregate

gains indicate more efficient implementation, in terms of capacity
cost. Consider a baseline system with no coding (i.e., rate = 1), that
uses ideal 4-level cells (and thus has a lifetime of 3); its aggregate
gain is equal to 3. We normalize all aggregate gains to this baseline
system. Although higher aggregate gains are generally preferable,
sometimes the lifetime gain may be an overkill. For example, a
lifetime gain of 12x for a Flash memory may exceed the lifetime of
the sensor itself and be wasteful. Thus, one may prefer an
implementation with lower lifetime gains but higher rate (i.e., host-
visible capacity) even if the overall aggregate gain is reduced.

Lastly, we consider implementation metrics including latency and
power.

8. EVALUATION

In this section, we evaluate and compare RLD coding to the Baseline
and to RL coding.

8.1. Lifetime Gain

The most important metric in this work is lifetime gain. Figure 8
presents the lifetime gains for the Baseline, RL[Golay(24,12)], and
RLD[Golay(24,12), 1]. Recall that the Baseline achieves 3 writes
per erase.

Our simulations show that, on random data, RLD achieves a lifetime
of 14.8 writes per erase, which is 15.6% better than RL’s 12.8 writes
per erase. We see that RLD provides an even greater advantage
when considering real data. The reason behind that is because the
recorded values often change slowly over time and thus consecutive
updates exhibit high correlation. This characteristic—which may
not occur in typical Flash—allows our distortion/lifetime tradeoff to
maximize its gains and demonstrate that “in-place” updates may be
a more suitable interface for sensor devices.

In Figure 9, we present the lifetime of our RLD+RS code, as a
function of its rate s. We fix the coset code (Golay(24,12)) and the
distortion (M=1). We can see that the Reed-Solomon option can help
RLD achieve remarkable lifetime gains that increase as s decreases.
However there is not much difference between real and random data
any more. Although we do not have any formal way to prove why
this is the case, it could be that the page is already pushed to its limit
of available re-writes for the given rate and distortion tradeoffs.

8.2. Capacity Loss and Aggregate Gain (AG)
Although RLD’s lifetime gains seem quite promising, we have to
justify the rate (host-visible capacity) loss of our scheme. For that
reason, we present the aggregate gain of each code. We normalize
the host-visible capacity of each code to that of the Baseline, which
we denote as C. We explore the two different sensor resolution
scenarios that we discussed in Section 5.3 (1-bit and 2-bit sensor
costs).

In Figure 10, we graphically present the results for the 2-bit sensor
cost scenario; the Baseline has a 10-bit resolution while RLD has a
12-bit resolution. We observe that, based on our simulations,
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RLD[Golay(24,12)+RS(0.5),1] achieves the best aggregate gain of
2.5 with a lifetime of 36 . That means that
RLD[Golay(24,12)+RS(0.5),1] can achieve a lifetime of 36 for 2.5%
less capacity cost compared to Baseline. RLD[Golay(24,12),1]
achieves better lifetime than the RL code, but its aggregate gain is
just less. This discrepancy is because the RLD code’s host-visible
capacity is 10/12 that of the RL code, in order to account for the two
additional bits of its higher precision sensor.

To calculate the aggregate gains for the 1-bit sensor cost scenario
we project these results for a Baseline that uses an 11-bit resolution.
In this situations where some distortion is tolerable—perhaps
because b-1 bits is too little resolution and b bits is more than
necessary— RLD[Golay(24,12)+RS(0.5),1] achieves an aggregate
gain of 2.75, while RLD[Golay(24,12),1] achieves an aggregate
gain of 2.26, and thus both exceed the aggregate gain of prior work.
The increase in aggregate gain is due to using only one extra bit of
resolution (instead of 2).

8.3. Exploring Other RLD Codes

RLD comprises a range of codes. One can obtain the desired Flash
lifetime by choosing the allowable distortion (determined by M) and
rate (determined by the choice of coset code).

21 36

Lifetime
Figure 11. Aggregate gains for various coset codes.

8.3.1.Varying the Coset Code

In Figure 11, we present the results for a fixed distortion (M=1), but
a range of different coset codes. We consider coset codes that are
generated from various typical block codes (Hadamard, Golay) as
well as block codes that are based on convolutional codes. We also
include RLD[Golay(24,12)+RS(0.5), 1], which was in the previous
figure, because it is our best code in terms of aggregate gain.
Comparisons are somewhat tricky in that the different coset codes
have different dataword sizes. We assume the Baseline has b-bit
resolution (the resolution of the Baseline does not affect its
aggregate gain) and each RLD code has (b+2)-bit resolution. This
added resolution introduces a cost (in terms of rate) for the RLD
codes.

Our simulations show that different RLD codes can achieve better
rate (greater host-visible capacity) than RLD[Golay(24,12), 1], but
the aggregate gain is worse. This result is because codes that have a
rate close to 0.5, like Golay(24,12), have been shown to “behave
better”. However, no formal proof exists, in the field of information
theory, that can explain this common observation between codes of
different rate.

8.3.2. Varying the Distortion
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We now consider the impact of distortion beyond M=1. In Figure
12, we present results for RLD[Golay(24,12),M] as we vary the
amount of distortion. When M=0, this code is the same as
RL[Golay(24,12)].

We observe that as we increase the value of M, lifetime initially
increases linearly. However, beyond M=4, we see a diminishing
lifetime gain. The reason behind that is that we reach a point where
adding more quantization points does not provide significant
variation during the codeword selection process. To further explain
this effect, one can imagine that we are trying to re-write an initially
erased p-bit page. There are many codewords (p to be precise) that
can re-write the page with only flipping a single bit. However, all of
them are equivalent in terms of lifetime gain and thus adding more
options does not result in significant lifetime gains.

Further increasing M will eventually result in extremely high
lifetime gains (until we reach infinite lifetime) because we will
rarely have to re-write our memory as almost every quantization
point will be considered for every recorded value. However, we are
not interested in such a scenario as it results in no actual information
stored to our memory because distortion also reaches infinity.

8.4. Power and Latency

Any RLD (or RL) implementation must incur latency and power
overheads, particularly because of the coset generation and selection
process. As we already discussed, we can use a Viterbi accelerator
to perform this process. For the RLD[Golay(24,12), M]
implementation we use a single hardware accelerator. Because the
RLD[Golay(24,12), M] implementation is based on a 16-state block
code (i.e., Golay(24,12)), the accelerator needs to run 16 sequential
times for each recorded value (see Section 6.1). Additionally, we
need to repeat the whole process for every one of the three
quantization points we consider. We could parallelize this process
by adding several accelerator devices, if needed. We note that the
latency of this process must never exceed the sampling rate of our
sensor, otherwise values will be recorded faster than they can be
encoded.

There are several proposed Viterbi accelerators [23, 24, 25] that can
achieve low latency and power. Using the power and latency
overheads that are reported in those papers we can predict the
overheads of our implementation. It is worth mentioning that these
accelerators target implementations that use lengthy inputs (~100s
of bits). Our implementation, however, only requires 12-bit inputs.
Thus, the latency and power we report are on the high end of what
should be expected.

The Viterbi accelerator reported by Azhar et al. [25] has a latency of
~70ns. Because we need to run 16x3=48 sequential times, our
latency is 3.36ms, which is well below the 20ms sampling rate of
our sensor. The power of the accelerator is just 12.4mW and it runs
at 370MHz. Other Viterbi accelerators have lower latencies but
higher power overheads. However, for our implementation, we
prefer lower power as the latency is already sufficiently low.

Other costs of our implementation include the intermediate buffers
shown in Figure 7. The amount of buffering needed depends on the
details of the implementation. For the RLD[Golay(24,12), M=1] this
is just three 24-bit buffers and thus their area and energy overheads
are not significant. Additionally, we perform an extra read before
each write. This read is performed in the background, while
recording data, and its latency is completely hidden. As the power
of reads is about half that of writes [14], our scheme increases the
power of Flash writes by 50%. However, this is an overhead that (to
the best of our knowledge) all re-writing codes have to incur.

As we can see, the overheads are minimal. We should mention,
however, that for different sensors that have higher sampling rates
we may need to use multiple accelerators to meet the latency
constrains. That will result in higher power overheads.

9. RELATED WORK

Because of its importance, there is plenty of prior work that tries to
extend the lifetime of Flash memory. The research in this topic can
be categorized into three orthogonal approaches. The first approach
is using codes that enable Flash pages to be re-written in order to
increase how many times a page is written before it has to be erased.
A number of prior papers [1,2, 3,4, 5, 6,7, 26, 27] have focused on
write-once memory (WOM) codes [28] (or variations of WOM
codes) to extend the lifetime of Flash memory and other non-volatile
memories. However, feasible WOM codes only allow 2-4 updates
while more complicated implementations become infeasible due to
their high complexity. Other re-writing techniques also exist [29]
that use invalid pages to re-write data but only provide minimal
lifetime gains. The most promising re-writing codes presented by
prior work [8, 9] were based on coset codes (similarly to our RL
implementation). Because of the high flexibility of coset codes, they
can achieve high lifetime gains while providing a range of solutions
and tradeoffs. However, none of the prior work on re-writing codes
has considered the lifetime/distortion tradeoff that we present in this
work.

The second approach to extend Flash lifetime is by rethinking the
organization and page management of a Flash device in order to
perform wear-leveling and reduce the number of erases. Researchers
have observed that the lifetime of Flash memory can be extended if
we ensure that all of the blocks (and thus pages) are equally erased
across the lifetime of the memory. By doing so we can assure that
the memory will wear out evenly and thus prolong its overall
lifetime. Prior work [30, 31, 32, 33, 34] focused on performing wear-
leveling across blocks and pages by enhancing the Flash translation
layer (FTL), software that is responsible for performing various
operations like garbage collection. Other researchers [35] focused
on the system file level in order to reduce the number of unnecessary
updates to the Flash.

The third way to increase Flash lifetime is by tolerating errors that
occur due to degraded cells and thus prolonging its effective time-
span. Dolacek et al. [36] and Sala et al. [37] have introduced channel
coding techniques to minimize bit flip errors due to degraded cells.
This body of work translates physical processes to channel models
and then develops channel coding strategies that remediate errors in
digital data. Guo et al. [38] provide error codes for Flash memory
with flexible rates. They introduce different error protection levels
for compressed data that have different impact on the final signal to
noise ratio. Thus, they try to maximize the tradeoff between rate and
noise on compressed data on Flash memory.

We should also note that our work is relevant to approximate
computing. Approximate computing [39] can be used to reduce
energy and capacity as well as minimize the effect of early failures
in NVMs. In this work though, we choose not to trade data accuracy
and we extend lifetime beyond the point of what approximate
computing can achieve.



10. CONCLUSION

Increasing the lifetime of Flash is important, particularly for
embedded processors. For embedded processors that record analog
data from sensors, there is an exciting opportunity to consider
multiple quantization points so as to provide flexibility in what to
write. We synergistically combine this flexibility in quantization
with the flexibility provided by coset coding, and the resulting RLD
codes provide a way to increase Flash lifetime while tuning the
trade-offs with distortion and rate.
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