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Abstract—Graphics Processing Units (GPUs) have rapidly
evolved to enable energy-efficient data-parallel computing for a
broad range of scientific areas. While GPUs achieve exascale per-
formance at a stringent power budget, they are also susceptible to
soft errors, often caused by high-energy particle strikes, that can
significantly affect the application output quality. Understanding
the resilience of general purpose GPU applications is the purpose
of this study. To this end, it is imperative to explore the range
of application output by injecting faults at all the potential
fault sites. This problem is especially challenging because unlike
CPU applications, which are mostly single-threaded, GPGPU
applications can contain hundreds to thousands of threads,
resulting in a tremendously large fault site space — in the order
of billions even for some simple applications.

In this paper, we present a systematic way to progressively
prune the fault site space aiming to dramatically reduce the
number of fault injections such that assessment for GPGPU
application error resilience can be practical. The key insight
behind our proposed methodology stems from the fact that
GPGPU applications spawn a lot of threads, however, many of
them execute the same set of instructions. Therefore, several
fault sites are redundant and can be pruned by a careful
analysis of faults across threads and instructions. We identify
important features across a set of 10 applications (16 kernels)
from Rodinia and Polybench suites and conclude that threads
can be first classified based on the number of the dynamic
instructions they execute. We achieve significant fault site re-
duction by analyzing only a small subset of threads that are
representative of the dynamic instruction behavior (and therefore
error resilience behavior) of the GPGPU applications. Further
pruning is achieved by identifying and analyzing: a) the dynamic
instruction commonalities (and differences) across code blocks
within this representative set of threads, b) a subset of loop
iterations within the representative threads, and c) a subset of
destination register bit positions. The above steps result in a
tremendous reduction of fault sites by up to seven orders of
magnitude. Yet, this reduced fault site space accurately captures
the error resilience profile of GPGPU applications.

I. INTRODUCTION

Parallel Hardware Accelerators such as Graphics Process-
ing Units (GPUs) are becoming an inevitable part of every
computing system because of their ability to provide fast and
energy-efficient execution for many general-purpose applica-
tions. GPUs work on the philosophy of Single Instruction,
Multiple Threads (SIMT) programming paradigm [1] and
schedule multiple threads on a large number of processing
elements (PEs). Thanks to very large available parallelism,
GPUs are now being used in accelerating innovations in vari-
ous fields such as high-performance computing (HPC) [2]-[9],

artificial intelligence, deep learning, virtual/augmented reality,
and networking functions such as deep packet inspection [10].

Given the wide-spread adoption of GPUs in many
Top500/GreenS00 supercomputers [11], [12] and cloud data
centers, it is becoming increasingly important to develop tools
and techniques to evaluate the reliability of such systems,
especially since GPUs are susceptible to transient hardware
faults from high-energy particle strikes. One of the popular
ways to evaluate general purpose GPU (GPGPU) application
error resilience is by artificially but systematically injecting
faults into various registers and then by examining their
effects on the application output. These faults can result in:
a) no change in application output (i.e., faults are masked),
b) change in application’s output due to data corruption but
still execution terminates successfully (i.e., faults are silent),
and c) application crashes and hangs. The latter two outcomes
are certainly not desirable from the reliability point-of-view
and hence a lot of high-overhead protection mechanisms
such as check-pointing [13], [14] and error correction codes
(ECC) [15]-[17] are employed to strive for reliable executions.

One of the major challenges in evaluating error resilience
of applications is to obtain a very high fault coverage, i.e.,
inject faults in all possible fault sites and record its effect.
This procedure is already very time consuming and tedious.
In our own analysis of GPGPU applications, we have found
that the total number of fault sites can be in the order of
billions. Assuming a single-bit flip model, Table I quantifies
the total number of fault injection sites for a large number of
diverse GPGPU application kernels. The tremendous size of
fault sites is due to the fact that each GPGPU kernel can spawn
thousands of application threads and each thread is assigned to
a dedicated amount of on-chip resources. For the calculation
of fault sites reported in Table I, we only consider soft errors
that can occur in functional units (e.g., arithmetic logic unit
and load-store unit) [18]. Yet, the number of fault sites is
tremendous. Executing one experiment per fault site in such
a vast space to collect application error resilience metrics is
clearly very difficult and absolutely not practical.

In order to develop a robust and practical reliability eval-
uation for GPUs, prior works have considered a variety of
fault injection methodologies such as LLFI-GPU [19] and
SASSIFI [18] that sample a subset of fault sites to capture
a partial view of the overall error resilience characteristics of
GPGPU applications. These works claim that experiments on
a small and randomly selected set of fault sites is sufficient



TABLE I: Various metrics (including the total number of possible fault sites) related to considered GPGPU application kernels.

Suite Application Kernel Name ID # Threads # Total Fault Sites
HotSpot calculate_temp K1 9216 3.44E+07
invert_mapping K1 2304 1.47E+07
K-Means kmeansPoint K2 2304 9.67E+07
Fanl K1 512 1.63E+05
.. Gaussian Elimination Fan2 K2 4096 4.92E+06
Rodinia Fanl K125 512 1.09E+05
Fan2 K126 4096 8.79E+05
PathFinder dynproc_kernel K1 1280 2. TTE+07
Iud_perimeter K44 32 1.75E+06
LU Decomposition (LUD) lud_internal K45 256 6.84E+05
lud_diagonal K46 16 5.26E+05
2DCONV Convolution2D_kernel K1 8192 6.32E+06
MVT mvt_kernell Kl 512 6.83E+07
Polybench 2MM mm?2_kernell K1 16384 5.55E+08
GEMM gemm_kernel K1 16384 6.23E+08
SYRK syrk_kernel K1 16384 6.23E+08

for results within 95% confidence intervals and error margins
within a 6% range [20]. In this paper, we take an orthogonal
approach — our goal is to prune the large amount of fault
site space via carefully considering the properties of GPGPU
applications. Our pruning mechanisms not only reduce the
total number of required fault injections (in some cases to a
few hundreds only while still maintaining superior accuracy),
but also equivalently reduce the total time to complete the
required experiments.

To this end, we focus on the following fundamental observa-
tions relevant to GPGPU applications: a) GPGPU applications
follow the SIMT execution style that allow many threads to
execute the same set of instructions with slightly different
input values, b) There is an ample commonality in code
across different threads, ¢) Each GPU thread can have several
loop iterations that do not necessarily change the register
states significantly, and d) GPGPU applications themselves
are error resilient and hence changes in the precision/accuracy
of register values do not necessarily change the final output
of an application. By leveraging these properties, we propose
progressive pruning that systematically reduces the number
of fault sites while preserving the application error resilience
characteristics. Our proposed methodology consists of:

o Thread-wise Pruning: The first step focuses on reducing
the number of threads for fault injection. We find that a
lot of threads in a kernel have similar error resilience char-
acteristics because they execute the same number and type
of dynamic instructions. Based on the grouping of threads
based on dynamic instruction count, we select a small set of
representative threads per kernel and prune the redundant fault
sites belonging to other threads.

o [Instruction-wise Pruning: Our detailed analysis show
that many of these selected representative threads still exe-
cute subsets of dynamic instructions that are identical across
threads. This implies that all instructions are not required to be
considered for fault injection, and that the replicated subsets
across threads can be considered only once. Therefore, the
replicated fault sites are further pruned while preserving the

application error resilience characteristics.

e Loop-wise and Bit-wise Pruning: We observe that there
is a significant redundancy in fault sites across loop iterations
and register bit positions. Therefore, such redundant fault sites
can be further pruned for further savings while accurately
capturing the application error resilience characteristics.

To the best of our knowledge, this is the first work that
quantifies the problem of high number of fault sites in GPUs
and develops progressive pruning techniques by leveraging
GPGPU application-specific properties. Our newly proposed
methodology is able to reduce the fault site space by up to
seven orders of magnitude while maintaining accuracy that is
close to that of ground truth.

II. BACKGROUND AND METHODOLOGY

This section provides a brief overview of the baseline GPU
architecture and applications, followed by a description on the
basics of the fault injection methodologies and fault model.

A. GPU Architecture and Applications

Baseline GPU Architecture. A typical GPU consists of
multiple cores, also called streaming-multiprocessors (SMs)
in NVIDIA terminology [15]. Each core is associated with
private L1 data, texture and constant caches, software-managed
scratchpad memory, and a large register file. The cores are con-
nected to memory channels (partitions) via an interconnection
network. Each memory partition is associated with a shared
L2 cache, and its associated memory requests are handled by
a GDDRS5 memory controller. Recent commercial GPUs [15]-
[17], typically employ single-error-correction double-error-
detection (SEC-DED) error correction codes (ECCs) to protect
register files, L1/L2 caches, shared memory and DRAM
against soft errors, and use parity to protect the read-only
data cache. Other structures like arithmetic logic units (ALUs),
thread schedulers, instruction dispatch unit, and interconnect
network are not protected [15]-[17].

GPGPU Applications and Execution Model. GPGPU appli-
cations leverage the single-instruction-multiple-thread (SIMT)



philosophy and concurrently execute thousands of threads
over large amounts of data to achieve high throughput. A
typical GPGPU application execution starts with the launch
of kernels on the GPU. Each kernel is divided into groups
of threads, called thread blocks, which are also known as
Cooperative Thread Arrays (CTAs) in CUDA terminology. A
CTA encapsulates all synchronization and barrier primitives
among a group of threads [1], [21]. Having such an abstraction
allows the underlying hardware to relax the execution order
of the CTAs to maximize parallelism.

We selected applications from commonly used suites (i.e.,
Rodinia [22] and Polybench [23]) that cover a variety of
workloads from different domains. Note that, as kernels of
GPGPU applications normally implement independent mod-
ules/functions, we perform resilience analysis separately for
each kernel. We focus on every static kernel in the application.
For static kernels with more than one dynamic invocations, we
randomly select one for fault injection experiments. Table I
shows the evaluated 10 applications (16 kernels). In the rest
of this paper, if the kernel index is not specified, it implies
that the application contains only one kernel.

B. Baseline Fault Injection Methodology

We employed a robust fault injection methodology based on
GPGPU-Sim [24], a widely-used cycle-level GPU architectural
simulator. The usability of GPGPU-Sim with PTXPlus mode
(which provides a one-to-one instruction mapping to actual
ISA for GPUs [24], [25]) for reliability assessment is validated
by GUFI [25], a GPGPU-Sim based framework. In this work,
we inject faults using GPGPU-Sim with the PTXPlus mode.

For each experiment, we examine the application output
to understand the effect of an injected fault. We classify the
outcome of a fault injection into one of the three categories: (1)
masked output, where the injected fault leads to no change in
the application output, (2) silent data corruption (SDC) output,
where the injected fault allows the application to complete
successfully albeit with an incorrect output, and (3) other
output, where the injected fault results in application hangs
or crashes. The distribution (or percentage) of fault injection
outcomes in these three different categories form the error
resilience profile (or characteristics) of a GPGPU application.

C. Baseline Fault Model

We focus on injecting faults in the destination registers
to mimic the effect of soft errors occurred in the functional
units (e.g., arithmetic and logic units (ALUs) and the load-
store units (LSUs)) [18], [26]. The destination registers and
associated storage are identified by thread id, instruction id,
and bit position. Table I shows a few characteristics of various
application kernels, including the number of threads spawned
by each kernel and the total number of fault sites (also called
fault coverage). The fault coverage for each application kernel
(consisting of N threads) is calculated as per Equation (1).
Suppose that a target thread ¢ (¢ € [1, N]) consists of M (¢)
dynamic instructions and that the number of bits in the
destination register of instruction ¢ (i € [1, M (t)]) is bit(t, ).

The number of exhaustive fault sites is the summation of every
bit in every instruction from every thread in the kernel and is
given by:

N M(t)
FaultCoverage = Z Z bit(t,1). (D)
t=1 i=1
This number for the GPGPU kernels that we consider in this
paper is reported in the rightmost column of Table 1.

D. Statistical Considerations

Looking at the number of exhaustive fault sites shown in
Table I, it is clear that it is not practical to perform fault
injection runs for all fault sites. This is especially true when
application execution time is very long, which is especially
true for production software or workloads executing in data
centers [27]). Taking GEMM from Polybench as an example
and assuming that it takes a (nominal) one minute to execute
one fault injection experiment, then 7.73E+08 minutes (or
about 1331 years) are needed to complete experiments for the
entire fault site space (see the first row in Table II). There-
fore, it is desirable to reduce the number of fault injection
experiments but also guarantee a statistically sound resilience
profile (i.e., percentages of masked, SDC, and other outputs —
see Section II-B) of the considered application kernel. To this
end, prior work [20] has shown that given an initial population
size IV (in our case, IV is the number of exhaustive fault sites),
a desired error margin e, and a confidence interval (expressed
by the t-statistic), the number of required experiments n (in
our case, fault sites) is given by:

N

n N @)

1+e? x t2xpx(1—p)

Note that p in the above equation is the program vulnerability
factor, i.e., the percentage of fault injection outcomes that
are in the masked output category. If n < N, (e.g., if the
percentage of samples is less than 5% of the entire population),
then N can be approximated by oo, resulting in the following
equation [28]:

N 2

lim n= lim = wox(1=p). (3
N —o00 N—>ool_|_82><tz><11)\/;<ﬁ €2 p ( p) 3

Since p is the result of fault injection experiments, p is
still unknown. To ensure that the number of fault injection
experiments n is sufficient to capture the true p [20], then
t2 t2
n=max{— Xpx(1l— =—
{xpx (=)= "7,

where n is the minimum sample size (i.e., number of fault
injection experiments) required to calculate the fraction of
fault injection outcomes in the masked output category, with
a certain confidence interval and a user-given error margin e.
To maximize the term p X (1 — p), p is set to 0.5.

Table II presents the required number of fault injection
experiments (i.e., fault sites) in GEMM given a confidence
interval and an error margin. We consider the reliability

“4)



TABLE II: Fault sites and other statistics for GEMM.

Legend

Confidence Error # Fault Estimated Masked
Interval Margin Sites Time Output (%)
100% 0.0% 7.73E+08 1331 years ?
99.8% +0.63% 60,181 40 days 24.2%
95% +3.0% 1,062 16 hours 21.6%

profile results of 60K experiments (with 99.8% confidence
interval and an error margin of e = 0.63%) as the ground
truth [29]. Clearly, there is a significant discrepancy between
the percentage of masked outputs for 60K versus 1K fault
injections (see last column). The goal of our fault site pruning
mechanism is to achieve the accuracy of the 60K results but
with a much reduced number of experiments.

III. PROGRESSIVE FAULT SITE PRUNING

In this section, we explain the proposed error site pruning
techniques while providing intuition along the steps.

A. Overview

Figure 1 provides an overview of our fault site pruning four-
stage mechanism. This mechanism is progressive, i.e., every
successive stage further reduces the number of fault sites of the
previous one. There are four primary stages: a) Thread-wise
Pruning, b) Instruction-wise Pruning, c) Loop-wise Pruning,
and d) Bit-wise Pruning. In each stage as depicted in Figure 1,
black parts represent the selected fault sites while the gray
parts represent the pruned ones.

In the first stage, we perform a) thread-wise pruning where
kernel threads are classified into different groups. This classifi-
cation is based on the distribution of fault injection outcomes:
threads in the same group share a similar application error
resilience profile. From each group, we are able to randomly
select one thread as the group representative. Yet, thread
classification is challenging. In Section III-B, we show that
the dynamic instruction (DI) count per thread can be used as
proxy for effective thread classification. We classify threads
based on their dynamic instruction count into several groups,
then select one representative (i.e., one black thread) per group.

In the next pruning stage, we perform b) instruction-
wise pruning, which leverages common blocks of code that
are shared among the selected representative threads of the
previous pruning stage. We find that because of the SIMT
nature of the GPU execution model many threads execute the
same subsets of instructions. These common instruction blocks
are likely to have similar resilience characteristics (discussed
further in Section III-C), thus become candidates for pruning
(see gray segments in Figure 1, stage b) Instruction-wise
Pruning). Black segments are selected for fault injection and
move to the next pruning stage.

In the subsequent pruning stage, loop-wise pruning, we
identify loops in the threads that are selected from the previous
stage and we randomly sample several loop iterations to
represent the entire loop block (we elaborate on how we do
this sampling in Section III-D). Within each loop, we are able
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Fig. 1: Overview of the 4-stage Fault Site Pruning Mechanism.

to use a part of representative iterations (marked as black) and
discard the rest (marked as gray), see Figure 1 stage c.

As a last step, with bit-wise pruning, we consider several
pre-selected bit positions for fault injection. These bit positions
are selected to cover a range of positions in registers to further
reduce the fault site space (Section III-E gives the rationale
behind the bit position selection). Similarly, to the rest of
Figure 1, black bit positions are the selected fault sites while
gray ones are pruned. Overall, Figure 1 gives a road-map of
the progressive pruning steps that are discussed in detail in
the following subsections.

B. Thread-Wise Pruning

As discussed in Section II, GPGPU applications typically
spawn thousands of threads. Therefore, injecting faults to all
thread registers is not practical. To this end, we classify threads
into groups that share similar resilience behavior. The chal-
lenge here is to choose an effective metric that can be easily
extracted from the application to guide this classification.

In order to develop a classification process, we study the
error resilience characteristics of CTAs and threads of a kernel
through a large fault injection campaign (i.e., over 2 million
fault injection runs). We investigate the fault resilience features
hierarchically, starting from CTA-, thread-, and instruction-
level. Our analysis illustrates that:

o A few representative CTAs and threads can capture the
error resilience characteristics of the entire kernel.



o The number of dynamic instructions (short as iCnt) per
thread can be used as an effective classifier to identify
representative threads and guide the first pruning step.

1) CTA-wise Pruning: We first focus on understanding the
error resilience characteristics at the CTA level. Although it is
not practical to perform an exhaustive fault injection campaign
at this level, it is relatively manageable to run exhaustive
experiments for target instructions. We select a diverse set
of dynamic instructions including memory access (e.g., Id),
arithmetic (e.g., add and mad), logic (e.g., and and shl), and
special functional instructions (e.g., rcp), and from different
code locations (e.g., beginning, middle, and end). Although the
fault sites are already reduced by targeting certain instructions
and narrowing down to few locations, the number of (reduced)
fault sites per kernel is still large, e.g., 1,217K for HotSpot,
774K for 2DCONYV, 412K for K-Means.

Instead, we resort to Equation 4 to obtain n=60K random
samples for every target instruction in a kernel. We use
2DCONYV and HotSpot, which are diverse nature in terms
of number of threads and similarity across threads. For each
application kernel, we manually select 5 instructions that cover
the aforementioned diversity, resulting in 300K fault injection
runs per application kernel. Figure 2(a)-(b) shows the grouping
results given by one target instruction for 2DCONV and
HotSpot, respectively. The results for the remaining four target
instructions are not shown for brevity.
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Fig. 2: CTA grouping after 60K fault injection runs of one
target instruction for (a) 2DCONV and (b) HotSpot. CTAs
with the same color are classified into the same group. In the
box plot, the horizontal green lines represent the median and
red dots represent the mean.

Figure 2(a) shows the distribution of fault injection out-
comes for all 32 CTAs in 2DCONYV. CTAs are listed in the
order of their launching time along the x-axis. For every CTA,
we calculate the percentage of masked outputs (percentage of
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Fig. 3: CTA grouping given by average dynamic thread
instruction count (iCnt) per CTA for (a) 2DCONV and (b)

HotSpot. CTAs with the same color are classified into the same
group. A significant similarity is is observed with Figure 2.

SDC and other outputs are not shown) for each of its 256
threads and show the distribution of masked outputs using
boxplots (i.e., one boxplot for each CTA to illustrate salient
points in the distribution of masked outputs, including the
25th and 75th percentiles, and the mean and median). We
observe that CTAs exhibit three distinct distributions as given
by the different shapes of boxplots. Each group is marked by a
different color. Therefore, 3 CTAs (one per group) is sufficient
to represent the entire kernel. Similarly, Figure 2 (b) shows the
CTA grouping results for HotSpot. There are 36 CTAs in total,
each containing 256 threads. For clarity, we show a few CTAs
only. We observe from the boxplots that HotSpot has more
diverse CTAs than 2DCONYV and hence we classify its CTAs
into 10 groups (C-1 to C-10).

Although the experiments illustrated in Figure 2 point to a
promising methodology to obtain a first-order CTA grouping,
it is obtained with 300K fault injection runs per kernel. This
is still not always practical, as one can always opt to the
random fault injection campaign [20], which requires 60K
runs. Therefore, it is imperative to find an effective metric that
can further prune the fault space. We show that the number of
dynamic instructions per thread (iCnf) is an alternative good
measure for thread classification. This is encouraging as only
one fault-free execution is sufficient to collect all the required
iCnt information.

Figure 3(a)-(b) shows the results for 2DCONYV and Hotspot.
Each boxplot shows the distribution of thread iCnt per CTA.
Recall that each boxplot in Figure 2 represents the distribution
of percentage of masked outputs. Similarly here, we are able to
classify the CTAs into the same groups as in Figure 2 (both
Figure 2 and 3 use the same color-code). Table III and IV



report the grouping results guided by the average thread iCnt
per CTA (given by Figure 3) for 2DCONV and HotSpot,

TABLE IV: CTA and threads groups for HotSpot.

- CTA  Avg CTA Thd. Thd. iCnt Thd.
respectively (see the left three columns). Grp. iCnt Proportion Grp. Range Proportion*

' TQ summarlze, the above 1.re.sults confirm t'ha't iCnt is effec- 1 77 o8 23.44%

tive in capturing the error resilience characteristics at the CTA- C-1 154 2.78% T12 111 — 115 10.55%

. . . - 7

level. Based on the grouping guided by iCnt, only a few CTAs i;? 7718390 ?g'gg(;“

. . . - - N 0

per kernel are sufficient to capture the entire picture. We have c-2 159 8.33% T22 108 — 115 16.41%

conducted similar experiments for other application kernels x? 7718?103 Z;'g?;"

. - — . 0

(not shown here due to lack of space) that overwhelmingly c3 137 2.78% 32 108 — 115 8.98%

support the above conclusion. T-33 183 45.70%

o 41 77 — 99 28.91%

C4 99 30.56% T-42 103 71.09%

. : .09%

TABLE III: CTA and threads groups for 2DCONV. — 9111 187500

s o T-52 113 5.08%

CTA Avg. CTA Thd. Thd. iCnt Thd. C-5 160 8.33% T-53 115 5.08%

Grp. iCnt Proportion Grp. . Proportion* T-54 183 71.09%

T-11 13 12.50% - 108 0.25%

- -507% T-62 111 6.25%

C-1 43 6.25% T-12 15 2.73% C-6 166 25.00% 63 113 - 115 10.94%

T13 48 84.77% T-64 183 76.56%

ca 47 43.75% T-21 15 3.13% 71 95 — 108 13.75%

— T-22 48 96.87% c7 143 8.33% 72 113 — 115 7.03%

C-3 11 50.00% T-31 11 100.00% 73 183 49.22%

* For each CTA group, we show its percentage of threads belonging to the T-81 80 — 98 45.31%

corresponding thread group. C-8 135 2.78% T-82 111 — 113 8.98%

T-83 183 45.70%

- TO1 80 — 95 37.50%

Observation-1: A few CTAs are enough to capture the c9 139 8.33% 92 108 — 113 13.28%

error resilience characteristics of a kernel. These CTAs are T-93 183 49.22%

.. . T-101 80 — 103 60.94%

selected based on the average thread dynamic instruction C-10 124 2.78% 102 108 — 113 7.49%

T-103 183 31.64%

count (iCnt).

2) Thread-wise Pruning: By narrowing down to only a
few CTAs in a kernel, we are able to significantly reduce
the number of fault sites. Yet, an exhaustive fault injection
campaign using all threads in selected CTA representatives
is not viable. For example, for a CTA with 256 threads, if
each thread executes an average of 100 dynamic instructions
and if all destination registers are 32-bit wide, then a total of
819, 200 runs are needed. Therefore, we continue the thread
classification within each CTA in order to select only a few
representative threads. As done previously, we classify threads
inside a CTA using (1) a large number of fault injection runs
and (2) iCnt. We confirm that the two methods lead to the
same thread grouping results, see Figure 4. In other words,
thread iCnz is also effective within a CTA to classify threads.

Figure 4(a) shows results for 2DCONV. Each blue dot
represents the percentage of masked outputs in that thread (left
y-axis) and each red dot indicates the corresponding thread
iCnt (right y-axis). We mark threads in the same group with the
same color. We observe a clear repeating pattern that allows
for classifying all threads into two distinct groups (one marked
with green color, the other one is uncolored, see Figure 4(a)):

1) T-21: threads with iCnt=15 and percentage of masked

outputs at around 100%.
2) T-22: threads with iCnt=48 and percentage of masked
outputs between 20% to 30%.
Table III reports the thread grouping details for 2DCONV
(right three columns). A potential reason for such similarity in
the distribution of fault injection outcomes among threads with
different iCnt is the fact that these threads share large common
code blocks, this is further discussed in Section III-C.

* For each CTA group, we show its percentage of threads belonging to the
corresponding thread group.
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Fig. 4: Thread Grouping inside one CTA.

Figure 4(b) shows that threads in HotSpot can be also
classified into several groups (Table IV). Due to the complexity
of this kernel, we merge thread groups with similar iCnt
together for visualization purposes, resulting in 3 distinct
groups: one marked in green, one marked in yellow, and
the third one is uncolored. Note that, during the actual fault
injection campaign, we still classify threads based on the exact
thread iCnt (a total of 87 thread groups across selected CTAs)



and select one representative thread per group.

We find that it is important to perform the grouping in
two steps: first at the CTA level and then at the thread level.
Through our fault injection runs, we find that threads with the
same iCnt from different CTAs could have different instruc-
tions and thus show different distribution of fault injection
outcomes (this is observed in HotSpot and Gaussian K2).
Therefore, the step of CTA-wise grouping cannot be skipped.

Observation-2: Threads can be further classified within a
CTA. A few threads within a CTA are able to represent the
CTA’s error resilience characteristics.

C. Instruction-Wise Pruning

Our analysis shows that different threads normally share
a large portion of common instructions. We aim to further
prune the fault sites by finding common instruction blocks
among the resulted set of thread representatives after the
thread-wise pruning stage. We illustrate this observation using
PathFinder application. Figure 5 shows instruction snippets
of its two representative threads (“a” and “b”) chosen from
the previous pruning stage. Comparing their PTXPlus code,
dynamic instructions from the first line till line number 53
are all the same; thread “a” has 17 more instructions in the
middle; at the end, all the remaining 463 instructions across
the two threads are also the same.
Thread “a” (iCnt = 533)
shl.u32 $r3, s[0x0010], 0x00000001

1 1
2 cvt.u32.u16 $r1, %ctaid.x 2
3 add.u32 $r3, -$r3, 0x00000100 3
4 4
5 5

Thread “b” (iCnt = 516)
Shiu32 $r3, S[0x0010], 0x00000001
cvt.u32.u16 $r1, %ctaid.x
add.u32 $r3, -$r3, 000000100
mul.wide.u16 $rd, $ri.lo, $r3.hi
mad.wide.u16 $r4, $ri.hi, $r3.lo, $r4

mul.wide.u16 $rd, $r1.lo, $r3.hi
mad.wide.u16 $r4, $r1.hi, $r3.lo, $r4

49 cvts32.532 $r2, -$r2 49 cvt.s32.532 $r2, -$r2

50 and.b32 $p0j$o127, $r5, $r2 50 and.b32 $p0[$o127, $r5, $r2
51 ssy 0x00000228 51 ssy 0x00000228

52 mov.u32$r2, $r124 52 mov.u32 $r2, $r124

53 @$p0.eq bra 10x00000228 53 @$p0.eq bra 10x00000228

54 add.halfu32 $17, s[0x0038], $r1

55 movhalfu32 $r2, s[0x0030]

56 mulwide.u16 $r8, Sr2lo, $r7.hi

57 mad.wide.u16 $r8, $r2.hi, $r7 o, $r8
53 shl.u32 $r8, $r8, 0x00000010

66 min.s32 $17, s[$ofs2+0x0040], $r8
67 Idglobal.u32$r2, [Sr2]

68 add.u32 $r2, $r2, $17

60 mOV.u32 s[Sofs3+0x0440], $r2

70 mov.u32 $r2, 0x00000001

71 10x00000228: nop 54 10x00000228: nop
72 barsync 0x00000000 55 bar.sync 0x00000000

73 seteq.s32.532 $p0/$0127, $r6, $r1 56 seteq.s32.532 $p0/$0127, $r6, $r1
74 @$p0.ne bra 10x000002b8 57 @$p0.ne bra 10x000002b8

75 setne.s32.532 $p1/Sr1, $r2, $r124 58 setne.s32.532 $p1/Sr1, $r2, $r124
529 seteq.s32.532 $p0/$0127, $r6, $r1 512 seteq.s32.532 $p0/$0127, $r6, $r1
53 @$p0.ne bra 10x000002b8 513 @$p0.ne bra 10x000002b8

10x000002b8: set.ne.s32.532 $p0/$0127, $r2, 10x000002b8: set.ne.s32.532 $p0/$0127, $r2,
$r124 $r124

532 bral0x000002c8 515 bra 10x000002c8
533 10x000002c8: @$p0.eq retp 516 10x000002¢8: @$p0.eq retpz

Fig. 5: PTXplus code comparison of two representative threads
for PathFinder. Blue bold lines indicate common instructions.

Table V shows the percentage of masked and SDC outputs
for PathFinder if soft errors are injected in their common
portion only. The distributions of fault injection outcomes that
stem from this common block are quite close (see columns 4
and 5 in the table). Naturally, fault injections have to occur
in the entire body of thread “a” to calculate its resilience, but
since there is a common code block across the two threads,
it can be used to extrapolate the distribution of fault injection
outcomes of thread “b”. This eliminates the need to inject

TABLE V: Effect of instruction-wise pruning for two threads.

o % % %
Application Thread Common Insn. MSK SDC
A a 92.1% 89.4%  0.0%
PathFinder b 100.0% 90.1%  0.4%

faults in thread “b” and essentially prunes the fault sites
generated for this thread. We introduce —0.078% error for
the percentage of masked outputs and —0.031% error for the
percentage of SDC outputs (both minimal variations), but with
a significant reduction of 12, 344 fault sites.

To confirm that this behavior persists across kernels, we
conduct exhaustive experiments across the fault site space after
CTA-wise and thread-wise pruning and confirm that common
blocks of instructions across threads share a surprisingly
similar distribution of fault injection outcomes (Table VI).
The third column of Table VI shows the percentage of
pruned common instructions, and the 4th and Sth columns
show the error of pruned results, compared to the exhaustive
experiments before pruning common instruction blocks. This
pruning technique is useful for complicated applications such
as PathFinder and HotSpot, with the reduction of 92.81%
instructions and 92.80% instructions, respectively. Table VI
shows that the percentage of common instructions pruned in
applications kernels ranges from 42.86% to 92.81% and the
error introduced by pruning common instruction blocks for
masked and SDC outputs is —0.15% and —0.1%, respectively.

TABLE VI: Summary of instruction-wise pruning for selected
kernels. Other kernels do not exhibit instruction commonality.

Application Kernel % Pruned Introduced Error
Common Insn. MSK SDC
HotSpot K1 92.81% -0.14% 0.14%
PathFinder K1 92.80% 0.03% -0.09%
LUD k46 80.00% -0.78% -0.70%
2DCONV k1 66.67% 0.09% -0.09%
Gaussian K2 62.50% -0.13% 0.13%
Gaussian K126 42.86% 0.00% 0.00%
Average 72.94% -0.15% -0.10%

Note that several application kernels (e.g., 2MM, MVT,

SYRK, and GEMM) after thread-wise pruning end up with
only one representative thread. These kernels are not suitable
for instruction-wise pruning, and are therefore not included
in the table. For Gaussian K1 and K2, and K-Means K1,
instruction-wise pruning is also not applicable. For these
application kernels, there are two representative threads, one
with very few instructions (i.e., less than 10) and other with
many (i.e., hundreds or thousands), leaving few opportunities
to explore code commonality.

Observation-3: Different representative threads may share
significant portions of common instructions. Therefore, dis-
tributions of fault injection outcomes of these common
portions are similar. Consequently, a large number of fault
sites can be pruned while achieving significant accuracy.




D. Loop-Wise Pruning

Table VII shows the total number of instructions and the
number of loop iterations per kernel. The kernels are sorted
in increasing order by the portion of instructions in loops
(after the loop is unrolled). Excluding kernels with no loops,
a large portion of instructions in a kernel come from loop
iterations, ranging from 65.79% in LUD K46 to 99.71% in
MVT. Such an abundance in the repetitive instruction blocks
indicates large opportunities for pruning. We aim to discover
whether the distribution of fault injection outcomes can be
captured by a subset of loop iterations.

TABLE VII: Statistics related to loops.

Application Kernel  # Thd. #11{::1) % il;sol; m
HotSpot K1 9216 0 0.0%
2DCONV K1 8192 0 0.0%
NN K1 43008 0 0.0%
K1 512 0 0.0%
Gaussian K2 4096 0 0.0%
K125 512 0 0.0%
K126 4096 0 0.0%
K45 256 0 0.0%
LUD K46 16 120 65.79%
K44 32 120 78.75%
K-Means K1 2304 34 82.42%
K2 2304 170 87.6%
PathFinder K1 1280 20 92.84%
SYRK K1 16384 128 98.13%
2MM K1 16384 128 98.18%
GEMM K1 16384 128 98.21%
MVT K1 512 512 99.71%

Towards this goal, we consider a number of randomly
sampled iterations for fault injections. We present results
for different fault site sizes, defined by the total number of
sampled iterations (num_iter) ranging from 1 to 15. Figure 6
shows the impact of num_iter on the distribution of fault
injection outcomes for PathFinder, SYRK, and K-Means KI.
For K-Means K1, we show the effect of two different random
seeds for sampling the loop iterations. We observe that the
distribution of fault injection outcomes is stable after a certain
number of sampled loop iterations. Looking closer into the
application source code, we observe that: 1) several loop con-
ditions are controlled by constants and not variables that are
changed within the loop and 2) there is no data communication
among different loop iterations. Therefore, there is no error
propagation among different loop iterations, thus sampling
is sufficient for obtaining the distribution of fault injection
outcomes. These observations hold true for the evaluated
applications, but may not be true for other applications.

Figure 6 shows that different applications require different
numbers of sampled loop iterations to reach stability for the
percentage of masked, SDC, and other outputs. Figure 6(a)
shows that PathFinder requires 3 sampled loop iterations.
Figure 6(b) shows that the output of SYRK becomes stable
after 8 sampled loop iterations. In both cases the trend is clear.
For K-Means K1 (Figure 6(c)), there is no clear trend with a
few sampled iterations but results stabilize when the number
of sampled loop iterations reaches 15. To further explore the
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Fig. 6: Impact of loop-wise pruning on distribution of fault
injection outcomes for (a) PathFinder, (b) SYRK, and (c)-(d)
for K-Means K1 with different random seeds.

behavior of this kernel, we sample the loop iterations of K-
Means K1 using another random seed. Figure 6(d) reports the
results and shows that stability is again achieved with 15 loop
iterations, as shown in Figure 6(c).

To summarize, Figure 6 suggests that randomly sampling a
few iterations is generally sufficient in capturing the distribu-
tion of fault injection outcomes of application kernels. This
offers another way to further reduce the fault sites within a
thread. Similar experiments are done for all other applications
and result in the same conclusion. Therefore, we randomly
add iterations one by one, until the result is stable. For the
examined kernels, the number of iterations sampled among
loops differs from a minimum of 3, to a maximum of 15, with
an average of 7.22 iterations across all application kernels.

Observation-4: Distribution of fault injection outcomes in a
kernel can be captured by a subset of iterations in the loop.
This provides an opportunity for fault site pruning thanks to
the abundance of instructions in a loop.

E. Bit-Wise Pruning

Beyond instruction-wise pruning, we explore whether it
is possible to further prune the fault site space from the
perspective of bit positions. The intuition is that not all bit
positions contribute equally to incorrect outputs. Intuitively,
one may assume that bit flips in higher bit positions would
produce more problematic outputs as the difference between
the original value and flipped value tends to be larger. How-
ever, this intuition does not always hold true. The error pattern
depends on application kernels and register types.

Figure 7(a)-(b) presents the distribution of fault injection
outcomes for two major types of registers (i.e., .u32 and .pred)
for 2DCONYV and MVT, respectively. We evenly partition bit
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for (a) 2DCONYV and (b) MVT.

positions in a register into 4 sections and show the distribution
of fault injection outcomes for every section. First, we notice
that for register type .u32, the intuition of higher bit sections
having more problematic outputs holds for both application
kernels. For MVT, the percentage of masked outputs decreases
with increasing bit positions and becomes almost invisible in
the higher two bit sections. For register type .pred that has
4 bits, we observe that for both applications, the lowest bit
position results in output errors, while the higher three bit
positions are very error resilient (they result only in masked
outputs). This is the nature of 4-bit predicate system [30]: the
highest three bits in register type .pred are used for overflow
flag, carry flag, and sign flag, respectively, while the lowest bit
represents the zero flag. Within the context of the applications
we study in this work, only the zero flag is used for branch
conditions, so we can confidently prune the other three bit
positions in register type .pred.

Note that since the .pred register is not a common one, the
scope of pruning is not significant. For .u32 (see Figure 7)
there is a consistent pattern as a function of the bit position,
therefore we select several bit positions from each register
section resulting in a total of 4, 8, and 16 bit samples (at most,
depending on the register size) and compare the distribution
of fault injection outcomes with that of all bit positions. Note
that the selected bits are separated by equal intervals. For
instance, for a 32-bit register and selecting 2 bit positions
per section, we focus on bits in the following positions
{3,7,11,15,19,23,27,31}. Figure 8 shows the results. For
2DCONV (see Figure 8 (a)), the change in distribution of
fault injection outcomes changes as the number of sampled
bits increase. This behavior persists in Figure 8 (b) for MVT.
Overall, sampling 16 bits is promising as fault site space can
be significantly pruned.

Observation-5: It is possible to reduce the number of fault
sites by examining only a subset of bit positions.
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Fig. 8: Impact of bit-wise pruning on distribution of fault in-
jection outcomes for (a) 2DCONYV and (b) MVT (all registers).
Percentage of outputs stabilizes at 16 bits.

IV. EVALUATION

In this section, we evaluate the proposed progressive prun-
ing methodology by comparing with 60/ random experiments
(baseline case, see Section II-D).

We calculate the distribution of fault injection outcomes
for every application kernel and compare with the percentage
numbers given by the baseline (the closest approximation to
ground truth as discussed in Section II-B). The error margin
and confidence interval of baseline are set to 0.63% and
99.8%, respectively. Figure 9 shows the comparison results.
We observe that our pruning method produces very accurate
error resilience estimations for several benchmark kernels in-
cluding Hotspot, K-Means K2, Gaussian K2, Gaussian K126,
PathFinder, LUD K44, LUD K46, 2DCONV, GEMM, and
SYRK. For these kernels, the difference in terms of the
percentage of masked outputs comparing with baseline is
always less than 1%. For the remaining kernels, there is
no significant mismatch from the baseline. On average, the
differences in terms of masked, SDC, other outputs are 1.68%,
1.90%, and 1.64%, respectively.

Next, we compare the effectiveness of the proposed pro-
gressive feature-based pruning in terms of fault site reduction.
Figure 10 shows the comparison results. Note that we use
log scale with a base of 10 for the y-axis. The number of
fault sites left after each pruning step is normalized by the
original exhaustive fault sites for every application kernel for
cross-kernel comparison. The height of each bar represents
the normalized number of fault sites after each step and the
decrease in bar height from the previous bar indicates the
reduction in fault site space. The last two bars in each sub-
figure report also a number that indicates the fault site size of
the fully pruned space versus the 60K baseline case which is
the closest to the ground truth. Note that our pruning technique
needs one-time offline profiling to collect the application
features needed for pruning. We observe from Figure 10(a)
that Thread-wise pruning is the most effective, as it reduces
the magnitude of the number of fault sites by up to 5 orders
of magnitude. With Thread-wise pruning, we only use a few
representative threads (i.e., less than 10) per application kernel.
This is a significant reduction compared to the original number
of threads per kernel, e.g., 1 representative out of 16384
threads for GEMM, SYRK, and 2MM, and 6 representatives
out of 8192 threads for 2DCONYV. Such efficient first-order
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Fig. 9: Error resilience comparison of progressive fault site pruning techniques against the ground truth (baseline).

thread-wise pruning lays a substantial base for the following
steps. One important clarification that needs to be stated is
that any later pruning is performed on the selected thread
representatives, therefore further reductions after this step are
expected to be modest.

Instruction-wise pruning exploits the commonality among
the thread representatives selected in the previous step. It
is important to clarify that kernels in the second row (see
Figure 10 (b)) are not suitable for Instruction-wise pruning,
because their representative threads do not have many common
instruction blocks. Kernels in Figure 10 (c) are not applicable
to Instruction-wise pruning as there is only one thread group
per kernel, i.e., they only have a single representative thread.
Comparing results within the first row of Figure 10, we
observe that Instruction-wise pruning is most effective for
HotSpot and PathFinder, with the reduction of 92.81% and
92.80% instructions, respectively.

Loop-wise and Bit-wise pruning progressively contribute to
the reduction of the fault sites for each application kernel. The
effectiveness of Loop-wise pruning depends on the percentage
of loop instructions in the fault sites left by the previous step.
We observe a large reduction in K-Means K2, LUD K46 and
matrix-related applications including 2MM, GEMM, SYRK,
and MVT. This matches the fact that there is a large portion
of loop instructions in these kernels (see Table VII). On the
other hand, the effectiveness of Bit-wise pruning is relative
stable, i.e., the percentage of reduction in fault sites obtained
by Bit-wise pruning is consistent across kernels.

Summary: We present results of the 10 applications (16
kernels) using the pruned fault site subspaces outlined above to
seek the distribution of application outputs (masked, SDC, and
other). Our proposed mechanism is able to produce compara-
ble distribution numbers of fault injection outcomes against a
comprehensive baseline injection of 60K experiments which
we use here as a statistically sound approximation of ground
truth. For each step of feature-based progressive fault site
pruning, we observe significant progressive reduction in the
number of fault sites, ending up with only a few hundreds of
fault sites in several kernels.
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V. RELATED WORK

To the best of our knowledge, this is the first work that
identifies the problem of large number of fault sites that make
GPU reliability assessment impractical and proposes ways to
efficiently address it. In this section, we briefly discuss works
that are most relevant to this study.

High-level Reliability Analysis. Simulation-based analysis is
employed widely in characterizing critical hardware structures
for the purpose of finding vulnerabilities introduced by soft
errors. Prior work [31]-[33] performed architectural vulnera-
bility analysis (AVF) by performing exhaustive fault injection
experiments. For the analysis purposes, faults are injected at
various levels (e.g., application- or micro-architecture-level)
and the effects of bit flips are measured by analyzing the
application output. Application-level fault injection techniques
are widely used in evaluating error-resilience characteristics
for both CPU [34], [35] and GPU applications [36]. They
are generally fast and still can provide detailed information.
However, Cho et al. [37] pointed out that application-level
methods can be inaccurate as compared to flip-flop-level
methods for CPU applications. Another option is performing
neutron-beam experiments [38], which is not always feasible.
We acknowledge the aforementioned pros and cons of various
techniques for reliability analysis. In this paper, we follow the
process of studying reliability via fault injection, at PTXPlus-
level, which is much faster and feasible than beam injection
and is also reasonably accurate [25].

Fault Injection Analysis. Although much work has been done
on fault injector models/frameworks [39]-[52] in the CPU
domain, there are only a limited number of fault injection mod-
els designed specifically for GPUs. For example, to evaluate
application error resilience in GPUs, Fang et al. [26] proposed
GPU-Qin to understand how faults affect an application’s
output in GPUs. A GPU debugging tool cuda-gdb [53] is
leveraged by GPU-Qin to inject single bit errors into the
destination operands. Similarly, Hari et al. [18] developed a
fault injection tool, called SASSIFI, which injects different
kinds of faults into destination register values, destination
register indices and store addresses, and register files.
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Fig. 10: Fault site reduction comparison based on various feature-based pruning techniques.

“+” indicates that each pruning

stage is progressively built upon the pruned sites resulted from the previous stage. The height of the pruned fault sites bar
is normalized by the original exhaustive fault sites for each application kernel, see last column of Table I. The effectiveness
of progressive fault site pruning is compared against comprehensive baseline injection (60K random experiments). The exact
numbers are shown on the top of the last two columns for the proposed method and the baseline case, respectively.

Fault-site Pruning. One of the major concerns of aforemen-
tioned fault injection works, both in CPU and GPU domain,
is the space complexity of possible fault sites. Within the
CPU context, major works by Relyzer [54] and MeRLiN [29]
grouped fault sites into equivalence classes and select one
or more pilots per class for fault injection. They showed
significant benefits of employing their mechanisms in the
workloads typically executed on CPUs. We believe directly
transferring such pruning techniques to GPU applications is
not straightforward because GPU applications typically spawn
hundreds to thousands of threads, leading to enormous fault
site space. Our work identifies fruitful features that play a role
in the final error resilience characteristics of an application and
leverage them to carefully prune the fault site space. Finally,
to illustrate the effectiveness of our pruning mechanisms, we
performed exhaustive experiments on the pruned space and
compared the results to the ones closest to the ground truth.

VI. CONCLUSIONS

We demonstrate that fault sites in GPUs are very large and
hence it is impractical to inject faults at every site to gain a
comprehensive understanding of the GPGPU application error
resilience. To address this, we present a progressive fault site
reduction methodology based on GPGPU application-specific
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features. The key insight behind this methodology stems from
the fact that GPGPU applications spawn a lot of threads,
however, many of them execute the same set of instructions.
Therefore, several fault sites are redundant and can be pruned
by a careful analysis of faults across threads and instructions.
For additional benefits, we also considered loop iterations
within the same thread and register bit positions. We pruned
the associated redundant fault sites that are not necessary to
capture the GPGPU application error resilience. Across a set of
10 GPGPU applications (16 kernels in total) from the Rodinia
and Polybench suites, we achieve a significant reduction in the
number of fault-injection experiments (up to seven orders of
magnitude) needed for an accurate GPU reliability assessment.
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